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Summary. An analysis is presented of the buckling of the leading edge of a thin built-up wing subjected 
to spanwise thermalstress. Computed values of the buckling load are given in graphical form for a wide 
variation of leading-edge dimensions and these results are used to obtain buckling criteria for some specific 

examples. 

1. Introduction. When a wing is subjected to aerodynamic heating, the leading edge becomes 

hotter than the central portion partly because it has less thermal capacity, and partly because the 
aerodynamic heat-transfer coefficient is larger there than elsewhere in the wing 1. Thus there is a 

spanwise compressive thermal stress in the region near the leading edge which may cause buckling. 

The leading-edge buckling of a solid wing or a wing with a continuous shear filling has been 
treated by Mansfield 2. In this paper the same problem is considered for a built-up wing. The leading- 

edge construction considered consists of two skins effectively built-in to a spar along one edge, with 

their other edges rigidly attached to a fillet of triangular cross-section. The mechanisms by which 

the leading edge may be stressed in practice are various, depending on the heating conditions and 

the design of the whole wing, but conditions can be envisaged where the compressive stress in the 

fillet was either higher or lower than that in the skin, and even where the fillet was in tension while 

the skin was in compression. The spanwise stress in the skin is taken to be constant across the width 

and that in the fillet an arbitrary multiple of that stress. If there is no stress in the fillet the buckling 

stress for such a structure varies between that for a long plate built-in along one edge and free along 

the other and that for a plate built-in along both edges. However, if there is a compressive stress in 

the fillet the structure may  buckle at a value of the stress in the skin even lower than that for the 

clamped-free plate. 
The effect on the buckling load of chordwise ribs is estimated by calculating the variation of 

buckling stress with wavelength in some particular examples. It is found that in most cases the ribs 

have only a small effect provided the distance between them is more than three times the distance 

between the fillet and the first spar. However, when the effective end load on the fillet is high 

compared to the stress in the skin, the spanwise waves become long and ribs can provide a considerable 

stabilising effect. 
The critical temperatures and stresses for five examples of possible leading-edge designs are given. 

* Previously issued as R.A.E. Report No. Structures 259--A.R.C. 22,982. 



2. Assumptions. The usual assumptions of small-deflection theory are made together with the 
following: 

(1) The spanwise compressive stress is constant across the width of skin between fillet and first 
spar; and the stress in the fillet is an arbitrary multiple of  that constant. 

(2) The angle. 20 between the two skins at the leading edge is such that cos 0 - 1. 

(3) The skin is rigidly built-in both to the first spar and to the fillet. The spar is perfectly rigid 
and the fillet cross-section undeformable. The fillet has finite torsional and flexural rigidities 
consistent with its thin triangular cross-section. The torsional rigidity is calculated using St. Venant 
theory, no accoun~c being taken of the change in effective rigidity due to the type of loading, though 
an estimate of the magnitude of this effect may be obtained from Appendix II. 

3. The Derivation of the Condition for Buckling. When the leading edge of a wing buckles under 
compressive spanwise stress, the initial buckled form may be represented by a function of the type 

W = f ( X )  sin ~r Y 

where X is the chordwise and Y the spanwise co-ordinate and W the deflection perpendicular to 
the mid-chord. If the wing cross-section is symmetrical about the mid-chord, the deflection of the 
leading edge itself will be perpendicular to the mid-chord. In the present case the wing consists of 
two skins stiffened by  spanwise members, the design of the leading edge being that shown in 
Fig. la. Thus, provided assumption (3) of the previous section holds, each skin will undergo a 
displacement in its own plane at the junction with the fillet given by 

u =  tan O (w + b OW 1 (2) 
~X ]ev~luated ~t junction 

where x is the co-ordinate shown in Fig. lc and w is the deflection in the positive z-direction. This 
displacement will give rise to a system of plane stress in the skin which in turn will affect the 
boundary conditions at the junction between skin and fillet. However, this system of plane stress 
does not alter the differential equation governing the bending of the skin because terms arising from 
it are of  the second order of smallness. The relevant differentia ! equation therefore is that given by 
Timoshenko 3, namely 

02w 
DV4w = - N v Oy 2 , (3) 

with conditions for a clamped edge applied at x = 0 and conditions necessary for the equilibrium 
of the fillet in bending and torsion at x = a. 

