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Summary. An extension of slender-wing theory, introduced by Adams and Sears, has been applied to some 
problems concerned with the properties of slender, lifting, wings with curved leading edges at supersonic 
speeds. Two particular problems are considered. These are the calculation of the change in lift, aerodynamic 
centre, and load distribution on uncambered wings as the Mach number increases above M = 1" 0 and the 
calculation of the camber shape to produce a given load distribution at a given Mach number. 

Where possible the results are compared with linear theory and with experimental results, and the limitations 
of the extension are discussed. 

1. Introduction. Work at the Royal Aircraft Establishment on slender wings has included both 
experimental and theoretical work on wings with curved leading edges. Most of the theoretical 
w o r d  has been based on slender-wing theory. Large discrepancies between this theory and 
experimental results 2 on some uncambered wings have been found at relatively low slenderness 
parameters where it had been hoped that slender-wing theory would be adequate. However, at 
zero slenderness parameter (M = 1.0) the agreement with the measured forces is generally very. 
good 8, ~. This lack of a reliable theory has hampered analysis of the experimental results, particularly 
where an accurate theoretical lift-curve slope is needed. The discrepancies between theoretical 
and experimental results for uncambered wings also suggest that the methods used to design 
cambered wings with specified properties at given supersonic Mach numbers may need to be 
modified if the slenderness parameter is not small. 

In this Report the extension of slender-body theory due to Adams and Sears, which takes account 
of higher-order terms in the expansion in terms of slenderness parameter, is used to calculate the 
aerodynamic properties of uncambered wings at supersonic speeds and to modify the camber- 
design methods to include the effects of Mach number. Using existing experimental results, and 
some linear-theory solutions, the success of the extension for uncambered wings is considered in 
detail. 

2. Outline of Method. The work in this Report is based on an integral equation derived by 
Adams and Sears 5 which relates the doublet strength on a lifting wing Without thickness to the local 

wing incidence. Since, however, some of the work is directed towards extending the camber design 
of Weber ~ the notation used will follow Weber rather than Adams and Sears. The types of planform 
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considered are shown in Fig. 1 where the co'-ordinates x, y and z have been non-dimensionalised by 
dividing the physical dimensions by the root chord c o . Then the equation of the leading edge is 

given by 
y = s(x) = ,~g(x) (1) 

where s T is the non-dimensional semi-span, actually the ratio of the semi-span to root chord. Also 

g(O) = O, g(1) = 1. 

In the notation used here the integral equation of Adams and Sears {Equation (49) of Ref. 5} 
becomes 

f - .~(~) h~/(x, y') + Vow(X, y) = J-~(~) 

P~s~ '~ [ V(_ 1 d r '(~) 
e- + lnpsT) dxx J ,(~)hx(x, y') dy' + + ~  

h~(x, y')In y dy' - 
+ 8x j_8(~) 2s:r 2sT 

-' ' . ( 2 )  
dx2 o J -s~') 

In Equation (3), h(x, y) is a doublet distribution which is related to the velocity potential at the 

surface by 
1 

k(x,y)  = ¥ -~b(x ,y ,  + 0) (3) 
q7 

(Equation (46) of Ref. 5). 
Within linear theory, the local load distribution on the wing l(x, y) (=  -AC~)  is related to the 

surface potential by 

2 l d ¢ ( x , y , + O )  d¢ I 
z(x, y )  = go  ~ - ~ (~' y '  - o) 

41dC(~,y,+0) I 
47T 

- as(x, y ) .  
Vo 

In terms of I(x, y) Equation (2) becomes: 

1 [~(x) hy,(x, '" dy ' ,  
e~(x, y) Vo J-~(~) y )y ~ Y 

8~r ( + ln]3sT) ~ 3-~(~) s~ '~ 

8 ~(x) l(x,y') in Y Y' 
+ 8x J-8(x) sT 2 2s T 2s:r dy' - 

+ 

(4) 

d2 f ~ l n ( x - x ' ) d x '  [s(~') l(x', y ' ) ,  ,7 
dx~ o J ~ ( ~  ~ a y ] .  (5) 

This equation can be simplified by considering the three integrals in the brackets in more detail. 
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~8(~) l(x, y')  
The first integral, dy', becomes 

d-s~c) s~ '2 

± f'(~' l(x, y ' )dy '= - 1 f'('~) AC~, = 1 L(x), 
s~r 2 d-s(z) sT ~ d-s(x) sT 2 

where L(x) is the cross load acting on the wing at station x. 

