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Summ~ry.--Tailplane flutter is investigated theoretically for the following semi-rigid modes : 

(i) tailplane bending, frequency o) 1 

(ii) tailplane torsion, frequency 0)2 

(iii) tailplane rotation, frequency 0) 3 

(iv) fuselage bending or torsion (according to symmetry), frequency %. 

• The frequency ratios 0)2/0)1 ; %/% ; %/%, are varied and graphs of flutter speed against %/% are given. The flutter 
speed drops sharply at low values of %/% but it is probably the ratio %/% that determines the position of the 
drop in flutter speed. Symmetric and antisymmetric results are included both for swept-back and unswept tailplanes. 
The effects of compressibility are excluded, apart from one isolated calculation, but this omission is not considered 
to have an important effect on tile conclusions. 

1. In t roduc t ion . - -An  important classical flutter problem on high-speed aircraft to-day is 
the flutter of all-moving surfaces, and in particular all-moving tailplanes. Current tendencies 
in design are for the longitudinal control to be effected by moving an all-moving tailplane, or 
possibly foreplane, without a separate elevator ; sometimes an elevator is retained for low-speed 
control but is locked at high speeds. I t  is this type of control (i.e., without elevator) that  is 
considered in the present paper, and the four degrees of freedom are bending and torsion of the 
tailplane, rotation of the tailplane, and either fuselage bending or fuselage torsion according 
to the type of symmetry  represented. 

One object of the work was to investigate any regions.of dangerously low flutter speed that  
might occur locally, for example near to a frequency coincidence. The results show that  such 
a region can exist, and suggest that  the important  frequency ratio is tha t  between tailplane 
rotation and fuselage bending. As the calculations progressed it was desired to relate them, 
as closely as possible, to certain Britis h prototype aircraft on which tailplane flutter was an 
important  problem. This has led to the results covering a slightly less systematic range of 
parameters than might have been possible if the investigation had been one of pure research 
throughout, but the use of the Royal Aircraft Establishment Flut ter  Simulator has enabled 
a large number of results to be presented. The results are given roughly in the order in which 
they were obtained ; a swept tail was considered before an unswept tail because of the importance 
to a particular prototype. 

Apart  from one isolated calculation no allowance has been made for the effects of com- 
pressibility in this work. The reasons are, first, that  the worst conditions may well be at high 
equivalent air speed and low altitude where the Mach number may not be very high, secondly 

* Previously issued as R.A.E. Report No. Structures 226--A.R.C. 20,186. 



tile effect of compressibility at subsonic speeds is usually not important  on this ty.pe of flutter 
(see, for example, the calculation reported in Section 5.3) and thirdly at supersomc speeds the 
aft shift in the aerodynamic centre is likely to be beneficial. At supersomc speeds in practice, 
however, the problem is likely to change completely with the possibility of negative aerodynamic 
damping that  can lead to flutter which is not of the classical type. 

2. Symmetric Ternary Fh#ter.--Tailplane flutter can be looked at in two ways;  either as 
binary flutter between a fuselage mode and tailplane rotation, and modified by the tailplane 
flexibilities, or as binary flexure-torsion flutter of the tailplane modified by fuselage bending 
and tailplane rotation. In the present paper the second outlook has been adopted, and since 
the tailplane rotational frequency has been chosen as the primary variable the first calculations 
carried out took account of the two tailplane flexibilities and of tailplane rotation in a set of 
ternary calculations. In practice the relative importance of the two principal binaries* will 
depend on the frequency ratios between the different degrees of freedom (as shown in Section 3.2), 
but  the reason for regarding the flexure-torsion binary as the more important  in the present 
investigation may briefly be  given here. 

The type of tail considered is an all-moving tailplane without elevator. In the past it has 
been more usual for an aircraft to be designed with an elevator as the primary longitudinal 
control, although tailplane rotation may be used for trimming purposes. In such a design 
the tailplane torsional stiffness is likely to be fixed by considerations of longitudinal control and 
stability, rather than flexure-torsion flutter of the tailplane, so that  the critical speed for this 
type of flutter is likely to show a substantial margin over the design diving speed of the aircraft. 
When there is no elevator, however, twist of the tailplane is less important  in longitudinal 
stability and control problems, so that  the torsional stiffness may well be fixed by considerations 
of tailplane flutter. It  follows that  in these circumstances the margin of flexure-torsion flutter 
speed over design diving speed will be made as low as is consistent with safety in order to save 
weight. In general, therefore, a trimming tail, fitted with elevator, may be expected to have 
fuselage bending and tailplane rotation as its principal binary (or else be well removed from tail- 
plane flutter altogether), whereas an all-moving tail without elevator may be expected to have a 
principal binary flutter consisting of tailplane bending and tailplane torsion. 