Substituting the solution 

a (4) 

into equation (3) and writing 

' D ' 

the differential eq~tation 

+ m2rr2(m2rc2-¢2f)(a)X- = 0 (6) 

(5)  



is obtained. The  general solution of this equation can be written 

f ( x ) =  Cle_axla + Cuea,x, la + Cs sin fX--a + Ca cos fiX__a 

where 

and 

(7) 

o: = mlr(~b + mrr)" 
(8) 

The  conditions at x = 0 are those for a built-in edge, namely 

f (0)  = 0 = if(0) (9) 

and applying these to equation (7) gives 

1 : ( : )  __ ,. 
The  forces acting on the fillet due to the distribution of plane stress in the skin, are determined in 

Appendix I to be a direct force given by 

V /3 - v\ sinh 2mTr'] 

and a sp_anwise shear force given by 

l i ; 1 
S =  2Ghtanom~r ( l + v )  2 " \ m g  / - 1 mwy 

a -  [ 3  f ( 1 ) +  i f ( l ) c o s  . (12) 
- _v sinh m~r]~_ 1 a 

v re'n" / 

The  shear forces due to top and bot tom skins combine to exert a moment  M r on the fillet, where 

MT - 2qS  

and therefore there is an upward  vertical force V~, on the fillet given by 

dS 
VT = -- 2 q  dyy" (13) 

N o w  the shear centre of the fillet is at its centroid (see Ref. 4), and therefore the deflection of the 
shear centre is given by 

W d- ~ ~ evs lu~tea  at  junc t ion  of s ldn  ~n4 fillet. 

Thus,  using the notations shown in Fig. 1, the boundary condition for equilibrium of forces on the 
fillet is 

P (32w b 0Zw_] 
2V~. cos 0 + 2F  sin 0 + VT + coTOs O l OyZ + 3 3xOy2]~=:~ + 

b 
+ + = 0 (14) 

cos 0 \ a y  ~ 3 axay4]~=,~ 



where P is the total end load on the fillet. The condition for equilibrium of moments is 

b ( l + 2 s i n 2 0 ) - 2 F ~ b s i n O c o s O +  V T ~ b c o s O +  2M.~ + 2 Vx ~ 

+ a i  \g-ggy~/~=~ = o.  

The expressions for M x and V~ in terms of derivatives of the deflection are: 

M.,. = - D \Ox2 + u ay 2 ]~=, - ~ {f (1) - v(m~)2f(1)} sin mTrYa 

Vx = - D \Ox3 + (2-00xOy2]~=,  - a3 if"(1) - ( 2 - 0  (m~)2f'(1)} sin m~rYa 

At this stage it is convenient to introduce the notation 

3 - v sinh 2mTr 
1 +  

1 + v 2mTr 
xd~) = (3 -,, sinh m~'l~ + ;  ~ - 1  

x~(m) = (m-)  ~ L (14-v) ~ \ ~ g  / (3-, ,  sinh m~-l~ T;, ~-~ "/ - 1  

Equations (11), (12) and (16) may now be substituted into equations (14) and (15) to give 

4Gha~tan~O[ ( l+v )  q ] b , 
- f " (1)+(2-v ) (mzr)2 f ' (1 )  + D 0 + v  ) X~+- 2 CoX2 [ f ( 1 ) + a f ( 1 ) ] -  

Pa(mrr)~ [f(1) + b ' I f ( i )  b , ~aaf(1) l EI(mTr) 4 + ~ a f  (1)] 

- 2D cos;0 + 2Da cos20 = 0 
and 

1 b (1 + 2 sin~0) [f"(1) - ( 2 -  9) (m~r)~.f'(1)] + f " ( 1 )  - v(mTr)~f(1) + ~ a 

(15)  

(16) 

(17) 

(18) 

(19) 

E I I + 3 a  D( I+v )  X~ 4 c o X ~  ( 1 ) + a  f ( 1 )  + ~ f ( 1 )  = 0. (20) 

