MINISTRY OF SUPPLY
AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

The Electronic Simulator for the Solution of Flutter and Vibration Problems

By
F. Smith, M.A.

Crown Copyright Reserved

Report No. Structures 51
October, 1949

ROYAL AIRCRAFT ESTABLISHMENT

The Electronic Simulator for the Solution of Flutter and Vabration Problems

by
F. Smath, M.A.

SUMMARY

This report describes the basac principles of an electronic simulator to solve the equations for coupled oscillations in several degrees of freedom. The method has darect application to flutter and vibration problems on aurcraft. It is suggested that considerable time could be saved by the use of such a machine for obtaining flutter speeds and resonant frequencies, wathout any limitations in scope or accuracy compared with present methods. In addition, since the simulator gaves the whole range of non-critacal solutions, other problems can be investigated; in particular, the response of an aurcraft to flight resonance excitation can be examined.

The use of electronic amplifiers as adding and integrating units is described and the method of representing a simple harmonic motion is given. Methods of variation of cocficicients are developed, and the problem of coupling two or more groups of amplafizers to correspond to two or more degrees of freedom in flutter is discussed.

A prototype simulator for the solution of problems in two degrees of freedom is now beang built at the R.A.E. and prelumnary work is proceeding on the design of a machine for problems an six degrees of freedom.

LIST OF CONTENTS

Page1 Introduction 3
2 The flutter problem 3
3 Electronic units 4
3.1 Amplıf'ier with resistance feedback 4
3.2 Amplifıer with capacıty feedback 5
3.3 Push-pull amplifier 5
3.4 Use of potentiometers 6
3.5 Variable antegrating unit 7
4 Representation of a one-degree-of-freedom equation 7
5 Extension to six degrees of freedom 8
6 Accuracy 9
7 Conclusions 9
Acknowledgement 9
Reforences 10

The prediction of flutter of aircraft usually requires the solution of equations of motion in several degrees of frecdom. Since the solution is complicated it is usual to limit the analys.ts to the determination of critical flutter speeds. The problem then roducess to the solution of a determinant ucually complex of the same ordex is the number of dogrees of freedon. Several ingenious mathematical mothods have been ovolved to reduce the labour of solving the determinant, but the solution js rarely casy and, in addition, the effect of any variation in the coefficzunts is of ten only to be found by the solution of the new doterminant.

A brief survey of the computational difficultas in the predıction of flutter of complex systums was mede by Frazor1 in 1944. Ho covered both the purely mathematical considerations and the dufferent appronches. in the usc of plain and thermionic networks. The Blot flutter Predictor 3 is in the latter class, but $1 s$ basically an electrical simulator. Consideration of the limitations of this machine, both in scope and accuracy, led to the lack of interest in this approach. The recent devolommonts in electronic technique have meant that analysers of wade scope and good accuracy are possible and development of equipment for the solution of guided weapon problems is well advanced 3,4 .

The electronc simulator described in this report is on the lines of the Guided Weapon Analyser ${ }^{3}$, the main differences beang the use of push-pull amplifiers, and a layout designed for the sclution of a specific type of problem rather than the more flexible layout of the Guaded Weapons simulator. Whth this equipment, coupled mechanical oscillations are ropresented by corrosponding coupled eloctrical oscillations, the whole motion being slowed down to enable visual observation of the oscillations to be made. the clectrical carcuits are variced step by step to correspond to a stop by siep variation in airspeed in the mechanical problem. Tho flutter solutaon as dotermaned by the observation of an undamped oscillation in the electrical "degrees of freedom". The method of detormining flutter speed in flight by mechanical exciting of the aircraft structure over a suitable range of frequencies and measuring the change of response with flaght speeds can also be represented on the simulator onsurang a safer approach to oritical conditions.

By the anclusion of a forcang electrical unit the problems of forced mechanıcal oscillations such as engane-aırfome vibrations and normal modes of vibration can be investigated.

