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Summary. Using Fourier integrals, a quasi-steady solution is obtained to the title problem where the 
direction of motion, shape and size of the loading distribution do not vary with time. The loads are, 
moreover, assumed equally applied to both surfaces in such a way that the motion takes place in two 
dimensions. A numerical example is considered where the applied loading is distributed discontinuously 
according to a step function and is travelling with a velocity not greater than that of the shear wave. 

The corresponding solution for plane stress is obtained by changing the value of one of the elastic constants. 
and it is then an aid in the study of further problems such as the rapidly moving crack. 

1. Introduction. A renewed attention, stimulated by problems arising in many branches of the  

applied sciences, is being given to the investigation of elastic waves. In particular, there have been 

recent and notable contributions (e.g., Sneddon 1, Craggs 2) in the theory of two dimensional waves 

in an elastic half space and this is of special interest in geophysics and soil mechanics. Th e  engineer,  

however, interested in impact and rapidly moving cracks, is frequently concerned with a more 

difficult problem in so far as the medium has now two or more boundaries which introduce ref lected 

wave systems. 

Here  we are concerned with an aspect of this latter type of problem where applied loads are: 

travelling uniformly along the bounding surfaces of an infinite elastic plate. The  mathematical and 

computational difficulties are now more severe and so advantage is taken of the appreciable 

simplification obtained by confining attention to the quasi-steady state. Thus ,  the direction of motion, 

shape and size of the loading distributions are assumed not to vary with time and, moreover, the 

loads are assumed equally applied to both surfaces in such a way that the motion takes place in two. 

dimensions. All transient disturbances arising from the initial loading applications are ignored. 

The  solution for plane stress is obtained by changing the value of one of the elastic constants and 
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it is then an aid in the study of further and more difficult problems. Examples of current interest 

are those encountered during the study of a crack moving rapidly along a bounded flat sheet, or 

along the generator of a thin-walled cylinder where the consequent release of stress may be regarded, 

to a first approximation, as a discontinuous distribution of applied loading which travels along an 

,otherwise free edge. 
The method of solution is similar to that adopted by Filon a in 1903 to solve the corresponding 

:static problem. For this method, the special case of a simple harmonic wave is studied as a 

preliminary to the derivation of the Fourier integrals which, in their turn, enable the boundary 

conditions to be satisfied. The  analysis is simplified by taking advantage of some results, listed 

here, of the recent theory of generalised functions, e.g., Lighthill 4, 1959. The  investigation is 
concluded by considering a numerical example where the applied loading is distributed 

discontinuously according to a step function. 
I t  is recalled that in an unbounded elastic solid the stress waves can be propagated with two 

.different velocities---either with that of the dilation wave or, at about half this velocity, with that of 
the shear wave. When there is a bounding surface an elastic surface wave, or Rayleigh a wave, may 

also occur and this wave satisfies conditions of zero normal and tangential stress at the bounding 

surface while travelling slightly slower than the shear wave. Now, in the numerical example 
mentioned above, it is found that the peak stresses in the interior of the plate increase in magnitude 

as the applied loads travel faster along the bounding surfaces until, at coincidence with the Rayleigh 

wave velocity, there is a condition of resonance where infinitely large stresses occur. A similar 
phenomenon has been previously noted, e.g., by Craggs 2 and by Ang 6, the latter suggesting that 

this is a limiting velocity for the propagation of cracks in an elastic medium. It is interesting to note, 

however, that I rwin 7 suggests that in a real solid the limiting velocity is reduced by other considera- 

tions to about one half this value. A strange feature of the phenomenon, hitherto unmentioned, is 

-that there are distributions of the applied loading for which this resonance does not occur. 

When the applied loads are travelling faster than the Rayleigh wave velocity the stresses in the 

interior again have finite values but the quasi-steady solution is no longer unique because of the 

presence of a free wave. This free wave travels with the same velocity as the applied loads and it 

satisfies the conditions of zero normal and tangential stress at the bounding surfaces; it can therefore 

be added to the quasi-steady solution in an arbitrary manner. Such waves were studied by 

Lamb s in 1916. 
The present investigation is concerned chiefly with loads travelling at a velocity not greater than 

-that of the shear wave. It is interesting to note, however, that at each of the higher velocities there are 
an infinite number  of these free waves, but there are additional physical requirements in the 
interior of the plate which arise, for example, from the fact that shear wave disturbances now travel 
slower than the applied loading. Uniqueness of solution (presumably) returns when the applied 
loads are travelling faster than the velocity of the 'long waves' which themselves travel a little slower 

t han  the dilatation wave. 
On completion of the manuscript, the author 's  attention was drawn to a recent (1958) paper by 

Fulton and Sneddon 1~ who consider this amongst other plate problems. Their  attention is, however 

,confined to velocities less than that Of the Rayleigh wave. 

2. Fundamental Equations. The fundamental equations are well known, but it is convenient to 

have the list of them which is given below. 



k two dimensional rectangular Cartesian co-ordinate system x'oy', Fig. 1, is chosen with the ox' 

axis contained in the central plane and with the oy' axis normal to this. The  thickness of the plate is 
denoted by 2h. 

