
LI~Rt~RY 
~ Y ~ k L  :~- ~ r -~  . . . . . . . . . .  ~ ~g ~v'r-4a-.~.,~ 

MINISTRY OF AVIATION 

R.& M .  N o .  3331 

A E R O N A U T I C A L  R E S E A R C H  C O U N C I L  

R E P O R T S  A N D  M E M O R A N D A  

On Obtaining Solutions to 
Equations with Automatic 

the Navier-Stokes 
Digital Computers 

B y  D .  B .  RUSSELL 

ENGINEERING LABORATORY~ OXFORD 

LONDON: HER MAJESTY'S STATIONERY OFFICE 

1963 

PRICE 16s. od. NET 



On Obtaining 
Equations with 

Solutions to 
Automatic 

the Navier-Stokes 
Digital Computers 

B y  D .  B.  RUSSELL 

ENGINEERING LABORATORY, OXFORD 

Reports and Memoranda No. 333 z* 

May, ±962 

1. Object. 
The purpose of this paper is to show how to obtain steady-state solutions to the Navier-Stokes 

equations on an automatic digital computer. First the relative merits of various finite-difference 

formulae are discussed. Thereafter the main part of the paper is concerned with the methods used 

to solve the finite-difference equations and an investigation is made of all the simpler iterative 
methods. 

2. The 'Navier-Stokes Equations. 

The Navier-Stokes equations for steady incompressible isothermal flow in two dimensions may 
be expressed as follows: 

vV~,/¢ + ¢ , G d G  - G v , d ¢ ~  = 0 (1) 

which is subject to the boundary conditions 
• Cs = G = 0 (2) 

along a solid wall. Equation (1) is a non-linear fourth-order partial differential equation, which 
cannot be solved analytically except for a few very simple boundary shapes. (See, for example, 
Schlichting, Ref. 18, Chapter 5). Thus its solution must generally be carried out numerically. 
The first person to do this for the complete equations was Thorn ~t, who calculated the flow past a 
circular cylinder at Reynolds number 10. He converted equation (1) to the form 

~v~:,~ + G G  - G G  = 0 (3a) 

V,.~,~ + ~ = 0 (3b) 

which he then solved simultaneously for ~ and ¢. Other numerical solutions to the Navier-Stokes 
equations have since been obtained by Thorn ~z, Kawaguti n,12, Allen and SouthwelP, Jenson 9, 
Apelt 8 and Lester t3. Of these only Lester and, in his second paper, Kawaguti had the use of 

automatic digital computers. Now although many of the earlier techniques can be programmed on 
to an automatic digital computer, some of them have to be modified to make the best possible use 
of such an expensive piece of equipment. 

Equations (3a), (3b) are two simultaneous second-order partial differential equations of the 
elliptic type. However their non-linearity makes them rather more difficult to solve than, for 
instance, Laplace's equation. 

* Replaces A.R.C. 23,797. 



3. ConJbrrnaI Transformation of the Field. 

Undoubtedly  the biggest difficulties in solving an elliptic partial differential equation are those 
associated with the boundaries. Many of these difficulties can be overcome by first transforming the 
field into a rectangle. By this means the boundaries become straight lines parallel to the axes so 
that they can be chosen as grid lines. The  problem is then solved in the transformed plane. In fact it 
is easiest to carry out the transformation itself in the transformed plane, as recommended by Thorn 
and Apelt (Ref. 24, p. 43). It is not proposed to elaborate here on the pros and cons of conformal 
transformation in solving elliptic partial differential equations, since this is not the object of the 
paper. Suffice to say here that its advantages become even more apparent on an automatic digital 
computer. 

Putting w = ~: + i~ 7 = w(z) = w(x+iy) ,  equations (3a), (3b) become 

,,V~,,2~ + ~be~ ~ - ~b,,~ = 0 (4a) 

V~,j~b + M2~ = 0 (4b) 

which are subject to the boundary conditions 

= = 0 (5) 

along a solid wall. M is the modulus of transformation defined by 

dz 
M =  ~w • 

Out transformation is so chosen that the boundaries are parallel to the axes of the transformed plane. 

Before we can solve equation (4), it is first necessary to find M as a function of ~, ~7. However  it is 
not intended to describe here methods of obtaining M. Instead we proceed directly to the solution 
of the Navier-Stokes equations in the transformed plane, where M is known. 

4. Finite-D~fference Approximations to the Navier-Stokes Equations. 

The choice of finite-difference equations is always a compromise between accuracy on the one 
hand and ease of solution on the other. In forming approximations to equations (4a), (4b), there are 
two types of differential operator to consider: ~/0~ and V¢,l~. 

4.1. Approximations to b F / ~ .  

The simplest and most generally useful approximation to ~F/O~ at a grid point (j, k) is Ofj, t . /~  
defined by 

 fj, k = (6) h 

which neglects 0(h3). A more accurate formula can be derived from the following expression 
obtained by Bickley a. 

6h ~ . f j ,  ,.~ = ' k+fj  + h ,  - ,., - . . . .  

Making use of equation (6), we obtain 

6h ~ fj, ,~ = 3g(4fs. z~. +f~, z,,.~ +h, ,~-t - h2V~,2fj. ,~) (7) 

which neglects 0(h'~). However,  the author finds that the time required for the application of equation 
(7) is about  six times as much as that for equation (6). When it is included in an iterative procedure 
to solve equations (4a), (4b), it more than doubles the total iteration time. Moreover the author 
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finds it very difficult to obtain a good convergence rate using equation (7). Altogether it is not a 
convenient formula to use in obtaining solutions to the Navier-Stokes equations. Its only possible 
use might be as a check on the accuracy, after a solution has been obtained using equation (6). 

Formulae involving values at points further than h~/2 from (j, k) are not considered here because 

they are not applicable next to the boundary, where, with the biggest neglected higher-order 
derivatives present, the more accurate formulae are most needed. Thus  we choose to use equation (6) 

when solving the Navier-Stokes equations, because it is usually possible to obtain good convergence 
rates with it. Its accuracy can usually be improved by a reduction in grid size. 

4.2. Approximations to V~,I~F. 
The  simplest formula is the five-point approximation (also known as the Liebmann formula and 

the diamond formula), which replaces V~,/2F at a grid point (j, h) by Vg,12fj ' 1,- defined by 

hWe,,=L, k = (S, - 4)fj, ,,, (8) 
which neglects 

h 4 
12 (v~'~4 - 2~f'/4)f)" 1,: + 0(h6) • 

Another well-known formula is the nine-point approximation (also known as the Bickley formula 
and the 20 formula). 

6hW~,z2fj, ,~ = (4S 1 + S 2 - 20)fj, ,~ (9) 
which neglects 

[ 1 l - h%,?  + g6 ( v # +  L. + 

(87ad~) A '2 

As pointed out by Kantorovich and Krylov 1°, page 211 in Benster 's translation, for Laplace's 
equation the first two neglected terms in equation (9) are zero, which makes it much more accurate 
than equation (8). Moreover for a more general elliptic differential equation it is not difficult to 
estimate the first neglected term. Thus  

h2(4 + = (4& + & -  20)L. ' (10) 
which neglects 

h 6 

For Poisson's equation this is well Worth using because the correction terms need be calculated 

only once at the beginning. However  for equations (4a), (4b) it is not worth using except possibly in 
conjunction with equation (7) as a check on accuracy of a completed solution. 

Combining equations (6), (8) we obtain the following Navier-Stokes difference equations: 

~j,,,, = 0.25 i S ~ j , k  + ~{(8~b)(8, ,~)- (8,,¢)(8~)}j,,~ 1 (11a) 

(,j, ~ = 0.25181~b. ' ~ + h2M~, ,2g., ,~]. (11b) 

Equation (5) gives us ~b along a solid boundary but  not ~. Accordingly it becomes necessary to derive 
a boundary formula for ~ using equations (4a), (4b), (5). The  simplest is that due to Thorn 22 

~',o = 2(~bj, o - ~bj, ~)/(h2Mj, 0 2) (12) 
which neglects 

h 
3Mj. 0 2 au (M2~)J' ° + O(h2)" 
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More accurate is the formula due to Woods 25 

~,o = 3(@J, o - @~,l)/(heMj, o ~) - O" 5(M2~): ', ~/M~. o ~ 

which neglects 

(13) 

~hWg~(M~)~,0 + 0(h'~). 

This is not much more complicated then equation (12). Its first neglected term may be expressed as 

½ h ~ M 2 ( [ L ~  - kM~,]  + ~[(L~) ~ + k2M~]}j, 0 

which is easy to estimate if a check on the accuracy is required without  reducing the grid size. 
The  above formulae are all derived by means of Taylor 's  series, the validity of which depends on 

the function and all its derivatives being continuous and finite in the region. Thus  if a singularity 

exists, the formulae must be nmdified near it. It is not intended to elaborate on this here. 

