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Foreword (1961). Parts I and II of this R. & M. were written as separate Reports in 1958 and 1960. 
They deal with two stages of an exploratory investigation into the stability, control and response characteristics 
of jet-flap aircraft, undertaken at a time when the basic aerodynamic theory of the jet-flapped aerofoil was 

still being developed by such people as Spence, Maskell, Ktichemann and Ross. The aerodynamic assumptions 
on which the investigation were based were thus necessarily of a tentative and approximate nature. In particular, 
the incompleteness of the three-dimensional theory, combined with its relative complexity, virtually dictated 
the use of two-dimensional theoretical lift and moment data as the basis of a tractable stability and control 
analysis of the generalized nature which was envisaged. Inevitably, therefore, the field of application of the 
results of these investigations is somewhat restricted, and in any fresh approach to the problem one would 
certainly hope to proceed from alternative assumptions, based on three-dimensional theory. 

In Part I, where attention was restricted to considerations of trim, static stability and quasi-steady 
manoeuvrability, some further simplifying assumptions were made, in particular byneglecting the contributions 
of thrust and drag forces to the pitching moment of the aircraft about its c.g. However, to ensure self- 
consistency of the dynamic analysis undertaken in Part II, it was found necessary to revise the trim and 
stability analysis of Part I so as to include the effects of thrust and drag forces. This was done only for the 
case where the aircraft is trimmed by variation of the jet deflection, although in Part I, trimming by variation 
of tailplane setting or thrust/weight ratio (throttle setting) had also been considered. Thus although some 
sections of Part I have effectively been superseded in Part II, much of  the earlier Report remains valid as a 
first approximation which has not, so far, been improved upon. Accordingly it has been thought worth while 
to publish both Reports in what is substantially their original form, with a few minor amendments and the 
addition of one or two footnotes, explaining where the analysis or conclusions of Part I need to be modified 
in the light of Part II. 

The  overall scope of the work is indicated by the summaries for the respective Parts. 

e Previously issued as R.A.E. Report No. Aero. 2600, and Tech.,Note No. Aero. 2670--A.R.C. 19,925 and 
21,867. 



Part I 

An Examination of some Longitudinal Stability and Control Problems 
of Jet-Flap Aircraft with Particular Reference to the Use 

of Jet Thrust and Jet-Flap Deflection Controls 

Summary. This Part of the Report extends and largely supersedes the work of Ref. 1 by considering the 
jet-flap controls (throttle, flap deflection) as alternatives to conventional (tail) controls, for the longitudinal 
control of jet-flapped aircraft. The investigation has been based on Spence's theoretical two-dimensional 
lift and moment data (Ref. 2) so that its results should not be applied to low-aspect-ratio layouts. 

Attention has been restricted to considerations of trim, static stability and quasi-steady manoeuvrability, 
on the basis of which jet controls appear to compare somewhat unfavourably with tail controls. 

In order to effect this comparison it has been necessary to postulate a particular 'basic design condition' 
(Section 3) but the proposed method of analysis may be applied quite generally, whatever design condition 

is adopted. 
An aircraft with high-aspect-ratio jet-flapped wing, employing jet thrust and jet-flap deflection controls 

respectively for the high lift and cruising conditions, would require a tail volume ratio of about 0" 86, coupled 
with a c.g. position of 0-46c. If tail controls were used, a reduction in tail volume to about 0.71 might be 

possible. 

1. Introduction. In Ref. 1, the author made a preliminary examination of some of the stability 

and control problems associated with the design of a jet-flapped aircraft. The  investigation was 
restricted to a consideration of static longitudinal stability and of the manoeuvrability criterion 
related to the quasi-steady condition of flight at constant speed in a vertical circle. It  was assumed 
that the aircraft would  be stabilized and controlled longitudinally by a conventional tailplane and 
elevator (or all-movingtailplane). At the same time it was recognised that since, at a given airspeed, 
the lift of a jet-flapped aerofoil is a function not only of aerofoil incidence ~, but  also of jet deflection 
angle t~ and thrust /weight  ratio ;~, some other method of control might ultimately be examined and 
prove to be superior. I. M. Davidson of the National Gas Turb ine  Establishment had, for instance, 
maintained that, under cruising conditions, a jet-flapped aircraft should be controlled longitudinally 

by variations in t~ with )t held constant, while for take-off and landing approach, he argued that 

should be fixed and the throttle (varying ;~) alone used for control. 
I t  is the purpose of the present Report (Parts I and II) to examine these alternative methods of 

control. In Part  I the investigation is again restricted to considerations of trim, static longitudinal 
stability and quasi-steady manoeuvrability criteria. Dynamic stability and response characteristics 

are investigated in Part II. 
I t  was originally intended to base the work on the same empirical two-dimensional data as were 

used in Ref. 1, since at the time, the theoretical results of Spence z (two-dimensional) and Maskell 
and Spence a (three-dimensional) had not been published. In  fact, a good deal of work was accom- 
plished using the old data, but  with the appearance of Spence's  results, which permit of some 
simplification in the stability and control analysis, it was decided to make a fresh start, using the 
theoretical two-dimensional data as a basis. The  possible use of Maskell 's three-dimensional results 
was rejected on the grounds that the mathematical analysis would  thereby be rendered too 
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complicated for the present generalized investigation, whose aim is a qualitative, rather than a 
precise quantitative, assessment of the effects under consideration. In these circumstances, while 
the resuks of the investigation are probably applicable qualitatively to aircraft with jet-flapped 
aerofoils of fairly large aspect ratio, it would be unwise to apply them in cases where the wing 
aspect ratio is small. 

The work of Ref. 1 is largely superseded by that of the present Report, inasmuch as the 
characteristics of the jet-flap aircraft with conventional tail control have been re-assessed, on the 
basis of Spence's results, and are presented here for comparison with the corresponding characteristics 
appertaining to the use of the jet controls for trimming and manoeuvring of the aircraft. 

Stability and control analysis is inevitably more complicated for jet-flapped aircraft than for 
conventional aircraft because more parameters are involved. This increased complication also 
makes it more difficuk to decide on the best basis of  design (from the stability and control point of 
view) for a jet-flapped aircraft. The fundamental parameters at the disposal of the designer in this 
connection are the position of the c.g. and tail volume, which may be determined so as to satisfy 
a specified set of conditions; once these parameters have been fixed, the trim and stabilky 
characteristics of the aircraft are determined throughout the flight range. The choice of a set of 
conditions to be satisfied, such that the resulting design will be an optimum, not only from trim 

and stability considerations, but also from the performance point of view, is a problem of some 
complexity, the formal solution of which has not been attempted here. Instead, in Section 3, 
semi-intuitive reasoning has been used in arriving at the definition of a 'basic design condition' 

which, while it may not lead to the optimum design, should at least produce one which provides a 
sufficiently realistic basis for the comparison of the respective merits of different types of longitudinal 
control, which is the main object of this investigation. 

The analysis is not fundamentally affected by this particular choice of a basic design condition 
and the designer of a jet-flap aircraft who chooses some other basis of design may still follow the 
general method described herein, to determine the stability and control characteristics of his design. 

Since the completion of the work described in the main text of this Report, an alternative method 
of formulating the trim and manoeuvrability analysis has been suggested to the author by 
S. B. Gates. This is set out in the Appendix, which includes the results of some sample calculations 
which have been made to illustrate how the method would be applied in practice. 

2. General Theory. If the results of Spence's two-dimensional theory ~ are accepted, it can be 
inferred that the total lift acting on a wing at incidence ~, with jet emerging at angle 3 to the wing 
chord, may be written 

L = CL ½ pU2S = L(o 0 + L(v ~) = {CL(~) + CL(o)) ½ pU2S (la) 
with 

CL(~) = Ao~, Co(o) = B~ ,  (lb) 

where A and B are functions of Cj  only (Cj  being the jet coefficient defined by Cj = J/½pU2c), 
and that the two components of lift act respectively at distances ~c, ~oc behind the leading edge, 
where ~:, ~o are also functions of Cj  only. 

Thus the system of forces acting normally to the flight path of a jet-flapped aircraft with tail is as 
illustrated in Fig. 1, where G is the centre of gravity, at distance hc from the wing leading edge, 
CLT is the lift coefficient of the tail, whose volume ratio is P and 7 is the inclination of the flight 
path to the horizontal. To simplify the analysis it is assumed, when considering the balance of 
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normal forces, that the lift provided by the.tailplane is negligible in comparison with the wing lift 
(1@ which may accordingly be taken as the total lift on the aircraft. The wing zero-lift pitching 

moment will be assumed zero and in addition, the body pitching moment and any moments due to 

thrust or drag will be neglected.* 
Then the pitching-moment coefficient about the c.g. is 

with 
CL,~ = a l (~ -  e + ~ ) ,  

(2) 

(3)  

where ~1~, is the setting of the (all-moving) tailplane relative to the wing, and e is the downwash 

angle at the tailplane, where we may write 

From (2) and (3) 
e = = c ( c : ,  8 ) .  (4) 

(s) 

It will be useful to consider the partial derivatives of C m with respect to CL(~) and CL(~) respectively, 

when speed and thrust (and hence Ca) are held constant. We have 

and 

= _ G - h +  1 -  (6) 
O Cz(~) -A- G 

K ~  - 3 C  m _ V a  1 0 e  
O Cz(0) ~ - h  B O~' (7) 

where Kr~, Kre may be referred to as the aircraft restoring margins with respect to changes of 

incidence and jet deflection respectively. 
K r ,  is directly analogous to the restoring margin K m = - 3C~/3C z for a conventional aircraft 

and provides a measure of the (initial) tendency of the aircraft to return to its trimmed condition 

following an inadvertent change of incidence. 
In considering the significance of K~.~ it should be remembered that whereas changes of incidence 

(and hence of CL(~) ) may occur accidentally, changes of jet deflection (and hence of CL(o) ) should 

normally occur only at the pilot's behest, when he requires an increment of lift for control purposes. 
For the purposes of argument it will be assumed that the pilot's immediate objective in applying 
S-control is to provide an increment of lift AL(v ~) which will produce a linear acceleration of the 
aircraft c.g. normal to the flight path, without producing any angular acceleration about the c.g. 
The complete response of the aircraft to a given control action can be determined theoretically, 
only by a full mathematical analysis, but in order that the initial response should be in accordance 
with the pilot's (assumed) requirement, it is evident that the lift increment AL@) corresponding to 
the increment At~ of jet-flap deflection should act through the aircraft c.g. If it does not, then a 
moment will be produced which tends to increase or decrease the incidence (and hence CL(~) ) 
according as AL(t~) acts ahead of or behind the c.g. The quantity K ~  is clearly a measure of the 
tendency for the lift increment AL(~) to be cancelled out as a result of the change in incidence 

* Footnote (1961). The inclusion of moments due to thrust and drag is shown in Part II to exert an appreciable 
effect on.the tail volume and c.g. position required to satisfy specified design conditions. 
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(i.e., it is a measure of the tendency for the total lift coefficient to be restored to its initial value). 
Thus the direct lift increment resulting from an increment in jet-flap deflection is diminished or 
augmented according as K~o is positive or negative. 

The values of h for which Kr~ , Kr~ are respectively zero, namels~ ' 

and 

= I-G 

Pal 0e 
h =h~e  = ~:~ B 3u a 

(8) 

(9) 

correspond to points No, N o on the aerofoil chord (see Fig. 2), which may be referred to as the 
aerodynamic centres with respect to incidence and jet deflection respectively, for the complete 
aircraft. Through N o will act the resultant of the forces produced on the wing and tailplane by a 
change of incidence at constant speed and angular velocity with the thrust fixed (Cj  constant). 
Similarly, through N o will act the resultant of the forces produced on the wing and tailplane by a 
change of jet deflection under the same conditions. Since ~ ,  A and 3e/Oa in (8) and ~ ,  B and 
3e/3~ in ,(9) are functions of C j, it follows that the positions of N o and N o vary with the jet 
coefficient, which itself varies with both aircraft speed and jet thrust. 

It will be noted that K~,  K ~  are the distances (expressed as fractions of the wing chord) of the 
points No, No respectively, aft of the centre of gravity. 

From the foregoing analysis it follows that the system of three aerodynamic forces shown in Fig. 1 
may be replaced by an equivalent set of two forces and a moment, as illustrated in Fig. 2. L(a), L(v a) 
representing the resultant normal forces on the complete aircraft, due respectively to wing incidence 
and jet-flap deflection, act at N,, N o respectively. The moment MOTT) about the centre of gravity 
is due to that part of the tail lift which arises from the tail-setting ~7~-. 

2.1. Trimmed Rectilinear Flight. [Note. An alternative formulation of the trim and manoeuvr- 
ability analysis of Sections 2.1 and 2.2, suggested by S. B. Gates, is outlined in the Appendix.] 

For steady rectilinear flight at a small angle 7 to the horizontal, the aerodynamic force and moment 
system of Fig. 2 must balance the component of the weight normal to the flight path, viz., W cos 7, 
acting through G. In the following analysis it will be assumed that cos 7 m 1. Then if for the present, 
symbols appropriate to steady (trimmed) rectilinear flight are distinguished by the suffix 's', and if 
the thrust/weight ratio J /W is denoted by A, the condition of equilibrium of the normal forcesl in 
conjunction with Equations (la) leads directly to the relationship 

where 

giving 

c j s  = ACLs, (10) 

CL8 = As(Xs + B~a, • (11) 

CL8-  B ~  
as - & , ( lZ) 

from which equation it is possible to construct Czs vs. a s curves with v ~, A as parameters; In the 
process, Cots having been calculated from (10), As, B s will also have been determined as functions 



of % and subsequently, (~)~ and (~o)s may similarly be determined. Thus  Czs, A~, Bs, (~)s  and 

(~:o)~ may all be plotted against %, with u a and A as parameters. ~ 

The trim condition C m = 0, using (5) with (1), gives 

t l I h - % + B ,  h - + a V¢, - = 0 .  (13) 

For a given aircraft, whose tail volume (V) and c.g. position (h) have been fixed (remembering that 

As, Bs, etc. are expressible as functions of % for given A and tg), Equation (13) may be regarded as an 
equation for determining the tr immed incidence %, corresponding to a prescribed combination of 

control settings A, v a, ~, ,  while Equations (6) and (7) give the values of the two restoring margins. 

2.1.1. Tail voh~me and c.g. position required to satisfy a prescribed design condition. 

(6) and (13)~ are rearranged thus: 

If  Equations 

Va ( Oe) 
h - ~  1 - ~ £  = ~ , - g r = ,  (6a) 

(Aa + Btg)h - Val(o:- e + ~TT) = A o ~  + Bb~o, (13a) 

we may regard them as equations to determine the tail volume and c.g. position required to satisfy 
a prescribed design condition. Examining the equations we see that before they can be solved 
explicitly for V and h, values must  be known for the following somewhat  formidable list of parameters: 

al, A,  B, G, G, #, o~, ~T, e, Oe/Oo:, K,.~. 
As we are employing two-dimensional data, the tailplane lift slope a 1 may be considered fixed. 

Of the other parameters, A, B, ~ and ~ have been shown to be functions of the jet  parameters 
A, ~ and t r immed incidence ~. Further, it may be assumed (see Section 2.1.2) that e and 3e/3o~ are 
also known if A, v a and ~ are known. Thus  values of only five parameters--A, ~9, ~T, a, Kr~--need,  
in fact, be assigned in order that all the coefficients in Equations (6a) and (13a) should be calculable 
and the equations themselves soluble for V and h. Hence, one way of determining the tail volume 
and c.g. position for a projected aircraft is to specify that it should trim at a given incidence (~) and 
with a given ~-restoring margin (K,. ~) for a particular combination of jet and tail control settings 
(X; ~, ~ ) .  

The  difficulty of choosing G K~ ~, A, t9 and ~/T so that the resulting design should be an optimum, 
not only from trim and stability considerations but  also from the point of view of performance, has 
already been alluded to in the Introduction and, in Section 3, we shall discuss in some detail the 

Numerical work, results of which are presented in Figs. 4 to 6, indicates that over most of the practical 
incidence range, C z s can be well approximated by a linear relationship C z 8 = P% + Q where P and Q 
are functions of )~ and ~9 only, for which numerical values may be derived from the plotted curves. Similarly, 
As, Bs, (~e)s and (~o)s may be expressed as Pr % + qr, r = 1 . . . .  4, respectively, where Pr, qr are functions 
of A and t9 only. 

J" The suffix 's' is now dropped to simplify the writing although the following analysis refers to trimmed 
conditions. 
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selection of a 'basic design condition'. Meanwhile, on the assumption that values have been assigned 
to these parameters, the solution of equations (6a) and (13a) may be written as 

V-- F ) 
~1 G' (14a) 

where 
F = + "] 

and - -  - -  ) (14b) _-( - 0 e  
- - A ~  ~ + 2 ( ~ -  ~?T). a = B t 9  1 

A, B, ~ ,  ~ ,  ~, ~e/~a are values of A, B, ~ ,  ~ ,  e, ~e/0~ corresponding to tr immed incidence ~, for 
which the trimmed lift coefficient is CL Z P~ + Q; (see footnote Section 2.1) and the jet coefficient 

i s  =XC . 

The value of the 'va-restoring margin' in the design condition (K~9) cannot be independently 
assigned for, with F and h fixed by (14a), its value follows from (7) as 

_ F( Oe A~e) (15) 
/ c , , o  = . 

In general, when V and h have been fixed to satisfy the specified design condition (trim at 
incidence ~ with control settings A, ~, %), any change in the control settings, singly or in combination, 
will produce changes in the t r immed incidence and tr immed lift coefficient which may be 
determined from Equations (13) and (11). At the same time, the values of the restoring margins 

K,.~, Kre, given by (6) and (7) will change. 

2.1.2. The effect of downwash on the required tail volume and c.g. position. For a given wing 
geometry and tailplane location, the downwash at the tail (e) will depend on the values of C j ,  

and v a. Since G (Equation (14b)) involves ~ and ~e/a~ and since it appears in the equations forV 
and h (14a), the second of which also contains a factor (17-~e/aa), it may be expected that, in 
general, the required tail volume and c.g. position will both depend on the value of the downwash 

at the tail. 
The  simplest assumption (based on the behaviour of a conventional wing) which could be made 

regarding the downwash would be that it is proportional to total Cz, in which case we could write 

e = E C  L = E(CL(~)+ CL(O)) = E(Aa+Bua),  (16) 
where E is a constant. 

Then the function G reduces to 

a = G1 = B~ - .~%,  (17) 

which is independent of E. Hence the tail volume, given by 

A F  
V - (18) 

al a l  



is independent of the downwash when the latter varies in accordance with (16). The c.g. POsition, 
given by 

F (1 -E .d )  + ~ - K~r~ (19) 

depends on the value of E, however. The equation for the 'v%restoring margin' (15) reduces to 

F 
K~,~ = ~ - L + -g;~ (20) 

G1 ' 
so that Kr~, like P is independent of E. 