2.1. Assumptions.--The geometry of the tailplane is shown in  Fig. 1. The aspect ratio is 
higher than it would be in practice, but this fact should not alter any of the general conclusions. 
A high aspect ratio was chosen so that  two-dimensional aerodynamic derivatives could be used 
without serious inconsistency, and in a research calculation it was thought better to use two- 
dimensional derivatives, rather than a rough three-dimensional approximation (more exact 
calculations would have taken too long) again for reasons of consistency. The aerodynamic 
assumptions, therefore, are that  two-dimensional incompressible theory applies. The effect of 
Mach number on the flutter speeds is unlikely to be important, at any rate in subsonic flow, 
and it has not been generally investigated in the present work. 

The tailplane is assumed to be pivoted about a swept-back axis along the quarter-chord, 
so that  there is no aerodynamic stiffness to oppose the rotation of the tailplane. The three 
degrees of freedom are 

(i) parabolic bending along the swept axis 

z = C~2ql 

(it) linear torsion about the flexural axis at the half-chord 

(iii) rigid rotation about the pivot axis at the quarter-chord 

0 = qa 

* The term principal binary is used to indicate the binary with the lowest associated flutter speed. 
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Here 
z defines downward displacement 

0 defines nose-up rotation of sections normal to the axis of sweepback 

c is the chord 

is y/s 

y is the distance of a section from the root, measured normal to the centreline 

s is the distance from root to tip, measured normal to the centreline 

ql, q~, q~ are generalised co-ordinates, and the associated frequencies for pure structural 
deformation in each co-ordinate taken alone are denoted respectively by ~ol, 
c% and o~8. 

The inertia axis is assumed to coincide with the flexural axis at  the half-chord. The mass 
is given by 

m/sc 2 = 1 lb/cu ft 

where m is the mass of the tailplane from root to tip, assumed to be uniformly distributed 
spanwise and with a chordwise radius of gyration of ~c. The structural stiffnesses are varied. 
In addition to the basic calculations covered by these assumptions, two effects have been 
investigated. ' One of these is to change the pivot axis so as to place it normal to the aircraft 
centreline (shown as the alternative position in Fig. 1), the other is to move the inertia axis 
forward to 40 per cent of the chord, i.e., to assume partial mass-balance. 

2.2. Results of the Calculations.--The main variable in the calculation was the rotational 
frequency, o~3, and the effect of changing o~ was also examined. The type of result obtained 
is shown in Fig. 2, where flutter speed is plotted against the frequency ratio ¢o3/~ol, where o~1 is 
the tailplane bending frequency.* The flutter speed, vc, is non-dimensional and has the form 

- - v c  tip 
Vc ~ / L n  

In Fig. 2 the ratio ~o2/~ol has the value 2, which is typical of full-scale experience. I t  can be 
seen that  although the flutter speed drops a little with reducing ~o3 there is no sharp minimum 
in the curve and consequently no local region of particularly low flutter speed. The calculation 
was now repeated with the pivot axis changed so as to be normal to the aircraft centreline 
(see Fig. 1), but in this case the flutter speed scarcely changed at all with o~ ; the curve is shown 
on Fig. 2. A further at tempt to find a region of low flutter speed was then made by repeating 
the calculation again with the inertia axis ahead of the ftexural axis, viz., at 0.4c compared 
with 0.5c. In this case, also shown on Fig. 2, the binary flutter speed (~o3--+ ~) is higher than 
before because of t h e  mass-balancing effect but as ~o~ is reduced the flutter speed does pass 
through a minimum, which is lower than for the other curves, before rising again fairly steeply 
at still lower values of ~%. The relatively high flutter speeds tha t  were regularly obtained at 
very low values of coa seemed unlikely to apply in practice, and it was decided to increase the 
scope of the calculations by  introducing the fuselage degree of freedom. 

