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Summary. When thin built-up wings experience pure flexure, the surfaces deflect towards the neutral 
axis of the cross-section due to the 'Brazier' effect. The resulting cross-sectional deformation of symmetrical ~ 
wings with flat faces between adjacent spars is here analysed, together with the corresponding loss in flexural 
stiffness. 

1. Introduction. When a thin,built-up wing is subjected to flexure, the surfaces tend to deflect 

towards the neutral axis of the cross-section. For a given applied moment the curvature of the wing 
is thus greater than the value calculated by the simple engineer's theory of bending. The cross- 
sectional deformation does not however reduce the stiffness of the wing sufficiently for Brazier 3 
buckling to take place, and the initial instability of the wing structure arises from the buckling of the 

constituent panels. 
This Report considers the unbuckled cross-sectional deformation and the consequent loss in 

stiffness of thin wings, reinforced by spars and ribs, under pure flexure. The Report is restricted 
to wings of uniform symmetrical cross-section with flat surfaces of constant thickness between 
adjacent spars. 

An analysis is given of the surface deformation and the corresponding loss of stiffness in flexure 
of wings with no ribs. Curves are presented giving the deformed shape of the surfaces of wings of 
this type, and the contribution of the surfaces to the stiffness of the cross-section. An approximate 
analysis is given of the effect of ribs. This analysis, which is also valid for tl~e post-buckling regime 
provided the deflections are small, is considerably more complicated, and a few specimen results 
only have been calculated. It is indicated how, with the aid of these specimen results, a reasonable 
estimate of the effect of the ribs can be made provided the rib spacing is at least twice the spar 
spacing. The buckling behaviour of the wingsurface is also discussed. 

2. Assumptions. The following assumptions are made: 

(i) The cross-sections of the spar webs and of the fillets at the leading and trailing edges do not 
deforn~; the chordwise slope of the wing surface adjacent to the spars and fillets is thus 

i unaffected by the deformation of the cr0~S-sec~tion.of the Wing. 

* Previously issued as R.A.E. Report No. Structures 265--A.R.C. 22,888. 



(ii) The chordwise membrane stresses in the wing surface and the anticlastic curvature of the 
wing, which are both Poisson's ratio effects, can be neglected. 

(iii) All deflections lie within the range ,of validity of 'small deflection' plate theory. 

Additional assumptions made when ribs are present: 

(iv) The spanwise curvature of the neutral axis of the wing is constant. 

(v) Differences in the behaviour of the compression and tension faces do not siglfificantly affect 
the position of the neutral axis of the wing. 

(vi) The ribs are rigid. 

3. Analysis. The deformation of a flat isotropic spanwise strip on the surface of a thin built-up 

wing of uniform cross-section is analysed in this Section, together with the consequent effect on the 
t~exural stiffness of the wing. The edges of the strip, which are attached to spars or fillets, are at 
distances h and Ch (¢ ~< 1) from the neutral axis of the wing cross-section, as shown in Fig. 1. The 
strip, which is of constant thickness t, experiences a longitudinal stress % due to the flexure of the 
wing. The general equation of the deformation of the strip is then 

O~w ~4w 04w t% O~w 
ax ~ + 2 ~ + ay ~ = ~ ~y~.. (1) 

Analyses for wings with and without ribs are given in Sections 3.1 and 3.2 respectively. 

3.1. Wing without Ribs under Pure Flexure. The wing as a whole experiences a constant curva- 
ture K in the y, Z plane such that 

% = E•hZ (2) 

where Z is measured from the neutral axis of the wing cross-section. The surface of the wing makes 
an angle , /wi th  the neutral axis, hence 

0 y ~  = - ~ c o s  ~ .  ( 3 )  

As the deformation of the wing is independent of y, it is only necessary to consider the region 
near y = 0, where Ow/Ox and Oew/Ox 2 are independent of y, to solve the problem completely. The 
following expression for w is obtained by integrating Equation (3) twice, 