In the special case under consideration, the pitching-moment equation (5) may be written in the 
form 

- C.~ = K~.~ C~(~) + K ~  Cixo) + Vale]T, (21a) 

where the restoring margins are given by 

(1- EA), t K ~  = ~ - h + .  A (21b) 

J K,e h E al. 

The results of a theoretical downwash investigation by Miss Ross a suggest that the assumption (16) 
may not be far removed from the truth for a two-dimensional jet-flapped wing, although it might 
be more accurate to write 

e = E1Cz(~) + E2Cz(~ = E~Ac~ + E~Bu a, (22) 

where E 1 is somewhat greater than E 2. In that case 

G = G 1 - A B ~ ( E  1 -E2)< G 1 

and the tail volume required is greater than in the case where E 1 = E 2 = E. It can also be seen 
that if E 1 and E 2 are both increased in the same ratio, the required tail volume is also increased. The 
foregoing conclusions would be reversed if E~ were greater than E 1. 

From Miss Ross's results for a three-dimensional jet-flapped wing it is clear that the downwash 

is not related to the total lift coefficient by a simple equation of type (16) for the manner in which 

e varies with C z depends very much on whether C L is varied by changing a or by changing the 

jet parameters Cj  or v a. In fact, it does not appear possible at the moment, to express e as a function 
of C j ,  ~, and v Q in a form sufficiently simple for use in developing the trim and stability equations 
for the three-dimensional case, beyond the stage correspondlng to Equations (13) and (6) for the 
two-dimensional case. In a particular three-dimensional design problem, it would be necessary to 
calculate e and Oe/a~ for a range of parameters and then for each flight condition under consideration, 
to substitute appropriate values directly into the equations. 

For the present investigation, whose object is to study broad trends, it has been considered 
satisfactory to employ two-dimensional data throughout and in the following section, dealing with 
constant speed manoeuvres, it will therefore be assumed that the downwash is given by (16) so 
that Equations (21a) and (21b) are applicable. 

2.2. Constant Speed Manoeuvres. We consider motion in a steady circle following application 
of tail and jet controls (separately or in combination), when the aircraft is in trimmed (rectilinear) 
flight at incidence a s and lift coefficient Czs , corresponding to initial control settings ~Tzs, }ts, vqs. 
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Let AT/T, AA,Av ~ denote the increments of control settings; ae~, AC L and an  the 
incidence, lift coefficient and load factor respectively and q the angular velocity. 

In accordance with Equations (1), the lift coefficient C L in the circle is given by 

incremental 

where 
C z = Cm,+ACz,  = A o ~ + B 3 ,  

= % + a a ,  (23) 

where 

where 

) ACL(~) = A~Ac~ + % -g~ a)~ 
s 

and (25) 

<) 
so that 

= ~, + a a .  

Thus A, B (and also G, ~ ,  Kr~, Kre) are functions of )t only and the incremental lift coefficient 

may be written as, 
A CL = ACz(~) + a Q(o), 

o r  

where 

ACL = AsAo~ + % -g~ + ~9~ - ~  A~t + B, Atg. 
8 • 8 

The incremental load factor is given by 

ac~ 
A n  --'" 

The radial force equation is 

mqV = ACL S ½pV 2. 

V 2ff,:t ' 

m 

From (21a), the incremental pitching-moment coefficient is 

- AG~ = Kr~ACL(~) + C~(~AK~ + KrgXCL(o) + CL(o)aK~o + Palan~ 21T qlT 7 m~ 7 

1~,. AC~. 
= K~ACr.(~) + CL(~)AK~ + K~oACL(~) + Cz(o)AKro + PalA~. - c mq t21 

(26) 

(27) 

(28) 

(29) 

a = ~ + A a  

and A and B are functions of the jet coefficient Cj  appertaining to circling flight. Since the speed 
remains constant in the manoeuvre, 

= ~ c j ~  = ;~c~ , "  (2,,) Cj 



(using (28)), where the last term on the right-hand side is due to rotary damping. For steady 
conditions, A C m = 0; then if we use (25), and drop the suffix 's' from now on to simplify the writing, 
Equation (29) gives 

- ~  + Aa ~ + K,.euq -g2 + Ba ~ X - ]  AA - 

IT m ACL - K~oBAt~ - Fa~A~/T + - -  - -  . (30) 
c q /x 1 

Eliminating As between (26) and (30) and solving for ACL, we have 

( mq) l 8Kr~ OK,.+ 8B (K~ - K r ~ ) }  - Kr: IT ACL = - AA Ao~--~-  + B~ ~ x -  + tg-g 2 
c-if7 + 

- a+  {B(ZC~ o -  K,. =)} - 

From (21) 

Writing 

- A~/T F a  1 . ( 3 1 )  

g a  I 

OK,, ~ 3 ~  Va 1 3A 

Oh 3A d ~ Oh ' 

OK,.+ aC+ 
aa a a  j 

(32) 

H , , ,  = K ~  1T mq (33) 
c t1,1 

in Equation (31), substituting from (32) therein and using (27), we obtain the following expressions 

P a l g 2 / ~ +  B + - A ~ -  ' 

Fal 

CzH,,,:" 

(34) 

for an~OR, 3n/av q and 8n/8~,: 

an 1 aCl: 

az c~ aa 

[( < 
- c ~ - f f ~ =  A ox 

8n 1 3CL 
a,~ C~ ae 

an 1 aCL 
8rlr CL 3~?r 

In evaluating the above quantities it must be remembered that all coefficients, derivatives etc. 
are to be assigned values appropriate to the initial trimmed condition. It may be noted that, using 
the first of Equations (32), the formula for 3n/3u a, (34, (ii)) may be written as 

On B ( K r ~ - K r +  ) 

a~ C~Hr~ = 

It may be assumed that K r ~ and H m ~ will be positive for all conditions of flight. Thus for effective 
t%control, Kr+ must be negative or, if positive, small in comparison with K~ .  If Kr+ were equal 
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to Kr~ (i.e., if the aero-dynamic centres with respect to incidence and jet deflection, N o, N~ 
respectively, coincided) ~-control would be completely ineffective while for K~ ~ > K~ ~ there would 

be a reversal of effectiveness. 

3. The Selection of a Basic Design Condition. 3.1. General Design Considerations. Suppose 
that we are considering the design of a jet-flapped aircraft. At the outset, a general consideration of 
operational requirements will determine (approximately) the weight of the aircraft under various 
conditions and will lead to the choice of a particular engine (or engines) of known performance. 
Hence the maximum value of the thrust/weight ratio ( ~ )  may be assumed to be effectively specified. 
Similar considerations, taken in conjunctionwith the known or predicted aerodynamic characteristics 

of the proposed jet-flap installation, will determine the maximum jet-flap deflection (tgm~) that 

may usefully be employed. 
The aircraft's trim and static stability characteristics will be largely determined by the tail 

volume (V) and the c.g. location (h) so that suitable values must be assigned to these parameters 

at the outset. 

3.2. Design Condition to Determine Tail Volume and c.g. Position. It  has been seen in Section 
2.1.1 that V and h may be chosen to satisfy one prescribed design condition, namely that the aircraft 

should trim at a particular incidence ~ and with a given 'c~-restoring margin' Kr~, for a particular 
combination of control settings X, ~ and ~T- When V and h have been thus chosen, it remains to be 
established that trim and stability characteristics will remain satisfactory over the full ranges of 
the control parameters that must be used to enable the aircraft to perform its tasks. Clearly the basic 
design condition should be selected with some care, although at present the choice is, for various 
reasons, a difficult one. On the one hand, ideas of how best to operate a jet-flap aircraft, so as to 
realize its full potentialities, do not seem to have crystallized, while on the other hand, unresolved 
doubts as to the stalling characteristics of jet-flapped aerofoils and the extent to which such 
characteristics can be controlled by aerofoil design, make it uncertain what range of incidence may 

be usefully employed. 
It was suggested, some time ago, by I. M. Davidson of N.G.T.E., that a jet-flapped aircraft 

should be flown continuously at zero effective incidence and that under cruising conditions, control 
should be exercised by variations in t9 with A held constant, while for take-off and landing approach, 

should be fixed and the throttle alone used for control. Mathematical analysis indicates that it is 
not possible to maintain trim at zero incidence for all settings of the controls; moreover there appears 
to be no goocl reason why the incidence should be restricted except insofar as this is necessary to 
avoid flow separations.* Ne-~ertheless, on the assumption that the basic design condition should 

be associated with a condition of high lift (i.e., 5/;~m~ and g/tgm~ ~ to have values not less than 
0.75 say) it is not unreasonable to assign ~ and ~T the value zero, for then any usable range of positive 
incidence is available for manoeuvres lising tailplane control and is, in addition, an insurance against 

stalling if gusts are encountered. 
Accordingly, it is suggested that the basic design condition be taken as: 

* In the early two-dimensional experimental work at N.G.T.E. flow separation from the leading edge was 
found to occur at approximately zero incidence for the larger values of C s and v a. It is now considered, 
however, that unseparated flow could be maintained up to quite large incidences by suitable section design. 
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Aircraft to trim at zero incidence (~ = 0) with %-restoring margin' Kr~ when 2t = X, 8 = g and 
~ T = 0 .  

As a 'datum' condition this has the merit of simplicity, for with the downwash assumption (16), 
the equations for the required tail volume and e.g. position ((18) and (19)) reduce to 

and al [ 

while _ h = ~ o -  EA(~:9- ~+_~,.~) = ~ e -  Ea~V, (35) 

K,.o = O. ) 

It is at once seen that the required tail volume is independent of the downwash ~ but increases 
linearly with the required 'a-restoring margin', K~,. ~. For a given value of the downwash, the required 
e.g. position moves forward as K~.~ is increased, the variation again being linear. If the downwash 
coefficient E is increased, the rate of forward movement of the e.g. with increasing K~r ~ is increased. 

3.3. Manoeuvres Initiated from the Basic Design Condition. When the aircraft is trimmed in the 
basic design condition (A = 5, 8 = ~, ~ = ~TT = 0, K,., =_K~)  with F and h given by (35), 
Equations (34) reduce to 

where 

8n 

8)t a a  ° a a  

8n On 

88 88 
BK,.  1 

' 

8n 8n 
• R 

8~f 8~T 
V a  I 

H ~ = K , .  - lrm-d ~. 
c izz 

:1 

(36) 

3.4. Manoeuvres Initiated from Other Trimmed Conditions. For manoeuvres initiated from 
trimmed conditions other than the basic design condition, 8n/82t, 8n/88 and 8n/&TT must be evaluated 
from Equations (34) with V = (~/al)(~ o -  ~ + K~ ~). 

4. Numerical Examples. In Ref. 2, Spence gives the following formulae for the coefficients 
A and B appearing in the formula for lift coefficient (Equation (1)): 

A = 2~r + 1.152Cjlt 2 + l ' I 0 6 Q r  + 0.051Cj8/~, 

B = 3"545Cj 11~ + 0"325Cj + 0" 156Cjal 2. (37) ) 
These functions of C o. are plotted over the range 0 < Cj  ~< 5 in Fig. 3. The coefficients ~:~, Co which 
determine the distances behind the wing leading edge at which the two lift contributions CL(~) , CL(o) 

e It should be stressed that this is only true on the assumption that the downwash is given by e = ECz. 
For an actual (three-dimensional) design, where the downwash relationship is certainly less simple, the 
required tail volume will depend on the actual values of e andO¢/Sc~. 
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respectively act, are also functions of C j, and values have been calculated from the information 

given in Table 3 of Spence's report and plotte d here in Fig. 3. These curves can be fairly well 

approximated by the formulae 
~ = 0.25 - 0 . 01 C j ,  } .... (38) 

~o = 0.50 + 0. 077Cr 112, 

and together with the formulae (37) these have been used as the basis for the numerical work of 

this Report. Some consideration was given to the possibility of approximating to (37) by series with 
fewer terms and also to the possibility of taking ~:~ and ~ to be constant. Since, however, the 

computational effort involved in the use of (37) and (38) was not prohibitively large, the author has 

preferred to work with these formulae, knowing that it could then truly be claimed that the results 

of the investigation are based on Spence's theoretical results. 
In the ensuing sub-sections of Section 4, the derivation of the numerical results presented in 

Figs. 4 to 18 is described without comment on the results themselves which are, however, discussed 

at length in Section 5. 

4.1. Trimmed Rectilinear Flight. Equations (10) to (12) were used with (37) and (38), to compute 

curves of Cr~ s, As, B~, (¢~)s and (~o)s against a s for three values of the thrust/weight ratio A:0.2, 0.3 
and 0.4, and for four values of the jet deflection va:0.2, 0.5, 0.75 and 1.0 radian, in each case. 
These curves are shown in Figs. 4 to 6. It was found that the various curves could be reasonably 
well approximated by straight lines over most of the incidence range so that the five coefficients 

could be expressed as 

A8 = ql + P~%, (~o)s = q~ + P~%, (39) 

B s = q~ + p~%. 

Values of P, Q, Pl, ql, etc. were determined by inspection and have been indicated on the appropriate 

curves. 

4.1.1. Tail volume and c.g. position as determined by basic design conditions. The basic design 

condition was taken as: X = 0.3, ~ = 1 radian, ~ = ~s, = 0, with a-restoring margin K~,~ as a 

disposable parameter. Tailplane lift slope a 1 and downwash coefficient E (Equation (16)) were 

taken as a 1 = 27r, E = 0" 025. ° 
From Figs. 5a, b, c the following values were obtained: 
C~ = 5.3, .d = 9.6, /~ = 5.3, ~o = 0.596, ~ = 0.234. 

Equat ions  (35) give V = 0.553 + 1 . 5 3 K ~ ,  ) 

h O. 509 - O. 24K~ ~, j (40) 

K ,.o = O. 

V, h and K~.o are plotted against K~.~ in Fig. 7 which also shows corresponding curves for 
alternative design cases in which trim at zero incidence is achieved with ~/z' = 0.1 and ~ ,  = - 0.1 
respectively, instead of ~T = 0. 

This value of E was selected before the results of Miss Ross's downwash investigation became available. 
These would suggest a value of about 0.016 for a typical two-dimensional configuration but the higher value 
assumed here is probably more realistic if the results are to be applied (qualitatively) to actual (three- 
dimensional) configurations. 
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When rT~, =~ 0, V, h, K~.o must  be calculated from (18), (19) and (20) respectively which, in the 

present example, become 

F 
7 =  1.53 G ,  

h = 0 . 7 6 ~ + 0 . 2 3 4 -  .~,, 

F 
K,.~ = 0.362 - ~ + K,.~,, 

with 

reducing to 

= - A %  , f r o m  (14b)  and  ( 1 7 ) ,  

F 
G1 - (0. 3 6 2 + K ~ ) / ( 1  - 1. 812%).  

For  the two values of v/T assumed here, we finally obtain: 

468 + 1.296K~.~, 

For  r?T = 467 - 0.356K,.~, 

055 + 0.153K,.~. 

- 0 . 1  0. 

,~ ~ 0 "  

(41) 

For  ~Tr = 0.1 0.570 - 0.072K~r,, (42) 

' K2,.o - (0.080 + 0.221/~,.~). 

4.1.2. Effect of downwash assumptions on required tail volume and c.g. position. To give some idea 

of how sensitive the required tail volume and c.g. position are to the particular downwash assumptions 

made in their calculations, V and h have been estimated for the basic design condition, (~ = v?• = 0) 

using the downwash equation in the form (22): 

e = E 1Czlw + GCL(~) 

and assigning various pairs of values to the coefficients El, E2. Th e  results are given in equation 

form in the following table and plotted in Fig. 8. 

G G 

0" 025 0. 025 

0" 050 0" 050 

0. 025 0" 020 

0.050 0" 040 

0.020 0. 025 

0.040 0.050 

Tail volume I7 

0'553 + 1.53 /~. 

0'553 + 1.53 /~. 

0.582 + 1. 606 K~ 

0.613 + 1.692 K~.~ 

0. 528 + 1' 458 K,. 

0.505 + 1 .393K r .  

c.g. Position: h 

0. 509 - 0. 240 K~. 

0.422 - 0.481 K r 

0. 524 - 0. 201 K r 

0.443 - 0. 424 Kr 

0.514 - 0.228 K,.~ 

0.438 - 0.438 K~ 
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4.1.3. Variation of trimmed incidence and lift coefficient with changes of control settings. (1) Variation 
with tailplane setting (vTT). Suppose F and h have been determined with reference to a specific 

design condition (Fig. 7) and that it is required to find the variation of trimmed incidence a s and 

lift coefficient CLs as ~7~, is varied, with A and v ~ fixed. For a selected value of %, values of As, B~, (~)s, 

(~:O)s may be obtained from Figs. 4 to 6 for the appropriate values of A and tg. Values of CL(,) =As% 
and CL(9) = Bst9 may then be calculated and also values of Kr~, Kro, from Equations (21b). The tail 

setting ~a' to produce trim at incidence % then follows by equating the pitching-moment coefficient 

C m (Equation (21a)) to zero; thus 

- -1  
= CL o)+ K,.o (43) 

Figs. 9 and 10 give curves of % and Qcs versus ~7~- with )t and v q fixed at their design condition 
values 7, (=  0.3) and ~ ( =  1 rad); Fig. 9 relates to the case % = 0 when ~/T = 0, Fig. 10 to the 

case % = 0 when ~TT = - 0 . 1  tad. Fig. 11 shows the variation of % and C.cs with ~7~, when 
= X = 0.3, v ~ = 0.2 rad (~= 3), the design conditions being as for Fig. 9. 

(2) Variation with jet  deflection (,.9) and with thrust~weight ratio (A). With the downwash 
assumption of Equation (16), the trim condition (13) may be written 

[A,{h - (~=)s} - Va, (1-EAs)  ] a s + B,{h - (~e), + EVal}z9 - alP~T = O. (44) 

If  the linear approximations of Equations (39) (see also Figs. 4 to 6), are substituted in the above 
equation, and squares and higher powers of % are neglected, the following approximate linear 
equation for trimmed incidence % (valid for small incidences) is obtained: 

[q~(qa-h) + Fa~(1 - E q O  + {p~(q4-h-EFa~)  + p4q2}#] % 

= - q2(q4- h - EVa1) ~ - Fal~ T (45) 

With a 1 = 2rr, E = 0" 025, ~ ,  = 0, this becomes 

where 
{Cq~ + 2~F + (Dp~ +p,tq2)tg}% = - Dq~,  "~ 

) C = q a -  h - 0 " 1 5 7 V ,  

D = q a - h - 0 " 1 5 7 V .  

