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Summary. 

By means of a Fourier analysis a function is derived which gives the minimum value of the integral 

- -  S"(x)S"(y) log Ix - 3'1 dx dy 
I = - 2rr o o 

for any function S(x) which has a continuous first derivative and given values at a number of discrete points. 

This minimal function suggests a method for the numerical evaluation of I from a graph or table of S(x). 

An example is constructed to illustrate the method and to give some indication of its accuracy. 
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1. Introduction. 

Integrals of the form 

I f l f  1 I =  - o o log Ix - y l d x d y  (1) 

{in which S"(x) denotes d2S(x)/dx ~} occur in several contexts in theoretical aerodynamics and many 

attempts have been made at their numerical evaluation. T w o  difficulties underlie the problem 

confounding any direct and simple approach: the loss of accuracy attendant on any kind of numerical 

differentiation, and the troubles inherent in the singular nature of the integrand. 

In this paper we consider a limited class of functions S(x), namely those which satisfy the 

conditions: 
S'(x) continuous for 0 ~< x ~< 1 

S'(0) = S'(1) = 0. (2) 

We suppose S(x) to be known at x = 0, 1 and at n other stations and evaluate I for that particular 

S(x) which makes it a minimum under these conditions. Th e  calculation is simple and the Value of I 

that results is then the exact value of I for some S(x) which approximates to the given function. 

The  restrictions we impose on S(x) are those which must be satisfied by the area distribution of a 

slender body in order that the integral I shall represent its wave drag at zero lift. I t  was to calculate 

this that the methoci was originally devised. In Section 6 we shall collect together other expressions 

in which integrals of this form occur, indicating to which the method is immediately applicable 

and which violate the assumptions on which the method is biased. 

2. Fourier Analysis of the Function S(x) and the Integral I. 

Since S'(x) is a continuous function of x for 0 ~< x ~< 1 with S'(0) = S'(1) = 0, it may be 

expressed by the transformation 

x = ~(1 - cos 0) (3) 

as a function of 0 for 0 ~ 0 ~< ~r which has a convergent Fourier  sine series. So we may write 

c o  

S'(x) = E a,.sinrO, 0 ~< x ~< 1, (4) 

where 2f a,.= - S'(x) sinrOdO, r = 1 ,2  . . . .  (5) 



A single in tegra t ion  gives S(x) as a func t ion  of 0 and  of  the  Four i e r  coefficients a,.: 

S(x) = ~ a r s i n r 0 d x  

= ½ N ar s i n r 0 s i n 0 d 0  
~'=1 

?in (~- ~)0 sin (~ + 1)0 7 
= a + -}al(O-½ sin 20) + ~ E ark  - r -2  -1 r + l -] 

co 1 
= a + . l ( g l 0  + 1 E ; ( a , ' + l - - a , ' - l ) s i n  rO (6) 

, '=1  

where  a 0 is def ined  to be zero and the  c o n s t a n t  of  in tegra t ion  a = S(0).  (7) 

A doub le  in tegra t ion  gives the  integral  I as a func t ion  of  the  Four i e r  coefficients a,.. In t eg ra t ions  

of  this f o r m  have  often been  pub l i shed  and the  resul t  is n o w  well  known* .  In  the  no ta t ion  of  this 

paper ,  w i th  the  t r ans fo rma t ion  x = ½(1 - cos 0), y = ½-(1 - cos $), the  ma in  s teps in the  a r g u m e n t  

are: 

w h e r e  p f  

so tha t  

I -- - --2,7 o~ o S"(x)S"(y) log I x - y]dxdy 

I f~s,(~) j'lS"(y)+dx (s) 
2~ o ° P o X - y  

denotes  the  C a u c h y  pr inc ipa l  value of  the integral ;  bu t  

f S"(y) ® f "  cos r~dg6 1' ~ _ y d y =  2 Era , .  
r = l  P o C O S ¢  Z~OOS 0 

co sin rO 
= 27r ~ rar (9) 

r = l  " sin 0 

co  

I = ~ ra,. sin rO E a.~ sin sO dO 
0 'r= 8=1 

co co f f r  

= ½ ~=1 N rara.~ s i n r 0 s i n s 0 d 0  
~'= s = l  0 

co qT 

v = l  

W e  there fore  have  the  result :  if S'(x) is a con t inuous  func t ion  of x for  0 ~< x ~< 1 wi th  

