AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

The Buckling of Plates Tapered in Thickness

By G. G. Pope, M.Sc. (Eng.)

The Buckling of Plates Tapered in Thickness

By G. G. Pope, M.Sc. (Eng.)
Communicated by the Deputy Controller Aircraft (Research and Development), Ministry of Aviation

> Reports and Memoranda No. 3309*
> October, 196 r

Summary.

An analysis is given of the buckling of rectangular plates tapered in thickness under uniform end load in the direction of taper, with opposite pairs of edges either clamped or simply-supported.

1. Introduction.

Although tapered plates are used frequently in aircraft structures, their buckling behaviour appears to have received little attention. In this report an analysis is given of the buckling of rectangular plates tapered in thickness under uniform load in the direction of taper. A linear thickness variation only is considered, but the method used is equally applicable to other thickness variations in which the flexural rigidity can be expressed as a polynomial in the distance along the plate. Results are given graphically for plates in which opposite pairs of edges are either clamped or simply-supported; transverse displacement of the sides is either free or completely prevented.
The analysis is based on the assumption that the buckled shape normal to the direction of taper differs little from the buckled shape across a rectangular plate of constant thickness under end load, with the same boundary conditions along the edges parallel to the loading, but simply-supported at the ends. Assuming this transverse buckled form, a linear differential equation with variable coefficients is obtained for the deflected shape along the plate, using an energy method. A series solution is derived to this equation.

2. Assumptions.

(1) The plate is perfectly elastic.
(2) The thickness variation is sufficiently gradual for a state of generalised plane stress to be assumed.
(3) The buckling load is not affected significantly by the violation of compatibility by the assumed system of middle-surface forces when transverse displacement is allowed of the sides of the plate. (See Section 4.)
(4) The transverse buckled shape is the same as that across a rectangular plate of constant thickness under uniform end load with the same boundary conditions along the sides, but simply-supported at the ends.

[^0]
3. General Analysis.

The origin of the (x, y) axes is at the centre of a plate of length a and width b, as shown in Fig. 1. If the plate, which is tapered in the x direction only, is subjected to a system of middle-surface forces N_{x}, N_{y}, the deflected shape can be expressed approximately (and sometimes exactly) as

$$
W=\frac{w}{a}=f(X) \Phi(Y)
$$

where

$$
X=\frac{x}{a}, \quad Y=\frac{y}{b}
$$

and the function $\Phi(Y)$ describes the assumed transverse buckled form. It is shown in the Appendix that if the middle-surface forces are constant over the plate (see Section 4), then the governing differential equation for the function $f(X)$ when the plate buckles under this loading is

$$
\begin{align*}
& \frac{D}{D_{2}}\left(k_{0} f^{\prime \prime \prime}+2 k_{2} f^{\prime \prime}+k_{1} f\right)+\frac{2 D^{\prime}}{D_{2}}\left(k_{0} f^{\prime \prime \prime}+k_{2} f^{\prime}\right)+ \\
& \quad+\frac{D^{\prime \prime}}{D_{2}}\left(k_{0} f^{\prime \prime}+\nu k_{2} f\right)-12 \mu^{2}\left(1-\nu^{2}\right)\left(k_{0} \bar{\sigma}_{x 2} f^{\prime \prime}+k_{2} \bar{\sigma}_{y 2} f\right)=0 \tag{1}
\end{align*}
$$

where a dash denotes differentiation with respect to X,

$$
\begin{aligned}
\bar{\sigma}_{x 2} & =\frac{a^{2} N_{x}}{12\left(1-\nu^{2}\right) \mu^{2} D_{2}}=\frac{\sigma_{x 2}}{E}\left(\frac{b}{t_{2}}\right)^{2}, \bar{\sigma}_{y_{2}}=\frac{\sigma_{y 2}}{E}\left(\frac{b}{t_{2}}\right)^{2}, \\
\mu & =\frac{a}{b}
\end{aligned}
$$

and the suffix 2 denotes values at $X=\frac{1}{2}$. The coefficients k_{i} are given by

$$
\begin{equation*}
k_{i}=\mu^{i} \int_{-1 / 2}^{+1 / 2} \Phi \frac{d^{i} \Phi}{d Y^{i}} d Y, \quad k_{0}=\int_{-1 / 2}^{+1 / 2} \Phi^{2} d Y \tag{2}
\end{equation*}
$$