When  there are no body forces, the two dimensional equations of motion in terms of the stress 
components %, % and %u are 

0% arxy a2u Or, y a ~  = 32v 
ax' + a2' - o at 2 , 3x' + -~y '  O at 2 , (1) 

where u, v are the displacement components respectively in the directions of the x' and y '  axes, 
t denotes time and p is the material density. The  relationship between stress and strain is the same 
as in static elasticity 

\ ax + ~ + 2> 3x~' % = h \ 3x, + Oy ] + 2t. 3v ~ '  

( ~ u  ~v,~ (2) 

r .~  = t* kay + 3* ] '  

where 2, = Ev/(1 + v) (1 - 2u) and/~ = E/2(1 + v) are Lamfi's elastic constants and v is Poisson's ratio. 
(The equations for plane stress are obtained by replacing the constant a by a* = E v / ( 1 -  v2).) 

For Lamd's solution of the equations of motion we introduce the two potentials qo(x', y', t) and 

¢(x', y ' ,  t) so that the components of displacement are given by 

ae 3¢ a~ 3¢ 
u =  ax ~ + a y -  w ,  v -  ay' 3x" (3) 

Equations (2) for the stress components can now be rewritten 

\3~'~ + a, 3y ] '  ~. = av2~ + 2~ \ay = 3, 'ay' / '  

( 3'q, 32¢ ~2fo~ (4) 
rx:j = f* 2 3x,3y, 3x '~ + 3 2 U  

where V 2 is Laplace's operator 

a2 02 
V 2 - + - -  ( 5 )  

a x , =  3 y , 2 "  

When Equations (3) and (4) are substi tuted into the Equations (1) of motion, it is found that the 
functions ~ and ¢ must  satisfy the wave equations 

1 32~ 1 a2¢ 
V2q~ - 3t 2 V2¢ - (6) 

C12 ' C22 3 t  2 ' 

where q and c 2 are respectively the dilatation and shear wave velocities given by 

c, ~ = (~ + 2t*)/p, c.a 2 = tz/p. (7) 

For disturbances moving with uniform velocity c parallel to the x' axis, and in the positive direction, 
the dependent variables are all functions of x = x' - ct and y = y' .  For the moment,  it is assumed 
that the solution is periodic with respect to x and this is most conveniently done by introducing 
the factor exp ( -  2rd(x), the wavelength L being accordingly 

L = 1/.~ (8) 
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where ~ is an arbitrary constant. Writing 

#i = 1 -  132 = 1 -  c2~ / , 

the wave Equations (6) simplify % 

0250 _ 47r2/3~250, 02~ b _ 47r2/3,2~/s, Oy~ aye 
and Equations (4) for the stress components reduce to 

% = - ~ (1-~2~+ 2137)4~50 + 4 ~ i ~ y  , 

% = / *  { (1+132~)4rr~:~o + 4~ri~: ~y¢ 1 , 

~ v  = t t -4~ri~ ~y + (1 +1322)4,-r~b . 

(9) 

(10) 

(11) 

3. Satisfaction of Boundary Conditions. The boundary conditions at the surfaces y = + h are 
satisfied with the aid of Fourier integrals in a similar way that Filon 's used for the static problem. 

The motion is symmetrical with respect to the central plane y = 0 and so solutions of the wave 
Equations (10) which are suitable for the present purpose are 

cp = (I} exp ( - 2rri~x) cosh (2~r131~y), ~b = R e exp ( - 2rri~x)132 -~ sinh (2rr13.~sey) (12) 

where (I) and Re are constants to be determined. The factor/32 -1, inserted into the expression for ¢s, 
is convenient in the particular case when the applied loading distribution is travelling with the same 
velocity as the shear wave, i.e., when c = c a and j92 = 0. The  normal and tangential stress components 
on the bounding surfaces of the plate at y = + h are now obtained by substituting Equations (12) 

into Equations (11) to find that 

%(x, h) = /,{q)(l +132) cosh (2rr/?l~:h) + Re2i cosh (27r132~:h)} 4rr2~ :2 exp ( -  2~ri~x), ] 

rxv(x , h) = - r x , j ( x , - h )  = / z{ -  (1)2i131 sinh (2~r131~h) + Re(1 +13~2)132-~ sinh (2~r13z~h)} x ) (13) 

x 4~r2~ :2 exp (-27ri~x).  

Thus,  when the constants q? and ~F are given the values 

q ) _  1 } 
4 ~ ,  x(1 + Z~)~2 -~ sinh ( 2 ~ h ) ,  

(14) 
1 

~F - 4~r2/z 2ix131 sinh (2~r131~h), 

where X is a new constant, then the stresses at y = + h are given by 

au(x , h) = X~2(~:)~ 2 exp ( - 2 ~ i ~ x ) ,  I (15) 

~x & ,  h) = ~ ( ~ , -  h) = O, ) 
where g~(~:) is used as an abbreviation for 

~(~) = {(1 +~2~) ~ cosh (2~131~h) sinh (2~132~h) - 4133~,cosh (2~132~h) sinh (2~13~h))~.~-~. (16) 



If  the above equations are assumed to hold for all values of ~:, we may then write formally 

50 = q~(~) exp (-2~ri~x) cosh (27r~l~y)d~ , 
-~ (17) 