3. Symmetric Quaternary Flutter.--3.1. The Fuselage Freedom.--Since this was a research 
investigation, the fuselage structure was not introduced directly into the calculation. I t  is 
assumed that  the mode of fuselage bending is equivalent to rotation of the tailplane about a 
horizontal axis normal to the fuselage centreline and located two chord lengths ahead of the 
tailplane leading edge at the root (see Fig. 1). The structural stiffness of the mode is based on 
the natural  frequency, co4, which is varied, so tha t  the only effect of the fuselage structure is to 

* In general co, is the natural frequency of mode r taken alone. 
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this effect has been 
The four degrees of 

increase the direct inertia of mode 4, represented by the coefficient a~ ; 
allowed for by doubling the contribution to ~44 of the tailplane alone.* 
freedom allotted to the tailplane are now 

(i) parabolic bending along the swept axis 

(if) linear torsion about the flexural axis at the half-chord 

0 =- ~q2 

(iii) rigid rotation about the pivot axis at the quarter-chord 

0 = qa 

(iv) rigid rotation about an axis through the fuselage node normal to the centreline 

c~ = q~, with ~4~ doubled. 

As there are now four degrees of freedom there are three significant frequency ratios, of 
which coa/t % is varied from 0 to oo in all cases and the values of the other frequency ratios are 
shown in the table below. 

(~od~,) *~ 2 4 4 4 8 

(,o d/~,)~ ;2 !2 1 2 2 

The calculations described in this section and in all the later sections were performed on the 
R.A.E. Flutter Simulator. 

3.2. Results of the Calculation.--A typical quaternary result is plotted in Fig. 3 and it can be 
seen that the flutter speed drops sharply at low values of ~o~. An explanation of the effect is 
provided by the other two curves shown on Fig. 3- On the one hand the ternary result {taken 
from Fig. 2) which is appropriate to a fuselage of infinite stiffness shows fair agreement with 
the flat part of the quaternary curve, and on the other hand the binary curve which is appropriate 
to a tailplane structure of infinite stiffness agrees well with the dip in the quaternary curve. 

Fig. 4 shows the effect of varying the frequency ratios co~/col and ~a/~l. As might be expected 
an increase in the tailplane torsional frequency is strongly beneficial except near the dip in the 
curves at low values of o~3. Conversely variations in fuselage flexibility do not greatly influence 
the flutter speed except near the dip. 

Some quaternary calculations were also carried out with the tailplane axis of rotation normal 
to the aircraft centreline as shown on Fig. 1. The results are shown in Fig. 5 where the principal 
effect of changing the axis can be seen to be the almost complete suppression of the dip in flutter 
speed. A probable reason for this is the very great increase in the tailplane moment of inertia 
about the pivot axis as indicated in the Appendix (Table A2). This has the effect that  to 
achieve a given value of ~% the tailplane operating stiffness must be very much higher. The 
high aspect ratio of the tailplane is partly responsible for the large moment of inertia ill this 
case and to that  extent the calculation is unrepresentative of practice. 

This is as far as the investigation was taken into symmetric flutter of a swept-back tailplane. 
It would seem that  the sharpest minimum in flutter speed might be obtained by adding to the 
ternary with forward inertia axis (Fig. 3) a fuselage bending freedom such as resulted in the 
minima obtained in Fig. 5 ; it is, of course, possible that a different tailplane configuration 
would result in still lower minimum flutter speed. 

4. The Normal Mode Approach . - - I f  the routine procedure of a resonance test followed by 
flutter calculations is applied in the clearance of a new prototype with a flying tail, the modes 
obtained will not be those used in Sections 2 and 3, but will be resonance modes built up from 

* The circumflex over a4~ denotes the structural part of that coefficient (see List of Symbols). 
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combina t ions  of those simple modes. In the absence of s'tructural damping the  resonance 
modes will be normal  modes which can be readily ca lcula ted ;  in practice small amounts  of 
s tructural  damping  will not  seriously affect the results. It  was therefore decided to calculate 
the  normal  modes of the  tai lplane for a few particular values of the  structural  stiffnesses. For 
this purpose the  deformabil i ty of the tai lplane was assumed to be  fully expressible in terms of 
the  four semi-rigid modes used in the last section ; it follows tha t  not  more than  four normal  
modes can be obtained and further tha t  the flutter speed as calciflated from all four normal  
modes should be identical  with the corresponding flutter speed as calculated in the last section. 
The main purpose of this investigation, however, was to  determine the effect of omit t ing  one or 
more of the  normal  modes in the flutter calculafions, as is discussed in Section 4.3 below. 