5. Solving Linear Elliptic Difference Equations. 

5.1. The  non-linearity of the Navier-Stokes difference equations makes their solution possible 

only by indirect methods. It also makes the study of iterative treatment rather difficult. In order to 

simplify the problem, we first consider the equation 

V~,12F + AF~ + BF~l = 0 

where  A, B are known constants. The simplest finite-difference 

equations (6) and (8). 

fj, ,~ = -} [(1 - a)fj_l,  ,~ + (1 + a)/j+l, ,,, + (1 - b)fj, ,,--1 + (1 + b)fj. ,~+1] 
where 

(14) 

approximation to this uses 

(15) 

a b h 
A - B - 2 (16) 

We will consider the convergence rates of various iterative treatments for the solution of equation 
(15), assuming t h a t f i s  known along the lines ~ = 0, ~ = ph, ~9 = O, ~7 = qh. The problem is thus 
to find f at every internal point of a grid of p x q squares, i.e. to find fj., k for 

i =  1, 2, . . . p -  1 

1 , 2 ,  q 1. 

Iterative treatments can be divided into two types. 

(1) Explicit methods, for which we determinefj,  7~ 0~') by an explicit linear formula, e.g. equation (17). 

Thus  we revise the values o f . /po in t  by point. 

(2) Implicit methods, for which we determine f~, I~ (~) by the solution of a small set of linear 
simultaneous equations implicit in fj, l~ (*0 usually for a whole row of points. Thus  we revise the value 

of . / l ine  by line. Each of these types can be further divided into two sub-types: 

(a) Successive methods, which use the most recently calculated value at every point. 

(b) Simultaneous methods, which use only those values calculated during the previous iteration. 
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5.2. Successive explicit  methods.  

These methods entail visiting every point in the grid in regular succession, calculating a new value 
offj .  k at every point using the most recently calculated values at the neighbouring points. Thus  on 
the nth iteration we put 

O3 
fj, ,~(~) = (1 - oo)fj, ,(n--l) + 4- [(1 -- a)fa._l, ,c! n) + (1 + a)f j+l  ,(n-l) + 

+ (1 - b)fj, k_l (n) + (1 + b)fj. k+l (n-l)] (17) 

where ~o is the movement  or displacement factor. Subtracting oJ times equation (15) from equation 

(17) we get the error equation 
O9 

ej, k (n) = (1 - o~)e~.,/¢0~--1) _[_ 4-  [ (1  - -  a)ej_l, :(n) + (1 + a)ej+l, 1~ ('t-l) + 

+ (1 - b ) %  k_l (n) + (1 +b)ej,  k+l (n-l)] (18) 

where % fin) is the error in fj ,  k (n) defined by 

e (n) j,,~ = fkk(n) - f j , , , .  (19) 

Equation (18) applies for 

{~ = 1 , 2 ,  . . . p - 1  

1, 2, q 1. 
Of course 

% k = e p ,  7c = e j ,  o = e L  q = 0 

since we have assumed Dirichlet boundary conditions. We write equation (18) in the form 

(20) 

e(n) = Me(n-z) 

where M is a matrix of order ( p -  1) x ( q -  1) and e (n), e (n-l) are vectors. We put  

e(n) = he(n-l) (21) 

where ;t is an eigenvalue of the matrix M. We seek solutions of the form 

for 

ei, 1~ = 
- l q -  1 . ~ri  rrsh 
2g Z Ej. k sin " sin - -  

,.=l ~=i P q 

i =  1 ,  2 ,  . . . p - 1  

1, 2, q 1. 

Substituting equations (21), (22) in equation (18) we obtain 

(22) 

( ; ~ - 1  +~o)E~, l~sin rrrj sin rrsk 
p q 

oJ l [ ) t ( l _ a ) E s _ , , k s i n r r r ( j - 1  ) ~rr(j+ 1)~ rrsk 
= ~- - ~  + (1 +a)Ej+l ,  ,csin P sin --q + 

+ ,~(l_b)Ej, k_, sin =S(k- 1) . ~s_(k+ 1)q sin --+(l+b)Ejl'+lSlnq " . q d p -  " (23) 



F o r a  2 ~ 1, b 2 ¢ l w e m a y p u t  

~[% ( l - a ) ]  E j - a ' ' ~ = l ~  % / I ~  {l+a]TEj+l'k\l - a].] 

~ [  ( I -  b ) ]  Ej. z~__1 = ~ [ 1  [ 1 +  b]-] Ej /,.+1 = E~ z" (24) 
= 2' ~ X \ l - b J . J  . . . .  

so that equation (23) becomes 
- o,~VA - (1-co)  = 0 (25) 

which we shall name the eigelwalue equation. It is independent of j,  h and so it is the required 

solution. Here 
7rs  

/. = ~ V ' ( 1 - a 2 ) c o s  ~- + ~ / ( 1 - b 2 ) c o s  (26) 

{ i = 1 , 2  P - 1  . . . .  

1 , 2 ,  q 1. 

For the trivial case when a ~ = 1 and/or b z = 1, equat ion (24) must be modified. For example, 
for a = 1, we put  Ea+l, a- = 0, but  equations (25), (26) are still valid. Clearly t* may be real, 

imaginary or complex depending on the magnitudes of a, b. There are thus four cases to consider 

(1) a 2 ~< 1, b z ~< 1, /x is real. 

(2) a 2 < 1, b ~ > 1,/x is complex. 

(3) a 2 > 1, b 2 < 1, / z is complex.. 

(4) a ~ >/ 1, b 2 > 1, /* is imaginary 

These are illustrated in Fig. 1. 

5.3. Successive Unit Displacements by Points (Succ. u.d.p.). 
This method is sometimes named after Gauss 7, Seidel I or Liebmann 16. Thorn m refers to it as 

squaring. It consists of putting ~o = 1 in equation (17). The  eigenvalue equation then has the 

solution 
;~ = tz 2 . (27) 

From equation (21) it is evident that the criterion for convergence is 

p < 1 (28) 

where p is the spectral radius of A defined by 

p = [hlm~x = p(w). (29) 

It  represents the factor by which the errors are being reduced every iteration. A convenient measure 
of the time required for any iterative treatment is N, the number  of iterations required to reduce the 

errors through a decade. N is defined by the equation 

N - log(0.1)  (30) 
log (p) 
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It  is related to r, the rate of convergence, as introduced by Young 26 by 

2. 30259 
N - - -  

r 

N is used here in preference to r because its practical meaning is more immediately apparent. 

Case 1 

a ~ ~ 1, b ~ <. 1 

tz is real and hence A is real positive./z has a range of values spread either side of zero. Clearly 

P = 2~ ~ / ( 1 - a 2 ) c ° s  + X/(1-b2) c°s 

which always satisfies equation (28), so that convergence always occurs. For a 2 ~ 1, b 2 < 1 

2.3 
N g _ _ o c h - 2  

where 

1 b2 4 = ] [ a2 + + z f i (p -2+  q-a)] .  

If  we put A = B = 0, equation (14) becomes Laplace's equation and equation (32) becomes 

P =2¢ cos + c o s  

which is the result obtained by FrankeV. 

(31) 

(32) 

so that p is given by 

Case 2 
a s < 1, b 2 > 1. 

Both/x and ?t are complex. Equation (27) becomes 

1 I 7rr ,t = T~ ~ / ( 1 - a 2 ) c o s ~  - + / ~ ( b 2 - 1 ) C O S q ]  ~ 

p = ~[ (1 -ae )c°S2p  + (b 2 -  1) cosZ-Zr 7 
qA 

which satisfies equation (28) provided that 

(1 -a~)cos  ~ + ( b ~ - l ) c o s  2-  < 4. 
q 

Cage 3 
a 2 > 1,  b 2 < 1.  

By comparison with Case 2, we get the convergence criterion 

(a s -  1)cos~;  + (1-b~)cos2~ < 4. 
q 

7 
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Case 4 
a ~ >1 1, b ~ > 1. 

In this case/ ,  is imaginary and )L is real negative. Equation (27) becomes 

= - -  C O S -  '4- C O S  A ~ a = -  1) ~/(b ~ -  1) 
P qJ  

'I,( ; p = ~ a ~ -  1) cos 

so that p is given by 

so that for convergence we require that 

+ x/(b 1) cos q 

(37) 

7T 7J" 
V(a - cosy + V(b - 1) cos q- < 2. (38) 

T h e  convergence criteria, equations (34), (36), (38), are rather complicated and so they are best 

shown graphically. Fig. 2 shows a graph of ]a 1 against Ib[ for /9 = 1, for three sizes of square 

field. Convergence for successive unit displacements by points occurs within the line p = 1 and 

divergence outside. An interesting feature is that for given a, b the size of the field has little effect 

on the convergence criteria except for very small fields. This suggests that the convergence criteria 

might also be valid for non-Dirichlet  boundary conditions, since the boundaries have so little 

influence. Of course for given A, B halving the grid size halves the value of a, b. Thus  by reducing 

the grid size, successive unit displacements by points can be made to converge where previously it 

would have diverged. When we are just inside the line p = 1, the rate of convergence is impractically 

slow and so it is of interest to see how far inside we must be before a satisfactory rate of convergence 

is obtained. 
Fig. 3 shows for p = q = co graphs of constant p. Th e  values of p are so chosen as to make N a 

convenient number.  An interesting feature is that for a s < 1, b ~ < 1 increasing a ~ and/or b~improves 

the rate of convergence, whereas for a ~ > 1, b 2 > 1 the reverse is true. The  graphs are drawn for an 

infinite field. For  finite values of p, q there will be only a slight improvement  in the convergence 

rate except for a ~ ~ 1, b 2 ~ 1, when the improvement  will be much more marked. 