If 0 is assumed small, the various parameters can be written in terms of co~h, q/c o and h (the ratio 
of the compressive stress in the fillet to the spanwise compressive stress in the skin) as follows: 

and 

EIsec20 _ ( i _ u s ) ( q l  4 [ ~  = (1 + v~ GJsec~O 
2Da \Co~ \ h i  \ 2 ] 2Da 

a P  s e e O  _ (cli s Co 

2D 2 \%/ h 

4Gha 2 tan~0 
D(1 + v) \ h /  " 

(21) 



Now if the further non-dimensional parameters 

( l - v )  q ( ~ )  2 ( q t 2 ( ~ )  2 ) 
- ~i = 24 ~ Co X1 + 12(1-  v) (mrO2x2 + 

\Col 

+ 6 \Col h (mrr)2~2 3 \Co/ 

(c114 (mTr)~ --  
~h = ~ \Co /  

1 - y C 1 

Co 1 

3 c o ~ \Co/ Xl + 

+ 4(1-v),Co/(Ql z (~)2(mrr)2x2-2(1-v)\Co/(~l a (~)a(m~-)2 

and 
(1 - v) ~ / c ° ~  2' (ct)~ ( ~ )  2 

~4= 16 ~ Co \ h i  X l - 4 ( l - v )  ~ (mrr)2X2 , 

are introduced, equations (21) may be used to express equations (19) and (20) in the form 

f "  - (2 -v ) (mr r )e f '+  Af t '+  )t2f = 0 
and 

c1¢,,,+f,, 
3C 0 J 

Substitution of the expression for f given by 

XlA 
and 

X~A 
where 

+ ) t f f ' -  v(mzr)2f + )4f  = O. 

equation (10) into these equations gives 

+ X4B 

X 1 = at sinh a - fis sin fi + 21(a sinh a + fi sin fi) + A2(cosh ~ - cos fi), 

X 2 = t  cosha  + s c o s f i  + )tl(cosh a - c o s f i ) +  A S ( s i ?  a 

, 1 q (a 3 sinh a -f13 sin fi) + x ~  = s cosh ~ + t cos ~ + ~ ~o 

and 
+ ~t3(a sinh a + fi sin fi) + 24(cosh ~ - cos fi) 

s sinh 
2 4 - -  t sin fi 1 Q (a ~ cosh a + fi~ cos fl) + - -  

s and t being given by 

and 

+ ~3(cosh ~ - c o s f l )  + ~t4. ( s i ~  ~ -  

= ~ - ~(m~)~ / 

J t ~ + ~(m.)~ .  

sin p~ i . 

t 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(85558) A* 



The condition for buckling is that the values of A arid B obtained from equatior~s (25) should be 
non-zero, so that 

X1X~ 
= O. (28) 

G x ,  
Equation (28) is an equation of the form 

C O  Cl 4) 
R ~ , ~ o , k ,  mrr, = 0 ,  (29) 

where in any given example co~h, q/c  o and k are known. To determine the onset of buckling, equation 
(29) must be solved for ~b for a range of values of m and the smallest value of ~b chosen. 

4. The Numerical Evahtation of the Buckling Stress. The calculation of the critical value of ~b 

from the buckling condition given by equations (25) and (26) was programmed for the Royal 

Aircraft Establishment, Mercury digkal computer. 

The first root of equation (29) was determined for a given value of mTr to an accuracy of 0. 001 

(corresponding to about 0.02%) and the value of mTr which gave the smallest of these roots was. 
10 evaluated to an accuracy of 0. 0625 (corresponding to about 1~ }/o). The final value of ~bcr obtained 

was correct at worst to 0.005 (about 0.1%) because the value of the root varied slowly with mTr. 

A further programme was made to evaluate the deflected shape of the skin, the bending moment 

and the vertical force at six stations equally spaced along the skin. The results obtained from these 

programmes are shown in Figs. 2 to 11 inclusive. 

5. Discussion of Results. The buckling parameter ~b cr was calculated for values of q/c  o varying 

between 0.1 and 1 and values of co/h not exceeding 20. The smallest practical value of co/h depends 

on the value of cl/c o because q must be greate r than h. The calculations were performed for values 

of k equal to - 1, 0, 1 and 2 and the results are shown in Figs. 2 to 5. The variation of spanwise 

wavelength over the same ranges of cl/c o and co/h and k is shown in Figs. 6 to 9. It can be seen that 
for certain values of q/c  o and k there are discontinuities in the wavelength as co/h increases, and 
corresponding discontinuities in the slope of the buckling-parameter curves. At these discontinuities 
there are two possible modes of buckling, one very similar to the clamped-clamped plate and the 
other with longer spanwise waves. 