4.1. Calculation of the Normal Modes . - -The normal  modes for ~che ternary (i.e., fuselage rigid) '  
were calculated by  expanding the de terminant  and solving the  characteristic equat ion for 
frequency. This was done for two values of the  frequency c%, and the natural  frequencies, 
s~ which were obtained are given in Table 1 below. 

T A B L E  1 

Basic frequency ratios Normal mode frequency ratios ~2/09~ 

0)2/091 0)3/091 first (D1/091) second third 

2 5 0.99 2..01 8.72 
2 1 0" 77 1.46 3" 07 

The modal  shapes for these two sets of normal  modes are given in Figs. 6 and 7, where the  
leading- and trail ing-edge deflections are plot ted in each case. The characteristic effect of 
sweepback !s seen in Fig. 6a where the  mode, which is pr imari ly one of tailplane bending, shows 
considerably greater  deflections of the  trailing edge tha t  the leading edge. In  Fig. 7a (where 
co2/col is unity) this mode includes considerable tai lplane rotat ion ; the  coincident frequencies 
(cos = oJ1) split into the  pair of normal  modes at frequency ratios of 0 .77  and 1-46 with the  
familiar in terchange of phase between the two. 

The normal  modes for the  quaternaries (i.e., including fuselage flexibility) were calculated 
from the te rnary  solutions using the  escalator me thod  in reverse 1. The calculated frequencies 
for the cases considered are given in Table 2. 

T A B L E  2 

Basic frequency ratios Normal mode frequency ratios D/0)1 

093/0)1 0)~/0)1 094/0)1 ~Ql/(-Ol ~;091 ~,10)1 ~109~ 

2 
2 
2 
2 

0"71 
1-42 
0-71 
1"42 

0"64 
0"89 
0-58 
0-73 

1 "38 
1 "90 
1.15 
1 "42 

2"03 
2"09 
1 "54 
1 "96 

9"53 
9"55 
3" 27 
3"35 

The modal  shapes are plot ted in Figs. 8, 9, 10, 11 and the phase changes of the  component  
modes between one normal  mode and the  next  can be clearly seen. In each case the  normal  
mode of highest frequency is primari ly a combinat ion of tai lplane torsion and tai lplane rotat ion 
with the  two const i tuents  having opposite signs so tha t  a torsional node occurs at about half span. 

5 
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4.2. Flutter Calculations using the Normal Modes.--The next step was to carry out flutter 
calculations using the normal modes as generalised co-ordinates. Clearly the flutter speed 
obtained with all four normal modes should be identical with that  obtained from the corres- 
ponding four assumed modes;  this comparison, together with flutter speeds obtained from 
smaller combinations of normal modes, is given in Tables 3, 4, 5 and 6 for the four cases of Table 2. 

TABLE 3 

Binaries Ternaries Quaternary 

D.O.F. 

1,2 
1,3 
1,4 
2,3 
2,4 
3,4 

V 

> 2 . 2  
1.302 0.698 

> 2 . 2  
1.-176 0"870 

> 2 . 2  
• 1-8 div* 

D.0.F. 

1,2,3 
1,2,4 
1,3,4 
2,3,4 

1-110 
>2"2  

1"306 
1"170 

(D 

0.924 

0.730 
0-850 

1.098 

assumed mode calculation 1- 142 0-90 

TABLE 4 

Binaries Ternaries Quaternary 

D.O.F. v ro D.O.F. v co ,v co 

1" 134 0"805 

co corresponds 
to row 1 of 

0. 924 Table 2 

1,2 
1,3 
1,4 
2,3 
2,4 
3,4 

1.384 
1.442 

>2.2  
1.75 

>2.2  
>2.2  

0.860 
0.952 

div* 

1,2,3 
1,2,4 
1,3,4 
2,3,4 

1.140 
1.394 
1.448 
1.75 

0. 785 
0.870 
0.960 

div 

corresponds 
to row 2 of 

Table 2 

assumed mode calculation 1.160 0"785 

T A B L E  5 

D.O.F. 

1,2 
1,3 
1,4 
2,3 
2,4 
3,4 

Binaries 

0" 834 
1" 368 

>2"2  
>2"2  

1"5 
>2"2  

0. 538 
0. 698 

d i v  * 

D.O.F. 