Since for given A, B, a, b depend on h, it is always possible to obtain a satisfactory convergence 

rate by suitable choice of grid size. However  this can result in very long iteration times which is 

undesirable at least in the early stages of the solution. It  is thus desirable to seek other ways of 

improving the convergence rate. Until now we have used unit movement,  i.e. we have put  ~o = 1, 

but  this is not necessarily the best value to use. 

5.4. Successive Optimum Displacements by Points ( Succ.o.p.d.). 

This  method uses the opt imum value of ~o; which we shall designate ~0, in equation (17). Since 

~o 0 is frequently less than unity, we shall call the method successive opt imum displacements in 

preference to the much used name due to Young 26, successive over-relaxation. Th e  term relaxation 

is rejected in this context because it is already used to describe a process due to Southwell 2° which 

is very popular  amongst workers performing pencil and paper calculations. Th e  terms, extrapolated 

Gauss-Seidel method, extrapolated Liebmann method, are also discarded as being inept. ~0 is 

defined as being that value of ~o, which makes p a minimum. Th e  eigenvalue equation has the roots 

= [½~o~ + ~/{(½~o~) ~ + 1 - ~}]~ (39) 

where F is given by equation i26). 
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Case 1 

For  co = 1, 1 > A > 0 so that we expect an increase of co to improve the rate of convergence. 

For  oa > 1, we must consider two ranges. T h e  first is 

(½co~)2 _ co + 1 < 0 

for which k consists of two complex conjugates of modulus 

I~[ = c o - 1  (40) 

which increases with increase of co. T h e  second range is 

( ½ c o ~ ) 2 - ~ + 1  /> 0 

for which the two roots of equation (39) are real, the larger of the two having magnitudes greater 

than that given by equation (40). Thus  

1 t _ _  p [~co/, ÷ ~/{(½_co/,,)2 + 1 ~o}] 2 (41) 

where 

/~' = ~ ~ / ( 1 - a ~ )  c°s + @(1 -b ~ )co s  . 

I f  we put  
2 

~o = 1 + 5 / ( 1 - t ,  '2) = coo (43) 

equation (41) reaches the minimum value of 

/~,2 (44) 
p = o~ o - 1 = ( 2 _ / , , 2 ) +  2X/(1_/z,2).  

This  is the result obtained by Young 26 for a = b = 0. For small a 2, b 2 

1.15 h_~. (45) N ~ - ~ -  cc 

This  means that, for a given starting solution, the computational labour varies as h -3. Thus  if we 

halve the grid size, we increase the labour eightfold. 

Case 2 

/~ in equation (39) becomes 

7 r s  

~ _- ~ ~ / ( 1  - a 2) c o s  + i V ( b  2 - 1) c o s  = ~1  + i ~  ( s a y )  

so that 
z = 1 ½ c o ( ~ l + i ~ )  __ ~ / [ { { - c o ( ~ l + i ~ ) ?  + 1 - co]?2 

It  is possible to find an analytical equation for I )t [, to differentiate it wi th  respect to co, to equate the 

result to zero and thus to solve for coo and to find the corresponding value of p. However  the equation 

for co is a polynomial of degree ten with very unwieldy coefficients and so it becomes preferable to 

find ~% and p numerically for particular values of t2', which is given by 

/,, 1 ~r (46) = ~ V ( 1 - a ~ ) c ° s - + i ' v / ( b 2 - 1 )  c°s  = t z ' l + z t , ' 2 .  
P 

In  Table  1 are given coo, P, N for a range of values of/z '  x,/*'2. 
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Case, 3 

This is the same as Case 2 except that equation (46) is replaced by 

1 
i ~ / ( a 2 - 1 )  cos + ~¢/(1-bZ)cos zf- 

T A B L E  la 

Vahtes of 10% 0 

/z'~ /z' I 0.0 0.1 0.2 0.3 , 0.4 0.5 

0 
0.5 
1 
2 
4 
8 

16 

10000 
9442 
8284 
6180 
3904 
2207 
1174 

10026 
9312 
7969 
5762 
3555 
1983 
1048 

10103 
9285 
7772 
5476 
3318 
1833 
964 

10237 
9282 
7573 
5193 
3093 
1694 
887 

10436 
9276 
7339 
4892 
2864 
1555 
811 

10719 
9233 
7043 
4556 
2622 
1411 
733 

T A B L E  lb 

Values of 104p 

P"2 

0 
0.5 
1 
2 
4 
8 

16 

/z' 1 0.0 

0 
558 

1716 
3820 
6096 
7793 
8826 

0.1 

26 
1316 
2902 
5109 
7087 
8409 
9168 

0.2 

103 
2004 
3808 
5953 
7673 
8753 
9355 

0.3 

237 
2771 
4701 
6699 
8157 
9027 
9501 

0.4 

436 
3642 
5602 
7381 
8574 
9257 
9621 

0"5 

719 
4630 
6509 
8007 
8939 
9453 
9723 

T A B L E  lc 

Values of N 

P b*l 

0 
0.5 
1 
2 
4 
8 

16 

0"0 

0-0 
0.8 
1.3 
2.4 
4.7 

0"1 

0.4 
1.1 
1.9 
3-4 
6.7 

9.2 
18.4 

13.3 
26.5 

0.2 

0-5 
1-4 
2.4 
4.4 
8.7 

17.3 
34.5 

0.3 

0.6 
1.8 
3.1 
5-7 

11.3 
22-5 
44.9 

0.4 

0.7 
2.3 
4.0 
7.6 

15-0 
29.8 
59.6 

0-5 

0.9 
3.0 
5.4 

10.4 
20- 5 
40.9 
81-8 
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Case 4 

= V ( a ~ - l ) c o s ~ -  + ~ / ( b ~ -  l )  cos = i ~  (say) 

so that equation (39) becomes 

A = [ i½~,2 + V{1  - ~ - (½~,~)~}]~. 

We must  consider two ranges. The  first is 

(½-~o/xe)2 + ~o - 1 > 0 

for which h consists of two complex conjugates of modulus 

[,~[ = 1 - ~o (47)  

which increases with decrease of ~o. The  second range is 

½(~o/@ e + ~ o -  1 ~< 0 

for which the two roots of equation (39) are real negative, the larger having modulus greater than 
that given by equation (47). Thus  

1 t 2 p = [½~o,' e + ~,/{(~y/z 2) + ~o - 1}] 2 (48) 
where .1[ ; 

t x ' 2 = ~  v ' (a  e - 1 )  cos + ~ / ( b  e - 1 ) c o s q  . 

If  we put 
2 

1 2  1 + V ( I + ~  ~ ) 

equation (48) reaches the minimum value of 

= ~o o (49) 

~ 2  2 

p = 1 - O~o = ( 2 + # 2 ~ )  + 2~/~]v~ +~ 'ee )  ' (5o)  

Equation (49) may also be written 
2 

O~o = 1 + v / ( 1  _ ~ , e )  

which is identical with equation (43). ~' is given by equation (42). Unfortunately this relation is not 
valid for Cases 2 and 3. For large a ~, b e 

N z  0 . 5 8 ( ] a i +  [5]) och  (51) 

which means that the computational labour varies as h -1. Thus  halving the grid size only doubles 
the computational labour. 

Successive opt imum displacements by points always converges, which is a distinct improvement 
over successive unit displacements by points. However,  equations (45), (51) and Table lc  do not 
show readily the effective range of the method and so in Fig. 4 we show plots of constant N. It will 
be seen that a good convergence rate is now possible even for values of a, b ten times and more those 
for which successive unit displacements by points diverges. 

For  Cases 1 and 4 we have one equation for w0, whereas for Cases 2 and 3 we have had to find it 
numerically. The  question thus arises, H o w  important is it to be able to calculate w 0 accurately? 
To  answer this question we have plotted p against o) for various values of a, b. These appear in 
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Figs. 5a, b, c for p = q = 20. For  Case 1 the graphs are, of course, very similar in shape to that 

plotted by Forsythe and Wasow (Ref. 5, p. 257), for the five-point Laplacian difference equation. 

The y  pointed out that it was better to err on the high side when estimating o~ 0 because 

dp 

whereas 

This  is of course true for a = b = O, but  as a, b are increased to unity 

O=OJ 0 - 0  

so that it matters less and less on which side of % we are. But even for very small a, b the effect of 

underestimating ~o 0 is only to slow up the convergence of the solution. It  does not prevent it. 

For Cases 2 and 3 it will be seen that (d2p/doJ2)~=oo is finite, so that an error of 5% to 10% in 

estimating ,% is not going to matter. However  it is vital not to overestimate ~o 0 too much because 
to do so makes p > 1 with consequential divergence. 

For  Case 4 the situation is even more drastic. For instance, for a = b = 4, p = q  = 20, 

oJ 0 = 0.4037 which makes/9 = 0.5963. But for o~ = 1.03oJ0, p = 1.0151 > 1. Thus  in Case 4 it 

is fatal to overestimate co 0. In fact it is better to underestimate o% by 50% or more, than to overestimate 
it by only 3%. 

As mentioned before, the determination of ~o 0 is not simple as there are four cases to consider, 

and for two of these no analytical relation has been found. Consequently the author sought an 

empirical formula for % to cover all four cases. T h e  result is given below 

2 
~o - 1 + ~ / 4  (52) 

where 4 = ½[ a2 + b2 + wZ(P-2+ q-~)]- Clearly equation (52) is a much more convenient form and 

it reduces the effectiveness of successive opt imum displacements by points only slightly as shown 

in Fig. 6. 