S ' (0)  = S ' O )  = .0, 

and  

then  
x = ½(1 - c o s  0) 

oo 

S'(x) = Z a~ sin rO 

co 

S(x) = a + lalO + l X -1 (a~.+l_a,._l) s i n r 0  
r = l  T 

(3) 

( 4 )  

(6) 

* See, for example, Glauert 1 chapter XI.  
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and 

where 

oo 
q7 

I = 74 E r a ,  ,z 
' t ' = l  

a = S(O) 

a,. = -  S ' (x)  s inrOdO,  r = 0, 1 . . . .  
9 

(10) 

(7) 

(5) 

3. Minimal  Functions for the Integral I. 

The Fourier analysis of Section 2 provides a method of deriving functions which minimise the 

integral I under  certain specified conditions. We are confined to smooth functions because of the 

nature of the analysis of Section 2 but within this limitation we shall consider all functions which 

satisfy the conditions we impose. 
Since both the flmction S(x) and the integral I can be expressed as functions of the coefficients 

of the Fourier sine series of S'(x)  we simply require the values of the coefficients which make 1 a 

minimum subject to the conditions on S(x) which relate them. If  these conditions can be written 

eds(x)} = o,  i = 1, 2 . . . m ,  (11) 

then a necessary condition for I to be a minimum suhject to ~¢ = O, i = 1, 2, . . . .  m, is 

0a,~ + X a~: ~a;. = 0 (12) 
i = ]  

for each a,. and some constants )~, i = 1, 2, . . . m. If  the values of a r which satisfy this condition 
yield convergent series for S(x)  and 1, then these give the required minimal function and the 

corresponding minimum value of the integral for the specified conditions. 

4. The Minimal  Function for which S(O) = N,  S(1) = B and s (k i )  = A i, i = 1, 2, . . . n. 

The function which minimises the integral I when S(0) = N, S(1) = B and S(k~) = A t, 
i = 1, 2, . . .  n, may be deduced from the series for S(x) and I given in Section 2 by writing them 

in the form 

where 

Vsin ( r -  1)0 
S(x) = a + ¼ a l ( O -  sin OcosO)+  ~2 ~ l_- r-~- 

r = 2  

I =  y~ al~ + Z ra, .~ 
~'=2 ] 

a = N  

sin }++11)0] a r (13) 

(14) 

(15) 

and in particular 

2 f f  
a~ = -  S ' (x)  s inrOdO,  r = 1 , 2 . . .  (16) 

~" 0 

2 ;  4 f f  4 (  
= - S'( )sin O d O  = - = B - N ) .  (17) 



Since N and B are given, a and a~ are uniquely  defined. Hence to f ind the minimal  funct ion for 

given N and B which  also satisfies the n condit ions S ( k i )  = A i, i = 1, 2 . . . .  u ,  we require the 
o~ 

values of a~, aa . . • which  give a m i n i m u m  of ~ ra~ 2 subject to 
V = 2  

[sin ( r -  1)K i sin ( r +  1)K@ 
[ L- r Z  1 r +  1 J a r  = A i  - -  a - -}a l (Ki-s in  K i cos Ki) (18) 

for i = 1, 2 . . . .  n, where  k i = ½(1-  cos Ki). A necessary condit ion for this is 

" [ r a , . -  N AI s i n ( r - 1 ) K ~  s i n ( r + l ) K i ~  
,.=~ r -  1 i 7  i J = 0 (19) 

for each r >/ 2, and some constants Ai, i = 1, 2, . . n. 
T h e  constants Ai, i = 1, 2, . . .  n, are found  by subst i tut ing the a~ f rom equat ion (19) into 

equat ion (18). This  gives 

® ['sin ( r -  1)Kj sin (r + 1)K~.] 1 ~ ~sin ( r -  1)K i sin (r + 1)Ki] 

