

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

REGULARITIES IN CREEP
 AND HOT-FATIGUE DATA

By

A. GRAHAM, M.Sc., D.I.C. and K.F.A. WALLES, B.A.

A. Granam M. Sc., D.I.C. and K. F. A. Walles B.A.

SUMMARY

Pubizshed experimental resuits are assembled to support a previouslygiven theory of uniavial deformation, and the theory is then used to analyse published data on the creep-rupture and hot-fatigue of engıneering materials. The theory enables data for dafferent times and tenperatures to be classed together, thereby providing information over a much greater range of times than could practicably be covered by cxperimonts at a single temperature. An underlyang numeracal pattern common to all the wadely different Group VIII materals consıdered then show through tho expermental scatter. Data for further engineering materials is considered in these terms in Part II.

COTTETIS

		Page
1.0	Introductio on	4
2.0	Simple evidence	4
3.0	Further evadence	5
4.0	Comment	6
5.0	Temperature and tume	6
6.0	Numerical regularitıes	7
7.0	Fresentation of data in terms of mproved time-temperature principle	8
8.0	Discussion	10
9.0	Conclusions	11
References		12
TABTES		
IIO.	Title	
I	Sources of data for Fagure 1	13
II	Sources of data for Figure 2	13
III	Sources of data and major constituents of materials of Figures 3 to 7	14
IV	Sources of data for Figures 8 and 9	14

IIJUS'fRATIONS
Fig. No. Titlo

1 Examples of straight Innes on log/log ploting
2 Examples of pairs of straight lines on log/log plottang

3 Creep-rupture data for B. 590 at several temperatures
4 Comparison of paranetor ϕ wath data for materıals on Figures 3 and 6
5 Comparison of tame-temperature paramaters
6 Co-ordination of croep-rupture data for a number of matcrials
-3-

IILUSTRATIONS (cont'd)

Fig. No.
Titie
7 Co-ordination of not-fatiguc Cata for a number of matcrials

8 Co-oriznation of Numonic 80-100 crvep-mature data
9. $\Delta \log t / T$ plot for data of Tlgure o shoring comparison with $\}$

1.0 Introduction

In the present Report a discussion is gaven of published experimental. results upon the creep and hot-fatigue of heat-resisiant steels in terms of a theort which although previously given $1,2, \bar{j}$ is partly developed afresh upon tie basis of expermental evidence directly presentea. The conclusions are applied an the accompanyang Part II 4 to published data for 43 engincering materials.

The study has been guided by a belnef that the mechanicel properties of engineerang matcrials, aespite their microscopic complexity, follow a quantitative pattern in terms of the four prinary varables stress strain tine and tenperature that is sample enough to be understood. Sance the patterm is likely to be revealed by darect expermment only in favourable clrcurnstances, the method followed has been to build upon exanples believed to be of th.is kind towards a more complete unoerstanaing of the general pattern.

A fact that nas cone to lizht during the work, and has progressavely arfected its curection, is that the range of tirese variables that may be covered by curect experarent is too small in relation both to the scale of the underly ne pariern and scatter in results to defane the pattern uambigwously. The working assumption that the underlyand pattern is universal, only numerical constants varying from material to material, has had the virtue, to the extent that it has hela, of effectively extending experinontal ranges by allowing results for different materials and ranges to be classed together. Regular numerical trends are then perceivable through the scatter.

By directly considering the experymentelly-found relationships between the primary variables, with a viev to describing these quantitatively, the study is complementary to those that attempt to understand behaviour from the metallurgical and atomic points of view. The interdependence of these sevcral complementary studzes is considered in some detanl in a further Report.

2.0 Simple evidence

Very good straight lines are sometimes observed when relationsmips between stress σ strain ε and time t, or rate of straining $\dot{\varepsilon}$, at constant temperature T, as measured in creep or tensile tests, are sujtaily exhibited on \log / log paper. A selection of examples taken from the sources indicated in Table I is given in Figures 1(a) to (i). The sources should be consulted for details.