(46) 

Since the p 's  and q's are functions of h and # only (see Figs. 4 to 6), while h and V are fixed by 

the given basic design condition (see Fig. 7), Equations (46) may be used to obtain curves of % vs. ~9 s 
for A = X with various values of K'r,, and curves of % vs. ;t for t9 = ~ with various values of K'r~. 
Once % has been determined, the corresponding C L s = As% + Bs v~ ( '~ Q + Poe,) can be calculated, 
while the values of the restoring margins Kr~ , Kr9 follow from Equations (21b). 

The above procedure has been followed in deriving Figs. 12 to 16. Figs. 12 and 13 show the 
variations of trimmed incidence and lift coefficient and of the restoring margins Kr~ , K,,~ with 
jet-flap deflection for various values of the design restoring margin K~ ,  (0.05, 0.1, 0.2, 0 .3 ) the  
tail-plane being fixed at zero incidence and the jet thrust/weight ratio A fixed at the design value X. 
Figs. 14 and 15 provide similar information for the case where the jet-flap deflection is fixed at the 
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design value ~ and the jet thrust/weight ratio h is varied, while Fig. 16 gives the variations of t r immed 
incidence and lift coefficient with flap deflection and thrust/weight ratio for the particular 
combination of tail volume and c.g. position corresponding to K~.~ = 0.2. 

4.2. Constant Speed Manoeuvres. Configurations corresponding to the basic design conditions 
X = 0.3, ~ = 1 tad, ~ = f/T = 0, K ~  = 0.05, 0.1, 0 .2  or 0.3 have again been considered, with 

a 1 = 2rr and E = 0. 025. To evaluate the control effectiveness parameter On/OA (or its inverse, the 
increment of thrust/weight ratio per g) from Equations (34) or (36) it is necessary to obtain expressions 

for the partial derivatives of A, B, ~ ,  ~ with respect to A, at constant speed. In the steady circle, 

initiated from a t r immed condition with lift coefficient CLs: 

so that 

Cj =~-  C j s =  ACL~, 
as 

8 8 C s  8 O 

0-7 = 8~ 8Cs CL~ 8Cs" 

Hence, from (37) and (38) 

8A 
O--~- = CL~(O" 576Qr -~I~ + 1. 106 + O. 0765 C j  a/2), 

8B 
8--X = CL,(I" 773 C s -x12 + 0.325 + 0.234 C s )/~), 

8h 
O~:o 0.0385 Cz~ Cs~ -~l~ . 0"01CL~; :g~ = 

l J (47) 

° 

412.1. Manoeuvres initiated from the basic design condition. If  the aircraft is initially in tr im at 

zero incidence with )t = X = 0.3, v q = ~ = 1 radian, ~7~, = rTT = 0, then CL8 = C 5 = 5 .3 ,"  
B8 = B = 5.3, C a s = 1.59 and from Equations (36) and (47) we obtain 

where 

On 1 

Oh 5 .3H m 

On K ~  
- -  = 03 -- ' 

n m ~  

On 2zr V 
onT 5.3_gr~' 

FIm~ = Kr _lrm__q 
c tzl 

ElO • 746Kr ~ - O. 8591, 

(48)  

I f  rotary damping mq is taken as due to tail only, i.e., mq = - ½al(ST/S), then 

al V 
= = + Vifa1 'l = 
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For illustrativepurposes a value of 10~r has been assumed for/h,  giving 

P 

in which case, the control actions per g are given by 

0n = '~ + (2. 028K,. ~ -  0. 162), 

0~ V 
On 1 + 1 0 K ~ '  

0 

with 
V = o. 553 + 1. s3K  ; 

J 

(49) 

.in accordance with Equation (40). 
In Fig. 17, values of the control actions per g, calculated from (49) are exhibited as functions of 

the design restoring margin Kr, ;  curves calculated on the assumption of no rotary damping a r e  

shown for comparison. 

4.2.2. Manoeuvres initiated from other trimmed conditions. The basic design condition is 

essentially a high lift condition corresponding to take-off or landing. For cruising at moderate or 

low lift coefficients, smaller jet deflections will be employed and it is thus necessary to consider the 
comparative manoeuvrability, using the various controls, under such conditions. For illustrative 

purposes, it has been assumed that in trimmed cruising flight the thrust/weight ratio ;~ retains its 
basic design value ~ = 0.3. Equations (34) have been used in conjunction with (47) to calculate 
OA/On, O#/~n and O~?~,/On for. a range of values of v a and for various yalues of the design restoring 
margin Kr~. The results are shown in Fig. 18 as graphs of the quantities in question against v a for 
the various/~r ~. Curves of equal trimmed lift coefficient C L s are also indicated in the figures. 

5. Discussion. It has been assumed that from the stability and control point of view, a jet- 
flapped aircraft would be designed around a certain high-l!ft condition which has been referred to 

as the 'basic design condition'. For the purposes of illustration, the values of the jet-flap control 
parameters )t and & corresponding to this condition have been fixed as A = X = 0' 3 and ~ = g = 1 
radian, while for the most part it has been assumed that with these control settings the aircraft will 
trim at zero incidence with zero tail setting. The combination of tail volume P and c.g. position h, 
required to achieve this depends (see Fig. 7) on the value assigned to the parameter K-r~--the 
design restoring margin. A suitable value must be selected from a consideration of the trim and 
manoeuvrability characteristics exhibited in Figs. 9 to 12, 14 and 16 to 18. The choice may be 
influenced by the consideration of whether the role of the jet-flap is to be simply that of a lift- 
augmenter,, leaving the trimming and manoeuvring to be accomplished by tail controls, or whether 
the jet-flap controls themselves are to be employed to control the aircraft longitudinally. 

With the jet-flap employed purely to augment lift, it is seen from Figs. 9 and l l that the trim 
curves have stable slopes for all values of the design restoring margin (Kr~) considered, both in 
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the high-lift case (v a = ~ = 1 tad) and under cruising conditions with t9 = 0.2 rad. Since the 

required tail volume increases with Kr~ (Fig. 7) it is desirable to design for the smallest restoring 

margin consistent with satisfactory manoeuvring characteristics. It is worth noting from Fig. 13 
that for a given value of the design restoring margin -~r~, the restoring margin K~.~ increases as 

the jet deflection decreases so that if an adequate stability margin is provided in the design condition 

(high lift), the margin will certainly be adequate in the cruising condition with small jet deflection. 
Conversely, if the jet-flap deflection is increased beyond the basic design condition value, the 
a-restoring margin will be reduced and care must therefore be exercised to ensure that it cannot 

become dangerously small within the useable range of flap deflections. It should also be noted 
from Fig. 15, that Kr~ is a decreasing function of the thrust/weight ratio 2 and that this may limit 
the amount by which 2 may be increased beyond the basic design value X. 

Figs. 17c and 18c show that the tailplane deflection per g in constant speed manoeuvres increases 

with K r ~ and in attempting to strike a balance between an excessive value under high lift conditions 
and too small a value under cruising conditions, we are led to suggest a value for the restoring margin 
in the range 0.1 ~< K'r ~ ~< 0.2 provided that it is not intended to operate with values of v ~ or 2 much 
in excess of the design values ~ and ~. 

If deflection of the jet-flap is used to trim the aircraft with fixed tailplane and fixed throttle setting, 
the trimmed lift coefficient increases progressively with increasing flap deflection for all values of 
K ~  in the range 0.05 to 0.30 (see Fig. 12a). There is some variation in the trimmed incidence 
(Fig. 12b) from the zero value corresponding to the basic design condition. The deviation from zero 
decreases with increasing K~ ¢ and for a given value of the restoring margin, attains a maximum for a 
value of t9 equal to about 0.7~. Thus, to minimize the variations in trimmed incidence, _~.~ should 
be made as large as possible. From Fig. 17b it is seen that, provided there is some rotary damping, 
the jet-flap deflection per g in constant speed manoeuvres (initiated from the basic design condition) 
tends to infinity as _~ ~ tends to zero; clearly, a fairly large restoring margin ( >/0.2 say) is necessary 
in order to keep the flap deflection per g reasonably close to the asymptotic value of 1 radian per g in 
the basic design condition. However, it seems unlikely that jet-flap deflection control would be 
used in the high-lift case, while under cruising conditions (see Fig. 18b) the jet-flap deflection per g 
is not critically dependent on the value of K~ ~. 

If throttle (2) - control is to be used for re-trimming or manoeuvring when the aircraft is 

initially in the basic design condition, it is clear from Figs. 14 and 17a that a restoring margin 
K" r ~ of at least 0.2 must be achieved. For, on the one hand, if K'~.~ is much less than 0.2, the negative 

incidence acquired as the result of increasing ;~ will be such as to cause a net reduction in trimmed 
lift. On the other hand, as can be seen from Fig. 17a, the increment in jet thrust/weight ratio per 
g (0t/On) tends to infinity as Kr~ decreases towards a value of (approximately) 0.08. It will be 
observed that the asymptote for O2t/On (Fig. 17a) is K ~  = 0.08 and not K ~  = 0, as in the case 
of 3tg/On (Fig. 17b). This is explained by the presence in the expression for 3n/32 (Equations (36)), 
of the term involving 3~9/O?t, which arises from the fact that ~9 varies with the jet coefficient Cj  
(see Fig. 3). If the approximation ~ -- constant had been made at the outset, the term in question 
would, of course, have disappeared and the asymptote for 32/3n would then have been/~,~ = 0. 

To sum up: it may be concluded that if the jet-flap controls are to be used to trim and manoeuvre 
the aircraft, a value of at least 0- 2 should be assigned to the design restoring margin/~. ~. If, however, 
tail controls are to be employed, a value of 0.1 may well be adequate and certainly it should not be 
necessary to design for a value greater than 0.2. 
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The following table compares the effectiveness of the various controls on the basis of the 

respective control actions per g in constant speed manoeuvres, initiated from a high-lift (basic 

design) condition and from a cruising condition (C L = 0.3) respectively. 

High-lift (basic design) 
condition: C L _= 5" 3 

(;~ = X = 0-3, 8 = 8 =  57"3 
deg, ~7~ = 212" = 0) 

Cruise condition 
cL= o.3 

(~t = 0.3, 8 = 12- 6 deg) 

Type of 
control 

Jet-flap 

Tail 

0-2 

0.2 

0.1 

Tail vol. c.g. position 
h 

8A 
On 

(AA per g) 

0-858 0.460 1.17 

0.460 

0- 485 

0 -  858 

0.705 

88 
On 

(deg/g) 

82 

8~7T 
On 

(deg/g) 

16-1 

11 "7 

8,~ 
8n 

(A~ per g) 

0"75 

88 
On 

(deg/g) 

17.2 

8~7f 
On 

(deg/g) 

1.72 

1.5 

For the purposes of further argument, let us assume that h/Area x = ~18ma x = 0"75 SO that 
Area x = 0" 4 and ~max = 76" 5 deg, and also that the tailplane travel available for control purposes 

is + 5 deg. Then  in the high-lift condition rather less than 1/10 g and !/4 g could be applied 

respectively by throttle control (AA = 0.1) and flap deflection control (AS = 19.2 deg) whereas, 

with tailplane control, more than 3/10g could be applied if K~r~ = 0.2, while with K-~ ~ reduced to 

0.1, this figure would be increased to more than 2/5 g.e 

Under cruising conditions (C L = 0.3) the maximum available increment 0.1 in ~ would produce 

only 0. 133 g, 10 degrees of jet-flap deflection would give 0.58 g while, according a s / ~  ~ = 0 .2  or 

0.1, - 5 degrees of tailplane deflection should produce 2.9 g or 3.3 g respectively. 

Although the amount  of 'g' produced by a specified control action provides a valid basis of 

comparison between the effectiveness of different controls, it does not, perhaps, give a very clear 

idea as to the adequacy or otherwise of a particular control, especially at the unusually high Cz ' s  

(and hence low speeds) which are under consideration. The radius of turn produced by the given 

control action may possibly serve as a more useful criterion in these circumstances. 

The radius of turn corresponding to unit incremental load factor is given by U~/g where U, the 

forward speed, is given by U 2 = 2 (W/S)/apo C z s, a being the relative air density and P0 = 0.002378 
slugs/ft ~, the standard sea-level density. For low-level flight (a = 1) with a wing loading of 35 lb/ft 2 

at a lift coefficient of CLs = 5"3, the forward speed is 74.5 ft/sec and the radius of turn for unit 
incremental load factor is 172- 5 ft. Thus,  in the example cited above for the aircraft with i ~ ,  = 0.2, 
t r immed in the basic design condition, the maximum available increment of thrust  A2t = 0.1 would 

The fgures are approximate inasmuch as it has been assumed that An = AA 8n/O~t etc. for finite increments 
AYt etc., which is not strictly valid. It should also be noted that realization of the figures quoted for tailplane 
control is dependent on the maintenance of unseparated flow over the aerofoil when positive incidence is 
acquired as the result of control application (see first footnote to Section 3). 
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produce a radius of turn in the pull-up of about 2000 ft. In 1 second the flight path would turn 
through about 2 deg, and in covering a forward distance of 74.5 ft, the aircraft would rise about 1.2 ft. 

For an aircraft with/C,. ~ reduced to 0.1 and trimmed to the same high-lift condition, a tailplane 
deflection of - 5 deg would produce a radius of turn of about 400 ft. In a second, the flight path 
would turn through nearly 11 deg and, in covering a forward distance of 74.5 ft, the aircraft would 
rise about 6.8 ft. 

These calculations are, of course, based on the steady manoeuvring flight condition and take no 
account of the initial response characteristics, investigation of which lies outside the scope of the 
present Report. :~ However, it is evident that on the basis of the ultimate (steady) response achieved, 
variation of jet thrust alone is not a very effective method of longitudinal control at low speed and 
in this respect, at least, it would seem to compare unfavourably with tailplane control which, on 
the same basis, appears to be somewhat superior to jet-flap deflection control for the cruising 
condition. 

It will have been noted from Fig. 17 and the foregoing discussion, that with jet controls (Figs. 17a 

and b), the manoeuvrability increases with increasing stability whereas with conventional (tail) 

controls (Fig. 17c) manoeuvrability decreases with increasing stability. This reversal of the usual 

state of affairs was observed by I. M. Davidson in Ref. 5, and it may be helpful to look a little more 
closely at the physical reasons which account for it. 

Consider the aircraft trimmed in the basic design condition, for which the  incidence is zero. 

Then with the simplifying assumptions made in Section 2, the resultant lift on the complete aircraft 
(L) is simply L(3 ) ,  acting through the centre of jet deflection loaditig No, with which, in this 
condition, the centre of gravity G must clearly coincide (i.e., K~.~ must be zero). This is illustrated 
in Fig. 19a, which may be compared with Fig. 2 for the more general case of non-zero incidence. 

Suppose now control is applied by deflecting the jet-flap, with thrust maintained constant. 
Then, instantaneously, of the two lift components L(~9) and L(~) (=  0), only -the former is changed 
- - b y  an amount AL(zg) say--where the increment AL(#) acts through No. t Motion in a vertical 
circle now ensues with incremental normal acceleration An. If rotary damping forces can be neglected, 
AL(v a) continues to act through N o and the balance of forces (including reversed mass-accelerations) 
is as illustrated in Fig. 19b. At no time are a-forces involved and the normal acceleration produced 
is independent of the position of N~, i.e., independent of the design restoring margin/~.~, as we 
have already observed in Fig. 17b. 

The effect of damping forces in the steady circle is to move the point of application of AL(tg) aft, 
by an amount A~c, to a point M o which, by analogy with conventional aircraft manoeuvrability 
theory, may be called 'the manoeuvre point with respect to jet deflection'. (In general, 
A~ = - (IT/c) (mJ/x~) while, if tail damping only is taken into account, A~ = alV/(2/Zl)). Since 
(ALv ~) now acts behind the Centre of gravity, the aircraft will acquire a negative incidence such that 
the corresponding (negative) lift increment AL(c~) provides the necessary counterbalancing moment 
to restore equilibrium. The point of application of AL(c~) will be Ms, 'the manoeuvre point with 
respect to incidence', which lies at a distance A~c behind N~, which is itself a distance K-r~c behind 

e Footnote (1961). The response calculations of Part I I  indicate a need to modify, in some respects, the 
conclusions derived from quasi-steady manoeuvrability theory. 

J" It should be remembered that this takes account of the moment effect due to the tail forces brought into 
play by the wing lift increment AL(~). 
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the c.g. The system of forces is now as shown in Fig. 19c and by taking moments about the c.g. 
it is easily shown that the net increase in lift is given by 

AL AL(~) + AL(~) K r = 
AL( ) < =  + zx " 

(It should be noted that this formula is applicable only when the aircraft is trimmed initially in the 
basic design condition for which Kr+ = 0). Clearly the effectiveness of the jet-flap deflection control 
is always reduced by rotary damping, but by an amount that decreases with increasing design 
restoring margin K, ~. Thus, as already observed, manoeuvrability increases with increasing stability. 

Similar arguments may be produced to explain the form of the curves in Fig. 17a, which shows 
increment in jet thrust/weight ratio per g plotted against K r ~. Here it may be noted that when the 

thrust is varied, C.r is changed and consequently, in addition to a change in the lift component Cry(o), 
there is also a shift of the centre of loading N o. Thus, even in the case where damping is neglected, 
there will be a moment about the c.g. which results in a change of incidence and the introduction 
of c~-forces, so that manoeuvrability varies with restoring margin whether damping is neglected or 
included. 

6. Conclusions. The following are the salient points which emerge from the foregoing discussion: 

(1) The present investigation has produced no evidence that would rule out the use of the jet-flap 
controls (throttle and flap deflection) as an alternative to conventional tail controls for trimming and 
manoeuvring a jet-flapped aircraft in the longitudinal plane. Nevertheless, on the basis of the steady 
manoeuvrability criterion (control action per g) jet controls would appear'to be less effective than 
tail controls. For a complete assessment of relative merits, an investigation of dynamic response 
characteristics must be made (see Part II). 

(2) Tailplane size and Centre of gravity position ~ay  probably best be determined to satisfy a 
prescribed high-lift condition in which the jet thrust/weight ratio )t and the jet-flap deflection 
0. have values of (say) 0.75 )tm~ ~ and 0" 75 Vqm~ x respectively. For the purpose of numerical illustration, 
it has been assumed, in this Report, that with such a combination of control settings, the aircraft is 
required to trim at zero incidence with zero tail setting. Considerations of trim and manoeuvrability 
throughout the speed range then suggest that a restoring margin (with respect to incidence changes) 
Kr~ of at least 0.2 should be provided in this 'basic design condition', if jet controls are to be used. 
This necessitates a tail volume ratio of about 0.86 with centre of gravity located at, 0.46c. To provide 

a larger restoring margin, the tail volume would have to be increased and the centre of gravity 
moved forward. 