~F = tF(~:) exp (-2rr i~x) fi-1 sinh (2~rfi~y)d~ 
- - o a  

and, assuming that it is permissible to differentiate under  the integral sign, the normal and tangential 
stress components at y = _+ h are now given by 

%(x, h) = - g(x) = f~_09 X(~:)t~(~:)~z exp (-2~ri~x)d~, 

~-~ ~(~, h )  = ~-~,,(~, - h )  = o ,  

(18) 

where g(x) is the distribution of loading which is applied to the bounding surfaces, a positive value 
denoting a pressure. Using the well known Fourier integral relationships which state that if 

09 

f(~) = g(x) exp (27ri~x)dx, 
- - 0 9  

then, for suitable functions g(x) 

g ( x ) =  f_~J(~:)exp (-2~i~x)d~, 

(19a) 

(19b) 

we find after making comparison with Equations (18) that 

f(~) 
X(.~) - f~(~)~ • (20) 

The  function g(x), which gives the distribution of loading, is called the Fourier transform (F.T.) 

of f(~:). 
If  Equations (14) and (20) are now substituted into Equations (17) then the following Fourier 

integral expressions are obtained for the potentials ~o and ~b 

(1 +fi~)  f 09 sinh (2~fi~h) cosh (2~r/?~y) exp (-2~ri~x)f(~) d~ 
50 = _ 47r2/zfi~ ' _09 g/(~)~ ' 

ifl~ f~o sinh (27rfi~h) sinh (27rfi~:y) exp (-2~ri~x)f(~) d~. 
2 , ~ , ~  _09 ~(~:)~:~ 1 (21) 

Assuming again that it is permissible to differentiate under  the integral sign, the displacement 
components u and v are found by substituting these two potentials into Equations (3) so that 

i f~09 t (1 +/3ze) sinh (27rfi2~h) cosh (2~rfil~y) t exp (-2~ri~x).f(~) d~, } 
u - 2-t~fi~ _ t - 2filfi2 sinh (27rfil~h) cosh (2~fi~y) t Y~(~)~ 

(22) 
exp 

v = 2rr/432 _co 2 sinh (27rfi~h) sinh (27rfi~y) f~(~)~ 
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Sirnilarly, by substituting Equations (21) into Equations (11), the stress components are found to be 

% = ~ _~ 4/~182 sinh (2~-/3~h) eosh (2~/32~y) ~(~) 

l { ( l+ f i~2 )~s inh (2r r f i~h )cosh (2r r f i , ~y ) l e xp ( -2 r r i~x ) f (~ )d  ~ 
% = /?~ -co - 4-/9,/9~ sinh (2~rfl,$h) cosh (2~r/?2~y) f~(~) ' 

2ifi,(1 +/?~) (oo tsin h (2~r/?zSh)sinh (2~r~91~y) t exp ( -2rr i~x) f (~)  
r.,..,/ - /?3 J - ~  { - sinh (2~/?~seh) sinh (2~fl~y) t f~(s ~) 

d~. 

(23) 

The formal analysis above is in anticipation of the results of the theory of generalised functions 
which are listed later in this Paper. It is formally applicable for all values of the velocity c of the 
applied loading distribution, the results for special values such as c = 0, q or c 2 being obtained by 
limiting processes. 

We now turn to examine the question of free waves which can occur for certain values of c. 
They  were first studied by Lamb s in 1916. 

4. Free Waves. Referring back to Equations (15) and (16) we see that if there is a real value of 

for which f1($) = 0 then it is possible for waves to be present which satisfy conditions of zero 

normal and tangential stress along the bounding surfaces of the plate, i.e., %(x, h) = %,,(x, h) = O. 
These are now referred to as free waves and they occur for the real values of ~ = + $o which are 

the roots of the equation 

(1 +/3~2) 2 cosh (2~/31~oh) sinh (2~r/?2~oh) - 4131/3, 2 cosh (27rS~oh) sinh (27rfil~oh) = 0. (24) 

The  free wave has wavelength L o = 1/~ o and frequency c/L o . 
These free waves have a minimum velocity of propagation. Since 

1 c2 ~ sf2 (1 ca ~ 1/2 

c1 ] ' 

and, therefore, for Equation (24) to have a real root 

such that 

(1 (2s) 

to satisfy the equality and is, in fact, the smallest 

and c 1 > % it follows that/31 >/92 for real values 

it is necessary for the velocity c to have a value 

4515  > 

The  slowest non zero velocity c = c s is found 
root to the equation 

c1~/ - c2~7 = ( 2 -  c-~/ (26) 

which governs the propagation of Rayleigh surface waves in an elastic solid with a plane bounding 
surface. The ratio cs/c ~ is dependent only upon Poisson's ratio v and this relationship is plotted in 
Fig. 2. In the special case when v = 0.3 we have cs/c 2 = 0. 9274. 