In view of the fact that most results are krown to plot rather as continuous curves, a distanctly poor case for a linear relationishap is presented by many of the midivadual sets if considered in isolation. But collectivcly, especially in view of the several exazples in which the fit is undentably good, thej are seen to prosent a reasomiole case for tie linear relationship proposed. The sumplest assumption to nake, on this kind of evidence, in view of the interdependence betrieen the various forms of grapn, Is tinat
where the numerical constants CBk maj bc, in general, neither whole numbers nor rational fractions. Tinis formula, due to Fivtrang, contams Hooke's law and the Nertonian law of viscosity as liniting special cases, and therefore commends itself to attention $1,2,3$.

From a fundamental viewpount, sance the mathematical functions that occur in basic physical theory are alrost invardably those that, by thear very defimition involve only integral or ration-fractional exponents, power laws in which the exponents may be arrational are often regarded as wholly inadmissible. Nevertheless the fit to lines of arbitrary slope in Figure 1 is an experimental fact that requares attention. The problen oil whethor or not Equation (1) as it stands has any fundamental basis, however, doos not need to be answered before (1) is used as a tool to uncover further evadonec.

3.0 aurther evidence

Flegures 2(a) to (h), of winch tre sow ces arc listed in Table II, show a selection ryo the multitude on ciarples to be found in which the points from exporments swillar to those for I'gure 1 so not fall upon strazght lincs. The first examplus, un Figures 2(a) to (d), navo beon selected as instances in whicn the origrnal authors have considcred that the pounts fall upon pazrs of straight linos joined by ratreer abrupt transitions. Without prior evidence of the kind gaven in the previous figuros, the objection that the points fall ratner upon continuous curves would be dafficult to ancrer; but, an viow of that ovidence, the suegestion of pairs of strazcht lines may be accepted as not uncasonable. Grant and Eucklon 5 and others have provjded evidence for draving morc than two straight lines through thear data, so that (1) may perhaps be regarded as a special casc of a more general formula of the type

$$
\varepsilon=C_{1} \sigma^{\beta_{1}}{ }^{k_{1}}+C_{2} \sigma^{\beta_{2}} t^{k_{2}}+\ldots \ldots
$$

In which $C_{1} \beta_{1} k_{1} \beta_{2}, \ldots$ are constants. A physical justification of (2) is that Equation (1) representing perhaps the sumplest possibiliuy, may be regarded as oxprossing the effect of a sinclu physucal mechonasm; if so, then (2) appoars to be the simplest more gencral assumpinon to represont the joint effect of the many phjsical mechanisins that must undoubtedly occur in a complex material.

Equation (2), whach does not in general represent a set of straight lines one for cach torm, bet a contınuous curve, provides a link betweon the examples of Fligures 1, 2(a) to (d), and $2(e)$ to (h). The curvature is dependenl upon the andivadual values of the constants β and κ and upon the particular pair of variables, the other being held constant, between which a relationship is considered. For experimentally-appropriate values of $i_{1} k_{1} \beta_{2} \ldots \ldots$, the theoretical curvature is usually very noticeablu, in genosal accordance inth expermont, win log siramp/log tame and log stress/lo ztramin siphs; but I_{n} loc stross/los timo cross~plots of creep dita, the curvaturc according to (2) is ofton experamentally andistanguishable from a set of Inneal scernentis of slope $-k_{1} / \beta_{1},-k_{2} / \beta_{2} \ldots \ldots$. In those carcumstances the magnatudes of the torms in (2) chonge wath stress and tario so rapadily lin rolative mporwace, thut sach segmont of a graph Ls deturrined almost ontirely by a shalo tern. These foatures aie discussed in more dotanl in Part II.

The data בin Ihgure $2(a)$, (b), (c) for $5.590,5.816$ and $18-8+\mathrm{Cb}$ stecl determanes only the ratios k / β and not k and β separately, so that (2) cannot be fully applied. The stralght lines drawn by the or fonal dubnors whthout curved traisitions correspond to the approximation that each tcin. contributcs soparatel.y, cach wathan a particular range, independently of the othcrs. Figure 2(d) for brass requares a formula similar to (2)
but with symbols for stress and strain interchanced. This feature needs to be considered in relation to the comments made upon Equation (2) an Section 8.0.

