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Summary. 

The present position of the theory of supersonic turbulent base flow is reviewed and arguments are put 

forward which suggest that the theory of Korst and others is incorrect in certain respects. 
The analysis of two-dimensional turbulent base flow is formulated on the basis of a modified recompression 

criterion which is more consistent with experimental observation than the one previously used. At supersonic 
speeds examples are submitted to illustrate the use of the theory to predict the effect of an approaching boundary 
layer on base pressures and satisfactory agreement with measurements is obtained so long as the thickness of 

the boundary layer is small. 
The theory is also shown to account for certain features of the steady base flow at subsonic and transonic 

speeds, e.g. the abrupt fall in base pressure which occurs near sonic velocity. 
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1. Introduction. 

1.1. The subject of two-dimensional supersonic base flow has received a great deal of attention 
in recent years from both the experimenter and the theoretician (see Ref. 1, for example), and the 

basic mechanisms which control such characteristics as the base pressure are to a large extent 

understood. The early attempts to construct models to represent certain features of the supersonic 

base flow have now given way to two principal lines of approach, the method of Crocco and Lees 
and that derived from the flow model proposed by Chapman. 

Of these two the former 2 sets out to describe the essential balance which must be maintained 

between the external stream, which behaves according to the laws of an inviscid isentropic flow, 
and the viscous flow in the wake which is represented by integral relations that take some account 

of the mixing process. The Crocco-Lees theory is concerned mainly with the overall features of the 
base flow and was of particular use in accounting for the variations of base pressure with Mach 
number and Reynolds number. 

The model of supersonic base flow suggested by Chapman a was more detailed and correspondingly 

more limited in scope. It had an advantage in that it rested on the dissection of the flow field into its 
constituent parts each of which could be understood more readily. The solution of the complete 

flow could then be built up from an analysis of the behaviour of each part under conditions which 
simulated to some extent the influence of the neighbouring regions on it. 

From the initial flow model Chapman et al went on 4 to discuss the laminar-base-flow solution for 
the special case when the thickness of the boundary layer approaching the base was zero. (See 
Fig. 1.) The authors were realistic in emphasising the importance which this restriction had on 
the interpretation of the results of the solution and carefully arranged experiments were devised 
to check the theory. 

In the case of turbulent base flow, Korst ~ and Kirk 1G'~ employed largely the same arguments to 

establish a method for predicting base pressures and for demonstrating the increase in base pressure 

which could be achieved by allowing fluid to bleed at low velocity into the wake--base bleed. 

Korst's theory has been used as the basis of a number of modifications to cover special cases of base 

flow, for example when a high-velocity jet is issuing from the base 6.a~, and in the presence of 

non-adiabatic bleed v. The theory of closed base flows 5, i.e. in the absence of bleed, predicts the 

variation of base pressure with Mach number for the restricted case when the thickness of the 
boundary layer approaching the base is zero. It compares very favourably 1 with a large number of 

measurements of base pressure on sections for which the ratio of boundary-layer thickness to 

base height is small. Moreover of the very few systematic experiments to measure the variation of 
base pressure with boundary-layer thickness, two 8,9 produced results which suggested that, at a 

given Mach number, as the boundary-layer thickness tended to zero the base pressure approached 
the value predicted by Korst, and in a third 1° the extrapolation indicated a lower value of base 
pressure which could be attributed to cross-flow effects 11 associated with the small span of the model. 

It would appear then that both the fundamental principles which form the basis of the theory of 
Korst and the details of the solution are supported by observation and that the principles are 

sufficiently understood for the theory to be extended readily to the more general classes of base 
flow, for example, to explain the variation of base pressure with lReynolds number. The objects of 

* The work on base flows was carried out by Kirk in 1954 but the paper reporting it was not issued by the 
Royal Aircraft Establishment until December, 1959. 
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the present paper are first to put forward arguments which suggest that this is by no means the case, 

and then to formulate a modified method which is more consistent with experimental observations 
and should lend itself to more general application. 