= A; - a - ~al(K j - sin Kj. cos Kj) (20) 

f o r j  = 1, 2, . . . n. By changing the order  of summat ion  and using the result  of the Appendix  we 

may write this 

F~ A,W(Ki, Kj) = Aj - a - ~ a l ( K j - s i n  Kj cos K~), (21) 
i = 1  

f o r j  = 1, 2, . . . n, where  

o~ 1 Fsin ( r - 1 ) K  i 
~(~,Kj)-= E ~ L  ; 7~  

1'=2 

sin ( r +  1)Ki] Fsin ( r -  1), 9 sin ( r +  1)~gq 
; ~ f  J L ; 7 ~  r T i  J 

1 - cos (K~+ ~j) 
= - ~-(cos K~-cos  Kj) 2 log 1 -- COS (K i -  KS) + 

+ ~ sin K~ sin Kj(1 --cos K i cos '9)" 

Wi th  these values of A i, i = 1, 2 . . . .  n, the condi t ion (19) now gives the coefficients 

1 n Fsin ( r -  1 ) K i  _ sin (r + 1)K,i] 

ar=7~_E1;~iL r - 1  ; T f  -J' 
r ~ 3 .  

Subst i tu t ing for a r in equation (13) we f ind 

S ( x )  = a + ~ a l ( 0 -  sin 0 cos 0) + 

co k['Sinr=l(r--1)0 s i n ! r + l ) 0 ]  1 r + t  j '* ['Sinr_~l(r--1)K i 
. + : Z ~ l "  . . . . . .  " 7 ,:Z Z" i 

= a + ~ - a l ( O ± s i n  0 cos 0) + ~ Adr(O, K i ) .  
i = l  

5 

• , 7 

sin (r + 1)Ki] 

F ¥  i j 

(22) 

(23) 

(24) 



Substituting for a r in equation (14) we find 

~r ~ 7r ~° 1 { '' ~sin(r--_l)Ki s in ( r+ l )K ,~}  2 

7r rr ~ 1 '~ '~ Fsin (r-- 1)K`/ sin ( r+  1)Ki'] 
= 4 a12 q- g ,--~2- £ ~ ,~`/~tj L r - 1 ; ~ f J × 

. , =  r ` / = 1 j = 1  

[sin ( r -  1)K, sin ( r +  1)Ka. ] 
x L ; - 1  r +  1 J 

7g 
= 4. Z Z 'q).  (25) 

/ = 1 j = 1  

In terms of x, therefore, the minimal function for which S(0) = N, S(1) = B and S(h 0 = Ai ,  

i =  1 , 2 , . . . n ,  is 
?b 

S(x) = N + ( B - N ) u ( x )  + £ 2tip(x, hi) (26) 
/=1 

where 

u(x) = 1 [cos-*(1 - 2x) - 2(1 - 2x) 5/{x(1 - x)}] 
9T 

(27) 

p(x, y) = - -~-(x-y)e log 
x + y  - 2xy + 2 ~ / { x y ( 1 - x ) ( 1 - y ) }  

x + y - 2xy - 2 .~/{xy(1 -x)(1  -y )}  
+ 

+ 2(x +y - 2xy) ~/{xy(1 - x)(1 -y )}  (28) 

The corresponding value of the integral I is 

tg '¢~ 

I =  4_ ( B _ N )  2 + ~r Z X AikjP(ki, hj) 
`/=1 :]=1 

(29) 

and the constants A,~, i = 1, 2 . . . .  n, are given by the n linear equations 

E A~P(ki, h~) = ( A j - N ) - ( B - N ) u ( h ; ) ,  j = 1 , 2 , . . . n .  (30) 
i = . 1  

5. A Method.for the Numerical Evaluation of the Integral I. 

The result of Section 4 suggests a method for the numerical evaluation of the integral I from a 
graph or table of the function S(x). As Sections 3 and 4 concern only smooth functions this method 

is similarly limited in its application. 
If  the value of S(x) is known at x = 0, x = 1 and at n intermediate points, the minimal function 

through these points is uniquely defined and the corresponding value of the integral I can be 
calculated from the result of Section 4. If  n is increased in such a way that each set of n points 

includes the previous set, the values of the integral for the corresponding minimals form a monotonic 
non-decreasing sequence bounded above by the value of the integral for the given function. I f  

this is the least upper bound, then by taking n large enough it should be possible in this way to 

approximate to the integral as accurately as the data allow. 