Ky ~ c o s  r/ 
w = ~ + c y  + hx(x) cos ~ (4) 

where C is a constant. 
The deflection of the strip perpendicular to and relative to the neutral axis is thus 

hx(x) 

and, if the stri p is on the compression side of the neutral axis, the distance of the strip from the 

neutral axis is, given by 
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Substituting Equations (2), (4) and (5) in Equation (1), the following linear constant-coefficient 
differential equation is obtained 

where 

-d4--~-x+ 4~4x = 4~4{1 - ( 1 - 4 ) X }  (6) 
dwY 4 

/L 4 = 3 ( 1 - v  s) b 4, 

b = width of strip 
and 

X 
X -  

b" 

The general solution to this equation is 

X = 1 - ( 1 - 4 ) X  + A 1 cosh/~Xcos/zX + A 2 sinh/zXcos/xX + A a s inh/xXsin/zX + 

+ A~ cosh/xX s in / ,X.  

As the strip is attached to spars or fillets at x = 0 and x = b, the arbitrary constants must be such 
that 

a X  _ 0 a t X =  0 a n d X =  1. 
X - 3X 

Hence 
A 1  ~ - 1 7  

(sinh 2/x - sin 2/x)A~ = ½-(sin 2/z + sinh 2/,) - 4(cosh/z sin/x + s~nh t~ cos/z) + 

+ ( 1 - 4 )  sin/,  ( s inh/ ,+  sin/z), 
/* 

(sinh 2/, - sin =/,)A a = sinh ~/x cos 2/z + cosh 2/, sin 2/, - 2 4 sinh/ ,  sin/,  + 

1 
+ - (1 - 4) (½ sin 2/, - ½ sinh 2/, + sinh/,  cos/, - cosh/, sin/x), 

b~ 

A4 1(1_4) A~ 
/x 

If  the strip were on the tension side of the neutral axis, Equation (5) would become 

{ x } 
2 = 1 - ( 1 - 4 )  ~ + x(*) • ( s ' )  

The only effect of this alteration would be to change the sign of X. The  deflected shape is thus the 
same on the corresponding tension and compression faces. 

The value of X on the spanwise centre-line of  the strip, X0.> is plotted in Fig. 2 as a function of 
for a series of values of 4, where 

Kb ~ 
t 

The  deformed cross-section of the strip is plotted in Fig. 3 for a series of values of 4 and g. 
q 
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The  strip equilibrates a moment  M about the neutral axis of the wing cross-section. T h e  secant 

stiffness of the strip about this axis is thus given by 

M Ebt ~ 
- + Etbh2~s, 

K 12 

where Ebta/12 is, to first order, the contribution of the flexural rigidity of the strip about its own 

mid-surface and where 

~ = Z2dX = {1 - ( 1 - ¢ ) X -  x}2dX 
0 0 

1 
- [sinh 2/* {(A12 + A2 2) (2 + cos 2/2) + (A8 2 + A4 2) (2 - cos 2/*)} + 

16/* 

+ sin 2/* {(A12 - -de 2) (2 + cosh 2/*) - (A2 2 - Aa 2) (2 -- cosh 2/*} + 

+ 2 cosh 2/~ {A1A ~ (2 + cos 2/*) + A3A 4 (2 - cos 2/,)) + 

+ 2 cos 2/* {A2Aa (2 - cosh 2/~) - A,AI  (2 + cosh 2/*)} + 

+ 2(A~A3 + A2A,) (cosh 2/, sin 2/* - sinh 2/* cos 2/*) + 

+ 2 sinh 2/* sin 2~ (A1A2 + A2A ~ - A3A 4 + A4A1) + 

+ 4/* (A~ 2 - A~ 2 - Aa 2 + A4 2) - 2(3A~A2 + A~A3 + A3A4 - 3A4A~)]. 

Similarly the tangent stiffness of the strip about the neutral axis of the wing is given by 

dM Ebt a 
- + Etbh2~T 

dK 12 
where 

des 
d~"  

The  parameters ~,s and ~, are plotted against the wing curvature parameter ~ in Figs. 4 and 5 

respectively for a series of values of ¢. 