If tail controls are to be used instead of jet controls, a design restoring margin of less than 0.2 
will probably suffice. If, for instance, K~.~ = 0.1, a tail volume of only 0.705 is required with 
centre of gravity at 0.485c. 

(3) For a jet-flapped aircraft, under high-lift conditions, manoeuvrability with jet controls increases 
with stability (as measured by the design restoring margin Kr ~). This is, of course, the reverse of the 
tendency exhibited by an aircraft of orthodox design and also by a jet-flapped aircraft employing 
tail controls. Control actions per g in the basic design condition, with jet controls, decrease with 
increasing K~ ,  tending asymptotically to values which compare rather unfavourably with the 
values of tailplane deflection per g which may be achieved with a reasonably small value (say 0.1) 
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of/~.~ (see Fig. 17). Because of the penalty of increasing tailplane size, it is clearly not profitable 
to increase K~.~ beyond about 0.3 in the case where jet controls are used, because the improvement 

in manoeuvrability thereby achieved is no longer worthwhile. 
In conclusion, attention must be drawn to the limitations of the present investigation: 

(a) The analysis has been based on two-dimensional theoretical data so that the results should 
not be applied to jet-flapped aircraft with low-aspect-ratio wings. For lay-outs of moderately high 
or high aspect ratio, the conclusions should be at least qualitatively valid. 

(b) Numerical results depend fairly critically on the assumptions made as regards the downwash 
at the tail (see Fig. 8) even when, as here, the investigation is based on two-dimensional data. 
Reliable data regarding the downwash field behind three-dimensional jet-flapped wings would be 
an essential pre-requisite for a stability and control analysis of a jet-flapped aircraft with a moderate 

or small-aspect-ratio wing. 

(c) Only trim, static stability and quasi-steady manoeuvrability have been considered here. 
For a complete appraisal of the relative merits of jet and tail controls, it is necessary to study 

dynamic response characteristics; this has been done in Part II. 
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LIST  OF SYMBOLS 

Coefficients defined by Equation (1) (functions of Cj  only) 

See Equations (46) 

Jet coefficient = J/½pU~c 

Total wing lift coefficient 

Component lift coefficients (Equation (i)), proportional to a and u a respectively 
for a given Cj. 

Tail lift coefficient 

Pitching-moment coefficient of complete aircraft referred to e.g. 

See Equations (46) 

Downwash constant (Equation (16)) 

Downwash constants (Equation (22)) 

Defined by Equations (14b) 

Defined by Equation (17) 

K ~  - lT m_gq ('a-manoeuvre margin') 
c /x 1 

Gross jet thrust per unit length 

B (Equation (55) of Appendix) 
A 

0Cm : aircraft restoring margin with respect to change of incidence 
acL(   

3C~ : aircraft restoring margin with respect to jet deflection 
OCL(0) 

Aerodynamic centres with respect to incidence and jet deflection respectively, 
for the complete aircraft 

Coefficient of a s in linear approximation for tr immed lift coefficient CLs: a 
function of ~ and 

• Term independent of % in linear approximation for CLs: a function of ~ and 

Wing and tailplane areas respectively 

Free-stream velocity 

Tail volume ratio 

Weight of aircraft 
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Prefix 
A 

Suffix 
8 

LIST  OF S Y M B O L S - - c o n t i n u e d  

Defined by Equation (59) of the Appendix 

OCLT 
Tailplane lift slope: - -  

0~ 2 

Wing chord 

Distance of c.g. from leading edge of chord, as fraction of chord 

Values of h for which Kr~, Kr~ are respectively zero (these correspond to the 
points N~, N~ on the aerofoil chord) 

Tail arm measured from c.g. to aerodynamic centre of tailplane 

Mass of aircraft 

c OCm 
21~ 8 (q l /U) '  rotary damping derivative 

Additional normal acceleration (relative to steady rectilinear flight) 

Coefficients of a s in linear approximations for A~, Bs, (~)s, (~)8, respectively: 
functions of it and 

Angular velocity in pitch 

Terms independent of % in linear approximations for As,  Bs,  (~)~,  (~o)8 

respectively: functions of it and 

Wing incidence 

Angle of inclination of flight path to horizontal in steady rectilinear flight 

Angle of downwash at tail 

Tailplane setting relative to wing 

Angle between jet and wing chord 

Jet thrust/weight ratio 

m/pSlze,  aircraft relative density 

Distances aft of wing leading edge at which component lift coefficients CL(~), 

CL<o) respectively act (as fractions of chord) 

Air density 

Defined by Equation (54) of the Appendix 

increment 

referring to steady rectilinear flight 

A bar over a symbol (e.g., ~) is used to denote the value appropriate to the basic design condition 
(except in V - tail volume ratio). 
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APPENDIX 

An Alternative Formulation of the Trim and Manoeuvrability Analysis 

The following method of analysis has been suggested by S. B. Gates. 
If it is assumed that the downwash at the tailplane is given by the simple relationship 

e = E C z = E(CL(~)+ Cz(o) ) , (50) 

where 
Cz(~) = As; Cz(~)= B0`; (51) 

then using Equations (21) of the main text, we may write the trim equation as 

K~ eL + ~0` + a ~ V ~  = o, (52) 
where 

atV (1 - EA) (53) 

and 

= B(~o-  ~)  - a~VK, (54) 
with 

B 
K = ~ .  (55) 

For a given design, Kr~ and o. are functions of Cj  only, where 

cs  = ;~cL (56) 

in steady rectilinear flight. 
Differentiating (52) and (56) we have 

K r a S C  L + C L K r a ' $ C  J -5 o.~0` -5 0 ` a ' ~ e j  + a lV3VT = O, 

~ c j  = A~c~ + c z a r ,  

where primes denote differentiation with respect to Cj. Elimination of 8Cj  and collection of 

terms leads to 

{K,.~ + 2t(K~' Ci. + o.'0`)} aCz + (Kr~' Cz + o.'0`)C/.3~ + o-80, + a[V3~7,~, = O, (57) 
giving 

ac~ = _ c ~  x 
o~ ~ K ~  + x '  

where 

a C L o. 

a0` = - K ~  + x '  

aCz alV 
8~T Kr ~ + X ' 

X = Kr~'C,r + WZ0` 

is a function of C j,  )0` for a given design. 
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t o  

damping term due to the angular velocity in pkch, and noting that now, 

where CLs is the initial t r immed lift coefficient. (cf., Equation (24) of main text). We now have 

lr m 3CL 0, 
K ~ a C , ,  + CLsKr~'aCr + ~8~ + ~WaCr  + alVarlT -- -7 q t*1 -- 

acs  = c~z al, 
whence 

so that 

where 

In deriving the corresponding quantities for manoeuvre (flight in  steady circle) we have again 
differentiate the Tr im Equation (52) remembering, however, to include in this case a rotary 



the controls can be obtained. To illustrate the procedure, some sample calculations have been made 

with P = 0.859, h = 0.461, E = 0.025, a I = 27r, which correspond to a 'basic design condition' 

(see Section 3 of main text) defined by ;~ = 0.3, ~ = 1 radian, ~ = ~ ,  = 0, K~ ~ = 0.2. 

The basic trim diagram for this case is shown in Fig. 20. I t  will be seen at once, that in this form, 

the diagram is not very convenient for interpolation. In practice we shall want to know how C j  

(and hence C z and c~) vary when, with two of the controls held fixed, the third control is varied. 

For this purpose, diagrams of the form shown in Figs. 21, 22 and 23 (obtained by cross-plotting 
from Fig. 20) are probably more suitable. ~ 

In Fig. 21 C j  is plotted against A# for various values of ;t~r; this form of the diagram is most 

useful when ;L ~T are the fixed controls and S is the variable control. 

In Fig. 22, C j  is plotted against ;b?T for various values of ;tv~; this form is most useful when ;t, 

S are the fixed controls and ~T is varied. 

I f  A is used as the tr imming control, with S and ~ ,  fixed, then both AS and ;~*IT vary and neither 

Fig. 21 nor Fig. 22 is very convenient for studying how CoT varies with ;t. In this case, however, 

~k,/S remains constant and Fig. 23, in which C a is plotted against AS for various values of ~?T/S is more 

useful. 
To evaluate the partial t r imming slopes (Equations (58)) and also the quantity 3n/~?~ (Equation 

(61)(i)) the function X is required. From (59), this is seen to be a linear function of AS for .a given 
value of C a and Fig. 24 shows the straight lines X versus AS for a range of values of Ca, calculated 
for V = 0. 859, as before.~ 

(b) Determination of c.g. position and tail volume to satisfy a specified design condition. If  it is 
specified that a t r immed lift coefficient C L is to be produced with control settings A, 6, ~/T and that 
the restoring margin in this condition is to be Kr~ then Ca, ( =  ACz)A , B, K, ~, ~ and ~ are all 
known and Equations (52) and (53) may be written 

a~V{K3 - ~T} = K,.~C,~ + BS(~o-  ~ ) ,  (66) 

h - a ~ P  (1 - R_d) = ~ - K, .~  (67)  

and solved for h and V. 

For the 'basic design condition' discussed in the main text it was assumed that f/T = ~ = 0 in 

which case C L = / ~ .  Equation (66) then becomes 

and (67) simplifies to 

p=-'g 
al 

h = ~ 

(k. + 

- EA(K,.  + = - Ea V. 

(68) 

(69) 

Equations (68) and (69) are identical with the first two of Equations (35) of the main text. 
The range of applicability of Figs. 20 to 23. The  basic tr im diagram of Fig. 20 has  been plotted 

for a range of values of C j, extending up to 10, for which the interpolation formulae for A and B 
(Equations (37) of main text )are  theoretically valid. Similarly, in cross-plotting the data to obtain 
Figs. 21 to 23, the full range of C j  up to 10 has been used. 

e. Some remarks on the range of applicability of these figures are made at the end of this Appendix. 
X depends (through K r ~' and e') on the value of V but is independent of the value of h. 
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It must not be inferred, however, that all points coming within the scope of the various trim 
diagrams necessarily represent trimmed conditions which are realisable in practice. For it may well 
be that the trimmed incidence which corresponds theoretically to a given point of the trim diagram 
is, in fact, outside the range for which the linear theory is valid; such a point has no practical 
significance. On the basis of such considerations, it seems probable that the upper branches of the 
curves in Figs. 21 and 23 and the corresponding parts of the curves of Fig. 22, for which Cj > 3.47, 
may be disregarded for practical purposes. 
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Part II 

Dynamic Longitudinal Stability and Response Characteristics 
of Jet- Flap Aircraft 

Summary. The generalized stability and control investigation, based on Spence's two-dimensional 
theoretical data, which was begun in Part I with considerations of trim, static stability and quasi-steady 
manoeuvrability, is extended by a study of dynamic stability and of comparative response characteristics 
for step-inputs of tail and jet controls. 

From numerical examples it is concluded that in the 'basic design' (high lift) condition, the quasi-steady 
manoeuvrability criterion is not a valid basis of. comparison of control effectiveness, because a divergent 
phugoid of relatively short period, coupled with a rapid oscillation of relatively long period, prevents the 
establishment of a quasi-steady condition. Because initial response is much slower for tail control than for 
jet controls, it now appears that jet deflection control may be more effective than tail control for this case. 

The manoeuvrability criterion is shown to remain substantially valid for the cruising condition, however, 
and the superiority of tail over jet controls in this case is confirmed. 

1. Introduction. In Ref. 1 the author made a preliminary examination Of some of the stability 
and control problems associated with the design of a jet-flapped aircraft, stabilized and controlled 
longitudinally by a conventional tailplane and elevator (or all-moving tailplane). In Part I of the 
present Report, the possibility of using the jet controls (throttle and jet-flap deflection) to trim and 
manoeuvre the aircraft was examined. Both of these investigations were restricted to considerations 
of trim, static longitudinal stability and quasi-steady manoeuvrability criteria although, as pointed 
out in the conclusions of Part I, it is necessary, in attempting a complete appraisal of the relative 
merits of jet and tail controls, to study dynamic stability and response characteristics. It is the 
purpose of this Part of the Report to fulfil this need. 

The relevant mathematical theory is developed in Section 2, where the standard equations of 
disturbed longitudinal motion with deflected controls = are adapted and extended for application to 

, the jet-flapped aircraft. The generalized form of the stability quartic governing the motion is derived 
in Section 2.2 and operational solutions for the responses to control application are given in Section 
2.3. Only step-function inputs of the three controls have been considered, because of uncertainty 
as to the respective modes of application that will be realizable in practice. 

The calculation of the aerodynamic derivatives required for response calculations is discussed in 
Section 2.4. For reasons given there, calculations have been based on the early version of Spence's 
two-dimensional theory 7, which was used as the basis of the investigations described in Part I. 
Formulae obtained for the derivatives are collected together in Table 1; their derivation is given 
in full in Appendix i. 

To ensure self-consistency of the dynamic analysis, which must take account of changes in the 
longitudinal (thrust and drag) forces, it has been necessary to revise the trim and static stability 
analysis of Part I which neglected the effects of such forces. It has been found that the inclusion 
of such effects results in appreciable changes in the tail volume ratio and c.g. position required to 

satisfy specified design conditions. 
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The numerical work performed in connection with this investigation is described in Section 3 
and the results, given in Tables 2 to 6 and Figs. 2 to !5, have been used to re-assess the comparative 
effectiveness of jet and tail controls. It appears that the conclusions arrived at in Part I, on the basis 
of quasi-steady manoeuvrability theory, need modification in respect of the 'basic design' (high lift) 

. condition, but remain essentially valid for the cruising condition. 

An extended summary of the work described in this Part, together with a discussion of the 
results and the conclusions to be drawn therefrom, is given in Section 4. Possible future developments 
are briefly discussed in Section 5. 

Acknowledgement. Acknowledgement is due to Miss F. M. Ward and Miss B. E. Mills for their 
assistance in performing numerical work and preparing figures for this Part. 

2. Mathematical Theory. 2.1. Equations of Disturbed Longitudinal Motion with Deflected Controls. 
The jet-flapped aircraft may be considered to have three possible longitudinal controls: tail control, 
(elevator or all-moving tailplane) jet-flap deflection control and jet thrust/weight ratio control 
(exercised via the throttle). 

If the (small) deflections of these three controls from their steady-flight settings ~Ts, v~s and ;t s 
are denoted by ~T, t~ and ~ respectively, and if the general notation of Ref. 2 is adopted (except 
that m,~, m~ are written for m,~, m,o) the equations of motion may be written 

- x,l~/O~. - x o 8  - x ~  = O,  

- z ~  + ~ - z ~  ~ - 1 +  q ~ - k ' O -  

- z~lfOT -- z o ~  -- z ~  = O, 
(1) 

( ( m,~d /~l.mu] u m ~ d  ixl.mw]w d 

[Zlm,1 T ,, t~ lmo t*~mx 
~ - - - ~  = o ,  

dO 
- qi + -d~ ~ = 0 .  

The terms involving xq, zq may, in conformity with common practice, be neglected in the present 
investigation. Then introducing Neumark's subsidiary notation 3 with some additions: 

writing 

o J =  iB ' v =  i B '  X i ~ '  

310 = r/'/~ /z lmtc  
i ~ '  ~: = i~ ' (2 )  

J tzl  nz.tlT tzl  m ~ I~l m a 

U W 

G - ~ '  G ~ (3) 
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andus ing  the last of Equations (1) to eliminate q f rom the remaining three, we may write these 
in the form ' 

(d ) 
-z , ,~ + ~ - z ~  ~ - ~ + k '  O-z,lz~ ) , -zo~-za,~= O, (4) 

G + ~  6 +  x G + o ,  z ~ + G  G + v  0 + a ~ r ~ T + G 8 + 8 ~ = 0 .  j 

Tn these equations ~r, v~ and ~ are to be regarded as arbitrary functions of r and to obtain the 
responses to particular control inputs, use may be made of the operational calculus. If the Heaviside 
method (see, for example, Ref. 4)is  employed, the subsidiary equations corresponding to (4) will be 

( D -  G,)~(D) - x~dJ(D) + kLO(D ) = x~T~T(D ) + x&g(D) + x,t~(D ) + ProD, 

- z~fi(D) + ( D - z w ) ~ ( D )  - (D+k')O(D) = z~T¢IT(D ) + z~8(D) + zx'~(D) + 

+@o D -  OoD, .(5) 

(TD + ~)/~(D) + (xD + w)d~(D) + D(D + v)O(D) = - 3,,T¢?T(D ) - 8ot~(D) - 3a~(D) + 

+ T~0D + X~oD + OoD(D + v) + OoD, j 

where 6(D), z~(D), O(D), ~T(D), v~(D), "~(D) are the (Heaviside) operational equivalents of a, z~, 0, 
~T, t~ and ~ respectively and 60, z~0, 00 and 0 o are the initial values of ~, ~, 0 and dO~dr respectively. 
For control inputs ~z etc., which are elementary functions of r, the operational equivalents ~TT(D) 

etc., will be readily obtainable from Ref. 4 or otherwise and Equations (5) may then be solved 
for 6(D), v~(D) and O(D). I t then  remains only to determine the functions whose operational equivalents 
are 6(D) etc. and the response problem is solved. The last stage of the work may be much facilitated 
by use of the tables of Ref. 4. 

2.2. The Stability Quartic. The stability equation, obtained by equating to zero the determinant 
of coefficients on the left-hand sides of Equations (5) is a quartic 

where 

and 

F(D) =- D 4 + B1D a + C1 D~ + D1D + E 1 = O, 

B:t = N l  + v + X ,  

C1 P1 + vN1 + xQ1 .+ 

D 1 = vP1 + x R1 + 

E1 = 

P1 = X u Z w -  XwZu; 

G = - -  ( X u - - k ' ) ;  

) 
co - TS1, ' [ 

J ~oQ1 + FT1 + KS1, 

oJR 1 + xT1, 

• > 

R 1 = - (k x~ + kLG,), 

S 1 = x~- -kL;"  

T 1 = kLZ~, + k'x~. , 

(6) 

(7) 

(8) 
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2.3. Response to Indiv idual  Control Actions. I t  is hardly possible at this stage of development, to 
specify realistic modes of application for the three types of control. This  is true in particular of 
the A-type control, characteristics of which will be bound up with the question of the response of 
the jet  engine itself to throttle setting. In such a state of ignorance it would appear pointless to 
at tempt more than a crude comparison of the response characteristics resulting from simple step- 
function inputs of each control in turn. 