Suppose  tha t  we  take n arb i t rar i ly  spaced  points  x = hi, i = 1, 2, . . . n. T o  evaluate  I we  have  

first  to c o m p u t e  the  func t ions  u i = u(ki)  and Pij  - P (k i ,  hi) for i, j = 1, 2, . . . n. T h e n  wi th  

c i = ( A i - N ) - ( B - N ) u i ,  i =  1, 2 , . . . n  (31) 

we  m u s t  solve the n s imul taneous  equat ions  

7g 

E )~iPij = cj, j =  1 , 2  . . . .  n .  (32) 
i = l  

N o w  wi th  these  values  of  h i 
~b ~b 

I = _ 4 ( B _ N ) 2  + ~r N Z Ai~tjPij 
~" i = 1  ] = 1  

zt 

= - ' , ( B - N ) 2  + E Aic . (33) 
7"/" i = l  

I f  w e  ant ic ipate  doing a large n u m b e r  of  these  sums  (apprec iab ly  m o r e  than  n) we  can save t ime  

by  taking the  s ame  n poin ts  in each case and  inver t ing  the  ma t r ix  [Pij] once and for  all. T h e n  if the  

e lements  of  its inverse  are f i j ,  i, j = 1, 2, . . . n, 

I = _4 ( B - N )  2 + ~r E Z cicj f i i  (34) 
77" i = 1  j = l  

an express ion  w h i c h  takes little t ime  to evaluate  once the  ]~.j. have  been  found  e. 

T o  test  the  m e t h o d  a po lynomia l  was  chosen  to r ep resen t  S(x ) ,  

S ( x )  = 400x 6 - 1176x 5 + 1257x a - 588x a + 108x 2 (35) 

and  the  n points  were  equal ly  spaced  along the  axis at k i = i / ( n +  1), i = 1, 2 , . . .  n. T h i s  ra ther  odd  

po lynomia l  was  original ly chosen  for  its r e semb lance  to the  area d is t r ibu t ion  of  a s w e p t  w ing  on a 

cyl indrical  body.  T h e  shape  of  the  func t ion  is s h o w n  in Fig. 1, and  the  values of  the  integral  i for  

the  func t ion  i tself  and  for  the  min ima l s  w h i c h  a p p r o x i m a t e  to it in Fig. 2. 

D u r i n g  the  c o m p u t a t i o n  of  these  results ,  us ing  the  Fe r ran t i  M e r c u r y  digital c o m p u t e r ,  one pract ical  

l imi ta t ion  of  the  m e t h o d b e c a m e  apparen t .  F o r  small  values  of  n accura te  enough  resul ts  were  

ob t a ined  work ing  w i th  eight  s ignif icant  f igures bu t  as n increased  the  equa t ions  (32) became  rap id ly  

m o r e  ill cond i t ioned  unt i l  at  n = 19 the p r o g r a m m e  failed. A second p r o g r a m m e  us ing  double  

prec is ion  for  the  solut ion of the  equat ions  ex tended  the  useful  range  of  the  m e t h o d  to n = 35. 

Desp i t e  this difficulty the  accuracy  o f  the  m e t h o d  seems adequa te  for  mos t  pract ical  purposes .  

I n  this example  an er ror  of  not  m o r e  t han  2 %  occurs  wi th  17 poin ts  and  the  s imples t  p r o g r a m m e .  

T h e  second p r o g r a m m e  gives an er ror  of  less than  1% wi th  25 points  and  1 %  wi th  35 points .  