3.2. Effect of Ribs on Wing under Pure Flexure. As the spanwise curvature of the wing varies 

due to the presence of the ribs, the exact analysis of this deformation would be very complex. 

An approximate solution can however be obtained by assuming the spanwise curvature of the 

neutral axis of the wing to be constant. Th e  spanwise curvature of the strip at its boundaries is then 

constant and is given by 

32w 
c3y2 r¢ c o s  ~ .  

T h e  deformed shape of the face as a whole can be expressed as 

Ky 2 cos 
w = 2 + Cy + hx(x, y) cos n.  

T h e  funct ion X(x, y) must satisfy the boundary conditions 

O X -  O a t x  = O a n d x  = b X- -  8x 

and 

aX 0 at the adjacent ribs at y = 0 a n d y  = l. X = ~ y  = 

(7) 

(8) 

(9) 



The distance of the face from the neutral axis of the wing is given by 

Z = - 1 - ( 1 - ~ )  ~ - X(x,y) (face in compression) 

o r  

7. = 1 - (1 - ~b) ~ + X(X, y )  (face in tension). t (10) 

Provided the deformation of the surface is small, the spanwise membrane stress is given by 

% = EKh2. .  (11) 

Substituting Equations (8), (10) and (11) in Equation (1), the following equation is obtained 

2  +oy , -  

where the upper and lower signs respectively apply to the surface in tension or compression. 
It is convenient at this stage to introduce the following 

co-ordinates. 
x y 

X = ~ ,  Y -  --~-, 

b 4/z%~2/2 

Equation (12) may now be re-expressed as 

~4 X ~4 X a4 ~4X { 
3 X  ~ + 2a 2 -  + -- + 4/~ 4 f l  --  ( 1 -  ¢ ) X  + X} \ - 1 + - - -  3X 23 y2  0 y 4  - . 

32 X 
Neglecting the product term fix ~y~, this equation becomes 

04X 04X a4 34X 
- -  + 2~ ~ _ _  + = 

3 X  ~ 3 X  ~ O y 2  O Y~ 

This equation may be solved by 
Fourier series 

non-dimensional parameters and 

13 32X] (13) 
41~ ~ y2  ] • 

l ( ] 1 (14) _+4/x 4 [ 1 - ( 1 - ~ ) X ]  - 1 + 4 / z 4 - - ~ /  -FXj. 

expanding X and [1 - ( 1 -~ )X ]  in terms of the generalised 

x = X 
m = l  n = l  

09 o9 

1 - ( 1 - ¢ ) X  = ~] X c , . , f l )m(X)~F~(Y)  
• t/~, = 1%=1 

(15) 

where ~m(X)and ~F~(Y)are series of orthogonal functions satisfying the necessary boundary condi- 
tions, Equation (9). Such a series of functions is the normal modes of vibration of a clamped-clamped 
beam. These functions have been used in this way by Przemieniecki 4 to solve the problem of thermal 
stresses in rectangular plates due to temperature variations in their own plane. The following 
relationships necessary in the present problem are quoted or deduced from Przemieniecki's Paper. 

d4~r  
d X  4 p,.4(~ r = 0 

hence, (16) 
• q)~(X) = coshp~X-  cosp~X-  q~ (sinhp~X-sinp,.X). 



Pr is the rth positive root of 

1 - cosp coshp = 
and 

q r  = 

f o,,( x )  %( X) lX = 
0 

(p~a - p s  4) q)~q)~"dX = 
0 

c o s h p r -  cosp,. 
sinhp~.- sinpr 

1 ,  S ~  y ,  

O, s :~ r .  

4p,,~p.$(q,.pr - q .p~ ) [1  + ( -1 ) r+q ,  r =t= s, 

p~.qT(2-p~.qr),  r = s .  