5.5. Simultaneous Explicit Methods. 

So far we have considered successive explicit methods using unit and opt imum movements.  

The re  are of course several other possible treatments. Th e  simplest of these have been considered 

in this and ensuing sections. For  brevity we have included little more than the actual results of 

the analyses. 

Simultaneous explicit methods entail visiting every point in the grid, calculating a new value of 

fj, 1~ using at the neighbouring points only those values calculated during the previous iteration. 

Thus  the order of visiting is immaterial. In fact it would be possible to visit the points simultaneously. 
Thus  on the nth iteration we put  

fj, z~ <n) = ( 1 - oY~f.,~,~, I,~<'~-1) + 4 [( 1 - a)fj_l, z~ o'-1) + ( 1 + a)fj.+l ' z~ o~-1). + 

+ (1 -b)fj ,  ,~_~<~-~) + (1 + b)fs, k_,1(~-1)]. 
The  eigenvalue equation is 

A = ~/z+ I-~o. 

(53) 

(54) 
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5.6. Simultaneous Unit Displacements by Points (Sim.u.d.p.). 

This method is sometimes named after Jacobi 8. I t  consists of putting ~o = 1 in equation (53). 

The eigenvalue equation then becomes 

;~ = ~ .  (55) 

Comparison with equation (27) shows that 

) t S h n .  u .  d.  9 .  = ~ / / ' ~ S u e e .  u .  d .  !o. 

from which we may immediately deduce that the convergence criteria for the two methods are 

identical and that Sim.u.d.p. is only half as fast as Succ.u.d.p. when convergence occurs. (See 
Figs. 2 and 3.) 

5.7. Simultaneous Optimum Displacements by Points ( Sim.o.d.p.). 

This method uses oJ = co o in equation (53). 

Case 1 
~o o = 1 (56) 

which makes 
p = /~'. (57) 

For small a 2, b g 
4 .6  

N ~ ~ -  oc h -2. (58) 

This means that for a given starting solution, the computational labour varies as h -4. Thus  if we halve 

the grid size, we increase the labour sixteenfold. 

Cases 2, 3 and 4 

(whichever be least). 

o r  

(1 - / ; 1 )  
~o 0 = or 1 (59) 

/~'2 ~' + ( 1 - / z ' l ) ~  

/z'2 (60)  
P = -X/[/_J~ ~ + ( 1 - p , ' l )  2] 

~/(/x'12 + tz'2 z) if ~o 0 = 1. 

In fact equations (59), (60) also hold for Case 1. For large/x' 2 

N ~ 4"6/z'~ 2 oc h a. (61) 

This means that the computational labour is independent of the grid size. This of course assumes that 

the chosen value of h makes a 2 and/or b ~ large. For comparison with successive opt imum displace- 

ments by points, we have plotted in Fig. 7 lines of constant N for simultaneous opt imum 
displacements by points. Comparison with Fig. 6 will show that the successive method is faster 

over the complete range of a, b. 

5.8. Successive Methods Implicit by Lines. 

Now we will consider methods which involve solving simultaneously for all the values of . /a long 
the line ~/ = kh. (This necessitates the inversion of a tridiagonal matrix of order p - 1). We will visit 
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each ~7 line in the grid in regular succession, calculating new values o f f  along the line using the most 
recently calculated values along neighbouring lines. Thus  on the nth iteration we put  

[(1 - a)f:_l, ,~(~) - 4fj. #~> + (1 + a)f:+l~ #,o] 

= ( I  - co) [ ( I  - a ) f :_1 ,  i , (~- i )  _ 4 f  z Ic(~-i) + ( I  + a ) f :+a ,  , ( g - l ) ]  _ 

- co [(1 - b)f:. 1 , ~ _ 1  (~'~) + ( 1 + b)f:, (~-m k + l  .1 • 

The  eigenvalue equation is 

(62)  

where 

for 

- ~, .V ' ;~  - ( 1 - ~ o )  = o (63) 

7 r s  
C ( 1  - bD cos  - -  

q 
v = (64) 

7r/ :  
2 -  ~ / ( 1 - a ~ ) c o s -  

P 

i =  1,  2 ,  . . . p - 1  

= 1 , 2 ,  q 1. 

It is interesting to compare equation (63) with equation (25). There are four cases to consider: 

Case 1. {See equation (31)} v is real. 

Case 2. {See equation (33)} v is imaginary. 

Case 3. {See equation (35)} v is complex. 

Case 4. {See equation (37)} v is complex. 

5.9. Successive Unit Displacements Implicit by Lines. 
This method consists of putting ~o = 1 in equation (62). The  eigenvalue equation then has the 

solution 
,~ = ,,~ (65)  

Case 1 

v is real and so ;~ is real positive. Clearly 

p : V t2  

which always satisfies equation (28), so that convergence always occurs. Here 

(66) 

F o r a  2 <  1, b 2 <  1 

~/( 1 - b ~) cos - 
, q 

v = . (67) 
"/T 

2 - ~/(1 - a 2) cos - 
p 

1"15 
N ~ ~ -  oc h -2. (68) 
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Cage 2 

v is imaginary so that h is real negative. 

/£t22 

P - ( 1 - ~ ' 1 )  ~ 

so that convergence will occur if 
qT 77, 

a/(1 - a  2) c o s  + ~/(b z -  1 )cos -  < 2. (69) 
, P q 

Case 3 

v is complex so that h is complex. 

1 (1 - b ~) cos ~ ~ (70) P = /~'12 = 7~ q 

which always satisfies equation (28), so that convergence always occurs. Moreover p never exceeds 

one quarter, so that N never exceeds two. 

Case 4 

~, is complex so that A is complex. 

1 
P = 7~ ( b~- 1)c°s2~ 

q 

which satisfies equation' (28) if 

( b~ - l ) eos  ~ < 4. (71) 
q 

In Fig. 8 is shown the convergence range of successive unit displacements implicit by lines. 

Comparing this with the range of successive unit displacements by points (Fig. 2) we see that the 

two criteria are very different. For Case 2 the point method has a larger convergence range. For 

Case 3 the line method has no restrictions and so is far superior. (Of course the criteria for Cases 2 

and 3 may be interchanged by using a perpendicular direction of sweeping the grid. That  is, we 

could solve simultaneously for all the values of f along the line ¢ = jh instead of along the line 
= kh.) For Case 4 the line method has a larger convergence range with no restrictions on a 2. 

5,10. Successive Optimum Displacements Implicit by Lines. 

This method uses w = 0% in equation (62). The  eigenvalue equation then has the roots 

A = [½~ov + ~{(½~v) 2 + 1 - o~}] 2 (72) 
cf. equation (39) .  

Case 1 

By analogy with Case 1 for successive opt imum displacements by points, we can see that 

2 
~0 = 1 + ~ / ( 1 -  v '2) (73)  

p = oJ 0 - 1 (74) 

which is the result obtained by Forsythe and Wasow (Ref. 5, p. 271) for a = b = 0. For small a 2, b 2 

1.15 
N ~ - ~  oz h - 1  . (75) 
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Case 2 

By analogy with Case 4 for successive opt imum displacements by points, we can see that 

2 2 
= (76) 

~0 = 1 + a / (1  + / 2 2 )  1 + a / ( 1 - / 2 )  

p = 1 - % .  (77) 
For  large b 2 

N ~  1.15 !b[ och .  (78) 

Case 3 

For m = 1, p < ¼ so that if oo = 1 is not optimum, then it is certainly very good. 

Case 4 

This, like Cases 2 and 3, for successive opt imum displacements by points, is very difficult to 

analyse. As yet the author has found no empirical formula for % comparable with equation (52). 

2 
% - 1 + ~ / ( 2 ¢ )  (79) 

is good for Cases 1 and 2 but  not for Cases 3 and 4. 

5.11. Simultaneous Methods Implicit by Lines. 

These methods entail visiting every B line in the grid, calculating simultaneously new values of 
f all along the line, using along neighbouring lines only those values calculated during the previous 
iteration. Thus  the order of visiting is immaterial. In fact we may visit every line simultaneously~ 
Thus  on the nth iteration we put 

,~(~) = (1 - oo)f:., k(*~-1) + 4 [(1 - a)fj_l, ,~!~) + (1 + a)fj+l. ,?') + o~°j 

+ (1 - b ) L .  ' k_p :1) + (i + b)f,., k+p+q (80) 

(but see also Appendix). The  eigenvalue equation is 

a - ° ~ # + l - ° °  
1 - aJa (81) 

where 

= X/(1-a )cos  t. 
1 

2/3 ~ (1  -b~)  C O S q )  

(82) 

5.12. Simultaneous Unit Displacements Implicit by Lines. 

This method consists of putting co = 1 in equation (80). The  eigenvalue equation then becomes 

= v. (82a) 

Comparison with equation (65) shows that the convergence criteria for this method is identical with 
that for successive unit displacements implicit by lines and that it is only half as fast when con- 

vergence occurs. (See Fig. 8.) 
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5.13. Simultaneous Optimum Displacements Implicit by Lines. 

This method consists of putting ~ = co 0 in equation (90). 