1.2. The first of these arguments is simple. Both the experiments and the theory indicate that 
as the thickness of the boundary layer tends to zero the base pressure falls to some minimum value 

- - the  limiting base pressurel--which is a function only of Mach number. The consequence of this 

observation is that, at a given Mach number, base pressures below the limiting value can be reached 

only by the use of such devices as base suction (negative bleed), or when cross-flow or three- 
dimensional effects in the wake cause suction conditions to be approached. Thus the measurement 

of base pressures, lower than the predicted limiting values, which cannot be traced to the action of 
one of these agencies must necessarily cause serious doubts to be cast on the validity of the method. 

Most of the tests on turbulent base flow at supersonic speeds either have been made at Reynolds 

numbers high enough to ensure that the transition point was well forward of the trailing edge of the 

section, or roughness elements have been used to fix transition ahead of the base. Under these 
conditions a well-developed turbulent boundary layer will have had time to grow up on the surface 

before it reaches the base, and very small values of the ratio of boundary-layer thickness to base 

height will be difficult to reach. It is then conceivable that conditions approaching the limiting base 

flow, and hence measurements of base pressure close to the limiting base pressure, have rarely been 

achieved. As the Reynolds number is decreased however, the transition point moves rearward towards 

the trailing edge and the ratio of boundary-layer thickness to base height is reduced resulting in a 

fall in the base pressure 1~. Further reduction of the Reynolds number allows transition to be delayed 

to some point in the wake and the base pressure to rise again. At a particular Reynolds number 

transition to turbulent flow will take place very close to, but upstream'of, the trailing edge giving a 
turbulent base flow in which the thickness of the approaching boundary layer is at a minimum. On a 

fairly thick section under these conditions the experimental limiting base pressure may be approached. 
Tests on the transitional base flow have been reported by Gaddet  a112 and by Van Hise 14. In the 

former the span of the model was small and cross-flow effects may have been present. In the 

experiments by Van Hise however care was taken to minimise the influence of three-dimensional 
effects and the investigator was satisfied that over the portion of the model span where measurements 

were made the flow was sensibly two-dimensional. Base pressures substantially lower than the 
theoretical limiting values were measured for a range of Reynolds number. As an example, at a 

Mach number of 2.22 the ratio of limiting base pressure to ambient static pressure computed from 

the theory of Korst is 0.30 whereas values as low as 0.23 were recorded on ogive models of thickness- 
chord ratio 1/8.; similar differences are found in the base pressures at Mach numbers of 1.95 and 2.92. 

In the transonic speed range it is observed that the base pressure on two-dimensional sections 
falls to a local minimum1; moreover very little variation of base pressure is found with changes of the 

ratio of trailing-edge thickness to chord. The reasons for this latter effect will be discussed later but 

a useful result can be deduced from it at this stage. It is apparent that the increase of base pressure 
on sections in the low-supersonic speed range due to the presence of the boundary layer on the 

surface is small and it is plausible that the experimental limiting base pressure can again be approached. 

It was thought initially that the low base pressures encountered on blunt-trailing-edge sections near 

sonic velocity were associated with the persistence from subsonic speeds of periodic effects in the 

wake. Tests have now shown that at Mach numbers only slightly in excess of 1.0 the influence of 

unsteady phenomena is small and similar low pressures have been observed on a backward-facing 
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step 15 over which the flow was essentiall3~ non-periodic. At a Mach number of 1.1, for example, the 
base-pressure coefficient was found to be - 0 . 5 7  compared with the value of - 0 . 4 2  calculated 
from the theory of Korst, or alternatively the ratio of base pressure to ambient static pressure was 

0.52 compared with {7.64 predicted by the theory. 

1.3. The second argument concerns the extension of the theory to include the effects of the 

approaching boundary layer. The effect of the presence of the boundary layer on base pressure was 
discussed by Kirk 16, who also formulated the theory of limiting base flow independently of Korst. 