The flutter problem

The mechanıcal oscillation of an aerofonl in an airstream in the degree of freedom "x" may be written

$$
\left(A+A^{\prime}\right) \ddot{X}+(B v+D) \dot{x}+\left(C v^{2}+E\right) x=0
$$

with the usual assumptions that aerodynamic terms of order higher than two may be neglected.

A, A' are the mechanical and aerodynamic inertia coefficients, D, B the corresponding damping coefficients, E, C the stiffness coefficients, and v as proportional to the fllght equivalent airspeed.

Since the aerodynamic inertia $1 s$, by definution, invariable with flught speed it may for sumplicaty be ancludud in the mechanical anertia
and thus in the remander of this note "A" will denoto the sum of mechanical and acrodynamic cocfficionts.

Thus the aquations of motion in two degrees of froedom are

$$
\begin{aligned}
& A_{11} \ddot{x}_{1}+\left(B_{11} v+D_{11}\right) \dot{x}_{1}+\left(C_{11} v^{2}+E_{11}\right) x_{1}=0 \\
& A_{22} \ddot{x}_{2}+\left(B_{22} v+D_{22}\right) \dot{x}_{2}+\left(C_{22} v^{2}+E_{22}\right) x_{2}=0
\end{aligned}
$$

When the cross coupling terms are added they bocome

$$
\begin{aligned}
& A_{11} \dot{x}_{1}+\left(B_{11} v+D_{11}\right) \dot{x}_{1}+\left(C_{11} v^{2}+Z_{11}\right) x_{1}+A_{12} \ddot{x}_{2}+\left(B_{12} v+D_{12}\right) \dot{x}_{2}+\left(C_{12} v^{2}+E_{12}\right) x_{2}=0 \\
& A_{21} x_{1}+\left(B_{21} v+D_{21}\right) \dot{x}_{1}+\left(C_{21} v^{2}+E_{21}\right) x_{1}+A_{22} \ddot{x}_{2}+\left(B_{22} v+D_{22}\right) \dot{x}_{2}+\left(C_{22} v^{2}+E_{22}\right) x_{2}=0
\end{aligned}
$$

These cquations are moro complete than is usually nceessary, but in order to make the simulator as general as possible, all possible torms are meluded. The simulator as envisaged will represent up to six degrees of freedom and all the terms obtanned when the above equations in two degrecs of freedom are extended to $s a x$ degrees of freedom mill be represented,

In the solution of practical flutter problems in this comitiy it is usual to treat the coefficients B, C as invariable with rospect to speed and frequency and this approximation will also be mide here. However, as will be sean bolor, the effect of vorying any coefficient is easily found and a more exact solution can be obta,ind by a method of successive approximations.

The method of solution wall normally be by variation of the aursped coefficient v, although in some cosos, notably at specas noar that of sound where the structural stiffnoss for a gavon flutter specd nay be requircd, the solution may be by variation of cortain coefficionts.

3 The electronzc unzts

The pranciples of the electronic unats described here are not new and have bean used as the basis of other simulators, in particular in those nov beang used in Guided Weapons Department R.A.E. In fact, since these principles have been used in other simulators and the roliability of the methods demonstrated, they can be adapted to the solution of the flutter problems inth corifidence. For clarity, these principles inll be outlined here

3.1 Amplificr wh th rosistance feedback

Let us consider the carcuat show in Fig 1 An amplafier of gain "-G" (1.e. the gain is G but the output variation is in the opposite sense to the imput variatioin), where G is large (of the order of 10,000) has a resistance feedback R_{1} The input is supplied from a voltage V_{2} through resistonce R_{2}. Then, if the impedance from input to earth is infinate, the total current flow from V_{1} and V_{2} to the amplafiner anput must be zero, i.e.

$$
\frac{V_{1}-V_{0}}{R_{1}}=-\frac{\left(v_{2}-V_{0}\right)}{R_{2}}
$$

and since

$$
V_{1}=-G V_{0}
$$

wo have

$$
\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{1}}{G}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=0
$$