1,2,3 
1,2,4 
1,3,4 
2,3,4 

Ternaries 

0" 524 
0"512 
0" 705 

div 

O. 740 o. 783 
o. 796 
1. 396 
1.2 

Quaternary 

0-491 

corresponds 
to row 3 of 

Table 2 

assumed mode calculation 0" 760 

":* Denotes steady divergence without oscillation 



TABLE 6 

Binaries Ternar ies  Qua te rna ry  

D.O.F.  D.O.F.  v 6O v 6O 

0. 803 0- 64 1,2 
1,3 
1,4 
2,3 
2,4 
3,4 

Y 6O 

0- 846 0 .648 
> 2 - 2  
> 2 - 2  

1.3 div  
1.3 div  

> 2 . 2  

1,2,3 
1,2,4 
1,3,4 
2,3,4 

0" 834 
0- 806 

> 2 - 2  
1-3 

0-64 
0- 67 

div 

assmned mode calculat ion 0.750 

corresponds 
to row 4 of 

Table  2 

As seen in the Tables 3, 4, 5 and 6 the flutter speeds obtained from all four normal modes 
are not identical with those obtained from the corresponding four assumed modes. The 
differences are at tr ibuted to the following factors : 

(i) rounding-off errors in the simulator coefficients 

(ii) random errors in the  simulator solution 

(iii) neglect of the structural cross dampings. 

I tem (iii) arises because the transformation to normal mode co-ordinates (see Appendix) 
strictly introduces cross dampings ; these were generally ignored, but in one case (that given 
in Table 4) the effect was investigated. The flutter speed for the assumed mode calculation 
was 2 per cent higher than tha t  given by the normal mode calculation, but when appropriate 
cross dampings were included, the difference was decreased to 1{: per cent. 

4.3. Application to Aircraft Clearance from Ground Resonance Tests.--The purpose of this 
investigation was to see the effect on the flutter speed of omitting one or two normal modes. 
If two are omitted the flutter speed is increased considerably but when the fourth mode (i.e., 
the mode of highest frequency) is omitted by itself the increase in flutter speed is small. This 
fact is of considerable importance in practice because the aircraft mode corresponding to the 
highest frequency normal modes of Tables 3 to 6 may be omitted. This can occur if the flutter 
calculations are based on measured resonance modes, in which case the highest frequency of the 
tests is limited b y  practical considerations. The difficulty is that  the normal mode frequencies 
cover a much wider range than the arbitrary mode frequencies ; for example in Table 2, where 
the basic frequency ratios range from 1 to 2, the corresponding normal mode frequency ratios 
range from 0.73 to 3.35. This would mean that  if the fundamental tailplane frequency of an 
aircraft were 20 c.p.s. (a typical value for a fighter) the frequency of mode 4 would be 92 c.p.s. 
and probably outside the test range. For a higher tailplane rotational stiffness (see Table 2) 
the frequency range is even greater. The actual errors in flutter speed (from Tables 3, 4, 5 and 6) 
caused by omitting the highest frequency modes are all less than 6 per cent. 

In practice a ternary calculation may lead to greater errors than this because the degrees 
of freedom in reality are unrestricted, but it seems unlikely that  modes outside the frequency 
range of ground resonance tests can have a major effect on the flutter speed. 

5. Results for an Unswept Tailplane.--5.1. Variation of Basic Frequency Ratios.--The 
geometry of the unswept tailplane is shown in Fig. 12 ; the taper and aspect ratio, zero and 4 
respectively, are the same as for the swept tailplane. 

7 
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The assumed modes correspond with those for the swept tailplane, viz., 

(i) parabolic bending along the sPanwise axis 

z = c~2ql 

(ii) linear torsion about the flexural axis at the half-chord 

(iii) rigid rotation about the pivot axis at the quarter-chord 

0 = qa = c~ 

(iv) rigid rotation about the fuselage nodal point distant two chord lengths ahead of the 
tailplane leading edge 

= q4, with d4~ doubled. 

I t  was soon apparent that  the results were following the same trend as for the swept tailplane, 
so the opportunity was taken to cover more cases of frequency coincidence. Results are given 
for frequency ratios 

o~/ol variable 

~o2/~1 1.0, ~/2, 2.0 }varied independently. 
1/ /2 V2 

The six graphs of v against c%/co~ for the six possible combinations of the frequency ratios 
m2/col and co,dco~ are given in Fig. 13. I t  can be seen that  there are no very serious effects from 
frequency coincidences. In fact the greatest change in flutter speed along the curve occurs 
where the frequencies are most widely separated ; this result is expected in view of the change 
in form of the flutter between high and low values of odin1. 