If the thickness of the plate varies linearly from t_{1} at $X=-\frac{1}{2}$ to t_{2} at $X=+\frac{1}{2}$, the flexural rigidity of the plate is given by

$$
\frac{D}{D_{2}}=m_{0}+m_{1} X+m_{2} X^{2}+m_{3} X^{3}
$$

where

$$
\begin{aligned}
& m_{0}=1+1.5 \chi+0.75 \chi^{2}+0.125 \chi^{3} \\
& m_{1}=-\chi\left(3+3 \chi+0.75 \chi^{2}\right) \\
& m_{2}=\chi^{2}(3+1.5 \chi) \\
& m_{3}=-\chi^{3}
\end{aligned}
$$

and

$$
\chi=\frac{t_{1}}{t_{2}}-1
$$

Substituting in equation (1), the following differential equation is obtained for the function f :

$$
\begin{align*}
& \left(m_{0}+m_{1} X+m_{2} X^{2}+m_{3} X^{3}\right)\left(k_{0} f^{\prime \prime \prime}+2 k_{2} f^{\prime \prime}+k_{4} f\right)+ \\
& \quad+2\left(m_{1}+2 m_{2} X+3 m_{3} X^{2}\right)\left(k_{0} f^{\prime \prime \prime}+k_{2} f^{\prime}\right)+2\left(m_{2}+3 m_{3} X\right)\left(k_{0} f^{\prime \prime}+\nu k_{2} f\right)- \\
& \quad-12\left(1-\nu^{2}\right)\left(k_{0} \bar{\sigma}_{x 2} f^{\prime \prime}+k_{2} \bar{\sigma}_{y 2} f\right)=0 . \tag{4}
\end{align*}
$$

Equation (4) may be solved by substituting

$$
f=X^{c} \sum_{r=0}^{\infty} a_{r} X^{r}
$$

and equating the coefficients of powers of X to zero. The index c is obtained by equating the coefficient of X^{c-4} to zero, giving the indicial equation

$$
c(c-1)(c-2)(c-3)=0
$$

As equation (4) is linear, the required complete solution is thus given by

$$
\begin{equation*}
f=\sum_{r=0}^{\infty} a_{r} X^{r} \tag{5}
\end{equation*}
$$

where the coefficients a_{0}, a_{1}, a_{2} and a_{3} are arbitrary. In general a coefficient a_{r+4} is obtained by equating the coefficient of X^{r} to zero, giving

$$
\begin{align*}
& k_{4} m_{3} a_{r-3}+k_{4} m_{2} a_{r-2}+\left\{k_{4} m_{1}+2 k_{2} m_{3}\left(r^{2}-1+3 \nu\right)\right\} a_{r-1}+ \\
& \quad+\left\{k_{4} m_{0}+2 k_{2} m_{2}\left(r^{2}+r+\nu\right)-12\left(1-\nu^{2}\right) k_{2} \bar{\sigma}_{y 2}\right\} a_{r}+ \\
& \quad+(r+1)^{2}\left\{2 k_{2} m_{1}+k_{0} m_{3} r(r+2)\right\} a_{r+1}+ \\
& \quad+(r+1)(r+2)\left\{2 k_{2} m_{0}+k_{0} m_{2}(r+2)^{2}-12\left(1-\nu^{2}\right) k_{0} \bar{\sigma}_{x 2}\right\} a_{r+2}+ \\
& \quad+(r+3)(r+2)^{3}(r+1) k_{0} m_{1} a_{r+3}+(r+4)(r+3)(r+2)(r+1) k_{0} m_{0} a_{r+4}=0 . \tag{6}
\end{align*}
$$

Coefficients with negative suffices which occur in this equation when $r<3$ are, by definition, zero.
If the stress coefficient $\bar{\sigma}_{y 2}$ is assumed to be proportional to $\bar{\sigma}_{x 2}$, the latter can be used as the buckling coefficient. This is evaluated using a digital computer. Assuming first a value of $\bar{\sigma}_{x 2}$ known to be numerically less than the correct solution, the coefficients of the series are calculated in terms of the arbitrary coefficients a_{0}, a_{1}, a_{2} and a_{3} using equation (6). Four linear simultaneous equations are obtained for these coefficients from the boundary conditions along the edges $X= \pm \frac{1}{2}$. The buckling condition is satisfied only if the determinant of the coefficients of these equations is zero. This determinant is evaluated for the assumed value of $\bar{\sigma}_{x 2}$, which is then adjusted until the determinant changes sign. Subsequent approximations to $\bar{\sigma}_{x 2}$ are made by successively interpolating and re-evaluating the determinant until the required accuracy is reached.