The second integral may be written 

1 ~s(x, l (x ,y ' ) l ln  y YZ(x) . s(x) 
sT- ~ J- , (~  ~(~) + m 

_ L(x)In @ + g(x)Io(x , ~7), 
s:e ~ Z. 

where 

, 

f _ Y 1 l(x, ~?')In I ~  - ~ ' ld~  ', ~7 s(x)" Io¢, '~)  = -1 sT 

(6) 

(7) 

(8) 

The third integral becomes 

fx  ln (x-  x') dx'. (9) 
L(x') 

o sT ~ 

The derivative of this integral with respect to x is 

(since L(O) = O) 

_ L ( x ) l n x  + I,(x) ( 1 1 )  
sT = 

where 

l l ( x ) =  f~  l d  \[L(x')~sT 2 ])int ( 1 -  ~ ) d x ' .  (12) 

Substitution into (5) gives: 

1 f*(x) hv(x ' ,, dy' 
~,(x, y)  = Vo : _ ~  Y ) y - y '  

1 11"1 g(x)~ L~(N)I 

& I 1 ¢ )  + 

Evaluation of the integrals I 0 and 11 is considered in Appendix I. 
Equation (13) can now be applied to the two types of problem considered in the Introduction. 

These are 

(a) to find the load distribution at a given Mach number for a specified wing {~(x, y) given} and 

(b) to find the shape at a given Mach number which supports a given load distribution 
{h(x, y) or l(x, y) given}. 

3 
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The first of these problems involves the solution of the integral equation for h(x, y). However, 
this is straightforward if, as suggested by Adams and Sears, h(x, y) is expanded in terms of/3s~,. 
The expansion in fact takes the form 

h(x, y) = h(°)(x, y) + ~sT~lnfls~,h(1)(x, y) + ~2s~,~h(~)(x, y) + 

+ higher-order terms. 

Fhen substitution into Equation (13) gives 

1 ~'~(*) ,, d y ' ,  
Vo a-~{~) hv'(°)(x' y ) Y 7 y 

1 (~(*) h o)~, '" dy' 
Vo j_~(~) v" (° Y ) y - -y ,  

- o (x, y )  (14) 

_ 1 d ( i s )  
8rr dx \ s~v ~ ] 

1 ~(*) h,,.(=)(x, ,, dy' 1 I d l ( _ ½ + l n g 2 ( ~ ) ) L ( x ) t  
Vo j_~(.) Y ) y Z y - 8r/ s.ff } - 

d ~x g(x)io(x, 7) 1 (16) ' d .  l l ( X )  + 

where, in (15) and (16), L(x), .~(x) and •(x, ~7) are the first terms of the expansions of L(x),/~(x) 
and/0(x, ~7) in terms of fisT, so that L(x), i£x)  and i0(x, ~/) only depend on h'°)(x, y). Then Equations 
(14), (15) and (16) can be solved successively as integral equations in which the right-hand side is 
known and for which the solution can be written down (see Appendix II). Applications of this 
method to various uncambered wings with different curved leading edges are considered in 

Section 3. 
The second problem is even more straightforward since it only involves the substitution of the 

given load distribution into the right-hand side of Equation (13). In fact 

e~s~ '~ d l n ~ ) L ( x ) t  

dx I1(x) + 

where %(x, y) is the downwash distribution required to produce the given load at/3sr = 0, i.e., the 
slender-wing incidence distribution. Then the change in wing shape from the shape given by 

slender-wing theory is 

/3~s"'~ I (  In g(x)] L(x) + g(x)Io(x, 7) - Az(x, y) - 8w - ½ + ln/gse + 21 ] s~, ~ 