5.2. Effect of Position of Fuselage Node.--In the work discussed in all the earlier sections of 
this paper the fuselage node was assumed to be two chord lengths ahead of the tailplane 
leading edge. In the present section results are given for corresponding distances of one choral 
length and four chord lengths respectively. The results are given in Fig. 14 for two values 
of the frequency ratio co4/col in each case ; it 
effect on the shape of the curves (less than. 
values of ~oa/~ot the more forward nodal point 

can be seen that  the position of the node has little 
the change in frequency ratio ~o4/~,) but at high 
is favourable. 

5.3. A Result for High Mach Number.--In one case the effect of using aerodynamic derivatives 
appropriate to a Mach number of 0.8 instead of zero was examined. The result is given in 
Fig. 15 ; the appropriate frequency ratios are 

o)d~l = 2.0 ; ,~/o)1 = 2.0 ; 

and vc is plotted against co4/col. It  can be seen that  the flutter speed is only reduced by Mach 
number at low values of the fuselage frequency. 

5.4. The Effect of Structural Damping.--In one case the possibility of raising the flutter speed 
by structural damping in mode 3 (tailplane rotation) was examined. For practical amounts 
of structural damping the gain in flutter speed is poor, as shown by the results given in Fig. 16. 
The frequency ratios are 

= 2 ; = 1 . 0  a n d  V 2  ; - - - - -  llV2 
and flutter speed is plotted against structural damping expressed as a fraction of critical. 
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6. A ntisymmetric Flutter.--In the antisymmetric calculations it is assumed that  the first 
three arbitrary modes, represented by the co-ordinates ql, q2 and q, as given in Sections 2.1 
and 5.1 are unchanged, and that  only mode 4 is different. For mode 4 fuselage torsion is required 
instead of fuselage bending, and we assume the displacement in this mode to be given by 

z = c~q~ ; ~ = 0 .  

The calculations have been carried out both for the swept and unswept tailplanes. 

6.1. Results for the Swept Tailplane.--The flutter curves have the same general shape as for 
the symmetric calculations, and are given in Fig. 17. The dip in flutter speed at low values of 
co~/col is not quite so severe as in the symmetric case, and is greatest when the fuselage torsional 
frequency coincides with the tailplane bending frequency (~o~/~o~ = 1.0) which differs from the 
symmetric result. Rather higher values of the fuselage torsional frequency were chosen than 
of the fuselage bending frequency, because this is generally (although not always) in accordance 
with practice. The values chosen are 

~o~/9~ = 1.0, 2.0 and 4.0 ; c%/,o~ = 2.0 throughout. 

6.2. Results for the Unswept Tailplane.---Again the curves follow the same pattern. The 
results are given in Fig. 18 for frequency ratios : 

co4/o)1 = 1" 18, 1"65, 2"36, 3"33 ; ~2/~1 = 2 throughout. 

The dip at low values of ~3/~01 is in this case rather more severe than the symmetric and is 
greatest at high values of the fuselage torsional frequency. 

7. Remarks on the Flutter of Foreplanes.--It will be apparent that  many of the results obtained 
for flutter of tailplanes will apply qualitatively to foreplanes also. Ternary results (fuselage 
rigid) and antisymmetric results will be unchanged as all t he  arbitrary modes are identical in 
these calculations. The symmetric calculation with flexible fuselage will differ on account of 
the reversal in sign of the incidence in the fuselage bending mode. One effect of this is to change 
the direct aerodynamic stiffness c4~ from positive to negative and thus to introduce the possibility 
of divergence. Apart from this the results forf lut ter  will be modified slightly but in view of the 
unchanged antisymmetric picture there is unlikely to be much improvement. Body freedom 
flutter of the canard layout is a serious possibility, but in this type of flutter flexibility of the 
foreplane plays only a minor role, so that  the subject is outside the scope of the present paper. 

8. Conclusions.--The problem of tailplane flutter has been investigated on the basis of varying 
appropriate frequency ratios. I t  is considered that  the use of four arbitrary modes, viz., 

(i) tailplane bending 
(ii) tailplane torsion 

(iii) tailplane rotation 

(iv) fuselage bending or torsion according to symmetry 

are sufficient to embrace any likely form of flutter. An important  conclusion is that  the three 
normal modes of lowest frequency are sufficient to give a reliable flutter speed. 