4. Middle-Surface Forces in Plate.

Mansfield ${ }^{3}$ has shown that the middle-surface forces in a plate of variable thickness satisfy the equation

$$
\begin{equation*}
\nabla^{2}\left(\frac{1}{2} \nabla^{2} \Psi\right)-(1+\nu) \widehat{\vartheta}^{4}\left(\frac{1}{t}, \Psi\right)=0 \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{\vartheta}^{4}(\alpha, \beta)=\frac{\hat{\partial}^{2} \alpha}{\partial x^{2}} \frac{\partial^{2} \beta}{\partial y^{2}}-2 \frac{\partial^{2} \alpha}{\partial x \partial y} \frac{\partial^{2} \beta}{\partial x \partial y}+\frac{\partial^{2} \alpha}{\partial y^{2}} \frac{\partial^{2} \beta}{\partial x^{2}} \tag{8}
\end{equation*}
$$

(\checkmark is pronounced 'die') and Ψ is a force function such that

$$
N_{x}=\frac{\partial^{2} \Psi}{\partial y^{2}} \text { etc. }
$$

In the present example N_{x} and N_{y} are assumed constant over the plate and $N_{x y}$ is zero, so that

$$
\begin{equation*}
\Psi=\frac{N_{x}}{2}\left(y^{2}+\lambda x^{2}\right) \tag{9}
\end{equation*}
$$

where

$$
\lambda=\frac{N_{y}}{N_{x}} .
$$

Now t varies in the x direction only, so that equation (7) becomes

$$
N_{x}(1+\lambda) \frac{\partial^{2}}{\partial x^{2}}\left(\frac{1}{t}\right)-N_{x}(1+\nu) \frac{\partial^{2}}{\partial x^{2}}\left(\frac{1}{t}\right)=0
$$

from which it is seen that, except for the special case when $\left(\partial^{2} / \partial x^{2}\right)(1 / t)=0$ (i.e., $1 / t$ is a linear function of x), a compatible stress system is only obtained if

$$
\lambda=\nu .
$$

This is the solution when transverse displacement of the sides of the plate is completely prevented. Now, in the examples that follow the stress system (9) is also used when the plate, which is loaded in the x direction, is free to deform in the y direction (i.e., $\lambda=0$). The buckling load should not be seriously affected by this approximation.

5. Applications.

The analysis of the preceding sections is now applied to the buckling of a plate under uniform load in the direction of taper (parallel to $O X$) with opposite pairs of edges either clamped or simply-supported; transverse displacement of the sides $Y= \pm \frac{1}{2}$ is either unrestrained or completely prevented. Expressions are given in Sections 5.1 and 5.2 for the constants required in equation (1) under these conditions and the results plotted are listed in Section 5.3.

5.1. Plate Simply-Supported along Sides.

The assumed transverse buckled shape is here given by
so that

$$
\Phi=\cos \pi Y
$$

$$
k_{0}=-\frac{k_{2}}{\mu^{2} \pi^{2}}=\frac{k_{4}}{\mu^{4} \pi^{4}} .
$$

In this particular case the assumed transverse deflected shape satisfies the buckling differential equation. Furthermore, if transverse movement of the edges $Y= \pm \frac{1}{2}$ in the plane of the plate is completely prevented, the assumed middle-surface force distribution is also rigorously correct and this method gives an exact (series) solution to a physically admissible problem.