- I~(x)l ' + f (y )  (18) 

where f ( y )  is an arbitrary function of y. Examples of this method are given in Section 5. 
The accuracy of the present approach may be assessed by considering some delta wings with 

streamwise camber, the full linear solutions of which are known 6, v. In fact Adams and Sears give a 
graphical comparison between the results of not-so-slender and linear theory for the uncambered 
delta wing. This example is repeated here to show the analytical relation between the two solutions 

in terms of/3s r.  



is 

or 

For this uncambered deltawing,  ~(x, y) = %, and s(x) = sTx. Then  the solution of Equation (14) 

h(°)( x, 7) % V o  - - - -  s : v x  C ( 1  - 7 ~) 
77" 

4%sT (19) 1<0~(~, 7)  - v ( a  - 7~) ' 

Substitution into Equations (15) and (16) gives: 

Vo o-~T~ 2 

vol o-szx(sce~ h~ (Z)(x, y' dy' ~o2 ./ )y - [½ - ln43. (20) 

Since the right-hand sides of these equations are independent of x and y the solutions are 
(Appendix II): 

%V0 
ha)(x, 7) - 2zr sTx 5/ (1-72)  

h<~(x, 7) - 

So 

l ¢ ,  7) = 

But by linear theory 

%Vo 
2 ~  s~x  V ( 1 - -  7 ~) [½ -- l n 4 ] .  

4c¢osT 
~ / ( l _ 7 ~ ) l l + ½ f l 2 s T ~ I ½ + I n ~ ]  l" (21)  

l(x, 7) - 4%se 1 
~/(1  - 7 z) E '  (22) 

where E is the complete elliptic integral of the second kind of modulus ~/(1-/?~sT2). For small 
~sf, 1/E may be expanded in terms of/?s r to give 

~, = 1 + ½/~2sT~ ½ + In + . . . .  (23) 

Thus, as might be expected, linear theory and not-so-slender theory agree up to terms in/?2sTY. 
Values of the lift coefficient calculated from Equations (21) and (22) are shown in Fig. 2, together 
with the liftcoefficient given by slender-wing theory, i.e., by ignoring the t?s T terms in Equation (21). 
Similarly i t can  be shown that for delta wings with local incidence distributions given by a = oqx i 
the not-so-slender theory agrees With the full linear solution up to terms in ~2sT~. Lift coefficients 
for the wings with incidence distributions c~ = ~lx and ~ = %x ~ as given by linear, 'slender, and 
not-so-slender theory are also included in Fig. 2. 

In  all the comparisons of Fig. 2 it can be seen that the not-so-slender theory overestimates the 
effect of the parameter/?s T as compared with linear theory. Thus  for these wings the terms in 
/?4S:r4 which are ignored in not-so-slender theory will probably be of opposite sign to the/?2s~.~ terms. 



3. Calculation of the Aerodynamic Coefficients of Flat  Wings. In this Section Equations (14), 
(15) and (16) are used to find the lift coefficients, aerodynamic centres and Chordwise variations of 
cross load on some uncambered wings with curved leading edges at Math numbers greater than 1.0. 

For these wings the solution of Equation (14), that is the slender-wing lift distribution, is 

SO 

where 

Then 

h(°)( x ,  7 )  = - o~ s(x) Vo V / ( l -  V~), ( 2 4 )  
qT 

l(0 (x, 7 )  _ 4 g'(x) (25) 
s T  - 

d 
g'(x) = ~xg(X ). 

. [ ,(x) _ 4c~wg(x)g' (x)  ( 2 6 )  
ST 2 

(27) 

= - 4ag'(x)Trln2. {See Appendix I, Equation (44)} 

x d t t , 

= E iaibi xi (28) 

where the coefficients a~ are given by ~] a zx ~ = 4wag(x)g'(x) and the coefficients b~ = 1 ~  
1 

1 y 

(see Appendix I). 