Cage 1 

(000 ~ 1 

which makes 

For small a ~, b 2 
2.3 

N ~  

Cases 2 and 4 

Case 3 

(83) 

(84) 

- - o c  h -~. (85) 

(1 -~ '1)  (86) 
O9 0 

~'~ + (1-~ '1)  ~ 

(87)  
P = + 

= 1 (88)  

P = /*'1. (89) 

'Fig. 9 shows lines of constant N for simultaneous optimum displacements implicit by lines. 

It will be seen that this method is very rapid for Case 3 but very slow for Case 2, so that the direction 
of sweeping is all important. For Case 1 this method is definitely inferior to successive optimum 

displacements- by points. For Case 4 the re!atiye merits are not so obvious and will depend on the 

computer available, 

5.14. Conclusions. 
Eight iterative treatments for solving equation (15) have been considered and the question naturally 

arises as to which is the best to use on an automatic digital computer. The requirements of a method 

are that: 

(1) It should converge for the complete range of a, b. 

(2) It should provide a good rate of convergence particularly for Case 1, since as the grid size 

is reduced, the point (a, b) moves towards the origin. 

(3) The iteration time should not be too great. 

The first requirement immediately rules out all those methods using unit movement, since they 
all suffer from divergence for some values of a, bl As yet it also rules out successive optimum displace- 
ments implicit by lines, because we do not know what movement to use for Case 4. Of the three 
remaining methods, the one that fulfils the second requirement best is successive optimum 
displacements by points. This method also fulfils the third requirement. All considered, the best 
method does seem to be successive optimum displacements by points, although a more successful 
investigation into its line counterpart might well promote that method, particularly for use on a 
computer with a small high-speed store and a long access time to the auxiliary store. 
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6. Solving the Navier-Stokes Difference Equations. 

In the previous section we considered eight ways of solving equation (15) for constant a, b. We 

found that generally the best method to use was successive opt imum displacements by points. 
Comparing equation ( l la )  with equation (15) we see that 

1 3 , $ ,  b -- 1 
f -  ~, a = 2v G ~ b  (90) 

but there are three ways in which equation (1 l a) differs from equation (15): 

(1) a, b (as given above) are not constant but vary with ~:, % 

(2) a, b (as given above) are unknown initially. 

(3) the boundary values of ~ are unknown initially. 

We will take care of these differences one by one. First let us extend our consideration to the case 

where a, b are known functions of ~, ~/. Equation (15) then becomes 

fj,,¢ = ~- [(1 - a j .  ,c)fj-1, k + (1 + aj, k)fJ+l, ,,~ + (1-bj, k)fL,c-1 + 

+ (1 +bj, k)fj, ,,~1] • (91) 

It will be remembered that for certain values of a, b the implicit methods were particularly good. 
However, now that a, b vary all over the field this is no longer so useful. Accordingly we try 
successive opt imum displacements by points for solving~equation (91). Thus  on the nth iteration 
we put 

f~ k (~) (1 - %., ~ (n-l) wj, ~ , = s~.j,,o + - 4  [ ( 1 - %  k)L'-~' ~°(~) + (l+aj'k)L'+l'k(~-~) + 

+ (1-b j ,  ,~)fj, k_l (~) + (1 + by, k)h, k+l('a-1)] • (92) 

The problem is to decide on the best value(s) for oJj, k. To find this out a series of numerical tests 
were carried out on a small square field (p = q = 10) with known boundary values. First of all we 

found out the effect of using a constant value of o~ all over the field. Now it will be noticed that, 

except for very small a, b, oJ o in equation (52) is almost independent of p, q. This means that w 0 
depends essentially on a, b, which prompts us to investigate the effect of using ~oj, ~ = ((o0);. ' 1~, 
given by 

2 
@0)y, l~ - 1 + ~/~bj, 1~ (93) 

where 

4j, k = ½ [aj, ~? + b j,,0 + ~ ( p - ~  + q-~)] 

cf. equation (52). The results of the tests are given below in Table 2. The value of N is calculated 

as the mean over either six decades or sixty iterations, whichever is completed first. 

TABLE 2a 

Case 1 

a =  0.1j, b =  O , p = q =  10 

~j, k 

N 

1.32 

5.2 

1.36 

4"4 

1-38 

3"7 

1"40 

4"0 

1 "44 

4-7 3.2 
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T A B L E  2a--cont inued 

a = O.lj, b = 0.1j, p = q = 10 

cos, l~ 1.24 1.32 1.36 1.40 1.48 (coo)s, 1~ 

N 6.0 4.5 3.9 4.1 5.1 3.3 

T A B L E  2b 

Case 2 or 3 

a =  0 . 1 j -  0.5, b =  0 . 5 k +  1, p = q =  10 

• coS, k 0-30 0.40 0-47 0.49 0.51 0.53 0-60 0.70 (coo)s, k 

N 16.9 9.5 8.1 7.7 7-8 8.2 18.1 c~ 6 - 6  

T A B L E  2c 

Case 4 

a =  0 . 5 j +  1, b =  0 . 5 k +  1, p = q =  10 

0-20 

11"9 

0"30 

7"6 

0"35 

6"5 

0"37 

6"1 

0"38 

6-0 

0"39 

5"8 

0"40 

16"7 

COs, k O. 50 (coo)s, k 

oo 5.6 N 

T A B L E  2d 

Mixed  Case 

a = 0.9/" - 4.5, b = 0.9k - 4-5, p = q = 10 

cos, 1~ 0- 40 0.58 0.60 0- 62 0.65 0.70 (C°o)s, lc 

N 6"2 4"7 ] 3"5 3"3 -6"7 oo 3"3 

I 

F r o m  the  numer ica l  tests we  m a y  conclude  that  it is bet ter  to use coj, k = (c°0)j, k than  to use any 

cons tant  value, since this reduces  the value of  N.  Th i s  is very  convenient  because it saves us f r o m  

having  to f ind an empir ical  fo rnmla  for the best  cons tant  value of  co. I t  is no t  c la imed tha t  

coj, k = (c°0)j, k is the  absolute best  [for instance,  slight i m p r o v e m e n t  can somet imes  be obta ined  by  

i us ing c%. k = ~/{constant  × (co0)s, 7c}], bu t  it is c laimed tha t  it is the  best  s imple  p rocedure  to use. 

Similar tests were  carr ied ou t  for  s imul taneous  o p t i m u m  displacements  implici t  by  lines, bu t  this 

m e t h o d  was  eventual ly abandoned  because it was f o u n d  to be m u c h  more  difficult to  adapt  for  

solving equat ion  (91) par t icular ly  w h e n  a, b varied m u c h  along the line and because it was  m u c h  
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slower for Case 1. In any case, one of the advantages of the methods implicit by lines is that it is 

very easy to invert the tridiagonal matrix involved. The inverse can be stored as the product of two 
bidiagonal matrices, an upper triangular and a lower triangular matrix. For constant a, b the same 

matrix is used for every line in the grid. The multiplication of the matrices necessary for sweeping 

the field takes very little longer than an explicit method. For instance, Young and Ehrlich ~7, using 

Fortran on an IBM 704 computer, found that for a = b = 0, a single implicit sweep of the field 

took only about 1½ times as long as one explicit iteration. In fact for a # 0, b # 0 the extra complica- 

tion affects the explicit method more than it does the implicit method so that the factor of 1½ becomes 

more like I ! However if a, b are initially unknown, as in the Navier-Stokes difference equations, 5" 

then the tridiagonal matrix mus t  be set up and inverted separately for every grid line for every 

iteration. This can put up  the iteration time for the ~ field to as much as 2½ times that for an explicit 
method. Hence the implicit methods for solving the Navier-Stokes difference equations are not as 

attractive as they might at first appear. 
We will now investigate what happens When a, b are initially unknown. We will try using 

successive opt imum displacements by points to solve equations (1 l a), (1 l b), revising first ~ and then 

~h as we visit each point. Thus on the nth iteration we put 

C j, 1,? ° = (1 - ~o~,/if)) Cj, 1~ ('~-1) + 

,~o (n) 
L k + - ~  [(1-ag, k(n))~g_x,z (n) + ( l + a g  (n)a~ ~ z<n-~) , k  ] J F ,  c + 

where 
+ (1 - b 3. (n)x E i 1 ('~) + (1 + b (n)x ~ ~_ (~-1)] , k  l - j ,  ~:-- j , l~  ] j , k . 1  .1 

1 
. . . .  [,I, Z * ( n - l )  

aj, k (n) = 4 v  ~v'j, c, 1 - ~b~, 1,:_] (~0) 

1 
bj, ~?') = + ~ (4~j+~, ~(~-~) - ~j-~,  7Y )) 

J, ~: = ~ - o Jw,  ~ + ~- [ ~ - ~ ,  ~2 ~) + ~ + ~ ,  7~ (~-~) + ~J, ~:_~(n) + 

+ ~j,  >.](n-1) + h ~ M j ,  , z~j ,  ,(n)]. 
We put 

d("~) = 4~ (~) - 
~ a  (~) = a (n) - a 

~b (n) = b (~) - b. 

We will first assume that 

(94a) 

(94b) 

(95a) 

(95b) 

(95c) 

(95d) 
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[~a I ~ la[ (96a) 

Isbl Ibl (96b) 

which makes equation (94a) similar to equation (92). Thus  the results of the foregoing sections are 

directly applicable and we may put in equation (94a). 