If G Lrs large we have

$$
\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}=0
$$

which represents the equation

$$
A_{1} x_{1}+A_{2} x_{2}=0
$$

In particular if

$$
R_{1}=R_{2} \quad V_{1}=-V_{2}
$$

When the input consinto of several supplies in parallel (Fig.2) wo have

$$
\frac{V_{1}}{R_{1}}=-\left(\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}+\frac{V_{4}}{R_{4}} \ldots \ldots . \cdot\right)
$$

representing the equation

$$
A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3}+A_{4} x_{4} \cdots \cdots=0
$$

3.2 Amplifiuer wrth capacaty feedback

If the feedback is through a capacity $\overrightarrow{\mathrm{C}}$ anstead of a resistance, as in Fig.3, we have

$$
\overrightarrow{\mathrm{c}} \frac{\mathrm{~d}}{\mathrm{dt}}\left(V_{1}-V_{0}\right)=\frac{-\left(V_{2}-V_{0}\right)}{R}
$$

or with $V_{0}=-\frac{V_{1}}{G}$

$$
R \bar{C}_{V_{1}}\left(1+\frac{1}{G}\right)+V_{2}+\frac{V_{1}}{G}=0
$$

If V_{1}, V_{2} are of the same order and G is large we have

$$
\overline{\mathrm{RC}} \dot{\mathrm{~V}}_{1}+\mathrm{V}_{2}=0
$$

or

$$
A \dot{x}_{1}+B x_{2}=0
$$

Thus V_{1} is proportional to the integral of V_{2} and the unit acts as an integrator.

3.3 Push-pill amplifier

So f'ar only single, sided amplifiers have been described and such
amplifizers are know to be liable to, drift with time, making the operation of the simulator using such amplıfiers more difficult. In addition, sinco the coefficzents of the flutter equations may, in general, be eather posituve or negative a large number of amplafiers to reverse the sign of a coefficient (see paragraph 3.1) would be needed.

Both these problems are sumplificd by the use of push-pull amplifiers. Here drift is greatly reduced and the reversal of sign is obtained simply by interchanging the push-pull connecting leads. A push-pull amplifier to be used as an integrating unit is show in Fig. 4. The circuits must, of coursc, be symmetrical about the earth line.

3.4 The use of potentiometers

In paragraph 3.1 tt was shown that

$$
A_{1} x_{1}+A_{2} x_{2}=0
$$

could be represented by

$$
\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}=0
$$

or in other words

$$
A_{2} \propto \frac{1}{R_{2}} \cdot
$$

This inverse proportionalıty makes representation dufficult. If, however, only a fraction, S_{2}, of the voltage V_{2} were supplied to R_{2} then

$$
A_{2} \propto \frac{S_{2}}{\mathbb{R}_{2}}
$$

so that, $1 f^{\prime \prime} R_{2}$ is regerded as fixud and S_{2} variable, the coefficients A_{2}, A_{3}, etc. can be represented durcotly. Whore tho feedback from the output voltage V_{1} (Fig.1) is through a rosistanct the same system can be used to reprosent A_{1} directly. Variailon of S_{1} can be obtained from a tapped potentiometer from V_{1} to earth. If the tappings are in tenths of V_{1}, and three tappangs S_{a}, S_{b}, S_{C}, are applıed through resistances $R_{f}, 10 R_{1}, 100 R_{1}$ connceted in parallel to the input of the amplificer (Flg.2) we have

$$
V_{1}\left(\frac{S_{a_{1}}}{R_{1}}+\frac{S_{b_{1}}}{10 R_{1}}+\frac{S_{c_{1}}}{100 R_{1}}\right)+V_{2}\left(\frac{S_{a_{2}}}{R_{2}}+\frac{S_{b_{2}}}{10 R_{2}}+\frac{S_{c_{2}}}{100 R_{2}}\right)=0
$$