T o  facil i tate an i m m e d i a t e  appl ica t ion  of  the  m e t h o d  the  func t ions  u i a n d f i  ~ have  been t abu la ted  

in this p a p e r  for  the  19 equal ly  spaced  poin ts  k i = i /20,  i = 1, 2, . . . 19. R o u n d i n g  off the  e lements  

e These results are perhaps more obvious if written entirely in terms of matrices. Equation (32) becomes 

p;I = c, whence ;~ = p- lc ,  

where ;t and c are column vectors and p a symmetric matrix. The  series in I becomes 

2t'p~ = 2(c, as in ('33), 

= c'p-lc,  as in (34). 



of fii  to three decimal places gives, for this particular example, an arithmetical error of less than 

0.1 °//o in I. This is negligible compared with the 2% difference between the 19 point approximation 

and the true value of I. 

6. Applications in the Evaluation of Drag Forces. 

Consider any kind of body in a steady uniform stream. To determine the drag forces acting on 

the body it is convenient to imagine it completely surrounded by a large control surface S and to 

equate the forces acting on S to the rate of change of fluid momentum through S. If  S is a circular 

cylinder with its axis in the stream direction the drag D is made up of three surface integrals--one 

over the curved surface of the cylinder and one over each plane end. As ,the cylinder grows both 
in length and diameter the integral over the upstream end tends to zero, the integral over the 

downstream end tends to a limit known as the vortex drag, and the integral over the curved surface 
tends to a limit known as the wave drag. 

I f  the nature of the stream and the geometry of the body satisfy the assumptions of small- 

perturbation theory there exists a perturbation velocity potential q5 which satisfies the linear equation 

(1 -M2)~bx~ + qSvy + VS~, = 0 (36) 

where M is the M a t h  number of the undisturbed stream. The two components of the drag are 

given by 

D,~ = lim - p dO d~x~,.dx (37) 
1 ' - - > c o  0 - -  

D,, = {-p ( ¢+4?)dydz (38) 
--co --co 

where x lies in the stream direction, y, z and r, 0 are co-ordinates in the transverse plane, and p 
is the density of the undisturbed stream. 

From these two basic relations come expressions for the drag of a wide variety of bodies--slender 
bodies, thin wings, slender thin wings, not-so-slender thin wings--all  including somewhere a 

double integral related to 

l f f  I - 2rr o o S"(x)S"(y)  log [ x - y l d x d y .  

Some, but by no means all of these are amenable to evaluation by the method of Section 5. 
In the notes that follow the fact that the integrals are taken between other limits is only a superficial 

'difference since a simple transformation or a new choice of the unit of length brings them to the 

same form. For example 

f f . . . .  x - y  dxdy  ' ' x ( x ) s  (y) log 
O 0 1?f 

= - s " ( x l ) s " ( y l )  l o g  I x ,  - 
12 o o 

f f  = l z S"~(x~)S"~(y,) log ]x~ - y l l dx~dy i  (39) 
0 0 

where 
x 1 = x/1, Yl  = y / l  and S 1 = S/I 2. 



6.1. Slender-Body Theory: Wave Drag at Zero Lift. 

Suppose that S(x), 0 ~< x ~< l, is the cross-sectional area distribution of a body, a wing or a 

wing-body combination. I f  the configuration is slender and has a pointed nose then according to 

Ward ' s  s lender-body theory z for supersonic flow its wave drag at zero lift includes the term 

ff  1 ~ t S"(xl)S"(x2)log ~ dx~dx 2. (40) 
I =  2~ 0 0 

A pointed nose implies S(0) = S'(0) = 0. I f  also S'(l) = 0 and in between S'(x) is continuous then 

all other terms vanish and this integral alone determines the wave drag. This  particularly simple 

case is the one for which the method of Section 5 was designed. 

When  S'(l) 4= 0 the method in its present form is not applicable. However ,  a modification exists, 

devised by J. Weber  ~ to include this case. It  requires an extra term in the function c i {equation (31)} 

and a couple of extra terms in the final expression for I {equation (33)} but  leaves the rest of the 

calculation unchanged. 

With this extension the method can be used to evaluate the double integral in the wave-drag 

formula for any slender, pointed configuration with a smooth area distribution. 

6.2. Not-so-Slender Thin-Wing Theory: Lift-Dependent Wave Drag. 

The  wave drag of a supersonic wing without  thickness has been calculated to second order by 

Adams and Sears a. I t  includes the term 

;0 ;0 (-, 
where L(x) is the load on a cross-section of the wing. 