The flutter curves are all of the same general shape, whether for symmetric or antisymmetric, 
swept or unswept cases, although a change in the pivot axis for a swept tail can lead to appreciable 
modification of the results. At low values of the tailplane rotational frequency the flutter speed 
drops sharply as flexure torsion flutter is overridden by (Iuselage-bending)-(tailplane-rotation) 
flutter. Clearly, this region should be avoided in practice by the use of high operating stiffness 
of the tailplane. One cannot generalise as to whether symmetric or antisymmetric flutter is 
the worse, and each must be examined in specific cases with the relative frequency ratios probably 
being the deciding feature. 
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A typical structural inertia coefficient 

A typical aerodynamic inertia coefficient 
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Frequency of mode r 
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Air density 

Distance of flexural axis ahead of leading edge 

Tai!plane chord 

Tailplane semi-span 

Defines downward displacement 

Defines nose-up rotation of sections parallel to the line of flight 

Defines nose-up rotation of sections normal to the axis of sweepback 

---= y / s  

Distance of a section from the root, measured normal to the centreline 

Generalised co-ordinates 

Mass of the tailplane from root to tip 

No. A zttho r 

1 Joseph Morris 

R E F E R E N C E  

Title, elc. 

The Escalator method in engineering vibration problems. 
Hall, Ltd. 1947. 

PuNished by : Chapman and 
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A P P E N D I X  

Tables of Flutter Coefficients 

T A B L E  A1 

Scaled Coefficients for Swept Tailplane with the Original Four Degrees of Freedom 

Degrees of freedom : 

(1) Parabolic bending along the  swept  axis 

(2) Linear  torsion about  the flexural axis at the  half-chord 

(3) Rigid ro ta t ion  about  the pivot  axis at  the  quar te r -chord  

(4) Rigid ro ta t ion  about  the  fuselage node (axis normal  to centreline).  

Time 
constant 

a 

b 

a 

b 
C 

e 

a 

b 
C 

. e 

a 

b 
C 

e 

1110 
121 
80 

397 

27 
--11 
--15 

230 
12 
,0 

1110 
133 
101 

I 
1 

387 
387 
849 

380 
76 

--166 
555R 

500 
166 

0 

177 
396 

1110 

769 
41 
15 

117 
3 

--3 

415 
17 
0 

30.8r 

1110 
62 
27 

272 
50 
42 

3 
- - 8  
--9 

81 
4 
0 

759 
81 
74 

lllOt 

S t ruc tura l  dampings  were i n c l u d e d  in the  leading diagonal terms of this table (and all 
subsequent  tables) ,  as { per cent  of critical damping.  

e.g., dli =- 0-01 v ' ( l l l 0  × 397) = 7, and  similarly for d2~, d~ and  d~ 

The  var ia t ions  of the  stiffnesses in modes 2, 3, a n d  4 and  their  effect on the  f lut ter  speed are 
shown in Figs. 4a, b and  c. 

11 



TABLE A2 

Scaled Coefficients for Swept Tailplane with the Pitching Axis Normal 
to the Aircraft Centreline 

(as shown in Fig. 1) 

Modes 1, 2 and 4 as in Table A1. 

Time 
constant  

a 

b 
C 

e 

a 

b 
C 

e 

a 

b 
C 

e 

a 

b 
C 

e 

471 
50 
32 

234 
182 
342 

1110 
32 

6 

39 
- -2  

499 
14 
2 
2-4t~ 

1180 
40 
10 

123 
20 
16 

The moment of inertia of the tailplane about its hinge-line a~, is increased in the ratio 15. 594:1. 
This is not immediately obvious from Tables Ai and A2 as the scaling factors on the third row 
and column in each case are different. The variations of the stiffnesses in modes 2, 3 and 4 and 
their effect on the flutter speed are shown in Fig. 5. 
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T A B L E  A3 

Scaled Coefficients for Swept Tailplane with Calculated Four Normal 
Modes for Particular Values of the Structural Stiffnesses 

The values of the s t ruc tura l  stiffnesses correspond in this case to the following f requency 
ratios • 

co~ = 2, ~o~ = 5, c% _ 1.43 
gO 1 (D 1 09 1 

Time 
constant 

a 

b 
C 

e 

a 

b 
C 

e 

1 
g 

976 
206 
298 

1110 

56 
191 

--67 
- -  168 

- - 7  
--12 

- -  148 
--299 

856 
92 

--184 
1110 

--41 
172 

1 
1 2  

135 
334 

--93 
221 

709 
81 

--186 
1110 

- - 3  
--14 

5 
7 

--36 
--11 

--17 
--11 

543 
19 
0 

1110 

The results are given in Table 4 of the main  text  which shows tha t  the flutter speed gives good 
agreement  wi th  tha t  obta ined from the  assumed mode  calculation. 