or with $R_{\mathcal{1}}=R_{2}$
$V_{1}\left(s_{a_{1}}+0.1 s_{b_{1}}+0.01 s_{c_{1}}\right)+V_{2}\left(s_{a_{2}}+0.1 s_{b_{2}}+0.01 s_{c_{2}}\right)=0$
For example, with $S_{\mathrm{a}_{1}}=2, S_{\mathrm{b}_{1}}=4, S_{\mathrm{c}_{1}}=7$, and $S_{\mathrm{a}_{2}}=3, S_{\mathrm{b}_{2}}=3$ $S_{c_{2}}=1$, we have

$$
0.247 V_{1}+0.381 v_{2}=0
$$

We have thus represented

$$
A_{1} x_{1}+A_{2} x_{2}=0
$$

With the coefficients A_{1}, A_{2} represented to thrce places of decimals, wath a maximum value of 1.110 .

Such a potentiometer unit is show in Fig. 5 for a push-pull amplifier. Since in practice the resistance $100 \mathrm{R}_{1}$, may be difficult to represent a subsiduary resistance potentiometer has been substituted giving the effect of $100 \mathrm{R}_{1}$ whilst using no resistance larger than $10 \mathrm{R}_{1}$. In addition a reversing switch has boun included so that we can represent

$$
\pm A_{1} x_{1} \pm A_{2} x_{2}=0
$$

3.5 Variable integrating unit

The use of potentiometers is noxt extended to the integrating unit described in paragraph 3.2. The proposed circuit is shown in Fig.6. We have

$$
V_{2}\left(\frac{S_{a}^{\prime}}{R}+\frac{S_{b}^{\prime}}{1 O R}\right)+\bar{C} \dot{V}_{1}=0
$$

or

$$
V_{1}=-\frac{1}{R C}\left(S_{a^{\prime}}^{\prime}+0.1 S_{b}^{\prime}\right) \int V_{2} d t
$$

Putting $R \bar{C}=\tau$, the time constant of the circuit, we have

$$
V_{1}=-\left(S_{a}^{\prime}+0.1 S_{b}^{\prime}\right) \int V_{2} \frac{d t}{\tau}
$$

Thus we have roprosentod $x_{1}=v \int x_{2} \frac{d t}{\tau}$, where v is accurate to two places of decimals. Since, as will be shown below, v represents the airspeed we can adjust the airspeed to 1% of the maximum value to be investigated. This accuracy is thought to be sufficient for present needs.

It will further be seen from Fig. 6 that the feedback capacity can be selected from the values $0.1 \overline{\mathrm{C}}, \overrightarrow{\mathrm{C}}$ and $10 \overline{\mathrm{C}}$. Thus the time constant τ can bo varied from 10 times smaller to 10 times greater than the standard value, having the effect of varying the speed of the integration. In this manner the solution of a problem can be specded up or slowed down, at the convenience of the operator. Care must be taken, however, to maintain the same time constant throughout the simulator, since, if different parts of the simulator are operating at different speeds, the basic problem is altered.

4 Representation of a one degree of freedom equation

- Having considered some of the units of the simulator we can now turn to the representation of the one degree of freedom equation

$$
A \ddot{x}+(B v+D) \dot{x}+\left(C v^{2}+E\right) x=0
$$

Let us consider the circuit shown in Fig.7, using the symbol S to represent $\mathrm{Sa}+0.1 \mathrm{Sb}+0.01 \mathrm{~S}_{\mathrm{c}}$ in the summation potentiometer and S^{\prime}
to represent $\mathrm{S}_{\mathrm{a}}{ }^{\prime} \div 0.1 \mathrm{~S}_{\mathrm{b}}{ }^{\prime}$ in the integrating unit. Signs wall be omitted since all connections are push-pull and reversing switches are uncluded where nocessary.