2.3.1. Response to step-function inputs of  the three controls. Let ~r, r =- 1, 2, 3, denote increments 
of tail-, jet deflection- and jet thrust-control settings respectively, 
i.e., 

¢/1 = ~ r ;  ~2 -- ~ ;  ~3 - ~. (9) 

Then  for a step-function input of the rth control we have 

and 

whence 

and 

Initial conditions are 

¢/r(~') = ~'o = constant / 

J = o ,  s + r ,  
(lO) 

~,.(D) = ~,.0 ] 

J s + r .  
(11) 

^ = ^  ( ) u 0 w 0 = 00 = 00 = 0. 12 

The  right-hand sides of Equations (5) reduce to x~ r ~  0, z,/~.~. 0 and - 3, /~.  0 respectively, and their 
solutions may be written down as 

a(D) = __.F"(")(D). ~ ( D )  _ __Fw(*)(D). . O(D) - Y°(*)(D) " (13) 
41,.o F (D)  ' ~ o  F ( D )  ' ¢~,.o F (D)  ' 

where F ( D )  is given by (6) and 

where 

F~,(~)(D) = B~(r)D a + Cu(")D 2 + D~,(~)D + E~,, ] 

Fw(r)(D) = B (r)D3 + C~o(r)D 2 + D~(~)D + E w ,  

Fo(~)(D) = Co(r)D~ + Do(~)D + Eo. 

The coefficients of the first of Equations (14) are 

Bu (r) = x~l r, "~ 

Q Y )  ( - zw + v + x)X~ ~ + x~z,~,., 
} 

D~(") Ssx,  I,. + S2z,~, - $1 ~v r, 

E~, (~) k'oox~,. + kzfJz~ ~. - Tx~,j ~, 

$2 = vxw + kL X , ] 

J S s = - v z  w + k '  X +  o) 

and S1, T 1 are defined by (8). 

(14) 

(15) 

(16) 
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In the second of Equations (14), 

Bw(r) 1 
= Z y  r , 

= ( z , , -  + (v -  - 

D , ,  (~) = Qax~,. + Qzz , j  ~ - Qt3,1, . ,  

E ~  o') = - k % x , j , . -  . kLKZ~l ~. -- R t 3 ~ . ,  

where 

and Q1, R1 are defined by (8). 
In the last of Equations (14), 

Co(,.) 

Do(,O 

EoO'~ 

where 

= - v x u -  k L ~ '  I 

J = v z  u - k ' )? - Ic 

= -- Fx~/r -- XZvr  -- ~j~., ] 

= N s x , l  ," + N2z, I  ," - Arl~l r, 

= P3x, lr  + P ~ z , l ~ -  P ie , l , . ,  

P3  = - ~°zu + Kzw , 

N 2  = X x , ,  - Y X w  - o J ,  

N ~  = - x z , ,  + Y z ~ -  ,~ 

and N1, Pi are defined by (8). 

(17) 

(18) 

(19) 

(20) 

2.3.2. I n t e r p r e t a t i o n  o f  the  o p e r a t i o n a l  soht t ions .  The solutions /~(D) etc., of .the subsidiary 
equations are, in all cases, algebraic fractions in which the denominator is a quartic in D, while the 
numerators are of third or smaller order in D. The corresponding solutions ~(-r) etc., of the original 
equations of motion (4) are therefore readily obtainable from Table 3 (Item No. 126) of Ref. 4 and 
are of the general form 

/~ etc. = A + ( L c o s J ' r + N ~ ) e - R ~ +  

( slnjT] e -'~ , - (21) + I c o s j ~ - + n  j / 

where - R + i J,  - ~" +_ i j  are the (complex) roots of the determinantal equation F ( D )  = 0 (Equation 
(6)) and A, L, N, l, n are constants. 

2 .4 .  B a s i c  A s s u m p t i o n s  f o r  the  E s t i m a t i o n  o f  the  A e r o d y n a m i c  Forces ,  M o m e n t s  a n d  D e r i v a t i v e s .  

At this stage we must consider on what basis the aerodynamic derivatives appearing in the response 
equations are to be estimated. At the same time, it must be borne in mind that the study of disturbed 
motion involves the specification of the steady tr immed state about which the disturbance occurs. 
Clearly these two interlinked problems must be studied on the basis of the same aerodynamic 
assumptions. 

Any practical ~ipplication of the jet-flap principle will, of course, involve a jet-flapped wing of 
finite aspect ratio and, in the study of a specific project, the values of the aerodynamic forces and 
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derivatives used in the trim, stability and response analyses should, as far as possible, be derived from 
model tests or three-dimensional theory. However, the work described here was conceived as part 

of a generalized investigation, begun in Part I, of which the professed aim was a qualitative, rather 

than a precise quantitative, assessment of the effects under consideration. At the outset of this 

work, the final versions of Spence's two-dimensional theory 5 and Maskell and Spence's three-  

dimensional the0ry 6 had not been published. From a preview of the latter, at the time of writing 

Part I, however, the present author had concluded that the use of the three-dimensional theoretical 

results would render the trim analysis too complicated for the purpose in mind, and the decision was 

made to base the whole investigation on the early version of Spence's two-dimensional theory 7, 
which accordingly has been employed in developing the trim analysis of the present Paper 
(Section 2.5) and in obtaining expressions for the aerodynamic derivatives (Section 2.6). 

In the latter connection, no account has been taken of unsteady flow effects as regards the forces 
and moments acting on the wing and assessment of the derivatives m,~ and m~o has been based on 

the concept of downwash delay at the tailplane. The rotary damping of the wing has been neglected 
in comparison with that of the tailplane. 

Further  aerodynamic assumptions are noted in the following Section, where the trim analysis of 
Part I is re-worked, taking account of the effects of thrust and drag forces which were previously 
neglected. 

2.5. The Determination of Trimmed Conditions. 2.5.1. Trim andstability equations. Fig. 1 shows 

the configuration of the aircraft and the system of forces acting on it, following small disturbances 
from the condition of steady rectilinear flight at speed U 8 and incidence %, along a path inclined at 

an angle 78 to the horizontal. Gx, Gz are axes fixed in the aircraft, Gx coinciding with the direction 
of motion in undisturbed flight. 

In accordance with Spence:s theory 7, the lift coefficient for the wing may be written 

CL = CL(~) + CL(~ = A~ + B~9, (22) 

with thecorresponding forces L(~), L(v a) acting at distances ~c, ~oc respectively from the leading 
edge, where A, B, ~. and ~ are functions of the jet coefficient Cj only% 

~x, It may be pointed out here that although in the three-dimensional theory 6 the lift coefficient may be 
expressed in the form (22), the coefficients A and B in that case are functions not of Cj only, but of C j, 
c~, t9 and aspect ratio A~?; i.e., the contributions due to incidence and jet deflection are not, in fact, separable. 
Consequently, a trim and stability analysis based on the full three-dimensional formulae for C L given in 
Sections 5.3 and 5.4 of Ref. 6 would be prohibitively complicated. However, from a limited amount of 
numerical work, it appears likely that over the practical range of parameters, the three-dimensional lift coefficient 
CL (a) might be reasonably well approximated by the relationship 

CL(B)/CL(2) = G(A R, CoT) 

with G(AR, C j) given by Equation (67) of Ref. 6:--  

G = (A R + 0"637 C r)/(AI~ + 2 + 0.604 Cj  lt~ + 0.876 Cot) 

Thus, for a specified value of the aspect ratio, it would be possible to express CL(a) in the form (22), with 
A and B depending on Cj only, albeit in a more complicated fashion than in the two-dimensional case. 
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To simpiify the analysis it is assumed, when considering the balance of normal forces, that the 
lift provided by the tailplane is negligible in comparison with the wing lift so that the wing lift 

• coefficient given by (22) may be taken as the total lift coefficient for the aircraft. The coefficient of 
resultant force in the direction of motion, Ci~, may be expressed as 

C~ = Q v -  CD0, (23) 

where Cj90 is the skin-friction drag coefficient and C T is the total thrust coefficient which, according 
to Spence, may be broken down into internal (direct) and external (induced) components C T z and 
C~, c respectively, where 

CT ± = Cj cos (~ + 8) (24) 

and where, according to inviscid flow theory 

CTc = C j  {1 - cos ' (a + v~)}, (25a) 
so that 

C T = Cj .  (26a) 

In practice, it is unlikely that the full value of the induced thrust, as given by (25a) will be attained 
and it is preferable to write 

C~c = k T C s f l  - cos (a+v~)}; k T d 1 (25b) 
and hence 

Cr = C j{(1 -kT)  cos (~+v ~) + kT}. (265) 

On the assumption that the coefficients ~ ,  ~e, defining the points of application of L(c~), L(v q) 
respectively, have been chosen so as to give the correct pitching moment about the leading edge 
(i.e., in accordance with Spence's theory) the thrust corresponding to CT, as defined by (26b), must 
be assumed to act through the leading edge. The skin-friction drag will be assumed to act at the 
same Position as does the lift when C j  = O, i.e., at ~(0)c. To simplify the analysis it will be further 
assumed that the wing zero-lift pitching moment and the body pitching moment are zero. 

With the above assumptions, the pitching-moment coefficient for the complete aircraft, referred 
to the e.g., located at distance hc behind the wing leading edge, may be written as 

C.,, = q(~)(h - ~ )  + C~(dh - ~ )  + C . o  {h - C ( 0 ) }  a - C d , ~  - 

- a~P{~ - e(t) + ~ + qlT/U }. (27 )  

The %-restoring margin' K~.~ and 'S-restoring margin' K~.~ are given respectively by 

ac, /ac  
K,.o- 

1 - G  - { h - G ( o ) } +  

and 

+-A-CT h - 7C°T h~(1 - kT) sin (c~ + u a) (28) 

= ~ - h  al V ae 
- B o , ~ - - -  

Cj h~(1 --kT) sin (~+v ~) 
B 

51 

(29) 

(84109) D2  



For trimmed rectilinear flight at a small angle y to the horizontal (cos y ~ 1) we have C,, = q = 0, 
so that if symbols appropriateto this condition are distinguished by the suffix 's' and if the thrust/ 
weight ratio J/W is denoted by A, the conditions of equilibrium of normal forces and pitching 
moments, used in conjunction with (22), lead to the equations 

co-s = ;',c~,s, (30) 
where 

CLs = As~ s + B~v% (31) 
and 

+ Bs {h  - (~:,~).~},L + a~_Ve~ - a l~ (~T)s  = 0.  (32) 

It has been shown in Part I that CLs, As, B s (~).~, (~)s can be well approximated by linear 
relationships 

CLs= Po~ + Q ; ] 

A~ = p~% + ql ; (~)s = P3% + qa ; (33) 

Bs = p ~  + q2 ; (~0).~ P ~  + q4 ; 

where P, Q, Pl, ql, etc. are functions of ;~ and t~ only. Thus, for a given aircraft, whose tail volume 
(V) and c.g. position have been fixed, Equation (32) may be regarded as an equation for determining 

the trimmed incidence as, corresponding to a prescribed combination of control settings ~, u a, re, 
while (28) and (29) give the values of the two restoring margins. 

2.5.2. Tail vohtme and c.g. position as determined by basic design conditions. The trim Equation (32) 
may be written in the form 

[ { A  - (CTs - -  C~ o)} '~ + -Bs~2 h -- Va~ {~s - e~ + (~ ' )~} 

= {A~(~:,~)s + CD0sC,~(0)}% + Bfl.~(~:o)~. (34) 

Then if (28) is rearranged thus for the steady condition: 

l I C~"~-CD°A~. + AssCJ~%(1-kT) sin(%+v%)lh- 

A~ ~ s = ~ ~  - K,.~.  + ~ . ~  ~ ( 0 ) ,  (35) 

we have two equations from which the tail volume V and c.g. position hc, required to satisfy a 
specified design condition, may be determined. It will be assumed that % = ~%.~ = 0, .in the 'basic 
design condition' (see Part I) for which, with a combination of jet control settings v~= ~, A = 5, 
the aircraft is required to have an a-restoring margin K~. ~. If it is further assumed that the downwash 

angle at the tail e, may beexpressed as 

e = EC L = E(Ac~+ BO,) (36) 

and if the small term (CD o/A.~)~(O) in (35) is neglected, Equations (34) and (35) may be simplified 

and solved to give 

- aa(1 ~-ECF) (37) 

EA l (1 _ ~ )  ~ _  ~ + K,.~ I 
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where C F = CT --CD0 (Equation (23)) and 'barred' symbols are appropriate to the basic design 
condition. (Equations (37) may be compared with Equations (25) of Part I from which they differ 
because of the inclusion in the present analysis of thrust and drag forces whose effect on trim was 
neglected in the earlier work.) 

With the assumption (36), the expressions (28) and (29) for the restoring margins become 

K,.~ = ~ - h + ~ - ( 1 - E A ) -  { h -  ~(0)} + C T h -  C J h c ~ ( 1 - h T )  s i n ( c~+#) ,  
A- A-  . ( 3 8 )  

co- h (1 sin K~.~ = ~ - h - E V a  1 -  B - -  

2.5.3. Variation of  t r immed  incidence and lift coefficient with changes o f  control settings. The 
aircraft may be trimmed to conditions other than those of 'basic design' by varying the control 
settings ~TT, t9 and A, either singly or in combination and a complete trim analysis might be developed 
along the lines of Section 4.1.3 of Part I or of the Appendix thereto. However, in view of the limited 
computational effort available for this investigation, consideration has been given here °nly to'the 
case where the aircraft has been trimmed by variation of the jet deflection 8, the thrust/weight 
ratio A and the tailplane setting .~TT remaining fixed at their basic design condition values 

(;~ = 5, ~?T = f?T = 0). In this case, if use is made of Equations (26b), (30) and (36), the equation 
for trimmed incidence is obtained from (32) as 

[As{h - (~)s} - Va~(1-EAs) - ACLs {(1--kT) cos (%+vas) + kr} + 

+ C oo{h - ~0(0)}] % + Bs{h - (~o)s + EVa~}v~s = O. (39) 

If the linear approximations of (33) are substituted in the last equation, and squares and higher 
powers of % are neglected, the following approximate linear equation for trimmed incidence 
a s (valid for small incidences) is obtained: 

[q~(h-qs)  - Va~(1-Eq~) - ;~Q{(1 -kT)  cos va s + kr} + CDo{h - ~(0)} + 

+ {p~(h - q4 + EFa~)  - P4qz} as] % = - q2( h - q4 + EFa~) a s . (40) 

Values of Q and of the p's and q's appropriate to A = X and u a = v~s may be determined from Figs. 4 
to 6 of Part I. Once % has been calculated, the corresponding C L s = A s %  + B~tgs can also be calculated. 

2.6. Formulae for  the Aerodynamic  Derivatives.  Details of the derivation of formulae for the 
aerodynamic derivatives appropriate to disturbed flight are given in Appendix I; the formulae 
themselves are set out in Table 1. 

3. Numer ica l  Examples.  3.1. Data  and Assumptions.  As in Part I, all calculations have been 
based on the following formulae for the coefficiems X, B, ~ ,  Co, derived fronl Spence's original 
two-dimensional work~: 

A = 2~r + 1.152CjlJ ~ + 1.106Cj + 0 .051CS ~, "~ 

B 3-545C7/2 + 0.325Cj + 0. 156C'r~I2' I (41) 

~ 0.25 - 0 .01Cj ,  

~9 = 0-50 + 0 . 0 7 7 C j  112. 
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Values for certain other coefficierits and parameters  have been 

Tailplane lift slope 

Downwash  coefficient 

Sldn-friction drag coefficient 

Pitching inertia coefficient 

Tail  arm ratio 

Aircraft wing loading 

Aircraft relative density 

Air relative density (corresponding to 

operating height of 5000 it) 

T h e  last four assumptions imply: 

Tail  arm 

Wing chord 

T h e  'basic design condit ion '  has been taken as: 

assumed as follows: 

a I = 2~ 

E = 0 .  025 

CDo = 0.1 

= o . 1  

la"/c = 3.5 

W/S = 35 lb/ft 2 

/ q  = 25 

a = 0" 862 

l T = 21 .2  ft 

c = 6.05 ft 

Aircraft to t r im at zero incidence with %-restoring margin '  Kr~ (disposable parameter)  when  

2t = X = 0:3, u a = ~ = l r a d i a n a n d ~ ) T  = ~ '  = 0. 

T h e  induced thrust  factor ha, ( introduced in Equation (25b)) will have a value between 0 and 1 

and in order to assess the sensitivity of the results to variations in this parameter  some of the initial 

calculations have been per formed for k T = 0 and k T = 1. As these calculations indicated a relatively 

small effect the remainder  of the calculations have been based on the assumption k T = 1. 

3.2. Tail Volume and c.g. Position as Determined by Basic Design Conditions. As in the numerical  

examples of Part  I, the basic design condition provides a lift coefficient C L = 5.3, with A = 9.6,  

/3 = 5.3, C j  = 1-59 ~ = 0 .234 and ~ = 0.596. T h e  value of C F is 1-49 if kT = 1 or 0.758 

if ka" = 0. 

Equations (37) give 

For 

For  

ka" = 1, P = 0.426 + 1.585K,.~, / 

J h = 0.529 - 0.2495K,.~. 
(42a) 

ka" = 0, ff = 0.367 + 1-556K~,~, 
(42b) 

J h = 0-538 - 0 .245K,~ .  

P and h have been calculated f rom these equations and plotted in Fig. 2 which also reproduces 

the corresponding curves f rom Fig. 7 of Part  I, in order to demonstrate  the appreciable effect of 

including in the present  analysis, thrust  and drag forces which were neglected in the earlier work. 

T h e  effect of varying ha" between 0 and 1 is seen to be quite small. 

3.3. Dynamic Stability in the Basic Design Condition. 3.3.1. Effect of the factor ka" on stability 
characteristics. As a fur ther  check on the degree of importance of the factor kT, the stability quartic 
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for the basic design condition with K'~.~ = 0.2 has been set up and solved for the two cases h~, = 1 

and h~, = 0, which correspond respectively to steady flight conditions of 78-9 ft/sec at 15.6 deg 
"to the horizontal and 79-8 ft/sec at 8.2 deg to the horizontal. 

Values of the derivatives as calculated from the formulae of Table 1 and Equations (2) (using 

the data of Section 3.1), for the two values of hf, are given in Table 2, while the characteristics of 
the motion for the two cases are compared in Table 3. 

From a perusal of Tables 2 and 3 it is clear that variation of k T within the extreme limits 0 to 1 
does not have a profound effect on the calculated characteristics;accordingly h T has been taken 
equal to 1 throughout the remainder of the numerical work. Since in practice typical values of k T are 
likely to be of the order 0- 7 to 0.8, the effect of this assumption should be negligible. 

3.3.2. Effect of the design restoring margin 1~.~ on dynamic stability characteristics. The 
characteristics of disturbed longitudinal motion, initiated from the basic design condition, have 
been evaluated for a range of values of the design restoring margin R ~  and the results are shown 
in Figs. 3a, b, c. 