2 
~o (~) = ( 9 7 )  

where  
~j, ,~n~ = ½ [( ,~ + b%, ,~(~,) + ~ ( p - ~  + q-~)] .  



T o  try and ensure that equations (96a), (96b) are valid, we  must have a reasonable starting solution 

for ~J, (e.g. the solution for potential flow or a lower Reynolds number),  but  if either is invalid, then 

it is the other equation that is dominant and we may use equation (97). If  neither equation (96a) 

nor (96b) is valid, then ]a ] < 1, Ibl < 1 and so we have no divergence problems. That  at least is 

the author 's  experience. , 
Next  we will assume that 

h~Mj, ,~ < 1 (98) 

which fiaakes eciuation (94b) a Laplacian'difference equation so we may put 
. . f .- 

2 
: f~ = 1 .+ 7rS/[(p_ ~ +q_2)/2]. (99) 

N o w  if equation (98) is not  satisfied, the above movement  can lead to divergence, in which case it 
will be necessary to reduce ~. The  author is of the opinion that an expression of the type 

{ , ~(~-1) _ ~'(~,-~) ~ } (i00) ~3'. k(~ ) = .~o exp - ckZM~, 7~ 2 ]¢(~-1) ¢(,~-~) 

might give satisfactory results. Here c is a positive constant, which must  be chosen by trial and error, 
and D 0 is given by equation (99). This  is of course essentially empirical, but  the governing idea 
behind it is to dampen out the effect on equation (94b) of changes in ~j., 1~. In practice equation (98) 
fails to be satisfied in only two circumstances: if the grid is very coarse or if the boundary is 
transformed into a circle, as opposed to a slit, so that M is very large away from the boundary.  

For the Navier-Stokes difference equations ( l la) ,  ( l lb ) ,  T h o m  and Apelt 23, and Les ted  4 have 

derived convergence criteria an'd it is of interest to compare their results with those obtained here. 

Since Lester 's  analysis follows basically the same pattern as T h o m  and Apelt's, the two are described 

together, wi th  those parts due solely to Lester appearing in square brackets. Their  analyses were 

equivalent to assuming that $, ¢ were known along the four lines defined by 

(sa+~) = + 2 h .  

This meant that there were five internal points in a small diamond-shaped field. Initially they 
assumed that e, d, the errors in ~, ¢ {see equations (95a), (95b)} were zero for all five internal points. 

Thorn and Apelt then put  
eo,  o (D - -  c 

in  dd' io  1 
do, o 0) = 3.  

They  then calculated: ~1,0 (1), ¢1,0 (1), ~0,1 (1), ¢0,1 (1), ~0,--1 (2), ¢0,--1 (2), " ~--1, 0 (2), ¢--1,0 (2), ~0," 0(2)'. [¢0, 0 (2)] 
using successive unit displacements by points. This gave them (2) % o , [do, 0(2)] • The .  criteria for 
convergence of ~ [and ~h] were 

leo, J)l  < leo, l , [Ido, I < 14,o< ,1] 
which became 

0 < hZM2(u~+.v2)l~,~ < 4 0  O01a) 
for 3 = O,and 

• [ - 9 6  < h ~ M ~ ( u ( V ¢ ~ u ) +  v(V~2v)} tu  ~ < 160] (101b) 

for e = 0. An assumption made en ,route was that u, v did not vary much over the field. (This 
assumption was, of course, made in Section 5 by assuming a, b to be constant.) This  in fact ensures 
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that equation (101b) is satisfied unless hM is large. The form of equation (101a) prompted Thorn 
and Apelt to define a 'local mesh Reynolds number', as 

Remosh = h M V ( u  2+ v2)lv (102) 

which to ensure convergence had to be less than ~/40. In present notation equation (101a) becomes 

0 <~ a2+b 2 < 10. 

Incidentally the same criterion is obtained even if we iterate only the ~ field, leaving the ~ field 
untouched. This is equivalent to solving equation (91). This confirms what was effectively assumed 
in equation (96), that changing the values of a, b every iteration does not have much effect on 
the convergence. 

Another assumption that they made during their analyses was that M varies little over the field. 
It will be seen that the assumption made here in equation (98) is more stringent, but allowance 
for it is taken in equation (100). 

It is interesting to compare their convergence criterion with the present one. This is done in 
Fig. 10. It will be seen that their criterion is not unlike that obtained here for p = q = 3 (i.e. with 
four internal points), but it is obvious that their criterion is insufficient for larger fields. 

To prevent divergence, Apelt 2 suggested reducing the movement in the ~ field putting 

o j, = 8/[6 + (a2+ b%, ] 
(103) / ~ = 1  

in equation (94), whereas Lester suggested controlling the movement of both the ~ field and the 
~b field using a more complicated procedure. On the nth iteration he put 

(104) / 
where 

8~ = 4YA~ + (3+h2M2Y)A~ 
3X + 1.25h~M2y + 2.25 

3~b = (3 +4X)A~h + (X-O.5)h2M2A~ (105) 

3X + 1.25h2M2y + 2-25 

where 

(106) / 
{as given by putting ~o = ~2 = 1 in equation (94)} and 

(107) 

The methods of both Apelt and Lester were evolved by observing what was the best procedure 
at the central point, having previously used unit movement at the four surrounding points. This is 
a weakness since in practice we apply the same treatment at every point in the field. A less important 
weakness is that they evolved their treatments for a field with only five internal points, whereas 
in practice we have much larger fields. However this will have little effect for large [a I, lb[. 
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7. Solving the Boundary Formula.  

There is one further feature in which the Navier-Stokes difference equations differ from the 

preceding analysis and numerical tests. So far we have assumed knowledge of ~, ~b along the grid 
lines ~ = O, ~: = ph,  ~ = O, ~ = qh. The  assumption that the boundaries are rectangular is perfectly 

valid because our transformation has ensured that. However  the assumption that we know ~ and/or ~b 

along these boundaries is true for only two types. If  we have a centre-line parallel to the undisturbed 

flow (assumed to be in the x direction), about  which the solid boundaries are symmetrical, then there 

will be symmetry of u and antisymmetry of v and hence ~ = O, ~ = constant (often zero for con- 

venience). 

Along a solid boundary ~b is a known constant, but  ~ must be calculated by means of equation (13). 

The  method of solving this equation is simply to include the boundary points in our iteration route. 
Thus  on the nth iteration we put  

~j,0 (~) = ( 1 -  oJ')~j, 0(~-11 + ~o'[3(~bj, o - ~bj, l('~-l))/h~ - 0.5Mj,12~j,I(~-I)]/Mj, o ~ . (108) 

So as to minimize the effect of the incorrectness of equation (20), we make co' appropriately small. 
T h o m  and Apelt (Ref. 24, p. 125) recommend putting 

c o ' =  ½ (109) 

and,  as the tests in Section 8 reveal, this movement  can give very good results. However  it is rather 
arbitrary and so we)vi l l  now investigate what  is the opt imum value of ~o' to use. 

Let us suppose that we have a field o fp  × q squares and that we are trying to solve equation (11) for 
j = l ( 1 ) [ p - 1 ] ,  k = 1(1)[q-1]  and equation (13) for j = 1 (1 ) [p -1 ] ,  k = 0. The  conditions we 
apply a long j  = 0, j = p, k = q do not affect the analysis. Like Thorn and Apelt 23 we will suppose 
that the ~, ~ fields are completely settled initially. We then place a disturbance e on the value of 

at the point (j, 0) only, so that 
(1) j,0 = ~ j , o + e  

e~.,o (1) = e. (110) 

We then apply successive opt imum displacements by points, starting at the first point after (j, 0) in 

the succession. Having interated the complete field we evetually arrive back at the point (j, 0) and 
find that 

e;.o (21 = e 1 - co g,0 \M~.0  ~] (3f2j ,~+2)(1-bl .1)  + 1 (111) 

where ~o'j, 0 is the movement  used on the boundary {see equation (108)}. The  process is considered to 

be convergent if lej,0(~)[ <[eg, o(~)[. For successive unit displacements by points (i.e. for 
t ~o = co = f2 = 1), this condition is satisfied provided that 

1 -- 3 " 2  \M~.,12 ) < hi, 1 < 1 + 3 . 2  \ ~ ] .  (112)  

This is more stringent if the boundary is (physically) convex to the fluid (i.e. if M3.,0 < Mg,1). 
For an x, y grid ~ = x, r/ = Y, M = 1 and the criterion becomes 

- 8 . 4 <  ( h ~ )  < 4 . 4  (113) 

which is the result (with appropriate changes in notation) obtained by T h o m  and Apelt 23. Here v is 
the velocity measured away from the boundary.  We define the opt imum movement  as being that 
which makes e~-o (2) = 0 and this is given by 

' / l  ( M J ' l ~ ( ~ ) ( 3 ~ + 2 ) ( 1 - b ~ ' ~ ) }  " (114) (~o o)~,o = 1 1 +  ] 
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Of course our original assumption that ~ and ¢ are initially well Settled all over the field is not true 
in practice, but  nevertheless equation (114) does give:good results as is shown in the tests which follow. 