From Fig. 7 and provious equations

$$
\begin{aligned}
& V_{1}=\tau \dot{V}_{4}=\tau^{2} \ddot{V}_{5} \\
& V_{1}=\frac{\tau}{S_{1}^{\prime}} \dot{V}_{2}=\frac{\tau^{2}}{S_{1}^{\prime} S_{2}^{\prime}} \ddot{V}_{3}
\end{aligned}
$$

With $\tau=1, \quad S_{1}^{\prime}=S_{2}^{\prime}=v \quad$ and $\quad V_{1}=\ddot{x}_{1}, \quad$ we have \quad,

$$
v_{1}=\ddot{x}_{1}, \quad v_{2}=v \dot{x}_{1}, \quad v_{3}=v^{2} x_{1}, \quad v_{4}=\dot{x}_{1}, \quad v_{5}=x_{1}
$$

Al so $\quad \ddot{x}_{1}=f\left(\dot{x}_{1}, x_{1}, v \dot{x}_{1}, v^{2} x_{1}\right)$
whore f Is a lincar function
Putting $\quad S_{1}=A_{11}$, etc. we have

$$
A_{11} \ddot{x}_{1}+\left(B_{11} v+D_{11}\right) \dot{x}_{1}+\left(C_{11} v^{2}+E_{11}\right) x_{1}=0
$$

Thus the clectrical oscillation of the cercuat in FIg. 7 represents the mechanical oscillation in one dogrec of freedom and if $S_{1} \propto A_{11}$, $S_{2} \propto B_{11}$ and so on the oscillations would be identical. However, it is convenzent to slow dow the mochunical oscillation when transformang into the clectricol oscillation, both to mako the oscillation easy to follow inth the cye and to make the maximum use of the relatively limitcd range of the potentiometers. If the oscillation is sloved dow until the circular freauency is approximatoly unaty then A, C, E will be of the same ordor.

Thus in goneral

$$
S_{1}=k A_{11}, S_{2}=\ln B_{11}, S_{3}=\mathrm{kn}^{2} \mathrm{C}_{11}, S_{4}=\mathrm{knD}_{11}, S_{5}=\mathrm{kn}^{2} \mathrm{E}_{11}
$$

where k and n are chosen to make the maximum use of the acouracy of the simulator.

5 Extension to six degrees of freedom

We have nov seon how the samulator can represent an oscillation in one degrec of froedom:-

$$
A_{11} \ddot{x}_{1}+\left(B_{11} v+D_{11}\right) \dot{x}_{1}+\left(C_{11} v^{2}+E_{11}\right) x_{1}=0
$$

With a second unit wie can represent the-independent-oscillation-

$$
A_{22} \ddot{x}_{2}+\left(B_{22} v+D_{22}\right) \dot{x}_{2}+\left(C_{22} v^{2}+E_{22}\right) x_{p}=0
$$

' In order to represent the flutter equations we must now add the cross coupling terms discussed in paragraph 2. To do this vie must add extra ciectical couplings and potentiometor units so that each amplificr output in unit 1 is coupled to the input of unit 2, in addition to being coupled to the input of 1 . Similarly for the output of the amplificers of unat 2 .

Then the simulator as extended to cover sax degrees of freedom, the output of cvery amplafior as coupled to the input of each degrec of frecdom unit making a total of 180 coupling leads. Such a circuit is difficult to prosent in diagrammatic form, so in Fig. 8 a reprosentative carcuit is show. Hero the couplings of one typical amplafier in onch degroc of frocdom to the inputs of each dogreo of freedom unit are shown. The diegram is orrenged in determinant form to indicate the anology betricon the elcctracal couplings and the meohenical coupling torms they represent.

6 Accurecy

Only the general principles of the simulator have been described in this noto, and considerable care must be tokon at overy stage in the dovclopmont to onsure the accuracy of the reprosentation of the problom. It is a littlc dafficuit to detormino the effect of variation of compononts on the overall accuracy of the complete simulator, sance the calculations involved arc longthy. However, a sorios of calculations in two dogruos of froodom has boen made, varying the couplang tarms slightly ono by onc. Tho lareest incocuracy in cirspocd due to the limitations of the sumulator wers $\frac{1}{f}$ and the lorgest inacouracy due to the ostinnated maximum orrors in compononts about $\frac{1}{3} \%$.

