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Summary. 
An analysis is given of the buckling of rectangular plates tapered in thickness under uniform end load in 

the direction of taper, with opposite pairs of edges either clamped or simply-supported. 

1. Introduction. 

Although tapered plates are used frequently in aircraft structures, their buckling behaviour appears 
to have received little attention. In this report an analysis is given of the buckling of rectangular 
plates tapered in thickness under uniform load in the direction of taper. A linear thickness variation 
only is considered, but the method used is equally applicable to other thickness variations in which 
the flexural rigidity can be expressed as a polynomial in the distance along the plate. Results are 
given graphically for plates in which opposite pairs of edges are either clamped or simply-supported; 
transverse displacement of the sides is either free or completely prevented. 

The analysis is based on the assumption that the buckled shape normal to the direction of taper 
differs little from the buckled shape across a rectangular plate of constant thickness under end load, 
With the same boundary conditions along the edge s parallel to the loading, but simply-supported at 
the ends. Assuming this transverse buckled form, a linear differential equation with variable 
coefficients is obtained for the deflected shape along the plate, using an energy method. A series 
solution is derived to this equation. 

2. Assumptions. 

(1) The plate is perfectly elastic. 

(2) The thickness variation is sufficiently gradual for a state of generalised plane stress to be 
assumed. 

(3) The buckling load is not affected significantly by the violation of compatibility by the assumed 
system of middle-surface forces when transverse displacement is allowed of the sides of the plate. 
(See Section 4.) 

(4) The transverse buckled shape is the same as that across a rectangular plate of constant thickness 
under uniform end load with the same boundary conditions along the sides, but simply-supported 
at the ends. 

* Previously issued as R.A.E. Report No. Structures 272--A.R.C. 23,517. 



3. General Analysis. 

The origin of the (x, y) axes is at the centre of a plate of length a and width b, as shown in Fig. 1. 
I f  the plate, which is tapered in the x direction only, is subjected to a system of middle-surface forces 

N~, Ny, the deflected shape can be expressed approximately (and sometimes exactly) as 

where 

W 
W =  -- = f ( X ) e ( Y )  

a 

X =  x Y 
a b 

and the function ¢(Y)  describes the assumed transverse buckled form. I t  is shown in the Appendix 

that if the middle-surface forces are constant over the plate (see Section 4), then the governing 

differential equation for the function f ( X )  when the plate buckles under this loading is 

D 2D' 
D--~2 (k°f"" + 2 k J "  + k4f) + ~ (kof" + k J ' )  + 

D" 
+ ~ -  (kof" + vk2f) - 12ff~( 1 - v~) (koex 2 f"+ kzey 2f) = 0 

z. ,  2 

(1) 

where a dash denotes differentiation with respect to X, 

- -  . _ ~  - -  _ _  O ' y 2  

%2 = 12(l_v~)/z2D2 -E-- , %2 - -~-  , 

a 

/ ~ = ~  

and the suffix 2 denotes values at X = ½. The coefficients k i are given by 

f +~/~ diq) l+ 1/2 h i = iz ~ q) d Y ,  ko = (b2dY. (2) 

If  the thickness of the plate varies linearly from t 1 at X = - ½ to t 2 at X = + ½, the flexural 

rigidity of the plate is given by 

where 

and 

D 
__ = m o + rn tX  + m z X  2 + m a X  a 
D2 

m o =  1 + 1.5 X + 0.752 ~ + 0"125)/3 , 

rn t = _ X(3+3X+0.75X~), 

m2 = X~(3+1"5X), 

m 3 ---- _ X 3 

t 1 
X = - - - 1 .  

t2 

(3) 
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Substituting in equation (1), the following differential equation is obtained for the function f :  

(,no + m i X  + ,n2X 2 + maX a) (kof"" + 2 k J "  + k J )  + 

+ 2(*nl + 2*n2X+ 3*naX =) (kof" + k2f') + 2(,n2 + 3maX) (kof" + vk2f) - 

-: 12(1 -: v 2) (koe x 2f" + k2ev 2f) = 0. (4) 

Equation (4) may be solved by substituting 
' .  co 

f = X c E a r X  r 

and equating the coefficients of powers of X to zero. The index c is obtained by equating the 

coefficient of X c-~ to zero, giving the indicial equation 

c (c -  1) ( c -  2) ( c -  3) = 0. 

As equation (4) is linear, the required complete solution is thus given by 

co 

.f = Z ar x~ (S) 
r = 0  

where the coefficients ao, al, a 2 and a a are arbitrary. In general a coefficient ar+~ is obtained by 

equating the coefficient of X ~ to zero, giving 

k4m3ar_ a + kam2ar_2 + {k~m 1 + 2k2ma(r 2 -  1 + 3v)} a~_l + 

+ {hA*n o + 2k2*n2(r2+ r+ v) - 12(1-  v2)k2e v 2}at + 

+ (r + 1) 2 {2k2ml + komar(r + 2)} a~+l + 

+ (r + 1) (r + 2) {2k2m0 + kom2(r + 2) 2 - 12(1 - v~)h0ex 2} ar+2 + 

+ (r+3)(r+2)a(r+l)kom~a~+a + (r+4)(r+3)(r+2)(r+l)ko*noa~+4 = 0. (6) 