Substitution of (26), (27) and (28) into Equations (15) and (16) then gives 

t \  d j  t o~ 
1 ,(x) hv'(1)(x, Y )Y ---Y' = - {g'(x)g'(x) + g(x)g"(x)} 

Vo a-s(x) 2 

and 

= ~G(x), (say) 

V0 J-s~) 

(29) 

= ~ - ~ + In 4x ] (g'(x)g'(x) + g(x)g"(x)) + g'(x)g'(x) - 

g(x)g'(,) 1 ] 
x 4rro~ E i2aibi xi-1 

= o~F(x), (say). (30) 



T h u s  

SO 

and 

hm(x, ~) = - c~G(x) s(x) Vo ~ / ( 1 -  r~ ~) 
"IT 

h(')(~, ~) = - ~,F(~) ~(~) Vo V ( 1  - ~) 
q..g 

h(x, r~) = - c~{1 + fZsT~F(x) + fi2STZG(x)lnfsT} s(x) Vo ~ ( 1 -  Wz) 
'71" 

\ 

Then the cross load L(x) is 

sT ~ 

g'(~) 
I(x, V) _ 4c~{1 + fi~s:v~F(x) + p2sT2G(x)lnfsr} .V /~Z-2  ) + 

sre 
+ 4o~{fi~s:r=F'(x) + f2sT2G'(x)lnfsz}g(x ) ~ / ( 1 -  ~ ) .  

(31) 

(32) 

(33) 

(34) 

- -  - 4c~Trg(x)g'(x) (1 + f2sTZF(x ) + f2sT2G(x)lnfs:r} + 

+ 2~g~(x){~,T~F'(x) + f%~C'(.)ln~sT) 

= 2 ~  ~{g~(*) (1 +~%~F(~) + ~%r2G( x)lnfisT) } . (3 5) 

By integration of (35) the lift coefficient, CL, is 

7r As [1 + f2sT2F(1 ) + f~sT~G(1)lnps~,] (36) Or, = -~ 

where d = aspect ratio = 4sr2/area. 
The centre of pressure position, & is given by 

; /? 
0 0 

f ~ 1 f=sT=F(x) + f2sT2G(x)lnfsr)dx g~(x) ( + 
- 1 o ( 3 7 )  

1 + fi~sT~F(1) + fi~sT~G(1)lnfs:v 

Using results (35), (36) and (37), (2firA)(3CL/OoO, 2 and L(x)/2rroar 2 are plotted against fs  T in 

Figs. 3 to 11 for the three planforms shown in Fig. 1 and defined by: 

g(x) = x ( 2 - x )  'gothic', 

g(x) = ~ x 1 - 'modified gothic', 

g(x) - -  x 1 - ~ x + 4 x  ~ - ~ x  a 'ogee'. 

In the next section the results for the gothic and ogee wing are compared with some experimental 
results. Before this comparison is made the probable accuracy of the present theory as applied to 
these planforms will be considered. With increase in fisT, the load at the front of the wings decreases 
(Figs. 5, 8 and 11) and, in view of the comparisons of Fig. 2, it seems probable that this decrease is 
overestimated by not-so-slender theory. As pointed out in Section 2 this implies that the terms of 
order fi4sT~ which are ignored in not-so-slender theory are of opposite sign to the terms of order 
fi2s2,2 which are included. If, as seems likely, the ignored terms remain of opposite sign to the terms 
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of order ]?~sT ~ over the whole wing, then the increase in load at the rear of these planforms with ]3s T 
will be overestimated. Without a full linear-theory solution for one of these planforms, which is 
not available at the moment, this error cannot be accurately assessed. However, it appears reasonable 

to assume that if the differences between the results given by slender-wing theory and those given 

by not-so-slender theory are small, then the errors in these differences will be negligibly small. 
Thus the load distributions for the gothic wing, Fig. 5, suggest that up to about ~s T = 0.4 not-so- 
slender theory ",viii give fairly accurate results whereas on the ogee wing, Fig. 11, the large changes in 

load distribution at the trailing edge, even at ]3st = 0.2, suggest that large errors due to neglecting 

higher-order terms are present. It should be noted, however, that even if the neglected terms are 
large the trends shown by not-so-slender theory are probably still valid. 