It will be seen that as K~.~ is reduced, the period of the short-period mode increases while that of 
the long-period mode decreases; thus while at/~.~ = 0.4 the long-period is nearly five times the 
short-period, a t /~r ,  = 0.1 the ratio between the periods is not much more than two. 

The short period mode is well-damped throughout the range of K~.~ considered; the absolute 
time to halve the amplitude increases as K~.~ is reduced but the number of cycles decreases. 

The long-period mode is an increasing oscillation for which the t ime to double amplitude (both 
in seconds and in cycles) decreases as K~.~ is reduced. 

3.4. Variation of Dynamic Stability Characteristics with Trimmed Lift Coefficient. 3.4.1. Variation 
of the stability derivatives. Equation (40) has been used to estimate the trimmed incidence %, and 

hence the trimmed lift coefficient CL8 , for a range of values of the jet-flap deflection tgs, the other 
control settings being fixed at their basic design values (?~ = ]~ = 0.3, ~f = r?T = 0) and a value of 

0.2 having been assumed for Kr~ ~. The results are exhibited in Fig. 4, which also shows the 
variation of trimmed speed with tg, calculated for the assumed height of 5000 ft with a wing loading 
of 35 lb/ft% 

Values of the stability derivatives corresponding to the same range of trimmed conditions have 
been calculated from the formulae of Table 1 and Equations (2) (with i B = 0 .1 , / h  = 25), and the 
results are shown in Figs. 5a, b. 

3.4.2. Variation of the periods and dampings. The stability quartic has been solved for several 
trimmed conditions in the range covered by Figs. 4 and 5 and the results are given in Fig. 6a, which 

shows the periods of oscillation of the two modes, and in Figs. 6b and c which show the corresponding 
damping characteristics. 

It will be observed that as the trimmed lift coefficient is increased, the long period decreases 
while the short period increases. Thus, while at CLs ~ 0.25 the long period is about eighty times 
the short period, at CL, = 5.3 the ratio of the two periods is little more than three. The short-period 
mode is well damped over the complete range of trimmed conditions considered; the actual time 
to halve the amplitude increases as CL8 increases, although the corresponding number of cycles 

It was concluded ih Part I from trim and manoeuvrability considerations that if jet controls are to be used, 
/~r ~ should not be less than 0.2. For tail control, Kr ~ could be reduced down to about 0. !. 
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decreases slightly. The long-period mode is (positively) damped at low values of CL~ but becomes 

unstable for a CL. ~ of order 1.0; it becomes progressively more unstable as C5 s is increased until, 
at the basic design value of C,~ = 5.3, the amplitude of the oscillation doubles in rather less than 

one cycle. 
The manner in which the stability characteristics vary with C r~ for the jet-flap aircraft is not 

fundamentally different from the case of a conventional aircraft. Thus,  it is usual for the phugoid- 

and short-periods to tend towards one another as CLs increases and for the phugoid damping to 

deteriorate at the same time. However, the fact that nmch higher values of Cs~., are attainable with 

the jet-flap aircraft than with a conventional one, means that, within the practicable range of that 

parameter, the icwo periods may be brought much closer together than usual, while the phugoid 

damping can deteriorate well beyond the point where the mode becomes unstable. 

3.5. Response Calculations. 3.5.1. Basis of Calculations. In view of the difficulty (already 

alluded to in Section 2.3) of specifying realistic modes of application for the three types of 

longitudinal control, responses have been computed only for simple step-function inputs of each 

control. Two initial trim conditions have been considered: 

(a) Basic design condition (A = 0-3, ~ = 1 radian, ~7~, = ~ = 0,/C.,.~ = 0.2, giving CL. ~ = 5.3, 

U~ = 78.9 ft/sec, %~ = 15-6 deg). 

(b) Cruise condition (;~ = 0.3, v ~ = 0.2 radian, ~1~, = 0, giving CL,. = 0.268, Us = 357 ft/sec, 

y.~ = -  4 .2  deg). 
The basic response quantities ~, @ and 0 have been evaluated by application of the analysis set 

out in Section 2.3; values of the relevant derivatives, calculated from the formulae of Table 1 and 

Equations (2) (with i B = 0.1,/z~ = 25), are set out in Table 4. 
Two additional response quanti t ies-- the increment of flight path angle'~ and the incremental 

load factor An have also been calculated. The former is given simply by 

= 0 - @. (43) 

To obtain an expression for An in terms of the applied control forces and the basic response quantities, 

we note that 

Incremental normal acceleration = Ang = U d~/ 
s dt 

a(o- 
'd~- 

Hence, using the second of Equations (4), we have 

An = Us~ (z f i  + z ~  + z,/~ "~r + z~fl + z;~. + k' O) 
, gt  

_ pSUs  ~" ( z~+zw~+z ,~T~T+zo~5+zx~ ,+k ,O)  
W 

w h e n c e  

2 COS T's ,, ^ 
An -- (z~,u + z,ww + zo~ + zx~ + h' O) (44) 

CL s 
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if, as in the present analysis, we take z~T = 0. Substitution of appropriate values for the derivatives 
from Table 4 leadsto the following expressions: 

Basic design condition 

Cruising condition 

An ~ ~ 0 
- 0.756 + 1.4736 + 0 . 2 7 0 7 - -  

n T o  

An 0.756 ~=- + 1.4736 ~ 0 - + 0 2 7 o 7  

A 

A n _  0 . 7 5 6 u  +1 .4736  ~ 0 
~0 ~0 ~0 +0 '2707~0  

An 

~To 

An 

An 

+ 0.963, 

+ 1.952. 

(45) 

1. 073 /~ @ 0 - - - -  + 25.054 - 0.0731 - -  
o o 

- 1-073~o +25"054 - 0  073i  + 3 - 8 5 9 ,  

! 

- 1.073~0 + 2 5 " 0 5 4 f o  -0"0731~o  + 1 " 3 5 0 '  I 
J 

(46) 

Alternatively, solutions for An may be obtained by firstly deriving the operational solution 
An(D) from the corresponding operational solutions O(D), ~(D) and then obtaining An(T) as for the 
other response quantities. Thus 

or  

A n ( D )  ~ D l O(D) @(D) I 
~,.o gt 41~o ~,.o 

An(D) _ /J~ D{FoO')(D ) - Fw(~)(D)}, (47) 

4%0 g~ F(D) 

from Equations (13), with Fo(r)(D), F~(")(D) givenby  (14). From Equation (47) the corresponding 
solution An(T)/~ 0 may be obtained from Table 3 (Item 126) of Ref. 4. 

3.5.2. Results of calculations. Tables 5 and 6 give the solutions of the response equations for the 
basic design and cruising conditions respectively. The  four response quantities that are physically 
most interesting, a, v3, ~ and An have been plotted in Figs. 7 to 9 for the basic design condition 
and in Figs. 10 to 12 for the cruising condition. Also indicated on these figures are the values of 
z~, ~ and An derived on the basis of quasi-steady manoeuvrability theory (z2 is, of course, zero according 
to this theory). The  derivation of the simplified formulae for this case is given in Appendix II. 

3.5.3. Discussion of the results. The modes of response to the individual controls in the basic 
design condition (Figs. 7 to 9) are dominated by the facts that the long period oscillation is divergent 
and that its period is only about three times that of the short period oscillation (see Fig. 6). Thus  
speed changes become pronounced quite early in the motion and conditions appropriate to the 
quasi-steady maneouvrability theory are never established. Accordingly, apart from giving crude 
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approximations to the first turning values of @(t) and An(t) and to the change of flight path angle ,~(t) 
achieved in the corresponding time, the above-mentioned theory is not really applicable under the 
basic design conditions of very high lift coefficient and low speed. The results given in Fig. 17 of 

Part I for 'Control actions per g in constant speed manoeuvres initiated from the basic design 
condition' should be reviewed in the light of the above remarks. 

In the case of cruising conditions, Figs. 10 to 12 show that the quasi-steady manoeuvrability 
theory gives very good approximations to the conditions obtaining when the short-period oscillation 
has been damped out at 1½ to 2 seconds after the initiation of the motion. Subsequently, as the speed 
begins to change under the influence of the long period oscillation, the response quantities @, An 
and ,~ tend to drift away from the quasi-steady values. 

A cursory examination of Figs. 7 to 12 indicates that there are important differences in the 
characteristics of the initial responses of a jet-flapped aircraft to the three controls. To enable these 
differences to be examined more closely, Figs. 13 and 14 have been prepared. In examining these 

figures it may be borne in mind that the curves for ~]T-control give a qualitative indication of the 
response characteristics for a conventional aircraft with tail control. At the same time it must be 

remembered that Fig. 13 relates to a lift coefficient much higher than the CLm~x of a conventional 
aircraft so that, as remarked in Section 3.4.2, the relevant stability characteristics differ considerably 

(in degree, if not in kind), from those usually exhibited in the high-lift condition. Furthermore, as 
an examination of Tables 1 and 2 readily shows, for a given CL, the values of several aerodynamic 
derivatives are considerably influenced by the presence of the jet (particularly at the higher values 

of C z and C j). Thus m~ and rn~, which would be taken as zero for the conventional aircraft, assume 
non-zero values for the jet-flap aircraft, while z~, z. w and m~ are all significantly affected by the 
dependence of the lift on Cj. With the simplifying assumptions of the present work, x~ and x~ 
appear unaffected but if three-dimensional effects are taken into account, these two derivatives are 
also influenced by the jet through the induced drag terms. (See Appendix III.) It has, unfortunately, 
not been possible, with the limited computing effort available, to examine systematically the effects 
on stability and response of variations in values of individual derivatives. 

Fig. 13 relates to the basic design (high lift) condition and compares the aircraft responses during 
the first six seconds following the control applications ~T0 - 1 deg, t~ o = 5 deg and ~0 = 0.02 
respectively. These control amounts are largely arbitrary but may be thought of as representing 
something like one-fifth of the available deflection in each case*. 

If the primary purpose of control application is to change the flight path angle, then it may be 
concluded from Fig. 13c that, in the basic design condition, the jet controls are initially more effective 
than the tail control. This is because (with the assumptions made in this Report) application of either 
jet control is considered to result in an instantaneous increase of lift (and hence of normal acceleration, 
see Fig. 13d), whereas with the application of tail control, the incremental lift (and hence normal 
acceleration) develops only gradually as the angle of attack of the aircraft is changed. However, as 
the motion following the application of v% or ;~-control develops, the aircraft acquires a negative 

angle of attack and since the corresponding (negative) lift increment opposes the direct (positive) 
increment produced by the control increment, the normal acceleration and also the rate of increase 

of flight path angle fall. Thus, after about two seconds, the incremental normal acceleration produced 

,x~ Relatively small deflections are considered so that the calculated perturbations are small enough for the 
linearized theory to be valid. 
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by the tail control exceeds that produced by either jet control. At the same time the change of flight 

path angle produced by ~,0 - 1 deg exceeds that produced by 2 o = 0.02; however, while the 
rate of change of path angle due to the former is now greater than that due to ~0 = 5 deg, the total 

change of path angle due to the tail control does not equal that due to jet deflection control until 
about six seconds have elapsed, by which time, both flight path angles have begun to decrease under 
the influence of the long period oscillation. 

The aircraft speed decreases continuously under the influence of the tail or jet deflection control 
throughout the six-second interval considered, the decrease being rather more rapid for ~0 = 5 deg 

than for ~ ,  0 = - 1 deg. Application of the thrust control 20 = 0.02 results in an initial slight 
increase in speed followed by a decrease. The considerable difference in the speed variation as 

between t% and ;t-controls may, at first sight, be a little surprising, but it may be accounted for by 

that fact that while the t%control provides no increment of thrust, (x~ = 0) the ;t-control provides 

a large increment (x a = 2.65). Thus, if we consider the equations for longitudinal acceleration: 

d~ 
v%controh dr x j~ + xww - kLO + x ~ ,  

;t-control: 

and note that k 5 = x~o = 2.65, x,, 
then putting 0 - @ = 9, we have 

d~ 
dr - x ,~  + x , ~  - kLO + xa2 

0; 

d/~ 
.S-controh ~ g - 2.659, 

dg 
;t-controh dr ~ 2" 652 - 2" 659. 

9 is initially.zero in both cases but 2 = constant = 0.02 throughout the motion. Thus with ~-control, 
dg/dr is initially zero but assumes increasing negative values as the aircraft begins to climb; with 
A-control on the other hand d~/dr is initially positive so that the speed initially increases but then 
decreases as the aircraft begins to climb. 

The general conclusion from the foregoing discussion would seem to be that when, with the 
aircraft in a high-lift condition, a sudden change in flight path angle is required (for instance, to 

avoid an unexpected obstacle), application of jet deflection or jet thrust control (in that order) should 
be more effective than application of tail control, although eventually the tail control might produce 

a larger change of flight path angle and a larger increment of normal acceleration than either jet 
control. 

Fig. 14 compares the responses of the aircraft to the three controls in the cruising condition. The 
deflections assumed for the tail and jet-flap deflection controls are, as in the basic design condition, 

~T0 = - 1 deg, v~ o = 5 deg but as the responses to jet thrust control are relatively small they are 
shown for 20 = 0- 1 in this case. 

Fig. 14b shows that when tail control is applied in the cruising condition, a change of angle of 
attack (and hence of lift) is very rapidly established so that although the jet controls provide instan- 
taneous increments of normal acceleration, these are exceeded within one-fifth of a second of the 
application of tail control. Correspondingly , the change of flight path angle produced bY the tail 
control exceeds that produced by either jet control within two-fifths o f  a second of application. 
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The changes of angle of attack which occur when the jet controls are applied are very small and 
initially in the sense which gives a negative lift increment, opposing the direct (positive) increment 
provided by the control action. Both the ~)~,-control and the S-control (when applied to increase the 
flight path angle) tend to decrease the speed but the ;~-control initially causes an increase in speed. 

The general conclusion from Fig. 14 is that in the cruising condition, tail control is more effective 

than either jet deflection or jet thrust control; the latter, in particular, is very ineffective. , 
A further illustration of the differences in initial modes of response is given by Fig. 15 which shows 

the modes of &n and 9 for the cruising condition, arbitrarily normalized with respect to the values 
of these quantities at t = 2 seconds (at which time the short-period oscillation has been virtually 
damped out, while the long period oscillation has scarcely begun to affect the motion). 

4. General Summary, Discussion and Conchtsions. 4.1. Scope and Validity of Investigation. 
The generalised investigation of the longitudinal stability and control problems of jet-flapped 
aircraft, which was begun in Ref. 1 and Part I of the present Report with considerations of trim, 
static stability and quasi-steady manoeuvrability criteria, has been taken a stage further by the 
present study of dynamic stability and response characteristics. As in the earlier work, the analysis 
has been based on Spence's two-dimensional theoretical data and so again, the results should not be 
expected to apply to jet-flapped aircraft with low aspect ratio wings; for layouts of moderately high 

or high aspect ratio, the conclusions should be at least qualitatively valid. 
One way in which the use of two-dimensional data might be suspected of invalidating the 

conclusions is through the neglect of induced drag. To obtain some idea of the importance of this 
factor, an assessment has been made of the effect on stability characteristics in the basic design 

condition, of including an induced drag terra (in coefficient form: CDi = k~CL ~) in the longitudinal 
force equation. The details are given in Appendix III,  where it is concluded that for wings with 
aspect ratio of order 10, the effects are not sufficiently large to invalidate the conclusions qualitatively. 

4.2. Revised ,Trim and Static Stability Analysis. The trim and stability analysis of Part I has 
been modified to the extent that the pitching moments due to thrust and drag forces, which were 
previously neglected, have now been taken into account and it has been seen (Fig. 2) that there is an 
appreciable effect on the tail volume and c.g. position required to satisfy specified design conditions. 

4.3. Dynamic Stability Characteristics. The values of the stability derivatives (Table 2) and the 
characteristics of disturbed longitudinal motion (Table 3) in the 'basic design' (high lift) condition 
have been shown to be not very sensitive to the value assumed for the induced thrust factor kT, 
defined by Equation (25b), and the bulk of the numerical work has been based on the assumption 

of full thrust recovery (k T = 1). 
The disturbed longitudinal motion about the basic design condition has been investigated for a 

range of values of the restoring margin K~ ~ and it has been seen (Figs. 3a, b, c) that the period of 
the quicker oscillation, which is always well damped, increases as/~.~ is reduced, whereas, that of the 
slower (phugoid) oscillation, which is divergent e, decreases with diminishing K~ ~. For/£r  = = 0.1, 
the longer period would be not much more than twice the shorter period so that the phugoid can 
begin to exert an appreciable influence on the resultant motion before the short-period oscillation 

has been damped out. 

• ,' It will be recalled from Section 3.4.2 and Fig. 6c that the phugoid, whose damping progressively 
deteriorates with increasing lift coefficient C z s, is, in fact, divergent for all C L s greater than about 1" 0. 
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The trim and manoeuvrability considerations of Part I had suggested that if jet controls were to 

be used effectively, a value of at least 0.2 should be provided for Kq r ~, although a value as small 
as 0.1 might suffice in the ease of tail controls. In considering the remainder of the stability and 
response results, which have been calculated for K~.~ = 0.2,  it should therefore be remembered that 
the performance of the tail control in relation to that of either jet control could probably be improved 
by designing for a smaller restoring margin which, incidentally (see Fig. 2), would require a smaller 
tail volume. 

The variations of longitudinal characteristics with trimmed lift coefficient have been studied for 
a fixed value of the design restoring margin K~.~ = 0.2. The salient points that emerge from the 
results (Figs. 6a, b, c) are: 

(1) As the lift coefficient is increased, the period of the phugoid decreases, while that of the rapid 
oscillation increases. This feature is not peculiar to a jet-flapped aircraft but the fact that the jet-flap 

enables much higher CL'S to be achieved, means that the periods of the two modes may be brought 
into much closer proximity than in the case of conventional aircraft. Thus, at the highest lift 
coefficient considered (CL8 = 5.3), the ratio between the periods of the modes is not much more 
than 3, compared with values of about 9 at CL.o = 2 - 0  and approximately 80 at CL, = 0.25. This 

would indicate a greater likelihood of the two modes interacting at high lift coefficients than at low, 
although some calculations (not reported in detail here) have.indicated that even at the highest C~, 
the approximation to the short-period mode, obtained by neglecting variations of forward speed, 
is quite good. 

(2) The damping of the short-period mode is good at all Cz's and (in terms of cycles to halve 
amplitude), increases slightly with increasing C L. The phugoid is positively damped at cruising CL's 

but becomes unstable for CL's greater than about 1.0; at the highest C~ the oscillation doubles its 
amplitude in about one cycle. 

4.4. Response to Control Application. The responses of the jet-flapped aircraft to step-function 
inputs of tailplane, jet deflection and jet thrust controls have been calculated and the results, presented 
in Figs. 7 to 9 (high-lift condition) and Figs. 10 to 12 (cruising condition) have enabled us to assess 
the validity of the quasi-steady manoeuvrability criteria, used in Part I as a basis for comparing the 
effectiveness of the three controls. 