I f  we replace L(x) by S'(x) we can identify this double integral with the integral I of Section 6.1. 

T h e  conditions 

S'(x) continuous for 0 < x < l and S'(0) = 0 

then become 

L(x) continuous for O < x ~< l and L(0) = 0 

which are a remarkably innocuous pair of restrictions. Provided therefore we can find L(x) dx to 
0 

replace S(x) the method of Section 5 is again applicable-- in its present form if L(l) = 0 and through 

Weber ' s  extension if L(l) + O. 

6.3. Small-Perturbation Theory: Wave Drag. 

Sections 6.1 and 6.2 give expressions for the wave drag of two rather special kinds of body. 

Both are independent  of Mach number  although, wave drag being a supersonic phenomenon,  they 

imply M > 1. For  the wave drag of more general bodies there is an expression derived by Lomax 5 

which  introduces the concept of oblique sections. 

In cylindrical polar co-ordinates x, r, 0 imagine a family of co-axial cones x - x 1 = /~ r  where 

/3 ~ = M s -  1, with planes tangent to each member  of the family along the generator given by 

0 = constant. For  certain values of xl, say - l~(O) <~ x~ <~ l(0), each plane slices f rom the body an 

9 
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oblique section. Lomax defines L(xl, O) to be the load on such a section and £;(x~, O) to be the 

projection of its area on the plane x 1 = constant, and shows that according to supersonic small- 
perturbation theory the wave drag of the body for any M > 1 can be written 

where 

D _  1 (  Z(0)d0 (42) 
q 27r 30 

if, IS,,(xl, 0)_ ~_qL,(xl, 0)l x I(0) = 2~r -~1 -h 

× IS"(xz, 0 ) -  ; L'(xz, 0)] log Ix 1 - x2[dxldXz, (43) 

In practice most oblique area distributions and the corresponding load distributions satisfy the 

conditions S ' ( - / 1 ,  0) = L ( - / 1 ,  0) = 0, S'(l, O) = L(l, 0) = 0 and S'(x, O) and L(x, O) are 

continuous for - l z ~< x ~< l, so that the method of Section 5 can be used  in the manner of 

Sections 6.1 and 6.2 to evaluate 1(0). However, great care must be taken over the exceptions. 

For example, wherever the trailing edges of a wing are straight and supersonic the oblique planes 

will lie parallel to the trailing edge for two values of 0. Unless the edges are cusped this will produce a 

discontinuity in S'(x, O) and unless the load vanishes there, a discontinuity in L(x, O) as well. For 
these two values of 0, 1(0) is infinite but if the nature of the infinity is known, methods can be devised 
to integrate I(0) across the singularity. For examples of this see the papers of Weber 6 and of Cooke 
and Beasley 7. 

For wings that are thin, L'(x, O) is an odd function and S"(x, O) an even function of 0. This 
simplifies the expression for I(0) into the form 

1 f z f f  S"(Xl'O)S"(x~'O)1°g[xl-x2ldxldx2 - I(0) - 2~ -~1 -~l 

1 
j t  jz L'(xl, O)L'(x~, O)log l X l -  x~[dxldx~ (44) 4q 2 27r -zl ~ -~1 

and the wave drag becomes the sum of a zero-lift drag and a lift-dependent drag. 

6.4. Vortex Drag. 
Vortex drag as defined in Section 6 is a surface integral taken over a plane far downstream-- the  

Trefftz plane. I f  it can be assumed that vorticity is shed from a wing only at the trailing edge in a 

sheet which meets the Trefftz plane in a straight line then the vortex drag of the wing can be written 
in the form 

4~r -~ -~ F'(yl)F'(yz) log lYl -Y2[dy~dy~ (45) 

where p~o is the density of the undisturbed stream, s the semi-span of the wing, and F(y) the total 

circulation developed by a chordwise section (see, for example, Reference 8, Section D14). I f  I?(y) 

is continuous across the span of the wing and vanishes at the tips then the method of Section 5 
can be used to evaluate this expression as in Section 6.2. However, for a wing of given geometry 
the vortex drag can usually be more easily determined as a by-product of the calculation of spanwise 
loading. 
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q 