Fig. 9 shows the variation of ~b with wavelength for some particular values of co/h , q /c  o and k, 
one set of these parameters being chosen to be at a point of discontinuity. 

In the analysis no account is taken 0f the effect of chordwise ribs on the stiffness of the structure. 
If however there are ribs spaced at distances less than about 1.5l, where l is the spanwise half- 
wavelength, of the buckled mode with no ribs wesent, the half-wavelength of the mode actually 

adopted is in general equal to the rib spacing. Thus Fig. 9 can be used to obtain an estimate of the 
effect of closely-spaced ribs for a number of examples. In those cases where two alternative modes 

exist for similar buckling loads, that with the shorter wavelength is likely to be adopted if ribs are 
present, and thus while having a large effect on the mode of buckling they cause little change in the 

- 

critical load. In most cases the effect of ribs is small provided the distance between them is greater 
than three times the distance between the fillet and the first spar. Ho,wever, if the stress in the fillet 

is high compared to that in the skin, the spanwise waves become long and the presence of ribs leads 

to a significant increase in the buckling load. 



Fig. 10 shows for a particular example q / c  o = 0" 6 and h = 1, the variation of deflection,.bending 
moment and vertical force across the width of the skin for different values of co/h. The two distinct 
types of mode which occur on either side of the discontinuity of wavelength (see Fig. 6) can be seen. 

Figs. 11 and 12 show dimensions of five possible leading edges. The critical spanwise stresses for 
these are giveri in Table 1 for the four values of k previously mentioned. 

-To show the order of temperature rise at which buckling takes place it is assumed that the leading 
edge is subjected to a constant temperature rise A T above the rest of the wing (shown in Fig. 12c) 
and that the central portion of the wing is perfectly rigid. This means that the thermal stress 
throughout the leading edge is sEA T. Critical temperatures based on this law are given in Table 1 
(corresponding to stresses for k = 1). This is likely to be an underestimate of the critical temperatures 
occurring in practice, and for more accurate prediction,the design of the whole wing must be taken 
into account. 

Fig. 13 shows the variation of effective torsional rigidity of the fillet with spanwise wavelength 
and end stress. The parameters used in Fig. 13 may be expressed in the notation of the main body 
of the report as 

~1 2 - -  

4 (Co/h)  

 (cl/co) 
ml - (l/a) 

Thus for any set of values of co/h , q / c  o and k, an approximate value of the factor that should have 
been applied to the torsional rigidity of the fillet may be obtained. Now for the five examples given 
in Table 1, that of Fig. 12b involves the largest error of this type and for this case the required 
factor is about 0.70 when k = 1. Since the torsional rigidity of the fillet is itself only one of several 
factors influencing the buckling load, the error entailed in using the St. 'Venant value is small, 

"6. Conclusions. An analysis has been given of the buckling under spanwise thermal stress of the 

leading edge of a built-up wing. Graphs have been presented showing the buckling parameter over 
a wide range of leading-edge dimensions. Examples have been given showing critical temperatures 
and stresses for some possible leading edges. 

7 
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X, y ,  Z, gO 

U, 7) 

a, b, O, Co, q ,  h 

Vx, Mx, F 

S 

MT 

N, /h 
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El, GJ 

P 

¢ 

f(x/a) sin m~y 
a 

l 

x1, x~ 

s~ t 

xl, x ,x3, 
R 

N O T A T I O N  

Young's modulus and Poisson's ratio 

Chordwise and spanwise co-ordinates and deflection perpendicular to 

mid-chord 

Co-ordinates relative to skin and deflection in positive z-direction, 

(see Fig. lc) 

Displacements of skin in x- and y-directions respectively 

Dimensions shown in Fig. la 

Forces and couple shown in Fig. lb  

Spanwise shear force on x = a 

Moment on fillet due to S 

Resultant vertical force on fillet arising from M~, 

Spanwise compressive thermal stress in skin 

Spanwise thermal stress on fillet 

Flexural rigidity of skin 

Flexural and torsional rigidities of fillet respectively 

End load on fillet 

~/(N~a~ 
I , D ]  