The results indicate tl~at in the high-lift case, nothing approaching a 'quasi-steady' condition is 
ever established; this is a consequence of the fact that the phugoid period is of the same order as the 
short period, the situation being aggravated by the additional fact of the phug-oid being divergent. 
In the circumstances, the quasi-steady theory gives no more than a crude approximation to the first 
turning values of the response quantities z~(t) and An(t) and Fig. 17 of Part I should be re-interpreted 
accordingly. 

In the cruising condition, the short-period oscillation rapidly dies out and, for a few seconds at 
least, before the phugoid makes its presence felt, a quasi-steady condition, agreeing well with the 
predictions of manoeuvrability theory, exists. A figure such as Fig. 18 of Part I is thus essentially 
valid although, if interest centres on comparative response in a very short interval following control 
application, the actual response curves must be considered. 

Figs. 13 to 15 have revealed significant differences in the responses to jet controls on the one hand 
and tail control on the other. With the assumptions made in this investigation, the jet controls provide 
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instantaneous lift increments, whereas the lift increment due to tail control is built up only gradually 
as the result of changes in the angle of attack, occurring through the medium of the short-period 
oscillation. Since, in the basic design (high lift) condition, the 'short' period is relatively large, the 
response to tail control is initially much slower than the response to either jet control. Thus tail 
control no longer emerges as the most effective control in the high-lift condition, as it did in Part I, 
on the basis of the quasi-steady manoeuvrability criterion. Jet deflection control now appears as 
the most effective. It is to be noted, however, that while the rate of response to tail control builds 
up with increasing angle of attack, the initially high rates of response due to the direct lift 

increments applied by jet controls, are subsequently reduced by unfavourable changes in angle 

of attack. 
In the cruising condition, because of the considerably shorter period of the rapid oscillation, the 

response to tail control is built up much more rapidly than in the high-lift case and the conclusion, 

arrived at in Part I on the basis of the quasi-steady manoeuvrability criterion, that for the cruise, 

tail control is more effective than jet control, is broadly substantiated. 
It should be emphasized that the control effectivenesses have been compared purely on the basis 

of hypothetical step-function inputs, assuming that the corresponding direct aerodynamic control 
actions (pitching-moment increment in the case of tail control, lift increments in the case of jet 
controls) are developed instantaneously (i.e., Wagner effects have been neglected). Should it transpire 
that the modes of control application and of development of corresponding control actions, which 
can be achieved in practice, differ considerably as between the three types of control, then the 
foregoing conclusions might need modification. In the basic design condition, the picture could be 
further changed as the result of measures that might be taken to suppress the 'speed instability'. 

5. Fzttztre Developments. The investigation covered by the two Parts of this Report has not been 
as comprehensive as one might have wished. With so many parameters entering the problem, the 
field of possible exploration is almost unbounded. We have not, for instance, been able to examine 
very closely the influence of our admittedly crude downwash assumptions on the problems considered. 
Again, in the present Part, when considering response to controls, we have considered only the 
simplest (and hypothetical) case of step-function inputs and a study of more realistic modes of input 
(if these could be specified) would be instructive. In view of the 'speed instability' which, it has been 
shown, will exist at high lift coefficients, it would be interesting to consider the possible use of the 
controls to suppress speed variations and 'then to examine the 'stability under constraint' of the 

aircraft in the manner suggested by Neumark in Ref. 8. 
However, with the pressing need to determine more precisely the stability and response characteris- 

tics of practicable jet-flap aircraft configurations, it is desirable that future efforts should be directed 
in the first instance to an investigation of the influence of finite aspect ratio on the stability and control 

derivatives. 
A sound foundation for such an investigation has been provided by Maskell and Spence G, and 

Ross '~. It should be noted, however, that the fundamental theory of the jet-flap in three-dimensions 
has not yet been formally developed to the stage where it provides the flight dynamicist with all the 
aerodynamic information he needs, in immediately assimilable form. For instance, the results of 
Ref. 6 are confined to lift and drag (with no mention of pitching moment) and are appropriate only 
to the case of uniform angle of attack, while the downwash theory of Ref. 9 has not yet been fully 

substantiated by experiment. 
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As regards pitching moments, Ktichemann 10 has suggested a simple method (using Spence's two- 
dimensional results 7 for chordwise loading on a thin, flat jet-flapped wing, in conjunction with 
Ref. 6) for calculating the chordwise loading on jet-flapped wings of finite aspect ratio, including 

effects of section thickness and camber. 

Nevertheless, while there remains no insuperable obstacle in his way, the flight dynamicist is still 
confronted with a large amount of purely aerodynamic spade work to perform before he can calculate 
the complete range of derivatives involved in a comprehensive stability and response analysis for a 
jet-flapped aircraft. 
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LIST OF SYMBOLS 

OCL/3c~I, functions of C s only for two-dimensioi~al jet-flapped 

3CL/O@ f aerofoil 

Coefficients of stability quartic (see Equation (6)) 

Coefficients of numerator polynomials F,?'), F.wO'), FoO') in operational 
solutions for response to controls (see Equation s (13) and (14)) 

Induced drag coefficient for three-dimensional wing 

Skin-friction drag coefficient 

Coefficient Of resultant force in direction of motion 

Jet coefficient = J/1oU% 

Total wing lift coefficient 

Component lift coefficients (Eqtmtion (22)), proportional to ~ and 
respectively for a given C s 

Pitching-moment coefficient of complete aircraft referred' to e.g. 

Total thrust coefficient (=  C~, z + C~, c) 

External (induced) thrust coefficient 

Internal (direct) thrust Coefficient 

Differential operator 

Downwash constant (Equation (46)) 

Polynomial in D: L.H.S. of stability quartic (Equation (6)) 

Numerator polynomials in operational solutions for response to 
controls (see Equations (13) and (14)) 

Gross jet thrust per unit length 

-- -- 3Cm/OCL(~): aircraft restoring margin with respect to change of 
incidence 

- - 3C, J3CL(o): aircraft restoring margin with respect to change of 
jet deflection 

Pitching moment about aircraft c.g. 
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LIST OF SYMBOLS--continued 

Shorthand constants defined by Equations (8) 

Shorthand constants defined by Equations (20) 

Coefficients of linear approximation (see Equations (33)) for trimmed 
lift coefficient Czs: functions of A and 

Shorthand constants defined by Equations (18) 

Shorthand constants defined by Equations (16) 

Wing and tailplane areas respectively 

Total thrust on jet-flapped aerofoil 

Component of velocity along x-axis in disturbed flight (= Us+ u) 

Undisturbed flight speed 

Tail volume ratio 

Weight of aircraft 

Aerodynamic force along the x-axis 

Aerodynamic force along the z-axis 

Tailplane lift slope 3CLT/3a T 

Wing chord 

Gravitational constant 

Distance of c.g. from leading edge of chord as fraction of chord 

Pitching inertia coefficient 

½CL: coefficient in equations of motion (1) 

-- kz tan 78: coefficient in equations of motion (1) 

Constant in assumed formula for induced drag coefficient (Equation 
(86), Appendix III) 

Thrust recovery factor (see Equation (25b)) 

Tail arm 

Aircraft mass 
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rnu, rn,.~, row, m~[ 

J mq, m~f, mo, ma 

Ang 

Pl . . . .  P~} 

'qt . . . .  q~ 
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XU~ XW~ Xq~ t x~T, x~, xa ) 
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ZVT~ ZO, ZA) 
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e 

 r(r = 112, 3) 

~ro(r = 1, 21 3) 

~T 

LIST  OF SYMBOLS--continued 

Dimensionless pitching-moment derivatives due to parameters 
indicated by respective suffices, consistent with definitions of 
Ref. 2. (Except that rn,i, m,~ are written for m,~, m~) 

Additional normal acceleration (relative to steady rectilinear flight) 

Coefficients in linear approximations for As, B s (~)s, (~o)s; functions 
of )t and t$ only 

Angular velocity in pitch 

Unit of aerodynamic time in seconds 
W 

gpSUs 

Increment of velocity along x-axis in disturbed flight 

u/Us; dimensionless increment of velocity along x-axis in disturbed 
flight 

Increment of velocity along z-axis in disturbed flight 

w/Us; dimensionless increment of velocity along z-axis in disturbed 
flight 

Dimensionless longitudinal force derivatives due to parameters 
indicated by respective suffices, consistent with definitions of 
Ref. 2 

Dimensionless normal force derivatives due to parameters indicated 
by respective suffices, consistent with definitions of Ref. 2 

Wing incidence 

Angle of inclination of flight path to horizontal 

Increment of flight path angle in disturbed flight 

Concise pitching-moment derivativ, es appropriate to control 
deflections indicated by respective suffices (see Equations (2)) 

Angle of downwash at tail 

Increments of control settings (see Equation (9)) 

Constant values of ~. for step-inputs 

Tai!plane setting relative to wing 
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LIST OF SYMBOLS--continued 

Increment of tailplane setting applied as control 

Constant value of ~s- for step-input 

Angular displacement in pitch from equilibrium position , 

Angle between jet and wing chord at jet exit 

Increment of v a, applied as a control 

Constant value of v ~ for step-input 

Concise pitching-moment derivative due to u (see Equations (2)) 

J 
W; jet thrust/weight ratio 

Increment of ;~ applied as a control 

Constant value of ~ for step-input 

m 
pSlT ; aircraft relative density 

Concise pitching-moment derivative due to q (see Equations (2)) 

Distances aft of wing leading edge at which component lift 
coefficients Cz(~) , Cz(o) respectively act (as fractions of chord) 

Air density 

Relative air density 

Dimensionless aerodynamic time 

Concise pitching-moment derivative due to z~ (see Equations (2)) 

Concise pitching-moment derivative due to ~b (see Equations (2)) 

Concise pitching-moment derivative due to w (see Equations (2)) 

Suffix 
Referring to steady rectilinear flight 

A bar over a symbol (e.g., 3) is used to denote the value appropriate to the basic design condition 
(except in V = tail volume ratio). 

67 
(84109) E 



No. Author 

1 A.S.  Taylor .. 

3 S. Neumark . . . . . .  

4 S. Neumark . . . . . .  

5 D.A.  Spence . . . .  

6 E. C. Maskell and D. A. Spence 

7 .D.A. Spence . . . . . .  

8 S. Neumark . . . . . .  

9 A.J .  Ross . . . . . . . .  

10 D. Kiichemann . . . . . .  

R E F E R E N C E S  

Title, etc. 

A preliminary examination of the stability and control problems 
associated with the design of a jet-flap aircraft with conventional 
tailplane and elevator. 

A.R.C. 18,208. June, 1955. 

Royal Aeronautical Society Data Sheets. Aerodynamics. 

Number Aircraft. 00.00.02. 

The disturbed longitudinal motion of an uncontrolled aircraft 
and of an aircraft with automatic control. 

A.R.C.R. & M. 2078. January, 1943. 

Operational formulae for response calculations. 

A.R.C.R. & M. 30;75. June, 1956. 

Some simple results for two-dimensional jet-flap aerofoils. 
Aeronautical Quarterly. Vol. IX. pp. 395 to 406. November, 1958. 

A theory Of the jet flap in three diinensions. 
Proc. Roy. Soc. A. Vol. 251, pp. 407 to 425. 1959. 

The lift coefficient of a thin jet-flapped wing. 
Proc. Roy. Soc. A. Vol. 238. pp. 46 to 68. 1956. 

Problems of longitudinal stability below minimum drag speed, 
and theory of stability under constraint. 

A.R.C.R. & M. 2983. July, 1953. 

The theoretical evaluation of the downwash behind jet-flapped 
wings. 

A.R.C.R. & M. 3119. January, 1958. 

A method for calculating the pressure distribution over jet-flapped 
wings. 

A.R.C.R. & M. 3036. May, 1956. 

68 



APPENDIX I 

Derivation of Formulae for Aerodynamic Derivatives 

We consider an initial steady condition of flight with speed U s at inclination Ys to the horizontal, 

with control settings ~TT s, As, t%, incidence a s and jet and lift coefficients C j  s, CL s respectively. Then 

Cj~ = )tsCLs. (48) . 

In the disturbed flight condition (small perturbations), we write 

U = G + u = G ( I + ~ ) ,  

a =  % . + ~ =  % L l - ~ ,  

~T = "q:V s + eke, 

a =G+,~, 

~ = ~ + ~ .  J 
We also have 

Cj = ~ Cj~, 

o r  

Cj ,~ + ~ 

(49) 

(50) 

FORMULAE FOR T H E  L O N G I T U D I N A L  FORCE DERIVATIVES 

If we neglect tail drag, the longitudinal force X in the disturbed motion is given by 

whence 

Then 

o r  

X 

½KG+u)2s 
- C a  o + C~, + C~vO, 

X 
pufs  - -  - ( -  Coo+ cT+ cLw)(~+u). 

• X u  = - c~ o + cT~ + ~ \~-L 

=-C~o+C~,~+{-[~tc~'~ <  ,I1 
= - C•0+ C f s -  Ca-s, by use of(50) ,  

X,~ ~ - -  C o o  , 

= ~ I C ~  - G-~(1  - k ~ )  s in ( % + G ) ] ,  from (26b), 
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or 

(oc.] 

= - I C , z  ~(1 - kT)  sin (% + t~s), 

(ocT~ 

= I c__,~\ oa/~ = I  z~-' 

Hence 
~. = ½ C ~ s [ ( 1 - k . )  cos (%+es) + k.] .  

Also 

X q  = X~i T = 0. 

F O R M U L A E  FOR T H E  V E R T I C A L  F O R C E  D ERIV A TIV ES  

= I C L s [ 1  -- ;~(1--kT) sin (% + ~ ) ] ,  

from (50). 

or  

I f  we neglect tail lift forces, the force along the z-axis is given by 

Z 
• = - cL  + ( c ~ -  %o)~, ~p(us+u)2s 

Z 
^ I pvs~ s = ( -  c~ + ( c ~ -  %0)~}(~+~). 

T h e n  

c~,s - I \ ~g-u L 

= - C z s - ½ 1  - - .  %+ l \ o~ L 

...... % + , from (50). = - C L s + C . r s  OC.r s 

OA OB 

~w = ½ ( % s - % o )  - ½ \ o~ L 

= ½ ( % s -  %o--<), 

z,o = 1 [C . r s{ (1 -kT)  cos ( % + ~ s )  + kT} -- C o o  - A s ] ,  

" "~ 'Z t  = - -  

Hence 

i .e. ,  

~ = - ~ \TEL = - ½ B~, 

z ~, = - ½ L ~ X - L  

= -~ bc--jfls s+ t o c ~ L  s x oa Is 

= _ x  _ _  % +  from (50). 
2 O C , r  ~ - ~ f '  
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Also 
~q = Z~/~ = 0 .  

FORMULAE FOR T H E  P I T C H I N G - M O M E N T  DERIVATIVES 

The pitching moment  about the c.g. is given by 

o r  

M £ 

M c 

where C m is given by Equation (27), 

¢m = ¢ L d h -  Q + C~(o)(h 

- a f  I~ - e ( t )  + 

Then 

(I  + 2~)c~, 

reproduced here from the main text 

- ~ )  + C ~ ,  o { h  - ~ ( 0 ) }  o~ - C~h~ - 

c 

m u = ~ ( c ~ ) 8 + ~ t  a~ / 8 = ~ t  ~ ]8 

or, if we make use of (50) and (26b) 

m u ~-- 

(61) 

m~ = 27TT \ aw ls = 27~ \ D~18 

(62) 

(63) 

(27) 

8 - A 8  tac,18 - h[(1 --kT) cos (o,8+ as) + k~.] ~8 + 

- - & \ a C j / s  e8 + [ a l y  a~ 8' 

C 
- - -  A 8 ( K ~ ) , ,  (65a) 

where K** is the s-restoring margin given by Equation (28). If  we use the latter equation with 
the downwash assumption of Equation (36), we obtain 

C 
m w = ~ [(h - ~ s)As  + C D o ( h -  ~:~(0)) - CT sh - 

- a~F(1-EAs)  + C r~ho~8(1--kT) sin (%+t~s)], (65b) 

(66) 

(67) 

(68a) 

c ~C~ c ST 
m~ - 21~ a(ql~,/ u)  2lT al F = - ½ y ,~, 

c ~C,~_ c S~, 
mv~ -- 21T 8 ~  --  2--1T al V = -- ½ - ~  a 1 , 

c ( a c ~  c B~(K~)~, 
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\ 

where K~o is the t%restoring margin given by Equation (29), so that 

C 
, m~ = ~ [ (h-  ~o s + al'FE)B~ + %Cj sh(1 - k,r) sin (% + 3~)], 

= <(0% = <(0% (~% 
~ G \-72I. G \ YC-~Js\-;f j, 

2l~. ( s , - ~ . )  Stoc~ L - &% \ac., is + (h-~o.)e .  ~ ~ _ 

o r  

m ]  c ~ m 

. . . .  + a~.p  
\~Cals \3Crl~ ~s ~ s ' 

"El 2l~ CLs ( h -  ~ . )  8A s - A s ( O G ]  _ h [ ( 1 - k m )  
\ 3CaG 

cos (% + G) + kr] 

o r  

Similarly, 

as + 

(68b) 

\OCjGI + ½al s ( ~ ) ~  ' (69) 
I 

c V 0Q l = ~ m  - ~ ,  
m,~ = ~ /0(z~/~)_Js 21T O(z'dT/U) s 

). m~ ½ ~ -  a 10(wIT/U) . 

(70) 

(72) 

THE DOWNWASH DERIVATIVES 

Employing the concept of downwash delay, we may express the downwash at the tail, at time 
t after the initiation of a disturbance, in the form 

e(t) = E C W -  ldUD, 
where 

c~(t) = A{cj(t)}{% + ~(t)} + B{cj(t)}{<t~ + ~(t)} 
and 

h(t)~ {1 - 2/~(t)} Cj~ (see Equation (50) Cj(t) = 1+ ;t~ ] 

1 + ~ - 2~(t) Czs 

= C<r~ + ACj ,  
with 

A C j =  t~st  ~(t)-2~(t)} Cjs 
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Then 

o r  

c~(t) ~ lA  s aA A 

8B 

CL(t) ~ CL s + As~(t) + Bs~(t) + 

+ - -  % -2~( t )  I Cjs  

Now for t < 0 
~(t) 

Thus, for t < lT/Us, 

and 

= ~(t) = s(t)  = ~(t) = o 

= C ~ s  

~(t) = EC~s ,  
so that 

ae 

wh i l e  for t >1 lr/Us, if we 

~e 0e 0e 0e 0e 

assume t~ = constant, 

c ~ s +  As ~(t) - ~ t  + Bs~ + 

I oA (~B~ ~s a 
provided that 1T/U s is small compared with the period of oscillation. Then 

~(t) ~ E. [CLs + A { ~  - ~l:~/Us} + B f l  4- 

- . 