The continuously-curved lines in Figures $2(e),(f),(g)$, are based upon values of k_{1} and k_{2} taken for limonics 80 and 90 to be $\frac{1}{3}$ and 3 , as determined by direct experiment, and for $G .32$ by analogy, and in view of some andependent evadence, to bo $\frac{1}{4^{t}}$ and 4. Flgure $2(h)$, agean for Namoni 90 , exhionts the results of a detailcd analysis of famplies of crecp curves to establish the valucs of the constanta, and shows, firstly, how the theoretical abruptness of the transition varios whe strain, and secondly, how the scatter of the points, waich is quate normal for the materials of these figures, may enturely conceal, in a log stress/log time plot, the distinction between abrupt and contimuous transations. The bars on each curve represent the points outside which one of the two terms contrabutes lass than 20 por cenc of the total.

It 15 to be emphasised that these results are not regarded as proving the formula, but as demonstratine its virtues ior further consideration.

4.0 Conment

Thu remainder of the present Leport is chuefly concorned with practucal crecp-mupture data. The bulk of engincering creep data is of this kind partly bccause the experiments are easy to perform and partly because rupture data is generally more consistent than that relatang to the smaller strains of complete creep curves. As they give no information upon the separate values of β and k (which detcrmine the spread of the curved transations), they can only be directly analysed by means of (2) to the cxtent of the induvidual-term approximation mentioncd.

Thenr suitability for exact analysis is also dependent upon the extcnt to which the tame to rupture under different conditions as affected by differences in specimen cxtension. For materials such as the Ifmonic alloys $2 n$ which the extension is not large and rupture is precoded by a stronglyaccelorating stage of creep, so that large differences of strain are only associatcd whth small dinferences of time, little ermor is anvolved in regarding creep-rupture data as data for constant strann to wheh (2) may be directly applied; but when thesc conditions do not hold, unless impractacable corrections wrere to be rade, crocp-rupture data would not bo expected to obey so simple a formula as (2). It appears novertheless that creep-rupture data is able to provide signuficant information.

5.0 Temperature sar time

It is nocessary to consider how deformation, e.g. creep, is affected by a change or tomporature. For guadance in this problen the simplest physical concert is that an morease of torperature, by ancreasuag the rate of a tomic vibuation, does no more than reduce the time scale of deformation. Although not gencrally valıc in this over-simplified form, tine concept is embodied in varicus practical "time tomperature parametcrs" which, although known to be unveliablo for lang extrapolations, are novortheless recognised as givang uscful comordmations of uxpermmental data for complex materials. These are materials to rhich, from tho microscopıc vietpoant, the principle would periaps least be expected to hold. Once again, however, thore 1 s no need to debate whe thus the general principle is fundamentally correct before an experimentallysupported particulor form of it is uscd as an interim means for gaining further information.

The principle is pllustrated in limure 3 in applacation to oreeprupture data for S .590 stec 1 (source in Table III). The time to rupture at several difforent temperatures as plotted on log/log scales (cf. (1)) against the constant stress applıed. For a set of pounts appropr a a te to a sangle temporature, a change of time scale as ropiosented by a parallel displacement, say $\Delta \log t$, along the axis of loz time, and the stated time-scale princlple is that the points for any one temperature may be superimposed upon those for say a lower temperature by a more displacoment to the raght towards longer times. In these data, as in most, the evidence for or against the pranciple is rather moagre in viow of the scatter, and also bccause, owing to the rapid change of strength with tomporature and the difficulties of making measurements at very short and long times, the unevitably small ranges of stress covercd at the ajfferent temperatures overlap over a significant range only whon the temperature difforence is small. If however the prancaple is used for what it is worth, it sugsests that the points for different temperatures may be relatively displaced to lic upon a single comm scgmental curve of which that show in the contre of Firfure 6 may give a first mmpression. If in order to avoid using so dubious a principle, the form of the supposca curve wore to be studred at a sincle tomperature, an mpracticable numbor of experiments would be required (owing to scetter) over a wholly impracticable range of times.