The normal  modes for the  t e rna ry  were calculated by  expanding  the  de te rminan t  and solving 
the  character is t ic  equat ion  for frequency.  The normal  modes Of the qua t e rna ry  were then  
calculated from these usiiig the escalator me thod  in reverse in terms of variable f requency ratio. 
The ma t r ix  t ransformat ion  [ql [U7 [q'J was then  carried out  to obtain  the  new coefficients, 
where  EU] is the  ma t r ix  of. coefficients given in. Table A1 for the  corresponding values of the  
.stiffnesses, viz., in this case 

e22 = 5 5 5 ]  

e~3 = 232 

e~4 = 2220 

[q'j is the  square ma t r ix  of the  four modal  columns obta ined  from tbe four values of the  f requency 
and [q~ its transpose. The modal  shapes are p lo t ted  in Fig. 9. 

The effect of the t r ans fo rmat ion  on the s t ruc tura l  dampings  would be to in t roduce  cross 
dampings,  bu t  as these wdre very  small t hey  were ig-nored. -k In  fact f6r the case given in Table A3 
they  were later  included in order  to see wha t  effect t hey  would have  on the  flutter  .speed and the  
effect was an increase of less than  1 per cent. 
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TABLE A4 

Scaled Coefficients for Swept Tailplane with Fuselage Torsion 
as the Fourth Degree of Freedom 

Modes 1, 2 and 3 as in Table A1. 

Time 
constant  

a 

b 
- C 

e 

412 
51 
38 

0 
126 
413 

296 
17 

8 

1292 
109 
23 

0 
- -22  
- - 5  

278 
0 
0 

775 
53 
11 

277 .5t 

The results of varying the stiffness in mode 4 for ~%/o~1 = 2.0 are shown in Fig. 15, where v 
is plotted against co3/~ol. 

TABLE A5 

Scaled Coefficients for Unswept Tailplane with the Original Four Degrees of Freedom 

Degrees of freedom as for swept tailplane (see Table A1). 

Time 
constant  

a 

b 
C 

e 

. a  

b 
C 

e 

1108 
157 
33 

400 

0 
- -98  
--21 

392 
0 
0 

577 
74 
16 

I 0 

126 
413 

594 
126 

--276 
857 

378 
134 

0 

56 
90 

233 

523 
85 
82 

505 
26 

- -62  

762 
76 

0 
1101 

553 
83 
69 

577 
184 
208 

56 
- -  100 
--156 

415 
34 

0 

1065 
160 
176 
754 
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The variations of the stiffnesses in modes 2, 3 and 4-and their effect on the flutter speed are 
shown in Fig. 13. The values of the structural stiffnesses given in the above table correspond 
to the following frequency ratios • 

o~/~,., = 2-0 co3/~o, = 4"0 = 1 / v ' 2  

TABLE A6 

Scaled Coefficients for Unswept Tailplane with Fuselage Torsion 
as the Fourth Degree of Freedom 

Modes 1, 2 and 3 as in Table A5. 

Time 
cons tant  

f 

a 

b 
C 

e 

a 

b 
C 

e 

623 
88 
19 

0 
75 

248 

1059 
171 
166 

623 
352 
304 

0 
--236 
- -  192 

265 
0 
0 

550 
212 
176 
794 

The results of varying the stiffness in mode 4 for ~o2/col = 2.0 are shown in Fig. 16, where vc 
is plotted against ~o3/~1. The value of e~4 given in the table corresponds to a frequency ratio 
~ / ~  = 0.5. 

b~ 
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FUSELAGE NODE AT A DISTANCE 
2c. AHEAD OF "THIS AXIS 

45 ° 

\ \  

..aN{? PIVOT AXIS 
(NORMAL TO CENTRELI ME) 

)PiVOT2~ c)/k'/'l S 

~FLEXURAL AX~S = 
INERTIA AXIS 

FIG. 1. General arrangement of swept-back tailplane. 
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vc against c%/coj : fuselage rigid : swept tailplane. 
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