It appears, from the results plotted in Figs. 5, 8 and 11, that the changes due to not-so-slender 

theory increase as the higher streamwise derivatives of L(x) increase in magnitude {as can also be 
shown from the general solution for L(x), Equation (35)}. Thus the range of applicability of not-so- 

slender theory will probably decrease with increase in magnitude of these derivatives. 

4. Comparison of the Flat-Wing Calculations with Experimental Results. In comparing the 
calculations of Section 3 with experiment a difficulty arises in that, to achieve low values of/3sT, 

the wings must be geometrically slender and so leading-edge separations, which modify the load 

distributions and introduce non-linearities in the lift and moment curves, occur in practice at low 

incidence. In the experimental results 2,~,4 these non-linearities make the evaluation of lift-curve 
slope and aerodynamic centre at zero incidence rather inaccurate. Hence, instead of the experimental 

lift-curve slope and aerodynamic centre being compared with theory, the experimental results 

have been plotted and the linear results as given by slender, and not-so-slender, theory have been 

superimposed on these plots. The comparisons are made in Figs. 12 and 13 for a gothic wing ~,a 

of aspect ratio 0.75 at Mach numbers between 1.02 and 2.0 and in Figs. 14 and 15 for an ogee 

wing ~ of aspect ratio 1.2 at Mach numbers from 1.02 to 1.6. 

4.1. Gothic Wing. In Fig. 12 it can be seen that the linear lift as given by not-so-slender theory 
is in good agreement with the experimental lift at low incidence for values of/?s T up to about 0.3 
but above this value the experimental lift lies between the lifts as given by slender and not-so-slender 
theory, confirming that at these values of fis T the effects of Mach number are overestimated by 
not-so-slender theory. 

Before comparing aerodynamic centres for the gothic planform it should be noted that the 
experiments were made on a thick wing (8.4 per cent at the root chord) and'that the effect of this 
thickness is to move the aerodynamic centre aft of the thin-wing position. Also the results at M .-- 1.02 
may be subject to wind-tunnel interference 3. Taken together these facts reduce the value of any 
detailed discussion of Fig. 13. The most that can be said is that between/?s T = 0.25 and ]3s T = 0. 433 
the experimental aerodynamic centre moves back by about 4 per cent of the root chord as compared 

with the theoretical shift of 5.7 per cent. It should be noted that the discussion in Section 3 suggests 
that the linear-theory movement in aerodynamic centre will be less than that given by not-so-slender 
theory. 

4.2. Ogee Wing. The experimental results for the ogee wing of aspect ratio~ 1.2 (Figs. 14 and 15) 
are not in good agreement with the not-so-slender-theory values, although the results at M = 1.02 

are in close agreement with the slender-theory values. However, the lowest experimental value of 



fis T (other than 0.06) is 0. 225, since at Mach numbers between 1.02 and 1-25 the model may be 
subject to large and mainly unknown interference effects. Thus  the range of Slenderness parameter 
for which Fig. 11 suggests that not-so-slender theory will give good results is excluded from the 

comparison with experimental results. 
For this planform the changes in L(x) predicted by not-so-slender theory (Fig. 11) are extremely 

large towards the trailing edge and so it is not surprising that the neglect of the higher-order terms 
leads to large errors. The  errors in slender-wing theory will be even greater and so the agreement 
with this theory at the higher values of ]3ST is clearly fortuitous. 

It should be noted that if this planform were cambered so that L(x) became a smoother function 
of x (i.e., (L(x)}m~ ~ moved forward) then the range of applicability of not-so-slender theory would 

probably be increased (see Section 5.2). 

5. Calculation of the Shape of a Cambered Wing for a Given Load Distribution. 5,1. Details of 
Calculation. As stated in the Introduction the object of this Section is to modify the camber-design 
method of Weber 1 to include the effects of Mach number. Weber's method aims to produce a 
cambered wing such that at the design lift and design Mach number the following conditions are 

satisfied: 

(a) There is zero load at the leading edge; this is in order to obtain attached flow. 