The minimum velocity for free waves is, from Equation (24), seen to correspond to waves of 

zero wavelength, i.e., ~0 = oo. Let us now consider the other extreme where ¢0 -->0, i.e., the wave- 
length is very long. Equation (24) then simplifies to 

(1 +/3,") ~ = 4pl 2 (27) 
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in the l imi t  when ~0 = 0. After substituting from Equations (7) and (9) this is found to be the 
same as 

c 2 %2 1 - 2v  

c? c? (28) 

where the notation c z is introduced to denote the velocity of long waves in the plate. Th e  variation 

of the ratio Cz/C 1 with Poisson's ratio is also shown in Fig. 2. 

We have just seen that the first real root of Equation (24) occurs when c = c s and that this 

corresponds to ~0 = + co. This  root ~0 has a finite value for higher velocities and its variation is 

shown in Fig. 3. Fur thermore,  it is the only real root for c S ~< c < c 2. When c 2 < c, however, then 

fi2 is imaginary so that on writing 
/92 = i % ,  c 2 < c  (29) 

we find that Equation (24) can be rewrit ten as 

(1 - %2)2 cosh (27r/31~.h) sin (27r%~,fl) - 4/3~% cos (2~r%~,fl) sinh (27r/31(~h) = 0, (30) 

where C~ = + ~0, + ~1, + ~2, • • • • means that there are now an infinite number  of real roots and 

so it is possible for an infinite number  of  free waves to exist each travelling with the same velocity c. 

In  the special case where c = % ,  see Equations (27) and (28), we find that the roots are determined 
from the equation 

tan (27r%~r~h) = tanh (27rfil~h), c = c L .  (31) 

We have already discussed the root ~:0 = 0, but  it must be noted that there are an infinite number  

of real r oo t s t o  Equation (31), in fact for large integers n we have 

~,~ - + ( 4 n + 1 ) / ( S % h ) ,  c = % .  (32) 

The  wave with the longest wavelength is, however, the one most likely to be excited during a 

vibration and it is usual to confine attention to this case. There  are waves which have a (phase) 

velocity greater than cL, e .g . ,  the special case when c = q then/31 = 0 and we have 

q~ = 2 ( -  1) '~ exp (-2rri~,~x), ¢ = i(1 - % 2 )  exp (-2rri~,~x)% -1  sin (2rr%~,~y), ] 
(33) 

~:,~= _+n/(2a2h), n = 1, 2, 3 , .  . . . .  J 
T he  mathematical consequence of real roots ~,~ to the equation f2(~:) = 0 is the singularity which 

occurs in the integrands of Equations (21) to (23) when s e = ~,~. Thus,  for velocities greater than the 

Reyleigh wave the integrals, in the ordinary sense, are multivalued ~ i th  a consequent lack of 

uniqueness of solution which persists until c = cry*. In  such cases it is possible to attach definite 

values to the stress and displacement components  only by introducing additional requirements.  

5. N o t e s  on the  T h e o r y  o f  G e n e r a l i s e d  F u n c t i o n s .  Attention has already been drawn to the fact 

that part of the afore-going analysis has been conducted on a simple formal basis. Justification for 

this and for fur ther  analysis presently required is, however, readily obtained from the recently 

developed theory of generalised functions described by LighthilD in 1959. When generalised 

functions are used then the integrals of equations such as (21) to (23) are interpreted in a definite 

and consistent manner,  notwithstanding the singularities which may occur in the integrands. 

:* It should be noted that there is some uncertainty as to whether a unique solution is obtained in the 
range c L < c < q. The same question arises in the Pochhammer treatment of cylindrical bars, e.g., Kolsky 9. 



Moreover, the use of the theory enables formal differentiation to be carried out under the sign of 
the integral for most integrands arising from practical problems and it provides a simple technique 

for the evaluation of the asymptotic behaviour of the Fourier integral. 

Acknowledging that the theory is quite recent, it is perhaps helpful to list here those definitions 
which enable the recognition of the required generalised functions and then to describe the most 

useful theorems dealing with their Fourier transforms. Full details, with proofs, are given in the 
reference already quoted. 

Definition I--Good fitnction 
A good function of x is everywhere differentiable any number of times and it and all its derivatives 

are O(!x ]-~v) as [x [ -+ oo for all N, e.g., exp ( -  x ~) is a good function. 

Definition II--Fairly good fimction 
A fairly good function of x is everywhere differentiable any number of times and such that it and 

all its derivatives are O( lx !~) as Ix ] - ,  oo for some N, e.g., a polynomial is a fairly good function. 

Definition HI--Generalised fitnction 
A generalised function is a regular sequence of good functions. 

Definition IV--Ordinary functions as generaIised functions 
If  f(x) is a function of x in the ordinary sense such that (1 + xZ)-lVf(x) is absolutely integrable 

from - oo to oo for some N, then it can be shown that f(x) is also a generalised function. 

Definition V--Properties of a generalised function 
If  two generalised functions f(x) and h(x) are defined by sequences f~(x) and h~(x), then their 

sum f(x) + h(x) is defined by the sequence fi~(x) + h~(x). Also, the derivative f'(x) is defined by the 

sequence f~'(x). Also, f(ax+ b) is defined by the sequence f~(ax+ b). Also, q)(x)f(x), where q~(x) is 
a fairly good function is defined by the sequence ~(X)fn(X ) of good functions. It should be noted, 
however, that there is no satisfactory definition for the product of two generalised functions. 