5.2. Plate Clamped along Sides.

The assumed transverse buckled shape is here given by

$$
\Phi=\cosh p Y-q \cos p Y
$$

where p is the first positive root $(4 \cdot 73004)$ of the equation.

$$
\begin{equation*}
\sinh \frac{p}{2} \cos \frac{p}{2}+\cosh \frac{p}{2} \sin \frac{p}{2}=0 \tag{10}
\end{equation*}
$$

and

$$
\left.\begin{array}{rl}
q & =\frac{\cosh \frac{p}{2}}{\cos \frac{p}{2}} \tag{11}\\
& =(\sec p)^{1 / 2} .
\end{array}\right\}
$$

Hence

$$
\begin{aligned}
k_{0} & =\frac{1}{2}\left(q^{2}+1\right) \\
\frac{k_{2}}{p^{2} \mu^{2}} & =-\frac{1}{2}\left(q^{2}-1\right)-\frac{1}{p}\left(q^{4}-1\right)^{1 / 2}
\end{aligned}
$$

and

$$
\frac{k_{4}}{p^{4} \mu^{4}}=k_{0}
$$

5.3. Results.

The variation of the buckling coefficient $\bar{\sigma}_{x 2}$ with a / b has been plotted for a series of values of t_{1} / t_{2} with various combinations of boundary conditions, as listed in the following table.

Ends $X= \pm \frac{1}{2}$	Sides $Y= \pm \frac{1}{2}$	Transverse displacement of sides $Y= \pm \frac{1}{2}$	Fig.
Simply-supported	Simply-supported	Free	2
Clamped	Simply-supported	Free	3
Simply-supported	Clamped	Free	4
Clamped	Clamped	Free	5
Simply-supported	Simply-supported	Completely prevented	6
Clamped	Simply-supported	Completely prevented	7
Simply-supported	Clamped	Completely prevented	8
Clamped	Clamped	Completely prevented	9

Specimen buckled shapes are shown in Figs. 10 and 11.

NOTATION

Suffices 1 and 2 on stress, middle-surface force and length symbols indicate values at $x=-a / 2$ and $x=a / 2$ respectively.

a, b	Length and width of plate
t	Plate thickness
x, y	Cartesian co-ordinates, x lies along the plate
w	Deflection
X, Y	$\frac{x}{a}, \frac{y}{b}$
W	$\frac{w}{a}$
μ	$\frac{a}{\bar{b}}$
χ	$\frac{t_{1}}{t_{2}}-1$
ν	Poisson's ratio (taken as 0.3 for computational purposes)
E	Young's modulus
D	Flexural rigidity $=E t^{3} / 12\left(1-\nu^{2}\right)$
N_{x}, N_{y}	Middle-surface forces
σ_{x}, σ_{y}	Middle-surface stresses
$\bar{\sigma}_{x}, \bar{\sigma}_{y}$	$\frac{\sigma_{x}}{E}\left(\frac{b}{t_{2}}\right)^{2}, \quad \frac{\sigma_{y}}{E}\left(\frac{b}{t_{2}}\right)^{2}$
Ψ	Middle-surface force function such that $N_{x}=\frac{\partial^{2} \Psi}{\partial y^{2}}$ etc.
Φ	Assumed transverse buckled shape
∇^{2}	Laplacian differential operator
$\widehat{\vartheta}^{4}$	Differential operator defined by equation (8)
f	Function of X
λ	$\frac{N_{y}}{N_{x}}$
p	Coefficient defined by equation (10)
q	Coefficient defined by equation (11)
a_{i}	Coefficients defined by equation (5)
k_{i}	Coefficients defined by equations (2)
m_{i}	Coefficients defined by equations (3)
T	Work done by middle-surface forces
U	Strain energy

REFERENCES

No.
Author
1 L. V. Kantorovich and V. I. Krylov . .

2 S. P. Timoshenko and S. Woinowsky-Krieger
Theory of plates and shells. Chapters 4 and 10. 2nd edition. McGraw-Hill, 1959.

3 E. H. Mansfield Analysis of elastic plates of variable thickness.
Quart. J. Mech. App. Math. Vol. 15. Part 2. p. 167. May, 1962.