(b) The  drag due to lift is low; this puts conditions on the spanwise and chordwise loadings. 

(c) The  centre of pressure is at a fixed position. 

(d) The  pressure gradients caused by camber must not be sufficiently adverse to produce 

boundary-layer separations on the wing. 

Weber has given a set of load distributions, designed to satisfy these conditions, in terms of three 
parameters: v (which varies from 1 to 3), %(x) and C(x). The wing shapes which produce these 
load distributions were calculated by slender-wing theory. In fact the incidence distribution as 

given by slender-wing theory is 

~(x, ~7) = C(x) for 0 4 [~/[ 4 %(x) (38) 

o~(x, ~l) = C(x) + .D.(x) [_[~l - %(x)-] "-1 for %(x) ~< I~/[ < 1 (39) - 
- 7;5 J 

w  ere = and Dd ) is a given function of , ,  and C(x). 
We-wish to modify this slender-wing shape by including the not-so-slender terms. Formally this 

modification is found simply by substituting the given load distribution into Equation (18) and 
Carrying out the integrations. In practice, however, these integrations, particularly for I0(x, ~1) and 
Ii(x), are extremely difficult, owing to the complex nature of the load distributions (see Ref. 1, 
Equations (32), (33) and (34)}. Thus  it is necessary to find suitable approximations for l(x, ~1) and 
L(x) which reduce I0(x, ~7) and I~(x) to manageable forms. A study of Weber's solutions suggests 
that l(x, ~1) and L(x) can be reduced to the approximate forms: 

l(x, , )  _ (40) 
ST ¢ 

L(x) (41) 
sT 2 

- -  = E ai xl.  
i 

The evaluation of Io(X, ~) and Ii(x) with these approximate forms is given in Appendix I. 



5.2. Discussion of Example. As an example the method has been applied to a cambered wing of 
modified gothic planform (Fig. 1). Tests were made on two models with the same design load 
distribution, one wing being designed by slender-wing theory and the other by not-so-slender 

theory for a slenderness parameter of 0.4. The wing shape, as given by slender-wing theory (which 

ignores the fs~, terms), is given in Fig. 16, while the design load distributions and the approximations 
used in Equation (18) are illustrated in Fig. 17. The new wing shape obtained by including the 

not-so-slender terms at fs  T = 0.4 (M = 1.89 for this wing) is compared with the original slender- 

wing-theory shape in Fig. 18. The main part of this figure illustrates the shapes of the centre-lines 

and leading edges of the two wings (note the exaggerated vertical scale) while the insert shows the 
effects of the not-so-slender terms on two typical cross-sections. It should be noted that although 

the change in shape due to including the not-so-slender terms appears small the changes in local 
incidence are more significant. 

In Fig. 19 the chordwise variation of spanwise load, as calculated by not-so-slender theory, i s  
shown for the two wings at fis T = 0 and fis T = 0.4. It should be remembered that the load at 
fis T = 0 on the wing designed by slender-wing theory is the design load and so is equal to that at 
fs:v = 0.4 on the modified wing. The main point of interest in these loads is that the changes with 
slenderness parameter are smaller for these cambered wings than for the uncambered wing of the 
same planform (see Fig. 8). These smaller changes are due to the smoother variation of L(x) for the 
cambered wing, particularly over the rear region of the wing. 

The main experimental results of interest in the present work are presented on Fig. 20. Here the 
centre-of-pressure positions of the two wings at C L = 0-05 (the design lift coefficient) are plotted 
against/3sT; the figure also includes the design positions and the variation of the position as calculated 
by not-so-slender theory. It will be seen that at the higher values of fs  1, the experimental and 
theoretical positions are in excellent agreement whereas near fs~, = 0 the measured positions are 

ahead of the calculated positions. This lack of agreement near fis T = 0 could be to a thickness effect 
in which case the good agreement at higher values oi~ fis T might be fortuitous. In spite of this the 
results do suggest that for this planform not-so-slender theory provides a reasonable method of 
designing wings with a given centre-of-pressure position at supersonic speeds. 