Coefficients with negative suffices which occur in this equation when r < 3 are, by definition, zero. 
If the stress coefficient e v2 is assumed to be proportional to e~2, the latter can be used as the 

buckling coefficient. This is evaluated using a digital computer. Assuming first a value of ex2 

known to be numerically less than the correct solution, the coefficients of the series are calculated 

in terms of the arbitrary coefficients a0, al, a S and a a using equation (6). Four linear simultaneous 
equations are obtained for these coefficients from the boundary conditions along the edges X = + ½. 
The buckling condition is satisfied only if the determinant of the coefficients of these equations is 

zero. This determinant is evaluated for the assumed value of e x 2, which is then adjusted until the 
determinant changes sign. Subsequent approximations to ex2 are made by successively inter- 

polating and re-evaluating the determinant until the required accuracy is reached. 

Where 

4. Middle-Surface Forces in Plate. 

Mansfield a has shown that the middle-surface forces in a plate of variable thickness satisfy the 

equation 

3 
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(~ ispronounced 'die') and ~F is a force function such that 

32W 
N~ = ~ etc. 

: In the present example N x and Ny are assumed constant over the plate and N~y is zero, so that 

~F = Na (ye + ;~X2 ) (9) 

where 

~t = g Y .  

Now t varies in the x direction only, so that equation (7) becomes 

N~(1 + :~) ~ - N~(1 + v) ~ = 0, 

from which it is seen that, except for the special case when (8~/8x ~) (l/t) = 0 (i.e., 1/t is a linear 

function of x), a compatible stress system is only obtained if 

This is the solution when transverse displacement of the sides of the plate is completely prevented. 

Now, in the examples that follow the stress system (9) is also used when the plate, which is loaded 
in the x direction, is free to deform in the y direction (i.e., A = 0). The buckling load should not 
be seriously affected by this approximation. 

5. Applications. 
The analysis of the preceding sections is now applied to the buckling of a plate under uniform 

load in the direction of taper  (parallel to OX) with opposite pairs of edges either clamped or 
simply-supported; transverse displacement of the sides Y -- + { is either unrestrained or completely 
prevented. Expressions are given in Sections 5.1 and 5.2 for the constants required in equation (1) 
under these conditions and the results plotted are listed in Section 5.3. 

5.1. Plate Simply-Supported along Sides. 
The assumed transverse buckled shape is here given by 

so that 
(I) : COS¢7"~ r 

k~ k~ 
k 0 - 

,In this particular case the assumed transverse deflected shape satisfies the buckling differential 
equation. Furthermore, if transverse movement of the edges Y = __ ½ in the plane of the plate is 
completely prevented, the assumed middle-surface force distribution is also rigorously correct 

and this method gives an exact (series) solution to a physically admissible problem. 
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5.2. Plate Clamped along Sides. 

The assumed transverse buckled shape is here given by 

= c o s h p Y -  q c o s p Y  

where p is the first positive root (4. 73004) of the equation 

s inhPcos~  + c o s h P s i n  p = 0  

and 

Hence 

and 

} q - p 

= (secp)~/~. 

k o = ½(q2+1), 

~2 
p2~2 

1 ½(¢- 1) - -:  ( q * -  a)1 2, 
P 

k 4 
- k 0 .  p4~ 

(10) 

(11) 

5.3. Results. ,_ 

The variation of the buckling coefficient ex ~ with a/b has been plotted for a series of, values of 
tl/t ~ with various combinations of boundary conditions, as listed in the following table. 

Ends X = + ½ 

Simply-supported 
Clamped 

Simply-supported 
Clamped .. 

Simply-supported 
Clamped 

Simply-supported 
Clamped 

Sides Y = + ½ 

Simply-supported 
Simply-supported 

Clamped 
Clamped 

Simply-supported 
Simply-supported 

Clamped 
Clamped 

Transverse displacement 
of sides Y =  + ½ 

Free 
Free 
Free 
Free 

Completely prevented 
Completely prevented 
Completely prevented 
Completely prevented 

Specimen buckled shapes are shown in Figs. 10 and 11. 

Fig. 

2 
3 
4 
5 
6 
7 
8 
9 
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NOTATION 

Suffices I and 2 on stress, middle-surface force and length symbols indicate values at x = 

and x = a/2 respectively. 

a, b Length and width of plate 

t Plate thickness 

x, y Cartesian co-ordinates, x lies along the plate 

w Deflection 

x y  
X , Y  - a ' b  

f/d 

W - 
a 

a 

l x - -  
b 

t l  
X - 1 

t~ 

v Poisson's ratio (taken as 0" 3 for computational purposes) 

E Young's modulus 

D Flexural rigidity = E t 3 / 1 2 ( 1  - v ~) 

N x ,  N v Middle-surface forces 

crx, % Middle-surface stresses 

¢x, % - E ' 
32T 

Middle-surface force function such that N x = ~ etc. 

q~ Assumed transverse buckled shape : 