APPENDIX

Derivation of Differential Equation

The basic method used here, which is due to Ritz, has been applied extensively by Kantorovich. In classical small-deflection theory ${ }^{2}$, the strain energy of bending of a plate is given by

$$
\begin{equation*}
U=\iint \frac{D}{2}\left\{\left(\nabla^{2} w\right)^{2}-(1-\nu) \aleph^{4}(w, w)\right\} d x d y \tag{12}
\end{equation*}
$$

where the operator $\widehat{\vee}^{4}$ is defined by equation (8). The work done on the plate by the middle-surface forces N_{x} and N_{y}, which are assumed constant (see Section 4), is given by

$$
\begin{equation*}
T=-\frac{1}{2} \iint\left\{N_{x}\left(\frac{\partial w}{\partial x}\right)^{2}+N_{y}\left(\frac{\partial z}{\partial y}\right)^{2}\right\} d x d y . \tag{13}
\end{equation*}
$$

If the deflection of the plate can be expressed as

$$
W=f(X) \Phi(Y)
$$

where $W=w / a, X=x / a, Y=y / b$, expressions (12) and (13) may be rewritten as

$$
\begin{align*}
U & =\frac{1}{2 \mu} \iint D\left\{\left(f^{\prime \prime} \Phi+\mu^{2} f \Phi^{\prime \prime}\right)^{2}-2 \mu^{2}(1-\nu)\left(f f^{\prime \prime} \Phi \Phi^{\prime \prime}+f^{\prime 2} \Phi^{\prime 2}\right)\right\} d X d Y, \tag{14}\\
T & =-\frac{a^{2}}{2 \mu} \iint\left(N_{x} f^{\prime 2} \Phi^{2}+\mu^{2} N_{y} f^{2} \Phi^{\prime 2}\right) d X d Y \tag{15}
\end{align*}
$$

where

$$
\mu=\frac{a}{b} \text { and } f^{\prime}=\frac{d f}{d X}, \Phi^{\prime}=\frac{d \Phi}{d \bar{Y}} \text { etc. }
$$

To obtain an approximate solution, a known function Φ is assumed for the transverse deflected shape. The corresponding differential equation for f is found by considering an infinitesimal virtual variation δf which satisfies the boundary conditions of the plate. The resulting increments of the strain energy of and the work done on the plate are

$$
\begin{align*}
\delta U= & \frac{1}{\mu} \iint D\left\{\left(f^{\prime} \Phi+\mu^{2} f \Phi^{\prime \prime}\right)\left(\delta f^{\prime \prime} \Phi+\mu^{2} \delta f \Phi^{\prime \prime}\right)-\right. \\
& \left.-(1-\nu) \mu^{2}\left[\left(f \delta f^{\prime \prime}+\delta f f^{\prime \prime}\right) \Phi \Phi^{\prime \prime}+2 f^{\prime} \delta f^{\prime} \Phi^{\prime 2}\right]\right\} d X d Y, \tag{16}\\
\delta T= & -\frac{a^{2}}{\mu} \iint\left(N_{x} f^{\prime} \delta f^{\prime} \Phi^{2}+\mu^{2} N_{y} f \delta f \Phi^{\prime 2}\right) d X d Y . \tag{17}
\end{align*}
$$

Now, integrating by parts, it is seen that
and

$$
\left.\begin{array}{l}
\int_{-1 / 2}^{+1 / 2} \Phi^{\prime \prime 2} d Y=\left[\Phi^{\prime} \Phi^{\prime \prime}\right]_{-1 / 2}^{+1 / 2}-\left[\Phi \Phi^{\prime \prime \prime}\right]_{-1 / 2}^{+1 / 2}+\int_{-1 / 2}^{+1 / 2} \Phi \Phi^{\prime \prime \prime} d Y \tag{18}\\
\int_{-1 / 2}^{+1 / 2} \Phi^{\prime 2} d Y=\left[\Phi \Phi^{\prime}\right]_{-1 / 2}^{+1 / 2}-\int_{-1 / 2}^{+1 / 2} \Phi \Phi^{\prime \prime} d Y .
\end{array}\right\}
$$

The terms in the square brackets in expressions (18) vanish, because the functions Φ are chosen to satisfy the boundary conditions along the sides of the plate, which are here either simply-supported or clamped. Thus,

$$
\int_{-1 / 2}^{+1 / 2} \Phi^{\prime \prime 2} d Y=\int_{-1 / 2}^{+1 / 2} \Phi \Phi^{\prime \prime \prime} d Y \text { and } \int_{-1 / 2}^{+1 / 2} \Phi^{\prime 2} d Y=-\int_{-1 / 2}^{+1 / 2} \Phi \Phi^{\prime \prime} d Y .
$$