Although it is intended for use with successive opt imum displacements by points, equation (114) 
can also be applied with unit movement  in ttie .field and with Apelt 's method, but  it cannot easily 
be applied for Lester 's  method because this is a more complicated procedure, which does not 
correspond directly to the use of movements oJ, f2 in equation (94). 

Other types of boundaries are fluid boundaries. A common one which is difficult to treat, is an 
infinite boundary where 

~. --> constant 

¢:~ --> constant (115) 

- > 0 .  

Another occurs in a flow which is periodic in space, so that we may write 

¢~,,~ = _+ ¢¢ , , /+  constant / ' 
(116) ) ~,v  = +- ~r,,J" 

These may all require special treatment. 

8. Numer ica l  Tests. 
o 

In the preceding analyses it was necessary to make various assumptions {i.e. equations (20), 
(96), (98) in Sections 5 and 6 and the assumption that 'the ~, ¢ fields are completely settled initially' 
in Section 7}, because of thenon- l inear i ty  of the equat ions  and the awkwardness of treating the 
boundaries. To  observe the effect of these assumptions being untrue or only approximately true, 
a series of numerical tests has been carried out for a simple viscous-flow problem. These tests also 
serve to compare the different methods of treating the internal points and the boundary points of 
the field.' To  permit a large number  of runs, the field was kept small. In fact we made p = 17, 
q = 8. For further convenience, the boundaries were made rectangular in the  physical plane so that 
in fact M was everywhere unity. The  problem was one of steady viscous flow- past an infinite array 
of flat plates, a small part of which is shown in Fig. 11, which also shows the grid used. Since the 

mean velocity and the length of the plates are,b0!h unity, the Reynolds number  is given by Re  = l /v ,  

The  appropriate formulae are: 

f o r j  - !(1)16, k = 1(!)7 ,,, 

equations (1ii)/iilb); 
f o r j =  1(1)16 

equation (13), but  ~16,0 =~0 

~'j8 = 0 , " 

Cjio = 0 
G',8  = 0 . 5  ; 

for k = 0(1)8 

~o, 7~ = -- ~16, s-z~ "~ 

¢o, 1~ = - ¢16, s-1~ + 0 . 5  ' . 

¢17, J~ = - ¢1,8-1~ + 0 . 5 .  
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The following four methods of solving equation (11) were tried: 

(1) 'Successive unit displacements by points {i.e. 6o = f2 = 1 in equations (94)}. 

(2) Apelt's method {i.e. equations (94), (103)}. 

(3) Lester 's method {i.e. equations (104) to (107)}. 

(4) Successive opt imum displacements by points {i.e. equations (94), (97), (99)}. 

Where possible the following three movements were used in solving equatio n (13) with each of 

the above four methods: 

(a) 6o' = 1 

(b) 6o' = 0 .5  

(c) 6O'j.0 = (6o'o)j,o {see equation (114)}. 

For the initial tests unit movement was used in applying equations (117) along the lines 

j = 0, j = 17 and the values of ~, ¢ were revised as soon as the right-hand sides were altered. 

Solutions were obtained at Reynolds numbers of 1, 10, 100, which correspond to mean values of 

a/(a2+ b ~) = Remesh/2 of 0"03, 0" 3, 3. The latter is outside the convergence range of successive 

unit  displacements by points according to the present theory as can be seen in Fig. 2, but is just 

within the convergence range according to the theory of Thom and Apelt ~3 as can be seen in Fig. 10. 
For Re = 1, the starting solution was that of potential flow past the sameboundaries  (i.e. ~b -- ~, 

= 0). For higher Reynolds numbers, the solution at the next lowest Reynolds number was used. 

The results of the tests are given in Table 3, which shows the number of iterations required 

to make 
[ ~('~) - ~(~-l)[m~x < 10 -a 

1¢(")- ~b(,~-l)lm~x < 10 -5 . 

This necessitated reducing e, d through about four decades. Where the number of iterations required 

was greater than fifty, it was estimated by extrapolating the graph of log ] ~("/- ~('>l/Im,~x versus n, 

and similarly for ~. 

TABLE 3 

Re 

10 

100 

Method 

t 
6O 

1 
0.5 

t 
6 O 0  

1 
0"5 
OAtO 

1 
0.5 

¢ 
6O 0 

Succ. u.d.p. 

¢' ¢ ¢ 

65 70 75 
65 65 70 
65 65 70 

54 52 56 
54 52 57 
54 52 56 

Diverged 
Diverged 
Diverged 

Apelt 

¢ 

47 45 46 
48 45 46 
48 45 46 

49 45 49 
50 45 47 
48 44 50 

Lester 

¢ ¢ 

44 40 42 
45 42 39 

42 39 40 
~42 39 40 

95 75 90 
95 75 90 
95 75 90 

60 65 70 
60 65 75 

Succ. o.d.p. 

¢ 

150 150 100 
41 38 39 
39 36 37 

85 80 56 
31 29 30 
30 28 29 

48 41 43 
48 41 42 
49 41 42 

(The ' on the ~ here refers to boundary values.) Attempts at solutions for Re = 1000 were all very slow and 
would have required at least 200 iterations even using the fastest (to date) methods. 
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From 

(2) 

(3) 

Table 3 the following points should be noticed: 

At higher Reynolds numbers, successive unit displacements by points diverges whatever the 
boundary treatment. Moreover the new criterion for divergence is more accurate than that 
of Thorn and Apelt. 

The boundary treatment has little overall effect except for successive optimum displace- 
ments by points. 

For successive optimum displacements by points the use of unit movement on the boundary 

can greatly retard the convergence of the solution particularly at the lower Reynolds 
numbers. 

(4) On an iteration basis, successive optimum displacements by points is certainly faster than 

any of the other methods, provided that we use ~o' = 0-5 or ~o' = co' 0 on the boundaries. 
(There is little to choose between these two in the present tests, i 

On a small computer much time is spent in transfering numbers to and from the auxiliary store 

and so it is the number of iterations which determines the time requirement. Thus successive optimum 
displacements by points is the fastest method for a small computer. However, on a large computer 

no transferring of numbers will be necessary and so we must compare the iteration times of the 
different methods. For a large field the number of internal points will greatly exceed the number of 
boundary points and so we need only consider the time it takes to revise the values of 4, ~b at a 
typical internal point. The iteration times, of course, depend very much on the type of computer 
used and on the language in which the subroutines are written. Typical times are given in Table 4. 
The first column of figures has been assessed using the Symbolic Language of a Ferranti Mercury 

TABLE 4 

Method 

Succ. u.d.p. 
Apelt 
Lester 

Succ. o.d.p. 
Modified Succ. o.d.p. 

Iteration time in millisec/point 

on Mercury 

6.8 
12.4 
20.1 
19-4 
13-7 

on similar computer 
with fast division 

6.8 
9.4 

17.1 
16.4 
10.4 

Computer. Unfortunately Mercury is very slow at performing division, an operation necessary 
for all the methods except Succ.u.d.p., and so a second column of figures has been added giving 
the times Mercury would take if the speed of its division were increased to half that of its multiplica- 
tion. Thus the second figures give a better indication of the relative times of the different methods 

on a computer such as an IBM 7090, which performs division almost as fast as multiplication. A fifth 
method has also been added. This is called Modified Succ.o.d.p. and is a version of Succ.o.d.p., 
modified, as explained in Section 9, to reduce the iteration time per point. 

Oil the strength of the preceding tests, Succ. u,d.p, can immediately be eliminated as a suitable 
method because of its divergent nature at higher Reynolds numbers. So also can Lester's method 
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because its iteration time is longer than Succ.o.d.p., t he  fastest method on an iteration basis. The  

relative merits of Apelt's method and Succ.o.d.p. are not quite so obvious from Tables 3 and 4., 
and so in Table 5 we give the relative time requirements (excluding the times of transfers to and 

from the auxiliary store) for solving the test problem. It  will be seen that Apelt's method is as fast 
as Succ.o.d.p., but it is slower than Modified Succ.o.d.p., which ,aTe shall describe in the next section. 

It must  be stressed that in the preceding numerical tests hM was chosen to be small. Its value 
was 1/256 all over the field, so that equation (98) was satisfied. When hM is large, divergence can 
easily occur unless f) is reduced. The  exact manner in which f2 should be controlled is not known 

and equation (100) is only a tentative suggestion. I t  might be thought  that Lester's method would 
provide the answer, controlling, as it does, the movement in the ¢ field. However Lester la quotes 

a problem, for which his method fails in a particular region of a field where, in fact, hM ,,~ 4. 
Movements other than unity were tried along the lines j = 0, j = 17, sometimes with slight 

improvement in convergence, but generally unity was found to be the best value to use. 

TABLE 5 

Method 

Succ. u.d.p. 

Apelt 

Lester 

Succ. o.d.p. 

Modified Succ. o.d.p. 