Displacement by more anspectaon would serve the amodiate purpose; but the rogularitics of displacoment ore of anterost, for the various tume-temperature parameters proposcd by Laxson and Miller, fianson and Hefford, and otners may bo regarded as formal ceppressions of the graph of \triangle log t vorsus T. The values of \triangle log t for $S .590$ in figure 3 and for matcrials considered below vere hovevcr smoothed in accordance with the proviously dorived parameter ${ }^{2}$:-

$$
t\left(T^{\prime}-T\right)^{-A}=\text { constant, } \phi, \quad \ldots \ldots \text {.... } 3 \text {) }
$$

for stress and stran constant, which $2 s$ nreferred to those montioned because it attompts to tale some accounl of the cxperimental fact that behaviour $1 s$ dependent upon the history of temperature prior to the beginning of an experament. In (3), A lis a consiant whose value 13 not closcly defincd by any available data, and whach has accordungly been standandised, at a value suntable for all materials so far consldered, wh th time in hours and temperaturo in ${ }^{\circ} \mathrm{C}$, at 20. Tne constant T^{\prime} was antroduced into the theory to represent some average tomporature, for the material concemed, which best characterises the previous history of temperature?

The graph of $\Delta \log t$ versus T for the $S .590$ data is shown, together with graphs for other materials considered below, in lifgure 4. The curves rupresent the fat of (3) with best values of T^{\prime}. Avanlable data for the majority of materials is too sparse and scattered for significant comparisons betweon the various parameters but a comparison is shown in Figure 5 wath points for Namonic 90. A probable reason why they have becn found in particular instances to be anadequate is offored by the results in Section 7.0.

6.0 Numerical regularitaes

Figure 6 shows tho rosult of applyang the procedure just described to crecp-rupture data for the matexials listed in Table IV whore sources of the data are given. The pounts are plotted to common scales of log stress and log ϕ, and, in order to wave space, sunce only the slopes of
the varmous graphs axe of prooent mterest, the absolute positions of the scales are arbitrary. Straight lines have been dravn through the various points for the reasons already indicated, their slopes being determined by the procedure given below. The over-simplafied time-temperature principle used is clearly seen to break down where pairs of parallel lanes have had to be draw, but the fanlure, which is remedued in the next paragraph, wall be seen to be of no umediate concern.

The extensive collection of pounts for the Tuken $35-15$ steel group rather closely about a swigle line of slope 0.238 . It is then seen that groups of pounts for several of the other materials fall about lines of slope indistinguishable from that appropriate to the Tamken 35-15. Accordingly the lines drawn through all those curresponaing groups have been assigned the conmon slope 0.238.

It is then observed that other groups of points amongst the dafferent materials fall about lines of apparently common slope; and, by groupang the points and determining average values, common slopes of 0.122 and 0.067 , show by the lines drawm, were identificd.

Pev extenslve sets of data other than for creep appear to be available, but Figure 7 Exilults data for rupture by hot-fatigue taken from the sources In Table IV. Thej relato to rests at zero mean stross, and are seen to be well co-ordinated by the time-temperature variable ϕ, the constants A and T used, being the same, material for maternal, as for the creep-rupture data. The time involved un ϕ is the tume to rupture, no account boang taken of the periodic time which was presumably constant for any one material and not greatly different, on a logarithmic basis, between one material and nother. The positions of the creep lines transferred from Figure 6 are given in Figure 7 for convenient comparisons; but in view of the arbitrary choice of maxumm stress to characterise the stress in fatiguc, no imediatcly sbvious relation between the stresses and rupture times in creep and hot fatigue is to be expected.

The slope of 0.067 detemined from the creep data is nor seen to provide a very good fit to groups of points for Rex 337A and Nimonic 90, while the slope of 0.122 is nct unsuitaible. G. 32 is ambiguous in regard to slopes 0.122 and 0.238 but provides faur evidence for the additional slope of 0.032 .