Hence, if D is a function of X only, the increments of strain energy and work done due to the virtual variation δf can be integrated by parts with respect to Y, giving

$$
\begin{align*}
\delta U= & \frac{1}{\mu} \int_{-1 / 2}^{+1 / 2} D\left\{\delta f^{\prime \prime}\left(k_{0} f^{\prime \prime}+\nu k_{2} f\right)+2(1-\nu) k_{2} f^{\prime} \delta f^{\prime}+\right. \\
& \left.+\delta f\left(k_{4} f+\nu k_{2} f^{\prime \prime}\right)\right\} d X \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
\delta T=-\frac{a^{2}}{\mu} \int_{-1 / 2}^{+1 / 2}\left(N_{x} k_{0} f^{\prime} \delta f^{\prime}-N_{y} k_{2} f \delta f\right) d X \tag{20}
\end{equation*}
$$

where

$$
k_{i}=\mu^{i} \int_{-1 / 2}^{+1 / 2} \Phi \frac{d^{i} \Phi}{d Y^{i}} d Y \text { and } k_{0}=\int_{-1 / 2}^{+1 / 2} \Phi^{2} d Y .
$$

If expressions (19) and (20) are now integrated by parts with respect to X, the following expressions are obtained.

$$
\begin{align*}
\mu \delta U= & {\left[D\left(k_{0} f^{\prime \prime}+\nu k_{2} f\right)\right]_{X=-1 / 2}^{X=+1 / 2} \delta f^{\prime}-\left\{D\left[k_{0} f^{\prime \prime \prime}+(2-\nu) k_{2} f^{\prime}\right]+\right.} \\
& \left.+D^{\prime}\left(k_{0} f^{\prime \prime}+\nu k_{2} f\right)\right\}_{X=-1 / 2}^{X=+1 / 2} \delta f+ \\
& +\delta f \int_{-1 / 2}^{+1 / 2}\left\{D\left(k_{0} f^{\prime \prime \prime \prime}+2 k_{2} f^{\prime \prime}+k_{4} f\right)+2 D^{\prime}\left(k_{0} f^{\prime \prime \prime}+k_{2} f^{\prime}\right)+\right. \\
& \left.+D^{\prime \prime}\left(k_{0} f^{\prime \prime}+\nu k_{2} f\right)\right\} d X, \tag{21}\\
\mu \delta T= & -a^{2}\left[N_{x} k_{0} f^{\prime}+2 N_{x y} k_{1} f\right]_{X=-1 / 2}^{X=+1 / 2} \delta f+a^{2} \delta f \int_{-1 / 2}^{+1 / 2}\left(N_{x} k_{0} f^{\prime \prime}+N_{y} k_{2} f\right) d X . \tag{22}
\end{align*}
$$

Now if the edges at $X= \pm \frac{1}{2}$ are simply-supported

$$
[\delta f]_{X= \pm 1 / 2}=[f]_{X= \pm 1 / 2}=\left[f^{\prime \prime}\right]_{X= \pm 1 / 2}=0,
$$

and if they are clamped

$$
[\delta f]_{X= \pm{ }^{1 / 2}}=\left[\delta f^{\prime}\right]_{X= \pm{ }^{1 / 2}}=0 .
$$

Hence the unevaluated integrals are the only terms in expressions (21) and (22) which do not vanish.
By the principle of virtual displacements

$$
\delta U=\delta T
$$

and, because the variation of δf is arbitrary everywhere except along the edges of the plate, the term under the integral sign in expressions (21) and (22) may be equated, giving the following differential equation for f.

$$
\begin{aligned}
& D\left(k_{0} f^{\prime \prime \prime}+2 k_{2} f^{\prime \prime}+k_{4} f\right)+2 D^{\prime}\left(k_{0} f^{\prime \prime \prime}+k_{2} f^{\prime}\right)+ \\
& \quad+D^{\prime \prime}\left(k_{0} f^{\prime \prime}+v k_{2} f\right)-a^{2}\left(N_{x} k_{0} f^{\prime \prime}+N_{y} k_{2} f\right)=0 .
\end{aligned}
$$

Fig. 1. Axes and notation.

Fig. 2. Buckling stress diagram. Sides and ends simply-supported. Free transverse displacement of sides.

Ni H

Fig. 3. Buckling stress diagram. Sides simplysupported, ends clamped. Free transverse displacement of sides.

Fig. 4. Buckling stress diagram. Sides clamped, ends simply-supported. Free transyerse displacement of sides.