Function defining deflection of skin 

a/m, half wavelength of buckles in the spanwise direction 

Defined by equation (8) 

Defined by equations (17) and (18) 

Defined by equation (22) 

Defined by equation (27) 

Defined by equation (26) 

x1x  - x x3 
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N O T A T I O N  

Used only in Appendix I 

p = m q r  

A = [f(1) + ~f'(1)] tan 0 

x i y  - -  . . { -  _ _  

a 

B = u + i v  

a~,, %, ~'x v Stresses in skin arising due to tip deflection 

0 = a x + cry 

0 = % - - a  v + 2 i ' % v  

~(~), w(~) Complex stress functions 



APPENDIX I 

The Distribution of Plane Stress in the Skin 

As explained in Section 3, when the leading edge of the wing deflects, the skin undergoes a 
displacement in its own plane which gives rise to a state of plane stress. The problem corresponds to 
that of an infinite strip with zero displacement along one edge. and along the other a sinusoidal 
displacement perpendicular to the edge. 

That  is 
u = O ,  v = O o n x - O ]  

py ~J 3 ( 0 )  
u A s i n  , v = 0 o n x =  

a 

w h e r e  i n  t h i s  c a s e  . . . . .  

A = 1 )+  1 t an0  (31) 

p ~ m T r .  

Now if the complex displacement is given by . . . . . . . .  

B = u + i v  } 
and (32) 

~ = x  i y - - - t -  
a a 

the displacement at any point is given by 

3 - - u  
8GB - 1 + v f~(~) - ~ ' ( ~ )  - ~'(~) (33) 

where f~(~) and ~(~) are the complex potential functions satisfying the boundary conditions. The 
stresses are given by the equations 

1 1 o = ~x + % = U~ [ a ' (~ )  + ~ ' (~)]  

and (34) 
1, [~,,(~) + c~"(~)]. 

qb = %--or  v + 2 i r  x v -  2a 

Consider the potential functions 
3 - v  p co h,  1 

f~(~)= - I ( ~ - v s i n h p )  z ] -  - 1 (35) 
P + v  p 

and 

4AGi T ~  coshp(~+ 1) + \1 + v] p 

3 - v  - s i n h p ~ l ]  -p~ lsinhp(~-l) + (~-v)  sinhp 
1) ~'(~) = _ 

-  sinhpi  11 

10 



Substituting these expressions into equation (33) the displacement is given by 

3 - v /3 - v\msinhp 
4 A G i  [ ( ~ v ) { c o s h p ( 1 £ - i ) - c o s h p ( + +  I ) } +  t ~ )  - P  - { c ° s h p +  - coshpZ£} + 

8 G B  = - 

3 - -  72 

-v  sinhp] 9+- 1] 

On x = 0, where ~ = i y /a ,  this expression becomes zero, and on x = a, where ~ = 1 + ( iy /a)  it 

reduces to B = . / /sin p y .  Therefore  the above potential functions are the solut ion to the problem. 

Now to find the stresses on x = a, these potentials must  b e substituted into equations (34) and the 

boundary condition x = a applied. The  expressions derived in this way are 

] F /3 - v\ sinh 2/)7 +G l 1+ y I 
(++>+=++ - +0 + ~ i+(+_- -_~ +T~_h b+~+ 2 ] |  A sin P + , I 

Lkl+~ p ] ] I 
I 

" vCa+).+=+ t (36) (%),+=+ 
/ 

1 (~'xy).+=., - 2 @  ( l - sT@--  t - - T - - /  - 1 I 

\ 1 + ~  p ] J 
The  effect of the stresses % and ~.~/ on the boundary condition at x = a is shown in Section 3. 