While it was shown from the form of the solution that the predicted increase of base pressure with 
boundary-layer thickness would be qualitatively correct no computed results were presented. 
The present author has since performed some calculations 17 on the basis of Kirk's theory and found 
that the computed base pressure on a section with a given ratio of boundary-layer thickness to base 
height was considerably higher than the measured values for turbulent base flow. A similar lack of 
success was evident in the method of Carri~re and Sirieix TM which was an extension of Korst's theory 
but which used largely the same approach as Kirk's in dealing with the boundary-layer effect. The 
theory of limiting turbulent base flow due to Korst has also been extended to include the effect of 
the approaching boundary layer by Karashima 19. The results were shown to compare very favourably 
with the measurements of Chapman et al  4 for laminar base flow, or at least under conditions where 
the transition point was downstream of the trailing edge of the body. The persistence of regions of 
laminar flow into the wake necessarily gives rise to a higher base pressure than would be supported 
by a fully turbulent base flow (see Section 1.2 above), and for this reason the comparison was not 

a valid test of the theory. 
It is apparent that in turbulent base flow, the variation of base pressure, with the thickness of the 

boundary layer approaching the trailing edge cannot be accounted for quantitatively by an extension 

of the method of Korst as it stands, the theory indicating substantially higher values of base pressure 
for given boundary-layer thickness than are observed experimentally. The really important point 
which emerges from a study of the complete base-flow solution is however as follows. The form of 
the variation of base pressure with boundary-layer thickness derived from the theory indicates that 

the limiting base pressure cannot be estimated successfully by an extrapolation from measurements 

made at small but finite values of the ratio of boundary-layer thickness to base height. In the 

neighbourhood of the limiting condition the curve of base pressure against boundary-layer thickiless 

at a given Mach number has both a large slope and a large negative second derivative and it is clear 
that a linear extrapolation of the curve from some position of finite boundary-layer thickness 9,1° 
could result in a serious over-estimation of the limiting base pressure. The apparent agreement 
between the values of limiting base pressure predicted from Korst's theory on the'one hand and 
from measurements with finite boundary-layer thickness on the other is thus undermined. 

1.4. To sum up then we can review the present position of the theory of supersonic turbulent 
base flow. The method of Korst relates to the limiting condition when the thickness of the boundary 
layer Oil the surface of the body tends to zero, and as such should predict the lowest base pressure 
which can be supported by a turbulent base flow in the absence of suction. In two sets of conditions 
measurements can be made of base pressures substantially lower than the theoretical minimum 
values; at low supersonic speeds (Mach numbers less than about 1.4); and at higher supersonic 
speeds over the Reynolds number range in which the transition point is close to, but upstream of, the 
trailing edge. At moderate and high supersonic speeds when the transition point is well forward of 
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the trailing edge the "measured base pressures on thick sections are found to agree well with the 

values given by the theory. However no tests have been made on a section on which the thickness 

of the boundary layer was zero, and it is by no means certain that a simple extrapolation of the 

existing results can be made to zero boundary-layer thickness. Moreover if a correction is applied 

to the theoretical value to take account of the appropriate boundary-layer thickness the base pressure 

is then severely over-estimated. 
On this evidence we believe that the methods of Korst, Kirk and others do not predict the true 

limiting base pressure. It becomes increasingly clear that the true limiting base pressure must be 

essentially lower than is indicated by either the theory or by the body of experimental results with 

which so favourable a correlation is obtained. The fact that the theory agrees so well with the 
measured base pressures on a variety of sections with a small but finite value of the ratio of 
boundary-layer thickness to base height is explained not in terms of the boundary-layer effect being 

small, but by recognising that the theory over-estimates the limiting base pressure by just the 
amount necessary to account for the boundary-layer effect in a large number of typical cases. This is 

of course consistent with the fact that extensions of the theory to predict the increase in base pressure 
brought about by various forms of bleed have shown such good agreement with experiment. None 

of these methods has taken deliberate account of the approaching boundary layer but an increment 

in base pressure roughly equal to the increase brought about by a typical boundary-layer thickness 

has, so to speak, been 'built in' to the results; the further effects of bleed are then correctly predicted. 