V ~ Laplacian differential operator 

¢4 Differential operator defined by equation (8) 

f Function of X 

;~ _ N~ 

Nx 

p Coefficient defined by equation (10) 

q Coefficient defined by equation (11) 

a~ Coefficients defined by equation (5) 

k~ Coefficients defined by equations (2) 

m, Coefficients defined by equations (3) 

T Work done by middle-surface forces 

U Strain energy 

6 
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APPENDIX 

Derivation of Differential Equation 

The basic method used here, which is due to Ritz, has been applied extensively by Kantorovicti. 
In classical small-deflection theory ~, the strain energy of bending of a plate is given by 

U = ~- {(V2w) z - (1 - v)~(w, w)} dx dy (12) 

where the operator ~ is defined by equation (8). The work done on the plate by the middle-surface 
forces N~ and Nv, which are assumed constant (see Section 4), is given by 

T= -½ N. tox! +N~,tOy! 5 

If the deflection of the plate can be expressed as 

W = f ( X ) c P ( Y )  

where W = w/a, X = x/a, Y = y/b, expressions (12) and (13) may be rewritten as 

U = ~ D{(f"¢+/z~fOg") 2 - 2t*=(1-v)( f f"(PcP"+f '2q~'~)}dXdY,  (14) 

a ff T - 2k~ (Nxf'2q)~+tz2NYf2q~'2)dXdY (15) 

where 
d(I) 

a andf '  d f  (I)' ~-~ etc. 

To obtain an approximate solution, a known function • is assumed for the transverse deflected 

shape. The corresponding differential equation for f is found by considering an infinitesimal virtual 

variation 8f  which satisfies the boundary conditions of the plate. The resulting increments of the 
strain energy of and the work done on the plate are 

= 1 ~ Dt(f,,<D+v,icp..)(~f.@+,,Sf¢.. ) 8U 
,7,J 

-- (1 - v)t~'[(fSf" + ~ff")~9@" + 2 f ' S f ' q a " ] } d X d Y ,  (16) 

"H 8 T = - - -  ( N J ' S f ' ~  2 + i x 2 N J S f q ) ' 2 ) d X d Y .  (17) Iz 

Now, integrating by parts, it is seen that 

f+" F.'."] +'- F**"]"-'" ÷ 
d _ l l ~  L -1-112 L I -~1.2 d _ l / ~  

and  (+~1, {~#'dY = FI~T~(I)~'~ -~1/2 - ( +112 (I){~T~IId~F. (18) 

, d  - l ie L J -:[f,., d - lte 

81" 



The terms in the square brackets in expressions (18) vanish, because the functions q~ are chosen to 
satisfy the boundary conditions along the sides of the plate, which are here either simply-supported 
or clamped. Thus, 

~b"sdY = c~O""dY and a)'sdY = - a)O"dY. 
d _ l& J -  3/2 d -- lh  d -- 112 

Hence, if D is a function of X only, the increments of strain energy and work done due to the 
virtual variation ~f can be integrated by parts with respect to Y, giving 

3U = _1 ~+1/2 O{3f"(kof" +vk~f) + 2 ( 1 - ~ ) k J ' ~ f '  + 
I z o - %  

+ 3 f ( k J +  vk~,f")} d X  (19) 
and 

where 

a s f+l12 , - .  
3 T - (N~kof '3f '  = N v k s f 3 f ) d X  (20) 

[2, d -V , ,  

f 
+% diqb (+1/2 

k~ = /z~ • and k o = cbsdY. 
- j _ l / ~  - d ~  d Y  a - l 1 2  

If expressions (19) and (20) are now integrated by parts with respect to X, the following expressions 
are obtained. 

t~3 U = [D(kof" + vk~f)l  3f '  - D[kof" + ( 2 -  v)kJ']  + 
k J X = -- 1/2 

+ D' (ko f"+vks f ) i  x=+l/2 3 f  + . . . . .  
) x=-V2  

3 f (+1/2 + {D(kof"" + 2k2f" + kay) + 2D'(kof" + ks f '  ) + 
j _ l / ~  

iz3 T = 

+ D'(kof" + vksf)}dX,  (21) 

I N  x "-[X=+l/2 ' (+.I]2 
- aS koff + 2NxvkJ]  3 f  + aS3f (Nxkof" + N v k J ) d X .  (22) 

A X = - I M  , .  i ,1_112 

Now if the edges at X = _+ ½ are simply-supported 

[af]x=±3/2 = [f]x=±% = [f"]x=~:;/~ = O ,  

and if they are clamped 

[ a f ] x = ± , ~  = [ a f ' ] x = ± , 2  = O. 

Hence the unevaluated integrals are the only terms in expressions (21) and (22) which do not vanish. 
By the principle of virtual displacements 

3U = 3T  

and, because the variation of 3fis  arbitrary everywhere except along the edges of the plate, the term 
under the integral sign in expressions (21) and (22) may be equated, giving the following differential 
equation for f. 

D(kof"" + 2k2f" + k J )  + 2D'(kof" + k~f') + 

+ D"(kof" + vk~f) - a2(Nxkof " + N v k J )  = O. 

_: 
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FIG. 1. Axes and notation. 
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