Near the design Mach numbers of the two wings the design C L (0.05) was achieved close to the 
design incidence, but there is some evidence that on the not-so-slender wing the condition of zero 
leading-edge load was not reached until C n = 0. 070. 

6. Conclusions. The extension to slender-wing theory, known as 'not-so-slender' theory, 

proposed by Adams and Scare has been used to derive formulae for the calculation of the properties 
of slender wings with curved leading edges at supersonic speeds and to modify the camber design 
methods of Weber 1 to include Mach number effects. 

The extension gives the load distributions, or the shape for a given load, correct to order/32s~, ~. 
A comparison of the extension with full linear theory for some cambered delta wings shows that 
not-so-slender theory tends to overestimate the effects of Mach number. Experimental results for 
some wings with curved leading edges, for which no linear solution is available, also suggest that the 
effects of Mach number are overestimated by the theory. In general the range of applicability of 
not-so-slender theory appears to depend on the magnitude of the higher streamwise derivatives of 
the spanwise load, the range decreasing with increase in the magnitude of these derivatives. 
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b~ 

£o 

f(Y) 
g(x) 

h(~, y) 
k 

z(~, y). 

~(~) 

s(x) 

s:r 

Xj y, 

z(~, y) 

A 

c~ 

c(~) 

D~(~) 

E(k) 

F(~) l 

a(x) J 

Io(~, 7) 
/~(~) 

Mo 

Vo 
~(x, y) 

A~(x, y) 

~0(x) 

LIST OF SYMBOLS 

Coefficients of power series {Equations (28), (41)} 

Appendix I 

Root chord 

Arbitrary function of integration {Equation (18)} 

= s ( x ) l , T  

Doublet distribution {Equation (3)} 

= V ( 1 - ~ %  ~) 

Local load distribution 

Functions of x {Equation (40) and Appendix I} 

Local semi-span 

Semi-span at trailing edge; ratio of semi-span to root chord 

Cartesian co-ordinates; origin at wing apex; x along the free-stream direction, 
y spanwise, z positive upwards; all are made dimensionless with the root chord 

Ordinate of wing surface 

Aspect ratio 

Pressure coefficient 

= - 3 z ( x ,  O)/dx,  downwash at centre section 

Parameter in downwash {Equation (39)} 

Complete elliptic integral of second kind 

Functions defined in Equations (29) and (30) 

S e e  Equation (8) 

S e e  Equation (12) 

Spanwise (or cross) load 

Mach number (free stream) 

Free-stream velocity 

Incidence 

Change in incidence due to change in design ]3s T 

= ~ / ( 1 - M 0  ~) 

= y l s ( x )  

Parameter in downwash {Equation (39)} 
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A P P E N D I X  I 

Evaluation of the Integrals Io(X , ~) and I~(x) 

f* l(x,~')lnlw_ , ]d ,"  (i) ~0(~, ~)  = -~ s~ 

All the local load distributions considered in this Report  may be wri t ten as, or approximated by, 

T h u s  

l(~, ~) re(x) 
s z - %/(1 - ~ )  + ~]0 n~(x)~=~ %/(1 - v~).  (42)  

1 " ! 1 
/" . l n  I ~ / - r /  ] ~ ' 2.o [ n(x' J/" /o(~, ~) re(x) j_1 ~yf:-(g)~}.~ + -.~(~')=~ %/{I - (~')'-}In [~ - ~' I&'.  