Re 

1 
10 

100 

1 
10 

100 

1 
10 

100 

1 
10 

100 

Relative time requirements 

on Mercury 

O. 87 
0"93 

oo 

1"09 
1.48 
1"70 

1.66 
2"06 
2.15 

1 
10 

100 

1.42 
1"42 
1 '42 

1 "00 
1 "00 
1"00 

on similar computer 
with fast division 

1"15 
1.23 

(x) 

1 "09 
1 "48 
1.70 

1.86 
2.32 
2"40 

1 "58 
1 "58 
1.58 

1.00 
1"00 
1"00 

9. Modified Successive Optimum Displacements by Points. 

Much of the iteration time for successive opt imum displacements by points is spent in finding the 

square root of ¢ (see equation (97)} and it is obviously desirable to reduce this. One method, 

convenient for some computers, is to store a m ~/¢ for every internal point of the field and to use 

this tO apply one iteration bf Newton 's  method of calculating square roots. Thus on the nth iteration 

we put: 
a(~) = ~[~(,~-~) + ¢(~)/~(~-1~]. (118) 
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In this application Newton 's  method is particularly good, for if 

then 
a(n-1) = (1 + e) t / ¢  (~) 

t in )=  VC<n)[1 + ½C2d¢(n)/ff (n-l)] 

so that whether o -(~q'-l) is a high or a low- estimate of ~¢~¢(n), i.e. whether e is positive or negative, then 

~(~) is always a high estimate. This means that our estimate for ~o, 

~(~) = 2/(1 + d")) 

will always be on the low side. As has been shown in Section 5.4, this is just what is required. 

Moreover Newton 's  method is convergent, no matter the magnitude of e. For l el ~ 1 

~<n) ~ (1 + } e ~ ) V ¢ o ' )  

so that the number of correct significant figures in a approximately doubles each iteration. 
However, on Mercury, Newton 's  method is unsuitable because it uses division. So instead we 

store a ~ 1 / ! /~  for every internal point of the field. Then on the nth iteration we put 

~(n) = #n-i) + ½a<~-*)(1 i ~(n~[#n-U]~) (119) 

At first sigilt this 'quicky' 

then 

a(~t - - I )  

C7(n) 

might seem dangerous, for if 

= (1 + ~ ) / d ¢ < n )  

= ( 1  a ~  _ ~ _ ~_~)l~¢(n> 

which for < i less than Thus our estimate of will be on the high side, which could 

cause divergence of our solution. Fortunately the process is highly convergent (subject to the 

limitations described below), so that it will soon correct itself. Like Newton 's  method, the number 

of correct significant figures approximately doubles each iteration. Moreover our division 'quicky' 

underestimates and so this tends to counteract the effect of the underestimation of 1/~/¢(',). For 

division we store ~ and on the nth iteration we put 

where 

Now if 

then 

w(rO = o~(n-1) + co(n-I)(1- co(n-1)(I)(n) ) 

¢<')  = ,}(1 + ~O'9<n~ ) . 

co(n-l) = (1 + 8)/0~ (n~ 

co(n) = (1 - 8~)/@(n) 

(120)  

so that whether cot,-l) is a high or a low estimate of 1/cD (n), then co(n) is a low estimate, which is what  

is required. 
Provided that 181 < 1, the process converges, and once again the number of correct significant 

figures doubles every iteration. I f  and only if ] 81 >~ 1, then co (n) ~< 0. Thus having applied equation 
(120), we must first check that co(n) is positive. I f  it is not we must revert to Autocode division for 

that iteration, which will automatically make 181 small for the next iteration. It is thus likely that 
equation (120) will be satisfactory for all but the first iteration. 
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The condition that a(.,0 in equation (119) should be a better approximation than a~-~ to 1/~/~ is 

e < ½(~/17-3) = 0.56155..  

but the condition that #n) _+ 1/V'¢ as n -+ oo is a little less stringent 

e < ~/3 - 1 = 0.73205. . .  

If  the latter condition is not satisfied, then a (~+1) will be negative. Thus, having calculated a (*0 from 
equation (119), we check that it is positive. If it is not we must revert to the Autocode square root 
subroutine, which will make [el small for the next iteration. It is thus likely that equation (119) 
will be satisfactory for all but the first iteration. 

The author has used this modified form of successive optimum displacements by points for a 

number of solutions and has found that the procedure, with its extra safeguards, tends, if anything, 

to hasten the convergence. It does, however, increase the storage requirements. 

10. Conchtding Remarks. 
It has been found that the most convenient finite-difference approximations to use for solving the 

Navier-Stokes equations are the simpler formulae {see equations (11)}, since they require little 

time for their application and since with them good convergence rates can be obtained. 
Of the many possible iterative treatments for solving the Navier-Stokes difference equations on a 

square grid, modified successive optimum displacements by points {see Sections 5.4, 6, 9) has much 

to commend itself over other method~. It is not difficult to programme on to a computer, it has a 
short iteration time and it provides solutions reasonably rapidly. However the work of Lester 14 
would be useful, if it were intended to use a rectangular grid so as to obtain greater detail in the 

boundary layer at higher Reynolds numbers. 
Of the possible boundary treatments, there is little to choose between the use of equation (109) 

and the use of equation (114). The former has the merit of simplicity, but the latter, by taking 
account of grid size and curvature of boundary, is more likely to have universal success. 
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N O T A T I O N  (unless otherwise stated) 

Physical  Plane 

x, y 

$, n 

f ¢  - -  

V x y  2 

Cartesian co-ordinates 

Tangential  and normal co-ordinates at boundary 

dO 
ds ' curvature of the boundary 

Complex co-ordinate, z = x + iy 

Laplacian operator, (~2/~x2 + 32/Oy2). 

Transformed Plane 

~, ~7 Cartesian co-ordinates 

c~, v Tangential  and normal co-ordinates at boundary 

w Complex co-ordinate, w = ~ + i T 

V~,/2 Laplacian operator, (Oz/8~ 2 + e~/e.~) 

J - .  

M Modulus of transformation, M = 

L = log ( M )  

= 

= L + i ®  

Fluid-Flow Equations 

U, 73 

¢ 

ls 

Re 

Finite-Difference 

F 

f 

h 

j , k  

S l f j ,  k = 

S 2 f ~ ,  lo = 

aef j ,  7~ = 

~ f j ,  1~ = 

Components  of velocity in x, y directions 

Stream function, u = Cv, v = - Cx 

Vorticity, ~ = v x -  u v 

Kinematic viscosity 

Reynolds number  

Equations 

Function defined by a partial differential equation 

Function defined by a difference equation, such that f approximates to F 

Grid size 

Co-ordinates in grid, x = j h ,  y = kh or ~ = j,h, ~ = kh 

(L, k-1 +D, ,<+~ +L.-~, ,~ +L.+I, ,D 

~(D+,, k-A-~, ~,) 
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Iterative Treatments 

A, B 

a, b 

h 

P, q 

r, s 

e 

d 

E 

A 

P 

N 

NOTATION--continued 

Constants defined by equation (14) 

Constants defined by equation (16) 

Grid size 

The number of intervals along the sides of a rectangular field 

Positive integers less than p, q respectively 

Error in f defined by equation (19), or error in ~ defined by equation (95a) 

Error in ~b defined by equation (95b) 

Component of e defined by equation (22) 

Eigenvalue 

Spectral radius of ,~, as defined by equation (29) 

Number of iterations required to reduce the maximum error through a decade. 
See equation (30). 

oJ Movement or displacement factor of f or 

~o 0 Optimum value of oJ 

o0' Movement of ~ on boundary 

f~ Movement of 

21 ~[ ~rrp_ ~ zrs7 /z - ~/(1 - a 2) cos + V/(1 - b ) cos q J  

/~1,/ze Real and imaginary parts of/z 

/~' Value of/z for r = s = 1 

tz'l,/z' 2 Real and imaginary parts of/z' 

7TS 

1 
vl, u~ Real and imaginary parts of v 

v' Value o f v f o r r  = s = 1 

v'l, /2  Real and imaginary parts of v' 

= ½ [a~ + b~ + ~ ( p - ~ +  q-s)] 

Subscripts and Superscripts 

fj, i~ (~ Value assigned to f at the point (jh, kh) on the nth iteration 

The following subscripts all indicate partial differentiation: 

x,  y ,  s, n,  ~, ~, o-, u 

For example 
~F 

F~ = V / '  F~ + F~,, = % ? F ,  et~. 
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A P P E N D I X  

It should be noted that there are other interpretations of implicit methods by lines than those 
given in Sections 5111, 5.8. For instance, it is possible to define simultaneous methods implicit by 
lines either as 

a (n) [ (1  - ~ V , . - 1 ,  k - -  % ,~ + (1 + - )L÷~,  k] 

= (1 - ~o) [(1 - a)fj ._l,  k - 4fj, 1~, ÷ (1 q- a)fj+l, k] (~-1) - 

for which 
- ~ [(1 - b)fj, ~_~ + (1 + b)S~, ,~+d (~-~ 

A = v + l - o J  

(121) 

(122) 

or else as the following, which is the first half of an alternating-direction method due to Peaceman 
and RachfordlL 

(1 + co)/~., 1~('~) = (1 - ~ ) f , ,  ;?~-1} + 

O3 

- a )Y j - l ,  k + + a)fj+l, k (*~) + + 2 - [ ( 1  " ~  (,~, (1 

for which 
+ (1 -b ) f j ,  k_l (';t-l) + (1 + b)fj., i~÷1 (~-1~] 

1 - ~ ( 1  - 2/~) 

1 + oJ(1 +2~)" 

(123)  

(124)  

For ~o = 1, equations (121), (122) reduce to equations (80), (82a). However  these methods have 
yet to be suitably adapted for solving the Navier-Stokes difference equations. 
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