11 



N O T A T I O N  

Used only in Appendix II  

b . 

hi 

M sin mlTrY 
b 

(71 

g01 

D1 

/x 

V 

U 

WM 

ao, al, Ao, A1 

0~0~ 0~1~ O~ 2 

/~o,/31, ~ ,  Vo, Vl, V2 

Width of plate 

Maximum thickness of plate 

Applied edge moment 

Applied end stress 

(b) rnl~Y hlf  1 sin ~ ,  downward deflection of plate 

EhlS/12(1 - v ~) 

~lhlb2/D1 

Mb2/hlD1 

Ratio of effective torsional rigidity of plate to St. Venant value 

Total potential energy of plate 

4b~ml V 
Dlhl 2 

Strain energy of plate 

Energy due to applied moment 

Energy due to end stress 

Arbitrary constants in expressions for f l  

Defined by equation (50) 

Defined by equation (52) 

12 



~ A P P E N D I X  II  

The Effective Torsional Rigidi ty  of the Fillet 

,. In  calculating the buckling load, the torsional rigidity o f  the fillet is assumed to have the value 

given by St. Venant theory. However this value is altered by the finite wavelength of the buckles 

and the end stress in the fillet. An estimate of the effective torsional rigidity of the fillet can be obtained 

by:considering a tapered plate of width b and maximum thickness h~ with sinusoidaUy-distributed 

edge moment M sin (m i zry/b), and constant end stress a i (see Fig. 13). Now if w I is the downward 
deflect}or[ of t h e  plate and x is measured from the tip across the width, the ratio of the effective 

torsional rigidity at the point of attachment of the skin to the St. Venant value is 

I f  w 1 is taken as- 

equatio n (3 7 ) becomes 

M sin ml~ry 
12 b 

= + (37) 
Ghi ~b [ OSwi ~ " 

12Mb ~ 
= - h~G(mtzr)2f~'(1 ) . (39) 

Now an approximate solution to this problem can be obtained using the Ritz method. The  total 

potential energy of the system is 

where 

and 

V = U + WM + W~ 1 

U = the strain energy of deformation per half-wave 

1 ~ /82wt ~ 2g/)l ~ 2 F[ ~2Wl~ 2 
~-x~  ' + 2(1 v) 

W~sf = energy due to the edge moment  per half-wave 

= fb  0 ~V~l~Y (~Wl 1 /mi M sin ~ - -  \ 8x / ~=b dy 

W~i = energy due to the end stress per half-wave 

Now writing ' 
x gh l  ~ 

= ~,  Di  = 12(1 -v~ ) '  

and 

aihlb 2 M b  ~ 
¢12 = D--~' tt - h iD i '  

V = 4b~miV- 
Dih i  2 ' ] 

(40) 

~x ~ Oy~l dy (41) 

(42) 

(43) 

(44) 

13 



equations (40) to (43) become on subst i tut ion of equat ion (38), and integration wi th  respect to y,  

FI = P (A")  - ZV(ml )ylA" + 2 0 -  + 
0 

+ ( m v r )  2 I(mvr)2 ~bl~ } - ~=_] f l  ~ d~ + 2/zf1'(1 ) (45)  

and 
2/~ 

'/ = - (1 - v)(mlTr)2f'(1) ' (46) 

T h e  problem is now reduced to f inding an expression for f l (~  ) which  minimises V. T w o  types of 
solut ion were tried, a parabolic type 

fa(~) = (a0 + al~:) (1 - ~) (47) 

which  was found  to be better  for small values of mFr (i.e., large wavelengths),  and an exponential  
type 

.f](~) = A6(1 - ~)e--qa-~) (48) 

w h i c h  was found  to be better for large values of ml~. In  fact as mlTr tends to infinity this solution 
tends to the exact one. 

These  solutions were subst i tu ted into equat ion (45), the integrations per formed and s imultaneous 

equations for the arbitrary constants obtained by differentiating wi th  respect to each arbitrary 
constant  and equat ing the result  to zero. In  the first case this leads to an explicit expression for fl, 

1 [%% - -  (mlrr)2O~l 2] 
-- 1 -- v [ ~  + (m~)~% -- 2(mlTr)~l] (49) 

where  

(ml~r) 2 ~b12 
% =  l - v + -  

30 6 

3 - 2u 2 ~b12 

7 - 3v (miTt) z + 1 (ml~r) ~ (ml~r)2~bl~ 
~z = 2 + - ~ -  ~ .  30 

whereas in the second case it is necessary to solve a t ranscendental  equat ion for A~, 