% = [1 - (1 -q~)X] ( I ) ~ . ( X ) q J ' ~ ( Y ) d X d V .  • 
0 0 

Substitution of Equations (15) and (16) in Equation (14) gives 

o ~  co co oo 
zL. 4 .  ] (b  ~:r.~ ,~ (I) , q 2  " Z Z {a,,,•(p,,,4 + c~4p~z4 + 4/z4) + ~/~ "runs " "m, ~ ~,, + 2°~z Z Z -,,,~,,--,,, --,~ -7 

?n=l 9g--I m=] I t , = [  

03 co 

-7 t3 [1 - (I -,~)X] Z Z a~,,~O,,,qP~ " = O. (17) 
~ = 1 % - - I  

Multiplication of Equation (17) by ~,!F.~ yields, after integration, the following infinite set of 

linear equations for the coefficients a,,,.~. 

# 

ar~(p,.4+~4p.,4+ 41z a) + 4tz4G,,~ + 2c~ )2 ~ a,,,~ (#,,,. (b , .dX ~F~/ '~F.JY -T- 
?TZ=I ~ , = 1  0 0 

-T-/3 Z a..,. [1 - ( i  - ~ ) X ]  ~, . ,a~ , .dX  .~ _ ~ _ _  = 0 
=I %=1 0 0 

The coefficients a ~  converge rapidly to zero as m and n are increased and only the first few modes 

in each direction need be considered in practice. 
It will be observed that, when ribs are present, the deflections of the compression and tension 

faces of the wing are different even in the unbuckled state. It is thus implicit in this analysis that the 
differences in the deflections of the two surfaces do not materially affect the position of the neutral 
axis. Provided this condition is satisfied the analysis is applicable after the onset of buckling of the 

compression surface. 
Specimen results calculated using the above analysis are shown in Fig. 8 and are discussed in 

Section 5. 
Once the deformation of the spanwise centre-line of the strip has been analysed, the consequent 

loss in stiffness can be found by numerical or graphical integration, as the shape of the deformed 
cross-section of the strip is virtually independent of the rib spacing. The values of the stiffness 
parameters ~s and ~T at any chordwise section can be found by reading off the relevant value of 

X0.s and finding the corresponding value of ~ when no ribs are present by refererice to Fig. 2. The 

values of ~s and ~T can then be found from Figs. 4 and 5. 
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4. Practical Estimation of Loss in Stiffness. As the loss in stiffness experienced in practice is 
usually small, it is seldom necessary to solve the equations given in Section 3.2 if the ribs are widely 
spaced @e., lib is greater than about 2). A reasonable estimate of the loss in stiffness can then be 
obtained by using the analysis given in Section 3.1 for a Wing with no ribs, together with some simple 
estimate of the effect of the ribs based on the results given in Fig. 8. For example it might be assumed 

that the deflection of the surface only differs from the value calculated in the absence of ribs within a 
distance of 0.75b of the ribs. Between this chordwise section and the rib itself the deflection might 
then be assumed to vary linearly. 

If the above approximate method is used, some estimate of the buckling load of the wing surface 
must be made independently. A first approximation to the buckling load can be obtained by assuming 
the strips of sheet constituting the surface to be equivalent to flat strips subjected purely to a 
longitudinal membrane stress varying linearly across their width. Becker and Gerard 1 have tabulated 
the buckling-stress coefficients for infinitely long unreinforced strips under pure bending in their 
own plane, and under pure compression. The ratio of the results for these two loadings when the 
edges of the strip are built-in differs from the corresponding ratio for simply supported edges by 

less than a quarter of one per cent. The buckling-stress coefficient h is here defined in such a way 
that the gi'eatest compressive stress in the sheet is given by 

~r2D 
k - -  

b~t • 

The variation of the buckling-stress coefficient with the ratio ~ Of the stresses at the edges of an 

infinitely long built-in flat strip, which is shown in Fig. 6, has been estimated by factoring and 

interpolating results derived by Timoshenko 2 for a strip with simply supported edges. 

A comparison of the value of the buckling load calculated in this way with that calculated by the 
full analysis of Section 3.2 is given in Section 5. It is shown that, while this simple method 
overestimates the buckling load, the simple theory should give reasonable results up to the buckling 
load calculated by this method. 