It appcars from this discussion that, although little evcdence of physical law is seen when each set of data is considered on its ow, especially when the separate temperatures for each are considered mndependently, yot, when they are considered collectively, the evidence is strong that the set of slopes 0.238 , $0.122,0.067,0.032$, is common to them all. These numbers do not differ significantly from the rational fractions $\frac{1}{4}, \frac{1}{8}, 1 / 16,1 / 32$, which are members of the series 2^{-n}. It vrill be noted that the member wath $\mathrm{n}=0$, if arising from $\beta=1$ ans $k=1$, corresponds to perfectly viscous behaviour, such as may well be observed near the melting point.

7.0 Presentation of dara nh tems of improved tane-temperature princurle

In viev of the cormon slones found, the lack of a completely satisfactory relationship between time and temperature is seen not to have unduly handicapped progress. The common slopes are now available for use as tools to investigate the relatıonsnip in nore cetanl.

The above procedure involving displacement of a set of points for a single temperature, as a whole, along the log time amis is equivalent to the replecumont of t in every term of (2) by $\dot{\psi}$ defined at (3); but question arises whether the constant T ' should je takon, as above, to be, the some,
for a given material, in every term. A common constant is certainly unlikely if the dufferent segments in Figure 6 and terms in (2) are associated with dufferent physical mechanisms, and indeed for several of the materials of Figure 6, the dusplacements requared by the data are evidently not the same for all segments. The procedure of the previous paragraph may readaly be performed for each segnent independently, but it is only by the predeterrined knowledge of the standard slopes that precision is conforred on the worting.

The results obtaned by applying this procedure to the matcrials of Figures 6 and 7, are gaven in Part II, together with results for othor materials. Discussion is here limited to data for the Nimonnc alloys which have the present advantage, in addution to that mentioned in Section 4.0, of formang a scries of five closely related materials for which a useful quantity of data is available. From the viewpoints of Equation (2), the above discussion involves the indepondent-term approximation previously mentioned, and the results of an analysis of this kind upon the tabulated data supplied by liond Nickel for thelr materials (Table IV) are shown in Figure 8.

The grouping of points into segments (sec Part II) is mado by deciding for each temperature separately a point of transition above which all points are in principle assigned to one slope and below which to anothor; but in view of the fact that Equation (2) as beang used in an approzamate manner, points near a trancition are not unuquely assignable to ezther of the adjacent segments, and in ingure 8, where the segments are shown separately, points near transitions have poen bracketed and included in both segments. Values of $\mathrm{T}^{\prime \prime}$ requared to superimpose points for dufferent temperatures winthan each range of stress are convoniently obtained by fitting a master curve ${ }^{6}$ of Δ log.t versus T to the graph of these quantities. The fit is shown by the full lines in Figure 9 in which the points with arrows are explained in Part II. The lines drawn in Pigure 8 have standard slopes mith the rounded-off values $1 / 16$, $\frac{1}{8}, \frac{1}{4}, \frac{1}{2}$. The lincs are seen to fit the points rather closely, suggosting that the previous evidence for standard slopes was not merely an allusion permitted by the scatter of the data and imperfections of its treatment.

The values of T^{\prime} indrcated by these Nimonic data appear to bc physically significant. In Figure 9, the lanes apuropriate to the best fitting values of T^{\prime} and al so to thesc values $\pm 20^{\circ} \mathrm{C}$ arc shown. It as seen from consideration of Reforences 6 and 4 that the preferred values are determined within a range of about this magnitude. It will be recalled that T ' was introduced theoretically as some average temperature which best represents the influence of the previous history of temperaturo before creep testing begins; the valuos found appear to correspond to temperatures in the manufacturing history of the material.

For segments of slope $\frac{1}{8}$, the experimentally indzcated T ' for Nimonics $80,80 \mathrm{~A}$, and 90 , is $1080^{\circ} \mathrm{C}$, and this same temperature is also the specified solution-treatmont temperature for these alloys. The exact agreement is co-incidental. For Nimonic 95, the value is $1150^{\circ} \mathrm{C}$, and lies between the two solution-treatment temperatures of $1200^{\circ} \mathrm{C}$ and $1000^{\circ} \mathrm{C}$ specified for this material. Nimonic 100 has not apparently been tested in the range for which the torm in (2) with $\alpha / \beta=\frac{1}{6}$ would make a significant contribution.