As an example, the sequence exp ( -x~ /n  2) of good functions defines the generalised function I(x) 
such that 

f°~ I(x)F(x)dx= f ~  F(x)dx 
- - c o  - - C o  

and so I(x) can be denoted more simply by 1. Again, the sequence {exp (-nx~)}(n/Tr) ~/2 defines a 

generalised function 3(x), the Dirac delta function, such that 

f~-~o 3(x)F(x)dx = F(O) 

for any good function F(x). Furthermore, since (1 + x~") -1 sgn x is absolutely integrable from - co to 

oo it follows that sgn x is a generalised function, it can therefore be differentiated and the result is 

d 
dxx sgn x = 28(x). (34) 

Lighthill 4 defines x -1 as the odd generalised function which satisfies the equation xf(x) = 1 (the 

general solution of which is f(x) = x -~ + C3(x), where C is a constant) and 

x-,~ _ ( -  1)~-1 din-1 
( m -  1) [ dx m-* (x-~) (35) 

where m is any integer > O. It  is interesting to note that the generalised function x -'~ equals the 
ordinary function x -r~ in 0 < x < oo and in - oo < x < O. 



Useful results concerning the Fourier transforms (F.T.) of generalised functions are collected in 

the following theorems. If f(~:) is a generalised function with F.T. g(x) then 

Theorem I 
The sequence.[~(~) which defines f(~) has F.T. g~(x) which also defines the generalised function 

Theorem I I  
The F.T. o f f (a~+b)  is [a ] -1 exp (2rdbx/a)g(x/a). 

Theorem I I I  
Fourier's inversion theorem for generalised functions, f (x)  is the F.T. of g(-6:). 

Theorem I V  
The F.T. off ' (~) is 2zdxg(x). "7 

Theorem V 
If fv(~) is a generalised function of ~ for each value of the parameter y in a ~< y ~< b and has 

F.T. gu(x), then the F.T. of (O/gy)fv(~) is (O/Oy)g~j(x) for a ~< y ~< b. 

Theorem V I  
If f(~) has a finite number of singularities, ~ = ~0, ~1, . . . .  ~v, " ' ' "  ~1, and if 

P 

f(~) - ~ A~,(~- ~v)-mp is absolutely integrable for integral m~,, then g(x), the F.T. off(~), satisfies 
~ = 1  

e ( - 2~ix)m;-1 exp ( - 2wi~x)  
g(x) = - ~ r i s g n x  ~ A2) (m2)- l )v  

I o = 0  , " 

as 1"1-,oo. 
As an example, using the exponential sequence instanced previously we find that the F.T. of 

~(~:) is 

f~o 8(e)exp(-ZTriex)de = 1. (36) 
d - -  cO 

Using this result with Equation (34) and Theorem iV it can be shown that the F.T. of sgn ~ is 

(cO sgn ~ exp ( -  2~ri~x)de = (~rix) -1, (37) 
d - -  cO 

whereupon using Theorem III  the F.T. of ~-1 is found to be 

f~-~o ~-l exp ( -  2rd~x)d~ = - ~i sgn x" (38) 

Furthermore, using this result with Equation (35) and Theorem IV, the F.T. of ~-~ is 

~ - 2~ix)~-1 sgnx (39) 
o~ ~-~ exp ( - 27ri~x)d~ = - ~ri ( (m - 1) ! 

where m is any integer > 0. 
Theorem VI is useful for the asymptotic estimation of the Fourier transforms which are later 

encountered; it is derived through a generalisation of the Riemann-Lebesque lemma together with 

the aid of Theorem II and Equation (39). 

6. Validity of Sohttions. Using the above notes in conjunction with an inverse method it is now 
a sirnple matter to demonstrate the mathematical validity of the solutions for ~ and ~b which are 

given in Equation (21): 

9 



It does, however, remain to establish in each case the physical validity because the use of the 
theory of generalised functions does not preclude discontinuous displacement components u, v. 

Two further theorems, e.g., Titchmarsh I0, are needed to examine this. These theorems, this time 
for ordinary functions, are: 

Theorem V I I  

If p(~, x) is continuous in the rectangle a ~< ~ ~< b, c ~< x ~< d, for all values of b, and the integral 

e f t )  = p(¢, x)d  
(t  

converges uniform'ly with respect to x in the interval (c, d) then P(x)  is a continuous function of x in 
this interval. 

Theorem V I I I  

The above integral is uniformly convergent with respect to x in the interval (c, d) if there is a 
positive function q(~), independent of x, such that ]p(.~, x)[ ~< q(~) for all values of ~ and x and 
such that the integral 

is convergent. 

Finally, the solution issubject to the limitations of the linear theory of elasticity and the limit of 
proportionality must not be exceeded. It follows therefore that the solution is not valid in the 
immediate neighbourhood of points of discontinuity in the applied loading distribution. 

The mathematical validity of the solution is now discussed for various values of the velocity c 
which are less than, or equal to, the velocity of the shear wave. 