(~'o -/3o)/3( 2 A 3  + (/~o + Yl -/~'~)I~(2A1) + (/31 - ~'~ + /~ ) I~ (2&)  + 

+ fi216(2A1) - (mlTr)2~b12 [I~(2A1) - 2Id2A1) + I~(2A1)] = o 
where  

and 

f 
l 

L ( x )  = Pe-(1-*) dt 
0 

rio = A 1 2 ( A 1  - 2) 2 - 2 v ( m l r r ) 2 A l ( A  1 - 2) + 2(1 - v)  ( m l r r ) 2 ( A 1 -  1) 2 + (ml~) 4 

/31 - 2 [A13(A1-2) + 2 ( 1 -  2v)(mvr)2Aa(A1-1)  + (mlTr) 4] 

r~ A14 + 2 ( 1 -  2 v ) A 1 2 ( m v r )  z + ( m v r )  4 

Yo 2(A 1 - l) [ A I ( A  1 - 2) + (1 - 2v) (mlzr) 2] 

~'1 - 2 [A12(2A1- 3) + ( 1 -  2v)(ml~)2(2A1-1)]  

~'2 = 2 A l [ A 1 2  + (1 - 2v) (ml~)~]. 

(so) 

(51) 

(sz) 

14 



The smallest positive root of equation (51), A1 (1) (say), is found numerically and since in this case 
the other equation is simply 

A0 = P" (53 )  
~0~8(2A1) + ~114(2A1) -~- ]~215(2A1) - (~q~l,/T)2~bl 2 [ /1 (2A1)  - 21g(ZA1) + I a ( Z A 1 )  ] 

the expression for ~7 is 

2 
= i l -  {50(1 I3(2A#) + + - 

- (m~Tr)2~b~ 2 [I~(2A~m) - 2I~(2A~m) + I~(2Aam)]} (54) 

where/30m ,/31m and f12 <1) are the •values of/30,/~1, ~ind/3~ corresponding to A~m. 
The numerical results obtained are shown in Fig. 13,~the dotted lines indicating that there are no 

discontinuities of slope in the exact solution. 
It should be noted that the point of interest in the present context is the value of the effective 

torsional rigidity of the fillet at its junction with the skin and that thistends to zero with the spanwise 
wavelength. Tki~ is becaus~e as the wavelength becomes short the disturbance is confined tO a small 
region near the edge of the fillet, and in the limit there is a finite bending moment acting over an 
infi-niteljsmafl region which is tl~erefore completely t~exible. If however the assumption is made 
that the  fillet cross-section remains undeformed, the torsional rigidity rises with decreasing 

wavelength. 

q 
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T A B L E  1 

Critical Stresses and Temperatures for the Examples Discussed in 
Section 5 and Shown in Figs. 11 and 12 

Example shown in Fig. 

h/a 

co/h 

q/co 

Critical spanwise compressive stress , 
in lb/in. 2 for various values of k 

r k =  - 1 

k = O  

k = l  

~.k = 2 

Critical average temperature rise of leading edge 
in °C assuming % r = aE(AT)c,, 

l l a  

O. 0050 

15.0 

0.1 

3080 

3060 

3040 

3020 

10 

11b 

O. 0083 

8.0 

0.2 

l l c  

0.0105 

8.8 

0.4 

12a 

0.0167 

3.3 

0.6 

12b 

0.0250 

2.0 

1.0 

8330 18040 

8120 17990 

7860 17950 

7550 17900 

26 60 

40840 93650 

38340 91270 

27140 44370 

19880 27590 

90 146 

i6 



1~. SKIN. 
Co / ' / /  F/LL~ET 

(O') DIAGRAM OF LEADING EDGE SHOWING DIMENSIONS. 

F r VT 

~ ~  ~ ! ; ! ; L L ~ y ~  E 

( b )  DIAGRAM SHOWING THE FORCES AND MOMENTS ACTING 
ON THE FILLET. 

f 

(C) DIAGRAM SHOWING THE CO-ORDINATE SYSTEM USED AND 
TYPE OF MODE ASSUMED WHEN CONSIDERING THE BUCKLING 

OF THE SKIN. 

FIG. la to c. Co-ordinate system and notations used in the 
analysis. 
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The variation of the buckling parameter ~c r with co/h 
for different values of q / c  o when k = 1.' 