1.5. In an attempt to remedy the serious deficiency thus revealed we shall proceed to make a 

thorough re-examination of the assumptions which form the basis of the theory of turbulent base 

flow and to determine the stage at which the observed effects deviate from them. 

The scope of the associated analysis will not be restricted to the supersonic speed range but will 

be applicable also to the class of base flows generated by the subsonic flow over a backward-facing 

step. The flow in the wake of a blunt-trailing-edge aerofoil at subsonic speeds is generally dominated 

by the break-up of the wake into periodic vortices and cannot be represented by a steady-flow 

model of the form to be considered. It has long been recognised however 4 that if the shedding of 

periodic vortices can be inhibited the subsonic base flow closely resembles that at supersonic speeds 

and can be treated in an analogous manner. The subsonic flow past a step is a good example of a 

steady (or at least aperiodic) base flow and it will be seen that several of its features, such as the 

abrupt fall in base pressure as the Mach number approaches unity is can be explained in terms of 

steady-flow effects. 
At supersonic speeds the flow on either side of the plane of symmetry in the wake behind a blunt- 

trailing-edge section is essentially similar to the flow past a backward-facing step in an otherwise 
plane boundary, and for continuity with the low-speed case the analysis as a whole will be framed 

with reference to the flow over a step. It will be shown that there are grounds for suspecting that the 
value of a parameter appearing in the solution may be influenced by the presence of the wall down- 
stream of the base region, and for this reason the base pressure on an isolated aerofoil section need not 

be exactly the same as that on a step under similar conditions. At present however there is insufficient 
experimental evidence to permit any definite conclusion to be drawn on this particular point. 

2. The Flow Model. 

In the present exercise we are concerned with the analysis of the class of base flows generated by 

the flow past a backward-facing step in an otherwise plane boundary (Fig. 2). The stream approaching 



the step is regarded as steady, and uniform except close to the wall where a boundary layer is 

assumed to have developed. The flow separates at the corner, S, and reattaches to the downstream 

surface at R enclosing a bubble of slowly circulating fluid. In the cavity the fluid velocity is low, and 
the pressure essentially constant and equal to the base pressure on the step. The external quasi- 

inviscid flow is divided from the dissipative region by a free-shear layer which has its origin in the 

boundary layer approaching the separation point. It is assumed that the flow in the shear layer 

approximates to that generated by the constant-pressure turbulent mixing of a stream with a fluid 

at rest. In the supersonic case (Fig. 2b) the separating boundary layer interacts with a strong 

centred expansion springing from the corner and account must be taken of the modification to the 

velocity profile before the subsequent development of the free-shear layer can be computed. At 

subsonic speeds the upstream influence of the low pressure in the cavity spreads to an appreciable 

distance and the negative pressure gradient imposed on the approaching boundary layer is at least 

an order of magnitude less severe. As a first approximation it may therefore be possible to neglect 
the effect of the pressure gradient on the boundary-layer characteristics. 

The separated shear layer reattaches to the downstream surface in a region of high positive pressure 
gradient (Fig. 2). This abrupt rise in pressure has the effect of reversing part of the fluid in the shear 
layer to flow back into the cavity whilst allowing the fluid with higher velocity to escape from the 

base region and continue its passage downstream. An essential balance must be maintained between 
the mass of fluid scavenged from the cavity by entrainment in the shear layer and the mass of fluid 
reversed into the region by the pressure rise at reattachment. This can be expressed in terms of the 
mean streamline pattern by the requirement that the same streamline which separated from the 
corner should reattach to the downstream surface. The mass balance in the cavity can be disturbed 
artificially by allowing a continuous bleed of fluid through the base from some external source. 