6.1. Velocity of Applied Loading such that 0 < c < c s. Provided that 0 < c < cs, it is seen with 
the aid of the results of Section 4 that the functions 

sinh (2rr/3z~:h) cosh (2~r/31~y) sinh (2rrfil~:h) sinh (2~r/32~y) 
t)(~) ' ~2(~) (40) 

with 

~(~) = {(1 +fi2~) 2 cosh (2rrfifh) sinh (27r/32~h) - 4131fi 2 cosh (2~rfl2~h) sinh (2rrfi~h)}fi2-* , 

which occur in the integrands of Equations (21) are fairly good functions of ~ for lY t ~< h (Definition 
II). Thus, both 50 and ~b are generalised functions of x for lYl ~< h (Definition V and Theorem I) 
provided that 

f(~)~-~ (41) 

is also a generalised function. Reference to Section 5 shows that this last equation admits most of 
the distributions of applied loading which are of interest in practical applications and it follows 
that under these circumstances it is admissible (Theorems IV and V) to formally differentiate 
50 and ~b repeatedly with respect to x and y under the sign of the Fourier integral. In other words, 
the mathematical validity of the solution is established for the displacement components u, v and 
stress components %, %, %v are just as given by Equations (22) and (23), moreover, the solution 
satisfies the fundamental equations listed in Section 2 together with the boundary conditions, 
Section 3. 
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When Theorems VII and VIII  are applied to Equations (22) it is possible to determine the 

restrictions on f(~)  which are sufficient to ensure that the displacement components u and v are 

continuous functions of x and y. These restrictions are not listed here for, as demonstrated later, 
it is quite easy to check the continuity during the practical application of the equations. 

6.2. V e l o c i t y  o f  A p p l i e d  L o a d i n g  such  t h a t  c = c s .  When the applied loads are travelling with a 
velocity which is equal to that of the Rayleigh wave, i .e. ,  c = c s ,  then Equation (25) shows that 

(1 + 522) ~ = 451/32 
and hence 

f l (  ~) = - 4fllfi2 sinh (27rfil-f12~h). (42) 

In conjunction with the integrands of Equations (21) we now note that 

sinh (27rfi2~h) cosh (2~fil~y) sinh (2~rfil~h) sinh (2~rfi2~y) (43) 

sinh (27rfil-f12~h) cosh (4vrfi2~h) ' sinh (2~fi, -fl2~h ) cosh (47r,82~h) ' 

are fairly good functions of ~ for [y] < h (Definition II). Thus,  both 9 and ~b are generalised 

functions of x for [y [ ~< h (Definition V and Theorem I) provided that 

f(~)~-= cosh (4~]32~h) (44) 

is also a generalised function. Unlike Equation (41), this last imposes a serious limitation upon the 

admissible functions for f(~)  and consequently upon the applied loading distributions g ( x ) .  The  
limitation is remarkable in so far as it is difficult to account for from a physical basis ; its consequence 

is, however,  readily demonstrated. 

Consider, for example, the applied loading distribution 

d 2 
= + h > 0 ,  (45) 

which is a continuous function of x for values of the constant k > 0 and is well behaved at x = oo. 

Substituting this into Equation (19a) we find in the ordinary way that 

4vah~2 exp ( - 2 ~ h ] ~  [h). (46) 
- k 

Substituting this in turn into Equation (44) we see that the requirement is for 

4~rah 
k exp (-2~rk !~ Ih) cosh (4~rfiz~h) (47) 

to be a generalised function of ~. This is only the case when k > 2/32 (Definition IV) and the solution 
is then mathematically valid, see Section 6.1. With regard to the physical validity, application of 
Theorems VII and VII I  shows that the displacement components u and v are continuous provided 
that k > 2/32, a discontinuity occurring at the boundary surfaces y = __ h when k = 2fi2. 

We now have a remarkable state of affairs. When  the constant in Equation (45) for the applied 
loading distribution is k < 2/32, i.e., k < 0. 748 for v = 0.3, there results the condition of resonance 
within the plate as described in the Introduction. When, however, the constant k > 2/32 t he  stresses 
are finite, the displacements are continuous, there is no resonance and the above solution is valid. 
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6.3. Velocity of Applied Loads such that c s < c < Q. It is shown in Section 4 that there is one 

real root ~: = + C0 to the equation ~(C) = 0 whenever the velocity c lies between those of the 

Rayleigh and shear waves. The  existence of such a root implies that there is a free wave which 

satisfies the conditions of zero normal and tangential stress along the bounding surfaces and which 

travels with the same velocity c. The quasi-steady solution is therefore no longer unique because 
this free wave can be added in an arbitrary manner. 

Now, the quantity on the right-hand side of the equation 

C + Co C - Co 1 
Lira - Lim - (48) 

;2(C) s?'(C0) 

has a finite value, the prime denoting differentiation with respect to ~:. In virtue of this we note, in 

conjunction with the integrands of Equations (21), that 

(C a -  ~:12) sinh (27rfi2~:h) cosh (2rrfil~y) (~2_ ~:l~) sinh (2~rfilCh) sinh (2rrfi2~y) 
£2(~) ' 9(~) , (49) 

are fairly good functions of C for [Yl ~< h (Definition II). Thus,  both ~o and ¢s are generalised 

functions of x for lyl -< t, (Definition V and Theorem I) provided that 

f(~)~-~(C ~ -  Co2) -1 (50) 

is also a generalised function. Similarly, with Equation (41), this last admits the distributions of 
applied loading which are usually of interest in practical applications and it then follows, by the 
same arguments as in Section 6.1, that the solution is mathematically valid. 

