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Summary.

An arithmetical solution is obtained for the viscous creeping flow past a circular cylinder on the bottom of a
channel roughly two diameters deep. The top of the channel is assumed to be in uniform motion so a shear
layer exists in the undisturbed channel. The drag of the cylinder is found to be equivalent to 29 times the
floor drag on an area equal to the projected area of the cylinder. The resultant vertical force on the cylinder is
zero.

Introduction.

A solution for the flow past a cylinder at the bottom of a shear layer would enable an estimate to
be made of the force produced by tidal currents on a cable lying on the bed of the sea. It was
accordingly decided to work through an approximate solution by hand to see what kind of difficulties
arise. To reduce the problem to a manageable size it was decided to take the case of a cylinder of
diameter D in a passage of depth roughly 2D, the roof of the passage being assumed to move at a
uniform speed across the cylinder. Only the case of zero Reynolds number has been attempted but,
even so, the results may be of interest.

The Non- Viscous Case.

In order to obtain a grid on which to work the viscous case a Laplacian solution had first to be
obtained. This is shown in Fig. 1. It will be seen that matters have been arranged so that an integral
equipotential line forms the line of symmetry (at the right) and another runs into the cusp or
stagnation point. Elsewhere (Thom and Apelt2) it is suggested that figures with properties of this
kind be called symmetromorphic. The method of obtaining the solution to \l2f = 0 for cases like
this has been described several times and only the difficulties need be mentioned here. These centre
round the cusp. In problems previously worked the corners had definite angles and the function
w = Zn was available. With zero angle a suitably simple function was not known and the region
had to be subdivided and worked over until it was certain that no error was being spread through
the field. In Fig. 2 suppose 0 to be the apex of the cusp (in the w = g+ iYJ field). As practically all
the work was done with the four-square molecule we need to know the values of e to put at 0 for
use in each of the three molecules involved, namely, OBCE, JADF and .HOEG. As the size of the
molecule shrinks towards zero presumably the values tend to 7T/4, 7T/2 and 37T/4. The values found
empirically are:

III For a = 1, 0·50 0·89 1·38

For a = t, 0·55 1· 00 1· 53

For a = ±, 0·60 1·09 1·61

Having, from the run of the figures and the limiting values just stated, guessed the next value the
local subdivision can be made and the previous boundary values adjusted to suit.

* Replaces A.R.C. 23,930.



As every round of operations involves finding the conjugate function (log I/Q) the process is
long but it is believed that a reasonably good solution has been obtained. Unfortunately the size
of the cylinder (which is only known when the solution is complete) is rather large. The radius
is 1·04 for a channel width of 4. As so much work had gone into the production of the grid it was
decided to go ahead with the viscous solution. Skeleton details of the Laplacian solution will be
found in Table 1. The usual squaring formulae enable any necessary subdivisions to be made.

Viscous Solution, R = O.

We write
\72tf = L \72' = 0

and operate alternately on tf and ,. The four-square-molecule formulae were used throughout

except when changing to a smaller grid size. This change of size was made for the region of the cusp
shown by a rectangle in Table 2. The formulae used are

20'0 = 4s1 + S2

20tfo = 4S1+ S2 - 6(a2/Q2g

where SI is the sum of the' values in the centre of the side

S2 is the sum of the corner values

SI and S2 refer similarly to tf values and Q is the modulus of the transformation.

The boundary formula (Woods3 ) used was

'H = 3QB2(tfA -tfll)/a2 - HA(QU/QA)2

for the lower boundary. For the upper boundary tf,\ - tfB is replaced by tfA - tfll - u/ Qn, u being
the velocity of the moving boundary.

The depth of the passage is 4 and the undisturbed tf is taken as

tfll = 5y 2

which entails' = 10 and the speed of the moving top boundary u = - 40.
The usual boundary troubles presented themselves (Thom1) but by using roughly .~ movement a

reasonably good solution was obtained. It could be improved by subdividing a larger area of the
field. The results are shown in Table 2.

The Pressures.

Since uDp/fL is zero and u is finite then P is zero and the pressures are found by integrating,
e.g. along TJ = const.

Jll;n
P.\ - PH = fL A [}~ dTJ •

Thus (P.\ - P,J/fL is the function conjugate to , and the formulae developed elsewhere (Thorn and
Ape1t2, Section 5.4) are available. "

The pressure drop from ~ = 0, the top of the cylinder to the extreme left was found to be 89 by
integrating along TJ = 2, so the total drop caused by the cylinder is 178. An identical value was
found by integrating along TJ = 1. The pressures throughout the field are given along with tj; and ,
in Table 2 and the conformal net a, P/fL) is shown in Fig. 4. The pressure and vorticity along the
top and bottom passage walls are shown in Fig. 5.
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Forces on the Cylinder.

The pressures round the cylinder are shown plotted on the vertical projection in Fig. 6a. The
area gives the resultant horizontal force. Fig. 6b shows the same thing for the vertical forces. From
the type of symmetry which obtains it appears that there is no resultant vertical force on the cylinder
from the pressures. Evidently there is also no vertical force from the skin drag. The horizontal
resultant skin drag is obtained from Fig. 3.

As an overall check consider the total forces acting on the water from the extreme left to the
extreme right.
We have:

From pressure difference on ends

From skin drag on passage walls (Fig. 5)

From pressure on cylinder (Fig. 6)

From skin drag on cylinder (Fig. 3)

- 4 x 178ft = - 712ft

+ 104ft
}

+ 440ft = + 711ft.

+ 167ft

This is certainly a better balance than was expected in view of the somewhat rough solution. The

total horizontal force F 0 on the cylinder per foot length is 440ft + 167ft or 607ft. The vorticity in
the undisturbed flow is 10 so the skin drag on the bottom is 10ft.

Put F Jj = skin friction on an area equal to 1 foot length of cylinder. The cylinder diameter is 2·07 so

F B = 2· 07 x 1 x 10ft = 20 .7ft .

Thus our final conclusion is that

Fo = 29FR

or the force on the cylinder is equal to the undisturbed friction on an area 29 diameters wide.

Conclusion.

The force on the cylinder has been found for a somewhat artificial case but with the knowledge
gained it ought to be possible to programme the problem with a wider channel and a finite if small
Reynolds number. The lack of symmetry introduced with the Reynolds number would produce
the lift which is actually found experimentally.
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TABLE 1

-2 -1 0

0 0 0
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118 57 0
400 400 400
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