In regard to segmonts of slope $\frac{1}{4}$, the values of T ' increase progressively with the increase in strengt.: of the alloys; thus they are $1150,1200,1250,1320$, and $1370^{\circ} \mathrm{C}$ respoctively for Namonics $80,80 \mathrm{~A}, 90$, 95 and 100. They may be compared with the rolling temperatures of these alloys which are knowi to be in the neaghbourhood of $1200^{\circ} \mathrm{C}$ for Namonacs 80 and 80 A and to be higher for the hi-her members of the series.

For segments of slope $1 / 16$, the T^{\prime} of $910^{\circ} \mathrm{C}$ for Namonic 80 and $950^{\circ} \mathrm{C}$ for Nimonic 80 A and 90 may be compared whe the temperature of about $950^{\circ} \mathrm{C}$ above which the main hardening constituents are known to go into solution.

More extensive data for Namonic 90 presented in Part II indicates the presence of a segment of slope $\frac{1}{2}$ with a T^{\prime} in the neaghbournood of the softening point. Some evidence of this segment appears in irgore 9.

These results are suggestive only, but they call for further study since the values of T^{\prime} found, as required by the reasoning that led to T^{\prime}, are close to those at which signifacant events certainly occurred during the "historleal period" prior to testing.

8.0 Discussion

Before the results of the last two numapis are prow isionally assessed, some comments on the theoretical standing of Iquation (2) are appropriate. Apart perhaps from the particular form of functions used, the mathematical form of' (2) is like that of a solution of a linear partial differential equation. For the unknow quantity (strain) is reprosentod as the sum of a number of terms, each comprising the product of another quantity (stress) alone with a third quantity (tame) alone. Equation (2) may therefore be regarded as in the nature of a solution, for a particular kind of loading, of some more general equation that sets out the relationship betveon the incremental changes concerncd in any kind of loading. This more general equation, were it known, could well express the atomic basis of behaviour. One oi the requarements for thas polat of view is that specific relationships must exist between constants an the afferurit terms of (2). It appears from the above discussion that the ratios of k to β indeed follow a sumple numorical sequence, and to thas may be jolned the evidence previously found ${ }^{2}$, an certain instances, for a simple sequence of the k, namely $3^{n} n=-1,0,1 \ldots \ldots .$.

The weight to be put upon these results depends largely upon an assessment of the balance betwoen systomatic and random factors, an assessment that has to be made under the incubus of a lack of specific evidence from repeat tests of the magnitude of the random factors. Internal inconsistencies of creep data together with odd results from a few icpeat tests clearly show, in view of the presence of four variables and the wau range of each that $1 s$ relevant, that existing data for almost any single material forms too statistically small a sample upon whach to base detailed conclusions of the laws of creep. Laws that appear when the sample is thought to be increased to a signisicant saze by an aggregation of results for different materials are clearly not amenable to checking by reference back mercly to the inadequate resuits for the materials individually. Thus, at present, while statistical methods would answer, if required, the question whether the scattor of points about linos drawn according to the present systematic scheme is greater than or less than that about lines drawn according to some othor systenatic scheme, they appoar unable in the absence of further experiment to answer the absolute question of whether there is or is not a common set of slopes for the various materials. Obviously the scattor about curves frecly drawn with free chozco of shape through each individual set of points, whthout regard to other sets, for each material and temperature of tosting, will be less than about scts of lines drawn according to any form of pre-assifncd relationship. Scatter would be conpletely aosent at the limit, whach is vory noar to tocinncal practice at the moment, whero no law at all is pre-assigned and full statisical woight is given to every non-repeated experimontal polnt. But thas is the larmt when all factors are regarded as systematic, and also that of prodicality of scientafic hypothesis in which the number of "freelymajuustable constants", beang equal to the number of experimental points, is a maximum.

The prossat suggestions make sraller demands upon hypothesis.