In the special case when c = c 2, the shear wave velocity, then fie = 0 from Equation (9). 
Equation (16) now simplifies to 

f2(C ) = 2~r~h cosh (2~r/~lCh) - 4fi~ sinh (2~r/3~Ch) (51) 

and this still has only one real root at C = + ~0- The Equations (21) for the potentials ~o and ¢ 

simplify in their turn to 

t, cosh 
- 2~r/, J _ ~  ~ ) ( ~  exp (-27riCx)f(C)dC, 

(s2) 
¢ _ _  i~ly (~ _sinh_ (2~r/31~:h) exp ( - 2rri~x)f(C)dC, 

where f~(C) is given by Equation (51). It is now seen that the requirement for the mathematical 

validity of the solution is the same as that described by Equation (50). 

7. Applied Loading Distributed According to the sgn Function. Having in mind the more difficult 

problems posed by moving cracks, let us now consider a numerical example where the applied 
loading g(x) is distributed discontinuously along the bounding surfaces of the plate, e.g., 

g(x) = go sgn x (53) 

equal to go for x > 0 and to - g 0  for x < 0, where go is a constant. Substituting for g(x) in 

Equation (19a) we find that 

f(~) = go sgn x exp (27ri~x)dx (54) 
- - c o  
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which, although the integral does not exist in the ordinary sense, has a definite meaning when sgn x 
is regarded as a generalised function. In fact, from Equation (39) and Theorem I I I  it is found that 

go (55) 
f(~:) - ~ri~" 

The  potentials 5o and ¢ for this loading distribution are obtained by substituting this last equation 
into Equations (21) so that 

5o -- 
i(1 +fia2)go f~o sinh (27r/3e~h) cosh (2rr/31s~y) exp (-27ri~x) de 

4 ~  - o~ ~(~)~:~ ' 

_ fiago f~o sinh (2~r/3,~h) sinh (2rr/3~y) exp (-2rd~x) d~. 
2 ~ ,  _ ~  t ~ ( ~ ) ~  l (56) 

These potentials provide a mathematically valid solution for the velocity range 0 < c <~ ca, c ~. cs, 
because the functions 

1 1 11 1 1 1 11 
~:% and ~:3(~:~_~:o~ ) - ~:o2 2~o2(~-_~:o ) + 2~:o2(~+~:o) ~:oa ¢ ~:a 

obtained from Equations (41), (50) and (55) are generalised functions of ~ by virtue of Equation (35) 
and Definition V. It is seen from Equations (44) and (55), however, that when c = cs, the Rayleigh 
wave velocity, then 

~-a cosh (4~rfl~h) 

is not a generalised function by virtue of Definitions I and III .  The  solution is then invalid and the 
plate suffers the resonance as described in the Introduction. 

With the aid of Theorems VII and VIII  it can be confirmed that the potentials 5o and ¢ of 
Equations (56) provide continuous displacement components u and v. Let us, for example, examine 
the continuity of the component u with respect to x when %~ < c ~< c a. Substituting Equation (55) 
into the first of Equations (22) we obtain 

go f~o l ( l + f i e ) s i n h  (2zrfizCh)cosh (2zrfilCy)/ ex p ( -21r i~x)d¢ .  
u 27r21~fl~ _co 2filfi~ sinh (2rr/31~:h) cosh (2rrfl~y) t g2(~)~ 2 

" This integrand is discontinuous at ~ = 0, + C0 but, on using Equations (39) and (48), it can be 
rewritten 

go f°°  [ l ( l + fi~) sinh (2~fi2~h) cosh (2~fil~Y) l l 
u - 2 ~ 5 ~  o - 2fl3~, sinh (2~51~h) cosh (2~fl~y) ~ ( ~ ) ~  

_ ( 1 + ~ ) - 2 ~ 1 ~  t ~2 

(1 +5a2) ~ - 4~1~t ~ 

(1 + fi2 a) sinh (2~fi~oh) cosh (2~5~oy)) 2 ] - - 2fixfiz sinh (2~fl~oh) cosh (2~fi2~oy) t g2'(~o) (~2_ ~o2)~0 cos (2~x)d~  + 

+ g° x sgn x + 
tz 

go (1 +ft.2 2) sinh (2rrfi2¢oh) cosh (2rrfil¢oy) l sin (2rr¢oX) sgn x 
+ ~ - 2filfi~ sinh (2~rfil~:oh) cosh (2~f12~:oY) t D"'(~:o)~:o 2 
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where the integrand is now continuous. For [y I <  h, Theorem VIII  shows that the integral 
converges uniformly with respect to x because [cos (2~r~x) [ -G< 1. I t  follows now from Theorem VII 

that u is a continuous function of x. This remains true when c = c a. Further  application of these 

theorems shows that, in addition to the displacement components, the stress components %, %, rxv 
obtained by substituting Equation (55) into Equation (23) are all continuous functions of x and y 

in the interior of the plate. 