T h e  integrals in (43) corresponding to m(x) and no(X ) have been evaluated by Weber  to give 

(43) 

and 

-1 ~ 1  C- (~-7) ~} d~' = - ~ln2 

%/{1 - (~/)~}ln [~7 - ~/] d~' = rr 
- - 1  

(44) 

1 1 ln2 t (45) 
4 2 1 " 

I1 
' 

For i > 0 the integral (,?,)2i %/{1 - (V,)2} In ]~ - V' [ dr '  = Io,,(~), (say) 
- - 1  

may be determined by  first considering its derivative with respect to 7: 

clio, i(~/) = ~z 07,)2, %/{1 - (.q,)2} 
d-q J - 1  ~ - -  ~ d r '  . (46) 

f " cos ~i 0 sin g 0 
= o~OS¢--~-odO (47) 

i f v  = cos¢ ,  V ' =  cos 0 .  
Expanding cos 2i 0 sin 9' 0 in terms of cosines of mult iple angles and using the integration formula 

j '~ cos nOdO sin nq~ 
0 c ° s 0 - - c ° s •  -- ~r s i n e  

dlo, d~ )_  ( 1 ) 
d~ 7r ~ a _ 2 ~  f o r i =  1, (48) 

1 a _  1 ) 
= ~  ~ 5 -  2 ~ for i = 2, (49) 

( 1 ~ 5 - 1  a ~6 ) = r r  ~77_~ ~ -  ~? f o r i = 3  (50) 

13 



Then  

where 

f', dZo,(v) dv + ~o,(v = o) Io,,(v) = o ~ 

? .To,¢(~? = O) = (W,)u ~/{1 - (,7')~)lnl ~' I d~' 
--it  

= 7r - ~ I n 2  f o r i =  1 

Thus  using Equation (51) 

(51) 

(52) 

(53) 

5 1 ln2) for i = 2 (54) 
= ~r 152 16 

( 59 5 ln2) for i = 3 .  (55) 
= ~r 3 ~ 2  128 

7T 
Io(x, ~) = n~(x) ~-2 {8~74 - 8~7 ~ + 1 - 41n2} (56) 

77" 
= n2(x) - 1 ~  {32~/G - 249~ - 1 2 ~  + 5 - 121n2} (57) 

for 

(ii) 

~T 
= ha(X))-07-2 {384~s - 256~6 - 96~4 - 9 6 ~  + 59 - 120 In2} (58) 

- > : , ~ ( ~ ) v = ~  ~ / { I  - v~}. 
ST 1 

] , ( x )  = f ~ d - ~  tL(x'){ sT ~ l ln ( 1 - ~ )  dx' . 

For the uncambered wings 
loads considered in Section 5 
Thus  

L(x) 
sT ~ 

Then  

_q(~) = 

considered in Section 3, L(x ) / sT  ~ is a polynomial in x, while the cross 
may be approximated to this form. 

- -  - y~ aix  ~ . (59) 
1 

y~ ia i (x ' ) i -qn 1 - 
1 0 

? iaix  ~ ti-qn(1 - t) dt  
1 0 

dx'  (60) 

(61) 

where 

= Nia¢b~x i , (62) 
1 

1~" 1 
b~ - i ~ 7" (63) 

14 



A P P E N D I X  II  

1 f*(~) hv,(x, ,. dy' Solutions of the Integral Equation Voo o-,(.) - Y ) y  7 -y '  - f (x ,  y )  

The solution of this equation may be writ ten (see, for example, Ref. 1) 

sin 
s(x)V° f f(O', x) sin 0'ln 0 + O' dO', 

h(x, y) = rr~ o sin - -  
2 

where cos 0 = y/s(x) = 7. 
The  forms o f f (x ,  y) considered in this Report  are: 

Thus  

where 

= E a~(x)~ ~.  
0 

h(~, y)  = - s(~) G X a~(~)P~, 
7r 2 

o 

sin g 
P i . =  | cos2i0 's in0 ' ln  dO'. 

( 0 + 0 ' )  
or 0 s i n  

2 
Values of PC for i = 0, 1, 2, 3 are 

Po = ~ ~ / (1  - v~),  

= rr (1 +2r/u) N/(1 - r f l ) ,  P* 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

qT" 
P~ = ~ (3+4~7~+8rff) ~/(1-~/~),  (70) 

qr 

Pa = il-2 (5 + 672 + 8~ ~ + 16~ ~) ~/(1 - ~ ) .  (71) 
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