9.0 Conclusions

It appears from the discussion that
(a) behaviour is governod by a formula liks (2), to be reiarded as a particular solution of an unkown moro general equation that ropresonts ancrinental hehviour;
(b) In complex Group Vill alloys, tine ratios $\beta_{1} / \kappa_{1}, \beta_{2} / \kappa_{2}, \ldots$. have the simple sequanc: on values $2^{n}, n=\ldots \ldots 1,2,5, \ldots, 5, \ldots ;$
(c) in sach term, time and terperature encor in a conominion lake that in Equation (3);
(d) in (3), A mey for tho prusunt be taken as andepentent of material. Also the Tl^{\prime} appesx to bo specafically relatcd to tomperatures in the manuiacturing hastory of the matorial.

Those are offered as a simple set of working hypothesis, in reneral accordance with the facts, for wisc until botter are found.

Avanlable crocp-iupture and hot fatigue data for the awove and other matoridis, 4 i.n all, which have been analysed in accordance thta these principlos and Eunerally aupport thon, are prosented an Ioat IT. Sho
 data for about 100 further maturaals. It is proposec in a latur Report to mesont, for thoso for maturals for whach the avalleble data ls sufincauntly extonslve to support analysis, a wose detalled analysis of comlete famzics of creop cilrucs.

TABLEE III

Sources of data and major constituents

$$
\text { of materials of Eugures } 3 \text { to } 7
$$

Materıal	Najor constrtuents	Source of jata
S. 590	20Nz 20Cr 20Co Bal Fe	Trans. A.S.M. 42, p. 720 (1950)
S. 816	2ONi 200cr Bal Co	Trans. A.S.M. 42, p. 720 (1950)
Timiken 35-15	36Ni 16Cr Bal Fec	Tamken Digest, p. 184. (1946)
Inconel X	15 Cr 7 Fe Bal Nz	Inconel X, Int. Nickel Co (1949)
Rex 337A	18Ni 14Cr 7 Co Bal Fe	N.P.L. F.T. $14 / 52$
Numonic 90	2006 2000 Bal INz	N.F.E. H.T.35/53
G. 32	20 Cr 10 Nz 13 FC Bal Co	N.P.I. H.T.37/53

TABIE IV
 Sources of data for materials

of Figures 8 and 9

Material Source of data		
Nimonlc 80	The Nimonıc Alloys	Honry Wiggan
Namonic 80A	The INimonic Alloys	Henry Wiggan
Namonic 90	The Namonic Alloys	Fienry Tiggan
Namonic 95	Supplement to the Nimonic Series of Alloys their application to gas turbine design	Ferry Wiggan
Namonic 100	Wigenn Wackel Alloys lio. 35 Priolication 829	Henry Wiggin

6
0

EXAMPLES OF STRAIGHT LINES

EXAMPLES OF STRAIGHT LINES
on Log/LOG PLOTtiNG

FIG. 2 (A)-(D)

EXAMPLES OF PAIRS OF STRAIGHT
LINES ON LOG/LOG PLOTTING

FIG 2(E)-(H)

EXAMPLES OF PAIRS OF STRAIGHT LINES ON LOG/ LOG PLOTTING

FIG. 3

CREEP RUPTURE DATA FOR S 590 AT SEVERAL TEMPERATURES.

FIG. 4

COMPARISON OF PARAMETER \varnothing WITH DATA FOR MATERIALS OF FIGS. 386

FIG. 7.

UNTT CYCLE LOG ϕ

COORDINATION OF HOT-FATIGUE DATA

FOR A NUMBER OF MATERIALS

FIG. 8.

CO-ORDINATION OF NIMONIC 80-100 CREEP RUPTURE DATA.

379
A.R.C Technical Report

(C) Crown copyrıght 1958
 Printed and published by Her Majesty's Stationery Opfice
 To be purchased from York House, Kingsway, London w.c. 2 423 Oxford Street, London w. 1 13A Castle Street, Edınburgh 2 109 St Mary Street, Cardiff 39 King Street, Manchester 2
 Tower Lane, Bristol I
 2 Edmund Street, Bırmingham 3 80 Chichester Street, Belfast or through any bookseller
 Printed in Great Brtain