In connection with the effect of the reflected waves it is of interest to examine the distribution of 

the direct stress component % along the central plane y -- 0. Substituting Equation (55) into the 

second of Equations (23) we find that this is given by 

%(x, 0 ) =  ~g°  f~_~ l( 1+ fi2~) 2 sinh (2~rfi~h)- 4/71fi ~ f 2 ( ~ ) ~  sinh (27rfit~h)i exp ( - 2~ri~x)dC. (57) 

Numerical values were calculated by Dr. K. I. McKenzie and Mr. G. G. Pope (both of the Royal 

Aircraft Establishment), to whom the author is indebted, for several values of the velocity c in the 

range 0 ~< c ~< c a. The calculations were carried out with the aid of the Auto-code programme 

for the Ferranti Mercury computer. It was decided to consider separately the ranges of integration 

1{: [ ~< ~' and I [ • where ~' was chosen so that the hyperbolic sine is indistinguishable from the 

hyperbolic cosine to an accuracy of less than one half of one percent .  The  finite integral was then 

evaluated using Filon's it method and, on approximating the integrands, the infinite integrals 
were expressed explicitly in terms of elementary functions. In all the calculations, Poisson's ratio 

was taken as v = 0.3 and this corresponds to a Rayleigh wave velocity c s = 0-9274Q. 
The results of the calculations for c < c s are shown plotted in Fig. 4. The asymptotic behaviour 

as I x I -> oo is easily found, by using Theorem VI and noting that the only singularity in the integrand 
occurs at ~ = 0, to be 

%(x, 0) = - g ( x )  = --go s g n x ,  as txl - ~  (58) 

i t  is interesting to note that there is little difference from the static stress distribution (given by 

c 0) for velocities of the applied loading which are less than 0.6c2. e However, high peak stresses 
occur for the faster velocities and their magnitudes increase beyond all limits as c approaches the 

Rayleigh wave velocity c s. When c = c s there is the resonance described in the Introduction. 

The results of the calculations for c s < c <~ c z are shown plotted in Fig. 5. Because of the 
singularities at ~ = _+ ¢0 the solution is now no longer unique and, in fact, Equation (57) can be 

rewritten in the form 

%(x, 0) = A t cos (27r~:0x) + A 2 sin (27r{Z0x) + 

go f ~  l(l_+fi~Z)~sinh (2~rfl2~h)l exp (-2~ri~x) d~ (59) 
+ ~ ~ 4fi~fi2 sinh (2~/?t~:h) f~(~:)~: 

where the constants A t and A 2 are quite arbitrary. Now, the asymptotic behaviour as Ix I -+ co is 
controlled by the singularities in the integrand and, on using Theorem VI, it is found to be 

%(x, 0) = A t cos (2~r~Z0x) + Az sin (2~0x) - go sgn x - 

2g°l(l+fi~)2sinh(27rfi~°h)lc°s(2~r~°X)sgnx, as Ix!-->co. (6o) 
fi~ - 4fltfi~ sinh (2~rflt~0h) f~'(~0)~o 

,x~ This is near the limiting velocity of propagating cracks in a real solid T. 
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For  the purpose  of presenting the results in Fig. 5 the constants A I and A 2 are given the values 

2gol(l+fi2~)2sinh(2~fl~oh)}l } 
& = ~ - ct~t~ sinh ( 2 ~ o h )  ~'(~o)~o' (61) 

A2 = 0 

so that  %(x, O) ~ - go as x -,~ oo. I t  is seen in the Figure that  this gives a peak of stress near the 

origin and larger fluctuating stresses in the wake. 
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C 1 

C 2 

C L 

Ct~ 

2h 

g:l 

L 

o(1  I 
t 

~l, V 

x, y 

X'~ y' 

5 2 

2t, tz 

p 

P 

O'x, Gy, ~/'x~ 

~o,~ 

O,~F 

N O T A T I O N  

Uniform velocity with which the applied loading distribution travels along the 
bounding surfaces of the plate 

Velocity of dilatation waves in an unbounded medium = {(A + 2ff)/p} 1/2 

Velocity of shear waves in an unbounded medium = (p./p)~l~ 

Velocity of long waves in an infinite plate 

Velocity of Rayleigh surface waves 

Thickness of plate 

Has Fourier transform g(x), see Equations (19) 

Distribution of applied loading 

A constant 

Wavelength 

Of order at most [xla~ 

Time 

Displacement components respectively in the directions of the ox' and oy' axes 

Rectangular Cartesian co-ordinate system, moving with the same uniform 
velocity c, and in the same direction, as the applied loading distribution. 

Note, x = x ' - c t ; y  = y '  

Rectangular Cartesian co-ordinate system with axes respectively in and normal 
to the central plane of the plate. The axis of ox' is taken in the same direction 
as that of the motion of the applied loading distribution 

See Equation (29) 

Abbreviations introduced by Equation (9) 

Dirac delta function 

Lamfi's elastic constants 

Poisson's ratio, taken as u = 0-3 in numerical example 

Independent variable 

The value of ~ which satisfies Equation (24) for n = 0, 1, 2, . . . . 

Density 

Stress components 

Lam6's potentials 

Constants defined by Equation (11) 

Defined by Equation (20) 

Defined by Equation (16) 
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