In this case the separation streamline will be distinct from the reattachment streamline (Fig. 3) 
to allow a mass flow equal to the bleed rate to escape from the region. In principle both base bleed 

and base suction (negative bleed) can be considered although in the present context the latter would 

appear to be of little more than academic interest. The important point to be established at this 

stage is that bleed is a mechanism for providing a measure of control over the selection of the 

reattachment streamline in contrast with the case in the absence of bleed when the reattachment 
streamline is determined from the outset by continuity requirements. 

It has been shown that the reattachment pressure rise results in the division of the flow in the 

free-shear layer into two streams (Fig. 3) one of which returns into the cavity whilst the other 
continues in the main-stream direction to form a new boundary layer on the downstream surface. 

The two streams are separated by the reattachment streamline on which the fluid is brought to 
rest when it reaches the wall. The flow in the reattachment zone is  characterised by a complex 
interplay between viscous and pressure forces, and in thi s respect certain differences in form might 

be manifest depending on the nature, whether laminar or turbulent, of the mixing process. A few 
attempts have been made to analyse the mechanism of reattachment (Ref. 20, for example) but as 
yet no really adequate theory has been formulated and it is usual to employ arguments similar to 
those used by Stratford 2~ in his treatment of the separating boundary layer, namely, that the viscous 
and pressure-gradient effects can be applied in turn to the fluid on a particular streamline. In the 
present problem it is assumed that, during its passage along the length of the free-shear layer, the 
fluid on the reattachment streamline gathers momentum and that this mixing process continues in 

the same way through the reattachment region, as though the pressure gradient were not present, 



until the streamline interects the wall. The recompression which takes place in reality, resulting 
in the retardation of this fluid to rest, is then taken into account by equating the total pressure 

attained by the fluid on the reattachment streamline to the static pressure on the downstream surface 
at the reattachment point. It can be argued (Ref. 50) that the total pressure of fluid particles on the 
reattachment streamline is likely to increase as they approach the wall. However in the absence of a 

more detailed analysis at best a free parameter could be introduced to allow for this effect, and the 
necessity for the inclusion of such a parameter will be judged by an examination of the final results. 

The analysis will therefore proceed on the assumption of a quasi-isentropic compression along the 
reattachment streamline. 

What cannot be substantiated, however, and this is believed to be the key to the failure of earlier 

methods, is the assumption used in all known previous attempts to analyse base flow on the basis of 

the present model, that the pressure rise to reattachment can be equated to the difference between 

the base pressure and the final recovery pressure far downstream, which is itself assumed to be 

equal to either the free-stream ambient pressure 4,16, is or to a slightly lower pressure to take account 

of the losses resulting from the passage of the external stream through the trailing shock 5, 6, 7, ~s, 19, 2~ 2a. 

This reattachment criterion, if taken literally, would indicate that at supersonic speeds (Fig. 2b), 

the reattachrnent point lies at the top of the pressure rise. Now quite apart from any doubts as to the 

physical possibility of reattachment taking place at a point of zero pressure gradient, experiments 
on both supersonic base flow 1°, ~4, 31 and shock-wave boundary-layer interaction "-5. ~0,,.~ are in agree- 

ment that the point of zero shear stress, i.e. reattachment point, is reached before the pressure has 

risen to its maximum value. The discrepancy between the observed behaviour of the flow and the 

assumptions made in the theory seems to have been recognised 51, but the justification of the criterion 

of reattachment hitherto employed was that. it appeared to lead to accurate prediction of base 
pressures in .supersonic turbulent base flouT. The discussion in Sections 1.2 and 1.3 above should 
serve to demonstrate that there is no longer a case for its retention. 

It is apparent that reattachment takes place at a point of strong positive pressure gradient and 
that a substantial residual pressure recovery is achieved downstream of the position ot zero shear 
stress. This is at once to be expected since the reinstatement ot the boundary layer on the downstream 
surface, involving a rapid decrease of displacement thickness, requires the imposition of a positive 
pressure gradient 2s. The flow near the reattachment point can be compared with the flow past a 
concave corner of the appropriate included angle to provoke incipient separation 29. In this case 

also part of the total pressure rise takes place downstream of the point of zero shear stress at the 

corner and is associated w-ith the change in direction of the external stream and the rehabitation of 
the boundary-layer velocity profile. 