From thuse fagures it is doduced thet orrors may amount to an incocuracy in airipecd of 2% in six dogrees of frcedom (about $20 \mathrm{ft} / \mathrm{sec}$ In typicel probloms), whilst the ropontability should bc approciably bottcr. Flutter frequency thould be obtaincd with considerably bettor accuracy.

7 Conciustons

It is considered that a flutter slmulator of the type described horo will possess odequate scope and accuracy for the solution of most fluttcr and vibration problcons at present in hand and likely to arnse in the noar futurc and at the same time enable solutions to be obtained much more quickiy.

Preliminary work on the design of a sumulator whth six dogrees of freedon is now proccodung at the R.A.E. and it is hoped that the machine can bo completed by the ond of 1950. In the meantime a prototype with 2-degrecs of froedom $2 s$ being made.

Acknovilougements

The author acknowidges the help and advice gaven by tho staff of Mathematzcal Scrvices and Guzdod Weapons Departments.

REFERENCES

Ref.No,	Author	Tatle, etc.
1	R.A.Frazer	A brief survey of Computational Difficulties in the Prediction of Flutter of Complex Systems. A.R.C. 7795 - June 1944.
2	$\begin{aligned} & \text { J.B.Bratt } \\ & \text { J.Williams } \end{aligned}$	The Biot Flutter Prediction A.R.C. 7363 - January 1944.
3	$\begin{aligned} & \text { J.J.Gait } \\ & \text { D.W.Allen } \end{aligned}$	An Electronic Analyser for Linear Dafferential Equations R.A.E. Report G:7.1, December 1947.
4	M.Squires	Interam Note on the Development of General Purpose Electronic Simulator R.A.E. Tech.Note GW.27, July 1948.

FIG. 1,2,3 \& 4.

FIG.I AMPLIFIER WITH RESISTANCE FEEDBACK.

FIG. 2. SUMMING UNIT.

FIG. 3. INTEGRATING UNIT.

FIG. 4 PUSH-PULL INTEGRATOR.

FIG. 5.

FIG.5. POTENTIOMETER AND REVERSING UNIT

FIG. 6. VARIABLE INTEGRATING UNIT.

FIG. 7. CIRCUIT FOR ONE DEGREE OF FREEDOM.

FIG. 8.

= ONE DEGREE OF FREEDOM UNIT CONTAINED WITHIN DOTTED LINE OF FIG 7

Fq
= POTENTIOMETER REVERSING UNIT CONNECTING OUTPUT OF UNIT Q TO INPUT OF UNITP

ARrows indicate representative FLOW OF CURRENT FROM OUTPUT OF UNIT I TO INPUT OF UNIT 3 AND FROM OUTPUT OF UNIT 6 TO INPUT OF UNIT 4 ONLY ONE OUTPUT FROM EACH UNIT SHOWN FOR SIMPLICITY. there are actually five PUSH-PULL OUTPUTS FROM EACH UNIT.

FIG. 8. BASIC CIRCUIT FOR
6 DEGREES OF FREEDOM.

C.P. No. 26

12813
A.R.C. Technical Report

PUBLISHED BY HIS MAJESTY'S STATIONERY OFHICE
To be purchased from
York House, Kıngsway, london, w c 2, 429 Oxford Strect, lowdon, w 1, PO BOX 569, LONDON, SEI,
13a Castle Street, idinburgh, 2 | 1 St Andrew's Crescent, Cardiff 39 King Street, manchester, 2 I Tower Lane, bristol, 1
2 Edmund Street, birmingham, 3 Chichester Strect, bfifast, or from any Bookseller

1950
Price 1s. 6d. net