D 

f~j 

I 

i(o) 

hi  

L(x) 

L ( x ,  O) 

l, l l  

M 

N 

n 

P~j 

q 

S(x) 

S(x, o) 

t~(~, 8) 

Ui 

x,  y 

5 

r(y) 

0 

Ki 

Ai 

¢ 

L I S T  OF S Y M B O L S  

s(kt) 
co 

Fourier coefficient in the series S ' ( x )  = Y~ a,. sin r0 
r = l  

s(1) 

( A i - N )  - ( B - N ) u  i 

Drag 

Element of the inverse of the matrix [Pij] 

Drag integral in its various forms 

A point on the x-axis 

Load on a cross-section (Section 5.2) 

Load on an oblique section (Section 6.3) 

Lengths of bodies and distributions of oblique sections (Section 6) 

Mach number  of the undisturbed stream 

= s(o) 

Number  of points h i ,  i = l ,  2, . . . n 

- p ( k t ,  k j ) ,  a function defined in equation (28) 

Kinetic pressure 

In  general a function of x, in particular an area distribution (Section 6.1) 

An oblique area distribution (Section 6.3) 

A function defined in the Appendix 

- u(k~), a function defined in equation (27) 

Variables of a repeated integral (Sections 1 to 5) or Cartesian co-ordinates in 
the plane of a wing (Section 6) 

= ~v/(M 2 -  1) (except in Appendix) 

Total  circulation developed by a chordwise section (Section 6.4) 

= cos- l (1- '2x)  or, with r and x, cylindrical polar co-ordinates (Section 6.~3) 

= cos-l(1 - 2hi) 

Constants introduced as undetermined multipliers, i = 1, 2, . . . n 

A function defined in equation (22), and discussed in the Appendix 

= c o s - l ( 1 - 2 y ) ,  or a perturbation velocity potential (Section 1) 
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A P P E N D I X  

Summation of the Series of Section 4 

T h e  series to be s u m m e d  is 

1 1 Fsin( -:)/3 sin(r+1)/3 7 
4a(a, /3)  = Y, t ,(a,/9) -- ,.=E27 L - 1 r + 1 ] L r Z  1 r - 7 1  l '  

T h e  series may  be cons idered  as a funct ion of  two variables e~, ft. Doub le  partial  different iat ion 

t e rm by  t e rm gives the  series 

a2t r ~ 1 
Z a~a~ = ,.~2 7 [cos ( r -  1)a - cos (r+ 1)a] [cos ( r -  I)/3 - cos ( r +  1)/3] 

Go 1 . 

= 4 sin ~ sin/3 E - s m  r~ sin rt9 
r = 2  r 

oo 

= 2 s i n a s i n / 3  E -1 [ c o s r ( a - f i )  - cos r (~+/3) ]  
r = 2  r 

2 sin a sin/3 [½ log 1 - cos (o +/3) _ 2 sin a sin/3-] 
L 1 - c o s  d 

1 
for  all ~ # / 3 ,  since E - cos rO = - log (2 sin 0/2) for  all 0 # 0 (rood ~r). 

r = l  r 

Since E tr(a, /3) converges to zero w h e n  ei ther  a = 0 o r /3  = 0 and Y, (a2tr/aa a~) is un i fo rmly  

convergen t  in any region excluding the  points a = /3, therefore  ~] tr(a , ~) is also uni fornf ly  

convergen t  in any region excluding the points  ce = /3 ,  and w h e n e v e r  a 4 = /3, 

F, (a=t~/aa a/3) = (a2/aa a/3) E t~(a, /3). 

Hence  by a double  integrat ion,  w h e n  a # /3 

1 - cos (a +/3) 
tr(~,/3) = - ½ (cos ~--cos/3)3 log 1 - cos ( a - / 3 )  

W h e n  a = /3 the  series becomes  a func t ion  of  one variable 

co I [sin_(r-_l)a sin_(_r_+_l)o(]' 
E - ETL r - 1  r + l  J r = 2  

Different ia t ion of this series tern:  by  t e rm gives the series 

d6 o~ 2Esin(r_l)~ sin(r+l)a'] 
E~ = E-I_ r - i  }-~_-~ _] [ c o s ( r - 1 ) ~ -  

r = 2  r 

= 4 s i n a  N ~ r + l  ] 
~ ' = 2  . 