At subsonic speeds the concave curvature of the external streamlines and the resulting increase in 

1he stream-tube area near the reattachment point give rise to an overshoot in the pressure 

distribution along the downstream surface and the pressure rise through the reattachment region 

is greater than the difference between flee-stream static pressure and the base pressure. (See Fig. 2a.) 

It is then possible, and indeed it will be shown later to be often the case, that reattachment will 

take place a t  a point where the local static pressure is in excess of the ambient pressure in the 
free stream. 

It is clear from these considerations that the base-flow solution depends on a parameter additional 

to those previously recognised, namely, the ratio of the pressure rise to reattachment to the difference 

between free-stream static pressure and the base pressure. In principle the acceptance of this ratio 
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as a further variable does not constitute a major complication but the problem arises of determining 
its value under given conditions of Mach number, Reynolds number and any other factor on which 
it may depend. It may be possible to estimate the value of the parameter analytically on the lines 

used in the treatment of shock-wave boundary-layer interaction and there is scope for a considerable 

amount of future work in this direction. For the present we shall rest with pointing out the relevance 
of this parameter and attempt to assess its value from available measurements. (Section 7 below.) 

3. The effect of an Abrupt Expansion on the Boundary Layer. 

It was pointed out in the discussion of the flow model (Section 2 above) that at supersonic speeds 
the passage of the boundary layer through the centred expansion at the corner could be expected to 
give rise to a substantial modification of the velocity profile, and that in order to take proper account 
of the boundary-layer effect it would be necessary to compute its characteristics as they are presented 
to the development of the mixing layer, i.e. immediately downstream of the expansion fan. This 
problem which is similar to that of the viscous flow past a convex corner 33, a4 is outside the province 
of conventional boundary-layer theory since the streamwise gradients are not small compared with 
those in the transverse direction, and in fact is even more complex than it might app.ear since the 
interaction between the pressure field and the entropy gradient in the viscous layer gives rise to the 
generation of both expansion and compression waves la. While in principle the problem could be 
tackled by making some plausible assumption about the path of the sonic line in the boundary layer 
and using rotational characteristics in the supersonic region a5 such a Herculean task is hardly 
justified in the present context. 

The fact that the interaction length is short, of the same order as the boundary-layer thickness, 
and that the pressure gradients are orders of magnitude greater than those normally encountered 
in boundary-layer phenomena, suggests that the viscous effects may be taken into account simply 
insofar as they generate the initial velocity profile. The resolution of the subsequent velocity and 
temperature fields can then be regarded as due to pressure forces alone. We shall further assume that 
the flow along any streamline through the interaction can be approximated adequately by one- 
dimensional isentropic-flow relations. 

For an iso-energie shear flow, conditions on some streamline can be expressed in terms of those 
at the edge of the layer in the form 

o r  

where 

u s + 2 % T =  u~ z + 2 c  vT~ 

1 - u  * ~ -  2 C ~ ( T  
- T o )  

Ue 

U O0 = U/U e 

Denoting conditions at the beginning and 
respectively, two equations may be formed 

2c~j 
1 - u l  *~ - - -  Uel2 

and 

l - u~ *2 = 2 %  
u 2 

e2 

(3.1) 

end of the interaction (Fig. 4) by suffices 1 and 

- - -  (T~-  Tq) (3.2a) 

( T 2 - Te2 ) . (3.2b) 



Equations (3.2) are linked by the isentropic expansion along each streamline from pressures P1 to Po 
which are assumed to be constant through the boundary layer and shear layer respectively. Hence 
we may write 

T2 Te a (Phi :'-~'~' 
T ~ -  T e l -  \ ~ ]  ' ( 3 . 3 )  

a~d from equations (3.2a), (3.2b) and (3.3) 

1 - u ~  *~ u ~ 1 2 T ~  

l - u ,  ~ u~22T~l  

M~12 
= _.  (3 .4)  

M~22 

Thus it has been possible to show that within the framework of the assumptions made the velocity 
of fluid on a particular streamline at the end of the interaction depends only on its initial velocity 
and the ratio of the Mach numbers in the stream outside the viscous layer. 