2O 

k 

+ 

~c~ 

31 
O 

I ;  
CI, Ico = 0"6 

C~Co= L L /  

CLAMPED - CLAMPED 
f I 

k = z  

CLAMPED-FREE 

FIG. 3. 

12 16" ~0 

4. 8 C~/.~.. ;~ STRESS tN FILLET = k 

l - - ~ - - ~ . .  - ]/-~ 5TRESS IN 5KIN . 

The variation of the buckling parameter ~e r with co/h " 
for different values of cl /c  o when k = 2. 
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FIG. 4. 

CLAMPED-CLAMPED 

f 

# 

7 
CLAMPED-FREEi 

k = o  

IG 

STRES$ tN FILLET 
: k  T - - - ~ s T ~ s s  ,N SKIN 

7_L - v:A-s- ) 

The  variation of the buckling parameter ~ber with co/h 
for different values of q /c  o when h = 0. 

12 2C 

7 

FIC. 5. 

CLAMPED" CL~MPED 
__'~__L_ 

/ / /  

J 
CLAMPED- FREE 

f f - - : ; -  f - - - - - - c_  
: . .S ,  / o  ! 

I~= - [  

4 C~/. ~ 1 2  16 20 

STRESS IN ~: ~ ~--~E~S ~ ~,LLET 

T h e  variation of the buckling parameter ~cr with co~h, 
for different values of ct/c o when k = - 1 .  . . . . . . . . .  
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"~-C~co = I 
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k = i  
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o.5 1 

o 4- 8 Co/~" ~ I~ IG 20 

' STRESS IN FILLET 
~ - - ~  g. ST'Ef"EE~S q-~ S-ERTE- - k 

FIO. 6. The variation of spanwise wavelength with co/h for 
different values of  q/c o when k = 1. 
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2.5 

~-0 

t 

I'5 

I-0 ! - - -  

0.5 ) 
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~/Co = 0 . 4  

/c~"Co = 0-3 
/ 

/ ~o= ° '~  I : ~ o :  o-, 
~ EkeD: 0.51 

4 8 Co/~. 1 2  16 20 

" 5TRE55 IN FILLET - 

FIG. 7. The  variation of spanwise wavelength, with co/h for 
different values of q/c o when h = 2. 
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, \ ~  C~o: o'~ 

..... . , = 

k = - I  

(b)  k = - i  
T - - ~  "~ 5TRE55 IN FILLET b 

Fro. 8a and b. The  variation of spanwise wavelength with co/h 
for different values of q/c o when h = 0 and - 1. 
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xg 
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c,,/& .= L6, CYCo= o.I 

I07 CYCa= O.'~ 
c°/~ = 5, c&o =, =6 c~co= O.3 

Co 

3 

5PANWISE WAVELENGTH = 2"~ 

FIG. 9. The variation of buckling load with 
spanwise wavelength in some examples. In all 
cases the fillet stress and skin stress are equal. 
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BENDIN(~ 
MOMENT 

° 
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CLAMPED" 

o.'z o.4. ~c/~ ,, o.6 0.8 I . o  

DEFL~'CTION 

VERTICAL 
FORCE 

CLAMPED- CLAMPED 

-°/&= 1'67 
CLAMPED "FREE 

Fio.  10. Diagrams showing variation of deflection, bending 
moment  and vertical force across the width of the skin for 

different values of co/h when q/c  o = 0"6 and k = 1. 
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Fro. 1 la to c. Some examples of possible leading-edge dimensions. 
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I ~ J  
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THERMAL 5TRESS -- 0~ EAT 

(c) 

FIG. 12a to c. Two further examples of possible leading-edge dimensions 
together with diagram of assumed temperatur e distribution. 

"1---- T 
I 1" 

. . . . .  :L 

23 



;:"0 

J'8 

I'E 

1'4 

"2 
I'C 

0.~ 

0'6 

0'4 

O'~ 

EDC-qE MOMENT 
mITT 

• m,  "lr ~I i -  N 5u~ ~ 

2'__ ~ ', > ~  

END 5TRESS EFFECTIVE TORSIONAL E'!G.IDITY 
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FIG. 13. The effective torsional rigidity of a tapered plate under 
sinusoidal edge moment and uniform end stress. 
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