5. The Loss of Flexural Stiffness of a Specific Wing Section. To give an idea of the order of the 
loss of flexural stiffness likely in practice, the light-alloy two-spar wing cross-section shown in 
Fig. 7, which has a 2.65 per cent thickness/chord ratio, is now considered. Buckling will occur 
initially in the skin between the spars. If this skin were in pure compression and E = 107 lb/in ~ and 
u = 0.3, the buckling stress in this region would be 56,800 lb/in 2 if there were no ribs present. The 
value of the parameter ~ equivalent to this stress would be 3.78. The full analysis of Section 3.2 
has been computed for this inter-spar box when the rib spacing is four times the spar spacing. 
The results of this analysis, which are shown in Fig. 8, reveal that buckling actually commences when 
the wing curvature parameter g has a value less than 3. As this example has been particularly chosen 
to give large values of the cross-sectional deformation, it is apparent from these results that the 
simple 'unbuckled' theory will give a reasonable estimate of the overall loss in stiffness up to the 
'simple buckling load', although this is strictly in the post-buckled regime. 

Consider now a bending moment applied to the wing such that the mean stress in the skin reaches 
30,000 lb/in ~ at the spars. If  the length of the wing is equal to the chord, and if the spanwise curvature 

varies linearly, this level of stress at the root corresponds.to a tip deflection of 9- 8 per cent of the 
Chord. For the strips of skin between thespars  ~ = 2 and, if no ribs are present, the maximum 
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deflection is 10.5 per cent of the distance of the neutral axis of the skin from the neutral axis of the 

cross-section at the spars. The contribution of these skins to the tangent stiffness of the cross-section 

is reduced by 30 per cent under this loading. Similarly for the tapered sections ~ = 1- 125, and the 

contribution to the stiffness of the cross-section is reduced by 8- 9 per cent. In this way the overall 

tangent stiffness of the cross-section is reduced by 19.7 per cent. At half this spanwise curvature the 

loss in overall tangent stiffness would be 5.4 per cent. 

6. Conchlsious. The unbuckled deflections of the surfaces of a uniform built-up wing in pure 

flexure, reinforced by ribs and spars, have been analysed, together with the corresponding loss in 

flexural stiffness. The analysis has been restricted to uniform symmetrical wings in which the 

undeformed skin surface is flat between adjacent spars. Curves showing the unbuckled deflection ot 

the surfaces of wings of this class with no ribs have been presented. A few specimen results have 

been calculated from an approximate analysis of the deformation in the presence of ribs. A simple 
method of estimating the loss of stiffness of any wing of this class in which the rib spacing is at least 

twice the spar spacing has also been given. It has been shown that wings of practical proportions 
may experience overall losses in tangent flexural stiffness of the order of 20 per cent. 
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Cartesian co-ordinates referred to the specimen strip of the wing surface; 
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(Distance of the chordwise centre-line of the strip from the neutral axis of the 
cross-section, measured perpendicular to the latter) :- h 

x/b, y/l 

Breadth of the strip 

Rib pitch 

Thickness of the strip 

Greatest height of the chordwise centre-line of the strip above the neutral axis 
of the cross-section 

Least value of Z across the undeformed strip 

Angle between Z and z co-ordinates (defined as positive) 

Curvature of the wing in the y, Z plane 

Kb2/t " 

Total deflection of the strip in the z direction 

Non-dimensional function such that xhcos q represents the component of w that 
varies with x 

Value of X along the longitudinal centre-line of the strip 

Direct stress in the y direction 

Moment applied to the strip about the neutral axis of the cross-section 

b/l 

4t*~2121K 

Secant stiffness parameter, Etbh~K 12 h 

d~s Tangent stiffness parameter, ~s + ~ d~( 

Orthogonal functions of X and Y respectively 

Suffices used to identify ~ and ~F functions 
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P~ 

qr 

k 

E 

D 

A1, A2, A3, A4 
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N O T A T I O N - - c o n t i n u e d  

Coefficients of series expansion of x(X,  Y)  
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Arbitrary constants used to define X(X) 

Arbitrary constant used to define w. 
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