Fig. 5. Buckling stress diagram. Sides and ends clamped. Free transverse displacement of sides.

Fig. 6. Buckling stress diagram. Ends and sides simply-supported. No transverse displacement of sides.

Fig. 7. Buckling stress diagram. Ends clamped, sides simply-supported. No transverse displacement of sides.

Fig. 8. Buckling stress diagram. Sides clamped, ends simply-supported. No transverse displacement of sides.

Fig. 9. Buckling stress diagram. Sides and ends clamped. No transverse displacement of sides.

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)

1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (post 2s. 9d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (post 2s. 3d.)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (post 2s. 6d.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures.
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (post 3s.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (post 3s.)
1945 Vol. I. Aero and Hydrodynamics, Aerofoils. 130s. (post 3s. 6d.)
Vol. II. Aircraft, Airscrews, Controls. I 30 s . (post 3 s .6 d .)
Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion.
130s. (post 3s. $3^{\text {d. }}$)
Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. 130s. (post 3s. 3d.)
1946 Vol. I. Accidents, Aerodynamics, Aerofoils and Hydrofoils. 168s. (post 35. 9d.)
Vol. II. Airscrews, Cabin Cooling, Chemical Hazards, Controls, Flames, Flutter, Helicopters, Instruments and Instrumentation, Interference, Jets, Miscellaneous, Parachutes. 168s. (post 3 s .3 d .)
Vol. III. Performance, Propulsion, Seaplanes, Stability, Structures, Wind Tunnels. 168s. (post 3s. 6d.)
1947 Vol. I. Aerodynamics, Aerofoils, Aircraft. 168s. (post 3s. 9d.)
Vol. II. Airscrews and Rotors, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Seaplanes, Stability, Structures, Take-off and Landing. 168s. (post 3s. 9d.)
1948 Vol. I. Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments, Propulsion, Seaplane, Stability, Structures, Wind Tunnels. 130s. (post $3 s .3$ d.)
Vol. II. Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments, Propulsion, Seaplane, Stability, Structures, Wind Tunnels. 110s. (post 3s. 3d.)

Special Volumes

Vol. I. Aero and Hydrodynamics, Aerofoils, Controls, Flutter, Kites, Parachutes, Performance, Propulsion, Stability. 126s. (post 3s.)
Vol. II. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Stability, Structures. 147s. (post 3s.)
Vol. III. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Kites, Miscellaneous, Parachutes, Propulsion, Seaplanes, Stability, Structures, Test Equipment. 189s. (post 3s. 9d.)

Reviews of the Aeronautical Research Council
1939-48 3s. (post 6d.)
1949-54 5s. (post 5d.)

Index to all Reports and Memoranda published in the Annual 'Technical Reports 1909-1947 . . R. \& M. 2600 (out of print)

Indexes to the Reports and Memoranda of the Aeronautical Research Council

Between Nos. 2351-2449	R. \& M. No. 24.50	2s. (post 3d.)
Between Nos. 2451 - 2549	R. $\&$ M. No. 2550	2s. $6 d$. (post $3 d$.
Between Nos. $2551 \mathbf{1 - 2 6 4 9}$	R. 8 M. No. 2650	2s. 6d. (post 3d.)
Between Nos. $2651-2749$	R. \& M. No. 2750	2s. 6d. (post 3d.)
Between Nos. $2751-2849$	R. \& M. No. 2850	2s. 6d. (post 3d.)
Between Nos. $285 \mathrm{I}-2949$	R. \& M. No. 2950	3s. (post 3 d.)
Between Nos. 295I-3049	R. \& M. No. 3050	3s. 6d. (post $3^{d .}$)
Between Nos. 3051-3149	R. \& M. No. 3150	3s. $6 d$. (post $3 d$.)

(C) Crown copyright 1963

Printed and published by Her Majesty's Stationery Office

To be purchased from York House, Kingsway, London w.c. 2

423 Oxford Street, London w.I 13 A Castle Street, Edinburgh 2 109 St. Mary Street, Cardiff 39 King Street, Manchester 2 50 Fairfax Street, Bristol I 35 Smallbrook, Ringway, Birmingham 5

8o Chichester Street, Belfast r
or through any bookseller
Printed in England

[^0]: * Previously issued as R.A.E. Report No. Structures 272-A.R.C. 23,517.