Hence 

Ow/s 

- ~  s = e e s ;  ~ ~ \ O C j L  S + 

[Oe/O(ulz/Us)]s = 2ECr~ sas + tOCj]s s t '  

[a~/a(~z~,/vs)]~ = - E & .  

ac~L 85 

(72) 

(73) 

(74) 

In strict accordance with the downwash delay theory we should, in analysing the disturbed 
motion, take all the downwash derivatives to be zero up to time t = lT/U8 (see Equations (72)) and 
t o b e  given by Equations (74) thereafter. In practice, if,lT/U 8 is small compared with the periods 
of oscillation, it is reasonable to calculate the downwash derivatives from Equations (74) for the 
whole of the disturbed motion. This assumption is implicit in the formulae for m w and mo (Equations 
(65b) and (68b)). 
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APPENDI X II 

Derivation of Response Formulae Appropriate to Quasi-Steady Manoeuvrability Theory 

For steady manoeuvring flight in a vertical circle, we may put ~ = 0 in Equations (4) and neglect 

the first equation. The remaining two reduce to 

- zme  - ~ + k' 0 = z,~,/~T + zo$ + z [A,  

dO 
o ~  + v d-U = - 8~TC~T -- 8 ~  -- 8 ~ ,  

of if we put k' = 0 (i.e., assume y, = 0) and write 

dO ~=~, 
- z,o~ - ~ = z,~r.~ ~, + z ~  + z ~ ,  ] 

(75) 
~o~ + ~ = - a ~ z ~ , -  8 ~  - 8a~. 

RESPONSE TO T A I L P L A N E  C O N T R O L  

The solutions of Equations (75), with 8 = ~ = 0 and with the usual assumption z,~ T 

a3 - 8~ T 0 z~8~ T 

The incremental normal load factor An is given by 

A n _  U s d ( ~ / ~ ) _  d o w = us o 

~T g~ dr gt dr ~T gt ~:r 
since dz~/dr = O. 

Hence 

since 

Also 

An 2 z~oS,1T 

W 

gpSUs 

d ( t ]  - g A_n 
dt \ ~T / Us ~lf 

and W = CL½pU82S. 

0, are 

(76) 

(77) 

(78) 

(79) 

RESPONSE TO JET-FLAP D E F L E C T I O N  C O N T R O L  

The solutions of Equations (75) with ~T = ) = 0 are 

~o--,~%' ~ o~-~z~ ' 

from which we may readily deduce 

An 2 zw89 - %co 

Also 

at 08 

(80) 

(81) 

(82) 

74 



RESPONSE TO JET T H R U S T  C O N T R O L  

The solutions of Equations (75) with ~)T = ~ = 0 are 

from which we deduce 

and 

- = - ( 8 3 )  

~ - ~ , z w '  ~ ~o-~,zw ' 

An 2 zwSx -- zaa, 
(84) 

dt U8 ,~ 

Values of ~, An, " 7, deduced from Equations (76) to (77), (79) to (85), using appropriate values of 
the derivatives from Table 4, are shown on Figs. 7 to 12 for comparison with the results of the 
full response calculations. 
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A P P E N D I X  I I I  

An Approximate Assessment of the Effect of Induced Drag on Dynamic Stability 

We assume that in flight at lift coefficient C L there is induced drag corresponding to the coefficient 

c . i  = k i c~  ~, (86) 

where for our present purpose we assume k i to be a constant.* We neglect the effect of the in&iced 

drag on the pitching moment.  
Referring to Appendix I, Equations (51) and (57) we see that the equations for X-  and Z-forces 

in disturbed motion will now be: 

X 
- -  = ( -  C o o -  k i c ~  + cT + c ~ ) ( ½ + ~ ) ,  (87).  
pUs~S 

Z 
{ -  c~  + ( c T -  c o 0 - k ~ c ~ ) ~ } ( ½ + ~ ) ,  (88) 

p G ~ S  

f rom Which the following formulae for the x- and z-derivatives may be readily deduced: 

x~ = - Coo - k~CL~ u 1 - 2A~ ~ s % + \ 3 C j / s  t ] '  

x~ = ½CL~ [1 -- As(1 --AT) sin (%+v~) -- 2kiA~], (89) 

x o = - ½CL~{I~(1--kT) sin (%+5~) + 2kiBs}, 

x,, : l C ~  (1 -kT)  cos ( % + ~ )  + k.,, 2 k i C ~  aC~ s \OC~L ~ ' 

3A 

- :  l 
~ = ~-[c~ .{(1-k~)  cos ( % + ~ )  + k~} - co0  - k, G 2 -  - A ,  

(90) 
~-B Z ~  ~ - -  2 s ,  

ZA -- ½CLs I (Zs+ \~CJ]s l 

Comparison of formulae (89) and (90) with the formulae of Table  1 shows that all the x-derivatives 

are modified by the inclusion of induced drag while, of the z-derivatives, only z~ is changed. 

Numerical Example. T h e  force derivatives have been evaluated from formulae (89) and (90) 

for the basic design condition considered in the examples of the main text. The  induced thrust  

coefficient h T has been taken as 1.0 while a value of 0-03 has been assumed for the induced drag 

coefficient k i. (If  we consider the formula for Co¢ given by Maskell and Spence in Ref. 6, vfz., 

c ~  = c~ I (~A  + 2c~) 

where d denotes aspect ratio then with Cj  = 1.59, as in the present example, we see that our 

assumption is appropriate to an aspect ratio of 9-58). 

* It will be seen later in the numerical example, that according to three-dimensional theory, hi would 

actually be a function of C j  for a wing of given aspect ratio. 

76 



The calculated derivatives are compared with the corresponding ones from Table 4 in Table 7. 
The results of comparative calculations of the periods and dampings are given in Table 8. (For these 
calculations, the moment derivatives have been assumed unaffected by induced drag.) 

It will be seen from Table 8 that the induced drag has an almost negligible effect on the short 
period characteristics; the effect on the phugoid is somewhat greater but still insufficient to change 
the general character of the motion. 
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T A B L E  1 

Formulae ,for Aerodynamic  Derivatives 

(a) Longitudinal force derivatives 

Derivative Formula 

X u 

Xw 

XO 

X A 

- -  CDO 

. ½ CL{1 -- ~(1 -- k~) sin (o~ -I- v~)} 

- ½- Cz(1 - ka. ) sin (c~ + u a) 

½- CL{(1 - ki. ) cos (~ + ~9) + k~.} 

(b) Vertical force derivatives 

Derivative 

%u 

"~zo 

%O 

Formula 

-ol-[c/d - k , ) c o s  (~ + ~) + k,} - C~o 

- ½ - B  

I ~ A  ~B tgt 
-½c  t 

- A ]  
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TABLE 1--continued 

(c) Pitching-moment derivatives 

Derivative Formula 

m u 

m w 

mq 

~rt~lT 

m~ 

mh 

m~. t 

md~ 

c [l ~--Jz 8~ -h[(1-k~)c°s(a+tg) + kT]l °~ + 

+ l ( h _ ~  ) ~B ~ t ~ ]  s ~ [ a ~  

£ 

[(h- ~)A + C~ o{h- ~(0)} - C~h - ~, v (1 - EA) + 

+ Cj h o~(1 -k:r) sin (o~+~9)] 

sT 
- {-Na~ 

s~ 
- ½ N a l  

C 
[(h-~o+alVE)B + Cj h a(1--kT) sin (a+~)] 

~ c ~  (h-¢~)~5~- ~ -  h[d-k~)cos(~+a) + k~] ~ + 

+ (h-~)ac-~- oc,- j 

_~_ Sf  a Oe 
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TABLE 1--continued 

(d) Downwash derivatives 

Derivative Formula 

O e / O¢v 

oe!06 

Oe/O'~ 

Oe 

ae 

I ~A OB tg t 
- 2 E C j  ~ o ~  + - ~ a  1 

E A  

EB  

ECL ~ - j  

2 E C j  

o~ + -O~-j va 

OA OB ~ t a+ 

- E A  
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T A B L E  2 

Values o f  the Aerodynamic Derivatives hz the Basic Design Condition 

Derivative k 2 = 0 

x~ 

~ u  

zw 

m ~  

m w 

m q  

/n~b 

m,z~ 

k L = ~ CL 

k' = - -  k L 

k T =  1 

--0"1 

+2"65 

--2"08 

- -  4" 055 

+ 0- 074 

--0"274 

--0.  665 

- -0 ' 16  

+ 0" 107 

+2"65 

tan 7s - 0" 745 

- 0 - 1  

+1 .983  

- 2 . 0 8  

- 4 . 4 2  

+ 0. 074 

- 0.274 

- 0 . 6 1  

- 0.1465 

+0 .098  

+ 2 . 6 5  

- 0 - 3 8  

Concise moment 
derivative 

(i B = 0.1, /0~1 = 25) 

= _ t~lm,d G 

03 = - -  Id, l ' t l lw / iL ,  

v = -- mq/i B 

X = - " z ~ d i B  

~ '  = - m d G  

k 2 =  1 

- 1 8 - 5  

+ 6 8 . 5  

+ 6"65 

+ 1.6 

- -  1.07 

k T = O  

- 1 8 . 5  

+68"5 

+ 6 " 1  

+ 1.465 

- 0-98 

Stability Quartics 

k T = l :  F(D) = D4 + 1 2 . 4 0 5  D3 + lOl.O1D2 + 1 7 . 3 9  D + 607.9 = O 

= (D ~ + 12.985 D + 102.62) (D ~ - 0.580 D + 5.924) 

k T = 0: F(D) = D 4 + 12.085 D a + 101.32 D ~ + 41.19 D + 603.7 -- 0 

= (D 2 + 12.429 D + 99.525) (D z - 0.3437 D + 6.066) .  

T A B L E  3 

Characteristics o f  Mot ion  

Mode 

Short period 
oscillation 

Long period 
oscillation 

Period 
(sec) 

5 . 4 3  

17.48 

k T = 1 

Period 
sec)  

5"35 

k T = 0 

1 amp 2- 

Time to 
½ amp 2 x amp 

0.717 
s e c  

(0.132 
period) 

16-06 
s e e  

(0.918 
period) 

17'0 

O" 74 
s e e  

(0.138 
period) 

Time to 
2 x amp 

26.8 
s e c  

(1.574 
period) 

8 1  
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T A B L E  4 

V a h t e s  o f  t h e  D e r i v a t i v e s  u s e d  i n  R e s p o n s e  C a l c u l a t i o n s  

Der iva t ive  

N w 

X~/T 

xo 

X A 

"~'tt 

~'~IT 

1% 

11li? 

m~b 

111.~]T 

mo 

mA 

kL= ~CL 

k '  = - k• t an  Ys 

Basic des ign  
c o n d k i o n  

8 = 1 ,  
Cz.~ = 5 ' 3  

75 = 15 .6  deg 

- 0 " 1  

+ 2 " 6 5  

0 

0 

+ 2 " 6 5  

- 2 - 0 8  

- 4 - 0 5 5  

0 

- 2 " 6 5  

- 5 ' 3 7  

+ 0 '  074 

- 0- 274 

- 0 - 6 6 5  

+ 0" 107 

- 0 . 1 6  

- 0 '  665 

0 

- 0 '  123 

+ 2 . 6 5  

- O. 745 

Cru i s ing  
cond i t ion  
zg. = 0 .2 ,  

C z .~ = 0- 268 
75 = - 4 '  2 deg 

- 0 - 1  

+ 0 . 1 3 4  

0 

0 

+ 0 . 1 3 4  

- 0. 144 

- 3 . 3 6  

0 

- 0 . 5 1 8  

- 0 . 1 8 1  

- - 0 - 0 0 1 7  

- 0 . 3 3 7  

- 0 . 6 6 5  

- 0. 0036 

- 0 . 1 1 1 4  

- 0. 665 

+ 0 . 0 1 0 9  

+ 0- 00283 

+ 0 . 1 3 4  

+ O. 0098 

Concise  m o m e n t  
der ivat ive  

(;,2 = 0 .1 ,  ~1 = 25) 

K = - i~ ln</ i  B 

~,o = - f f ,m ,o / iB  

~' = - , * * , / 6  

T = - , , , d G  

X = - * " ~ I G  

8 , , >  = - f i l m , 1  ~ / i  B 

8o = - f f , m e l i j s  

8 a = _ f f l m a / i  B 

Basic 
des ign  

cond i t ion  
Cru i s ing  
cond i t ion  

+ 

6 ' 6 5  + 

1 ' 07  -- 

1 -60  + 

- 18-5 

+ 68 .5  

+ 

+ 

+ 1 6 6 - 2  

0 

+ 30- 75 

+ 0 .425  

84 .3  

6 .65  

0 . 0 3 6  

1 -114  

+ 1 6 6 - 2  

- 2- 725 

- 0 .7075  
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T A B L E  5 

Response to Controls in Basic Design Condition 

Solutions for the various response quantities per unit increment of control parameter are all of the form 

A + (L cos 1. 1571 t + M sin 1.1571 t) e -°'9669t + 

+ (1 cos 0- 3599 t + m sin 0. 3599 t) e °°~318t 

with coefficients A, L, M, l, m as given in the following table. 

Control 

~T 

t~ 

Response 
quantity 

~1~'o 

~1~o 

0/~o 

An/DTo 

~/8o 
~/8o 
018o 

9/8o 
AnlSo 

~1~o 

~/~o 

0/20 

91~o 

An/'~o 

A 

+3.4775 

- 1.4871 

- 1"6170 

-0 .1299  

0 

-0 .7920  

-0 .2137  

-0 .1836  

+0.0301 

0 

- 1-1833 

-0 .7681 

+0.2759 

+1.0440 

0 

L 

-0 .1461 

+ 1.6271 

+0.6659 

-0 .9612  

+2.4675 

+0.0238 

+0-1846 

+0.1823 

-0 .0023 

+0.3390 

+0.0192 

+0.7126 

+0.5126 

-0 .2000  

+ 1.2034 

i 

M 

+0-2074 

+1.3601 

+ 1.4315 

+0.0714 

+2.5485 

+0.0202 

-0 .1838  

-0 .0655 

+0-1183 

-0 .2733 

+0-0840 

-0 .1022  

+0.1569 

+0.2591 

-0 .0446  

-3 .3313 

-0 .1400  

+0.9511 

+ 1.0911 

-2 .4675 

+0.7682 

+0.0291 

+0-0013 

-0 .0278  

+0.6240 

+ 1.1640 

+ 0. 0554 

-0-7885 

-0 .8439  

+ 0. 7482 

-0 .6596  

+0.0150 

-2 .9273 

- 2 . 9 4 2 3  

- 1-2690 

-0 .0931 

-0 .0134  

+ 0- 7001 

+0.7135 

+ 0. 0994 

+0.7384 

+0-0145 

+ 0.9674 

+ 0. 9529 

+0.8415 
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T A B L E  6 

Response to Controls in Cruising Condition 

Solutions for the various response quantities per unit increment of control parameter are all of the. form 

A + (L cos 5.8582 t + M s i n  5.8582 t) e -3'v4a 

+ (l cos 0.07183 t + m sin 0.07183 t) e -°'°364~ 

with coefficients .4, L, M, l, m as given in the following table. 

Response 
quantity Control 

"qm 

~/~,o 

0/~o 

f/~To 

~/8o 

0/80 

9/80 
A~/8o 

~ f~o 

o/'~o 

9 /~o 

Anl~o 

A 

+48.9668 

- 2-2140 

- 3 8 . 7 1 5 3  

- 3 6 . 5 0 1 3  

0 

- 4.6390 

+ 0.0556 

+ 3-5167 

+ 3.#611 

.0  

+ 0-0158 

+ 2.1137 

+ 2.0979 

0 

L 

- 0.0010 

+ 1.5592 

+ 1.0142 

- 0-5450 

+39.0378 

+ 0.0002 

+ 0.0067 

+ 0.0207 

+ 0 . 0 1 4 0  

+ 0.1676 

M 

+ 0.0078 

+ 0.9964 

+ 1.2492 

+ 0.2528 

+24.9106 

- 0.0007 

- 0-0552 

-- 0.0437 

+ 0.0115 

= 1.3872 

--48.9660 

+ 0-6547 

+37-7013 

+37.0466 

- 3 9 . 0 3 7 8  

+ 4.6388 

- 0.0624 

- 3-5374 

-- 3.4750 

+ 3.6964 

II/  

- 2 5 - 4 9 4 7  

+ 0.3128 

- 2 9 . 9 3 0 9  

--30.2437 

- 17.2968 

+ 2.3682 

- 0.0291 

+ 2.8515 

+ 2.8806 

+ 1.6051 

1.4774 + 0.00008, - 0.00002 + 1.4773 + 2.0100 

- 0.0204 

- 2-1223 

- 2.1019 

+ 1.2363 

- 0-0177 

- 0.0133 

+ 0.0044 

- 0.4423 

- O- 0258 

+ 0.4615 

+ 0.4873 

+ 1.4773 

+ O. 0046 

+ O. 0086 

+ O. 0040 

+ O. 1151 
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. T A B L E  7 

Effect of Induced Drag on Force Derivatives 

Basic design condition: C c s = 5.3;  C o, s = 1.59; k T = 1. 

Derivative 

X~t 

X w 

Xv~ 

X,I 

k i= 0 

zw 

ZA 

U., = 78'  9 ft/sec 
7 s =  1 5 ' 6 d e g  

" - 0 . 1  

+ 2 . 6 5  

0 

+ 2 . 6 5  

- 2 . 0 8  

- 4- 055 

- 2 . 6 5  

- 5 . 3 7  

k i = 0-03 
U s = 80 i t /see 

78 = 7 deg 

+ 0 ' 0 8 1  

+ 1" 126 

- 0" 843 

+ 0" 941 

- 2 " 0 8  

- 4 " 4 7 6  

- 2 ' 6 5  

- 5 " 3 7  

T A B L E  8 
I 

Effect of Induced Drag on Stability Characteristics 

Mode 

Short  period 
oscillation 

Long period 
oscillation 

Period 

5 " 4 3  

8 e c  

17-48 
s e e  

h ~ ,  = 1 ,  k i = 0 

Time to 
½ amp 2 × amp 

0 '717 
s e c  

(0.132 
pe#iod) 

- -  16-06 
s a c  

(0.918 
period) 

Period 

5"47 
s a c  

17.05 
s e e  

k T =  1, k i = 0 . 0 3  

Time to 
-21- amp 2 x amp 

O. 703 
g e e  

(0-1285 
period) 

21.63 
s e e  

(1.268 
period) 
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