4 sin a [-.} sin a sin 2a - l im sin ra  sin__(r +_1)~-] 
L , .~o  r r +  1 ] 

= 2 sin2a sin 2a for all ~.  

+ sin a sin fl(1 - cos c, cos/3).  

cos (r + 1)a] 

1 3  



Since ~ t,(~) converges to zero at c~ = 0 and Z (dt,./da) is un i fo rmly  convergent ,  therefore  

N t,(a) is also un i fo rmly  convergent ,  and ?~ (dt,./d~) = (dido) ~ t~(~). Hence  by  in tegrat ion 

Y, t,(~) = sin ~ ~. 

Final ly since 

therefore  

_ 1 (cos ~ -  cos fi)2 log 1 - cos (~ + fi) 
1 - cos ( ~ - f i )  

+ sin a sin fi(1 - cos c~ cos fi)l 
J a=#  

= sin4 

1 F s i n ! r - 1 ) ~  s i n _ ( r + l ) ~ ]  F s i n ! r - 1 ) f i  s i n ( r + l ) f i ]  

Z#(~'B)- Z~L r - 1  r + l  JL r - 1  ,-+1- J r = 2  

for  all ~, ft. 

( cos  c~-  cos  fi)2 l og  1 - cos  (a  + fl) 
1 - cos  ( o , - / 3 )  

+ sin a sin fi(1 - cos ~ cos/3) 

, 1 4  



T A B L E  1 

The Values u~ for Nineteen Equally Spaced Points 

i u i 

1 0.01869 

2 0.05204 

3 0.09406 

4 0.14238 

5 0-19550 

6 0.25232 

7 0.31192 

8 0.37353 

9 0.43644 

10 0.50000 

11 0.56356 

12 0.62647 

13 0.68808 

14 0.74768 

15 0.80450 

16 0.85762 

17 0.90594 

18 0.94796 

19 0.98131 
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T A B L E  2 

The Matrix Elements f~j for Nineteen Equally Spaced Points 

G ' ,  

\ i 
j \ ,  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

373-996 

-232.710 

59.098 

- 6 . 1 2 4  

1.604 

0.029 

0.119 

0-047 

0.030 

0.019 

0.012 

0.009 

0-006 

0-004 

0.003 

0.003 

0.001 

0.002 

0-000 

349.278 

-228.760 

58-526 

- 6 - 0 3 9  

1.590 

0-029 

0.119 

0.047 

0.030 

0.019 

0.012 

0-008 

0-006 

0.004 

0-003 

0-002 

0.001 

348.637 

-228.669 

58-512 

- 6 . 0 3 7  

1.590 

0.029 

0.118 

0.047 

0.030 

0-019 

0.012 

0-008 

0.006 

0.004 

0.004 

7 8 

h j  = L ,  = Ao-  - o-j 

348-625 

-228.667 

58.510 

348-623 

-228-665 348.622 

- 6 - 0 3 6  

1-590 

0.030 

0"118 

0.047 

0.030 

0-018 

0.013 

0-008 

0-006 

58.510 

- 6 . 0 3 6  

1-590 

0-030 

0.117 

0-047 

0.031 

0.018 

0.013 

-228-665 

58.510 

- 6 . 0 3 6  

1-589 

0-030 

0-118 

0.047 

0-031 

348.623 

-228-666 

58.511 

- 6 . 0 3 7  

1.589 

0.030 

0-118 

348.623 

-228.667 

.58.512 

- 6 - 0 3 7  

1.590 

maximum error _ 0"002 

348-624 

-228-668  

58-512 

[ 10 
I 
[ 
i 

348-625 



The example of Section 5 

s~x) 
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0-5 

Fro. 1. The function S(x). 
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Fro. 2. The integral I and its approximations. 
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