It will be shown in Section 4 below that the development of the free-shear layer from an initial 
boundary layer is defined if the momentum thickness, 8, at separation is specified. This quantity may 
be computed in terms of the momentum thickness, 0, of the boundary layer approaching the corner 
using equation (3.4). Defining a stream function 

- p v , ~  = p~,, (3.s) 

of the viscous layer immediately upstream and downstream of the the momentum thicknesses 
interaction are given by 

PelZtelO = ¢'s ( 1 - u l e ) d ¢  

and (3.6) 

(1 - . ~ * ) ~ ¢ ,  pe2Ue~t~ = ¢.g 

where ~b s is the streamline representing the wall. In the turbulent boundary layer most of the mass 
flux passes through stream tubes along which the mean velocity is nearly equal to the velocity in the 
external stream. Writing 

1 - - U l  ~ ~ Z ,  
where z is small and 

we have from equation (3.4) 

and finally 

1 Me12 Me22 = 

.~* = (1 - r z ( 2 -  z)}1/2 

rz ( 2 -  z) - rZza = 1 - ~ -  ~ . ~ ( 2 - z )  e - . . .  , 

(for ~ ( 2 - ~ )  < 1}; 

r ( 1 - r ) ( 1 - u l * ) 2  + 1 - u 2 *  = r ( 1 - u l *  ) - ~  . . . .  (3.7) 



Substituting this result into equation (3.6) an expression for the downstream momentum thickness 

can be obtained in the form 

r ( 1 - r )  (1--u,~)~d¢ + p~2uc2~ = r (1 - Ul"~*)d¢ - ~ . . .  
'/'s ,/'s 

= r  ( 1 - u , e ) d ~ b - ~ ( 1 - r )  2 ( 1 - u ] * ) d ¢ -  (1-- u**'")d¢ + . . . .  (3.8) 
O's ~ O's ¢~s 

The integrals in equation (3.8) define characteristics of the boundary laver upstream of the 

interaction: 

f ~ ( 1 - u ] * ) d ¢  = PelUel 0 
,l's 

f ~ (1 -u , e2 )d¢  = pelUel~ e~ , 
Ps 

(kinetic-energy thickness), 

and so on. Hence equation (3.8) becomes 

= {0 1 - r  + .} (3.9) 
. . o 

In general for a turbulent boundary layer the term in 20 - 8 e* and higher terms are small and to a 

first approximation we can use the very simple result 

p@*~2 ~ Mei~ 
- r - ( 3 . 1 0 )  

pe,Ue, O M ~  2 ' 

Hence for a given value of the approach Mach number, M~,, one can determine the variation of 
the momentum-thickness parameter 

Pe2Ztc2 t~ 

Pe,Uel 0 

with the base pressure ratio, since the Mach number, Me2, of the flow" outside the free-shear layer 
is given at once from isentropic relations in the form 

p~ 7 F ~ - -  Me12 

P1 - -  _ - -  . (3.11) 

As an example, for an approach Mach number of 2.0 the present result obtained from equations 
(3.10) and (3.11) is compared in Fig. 5 with the method of KirM" which is valid only for small changes 
in pressure, and that of Ref. 18 which retains integral terms in the final expression which must be 

evaluated for each set of conditions. While being very much easier to incorporate into the complete 
base-flow solution the present method appears to be in satisfactory agreement with the other two. 

Moreover it is worth noting that equation (3.10) does not involve the shape of the initial boundary- 

layer velocity profile but the theory specifies only that the profile should be 'full'. 
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4. The Free-Shear Layer. 

4.1. The boundary layer on the upstream surface separates at the corner to generate a free-shear 
layer which forms the demarcation between the external stream and the slowly circulating fluid in 
the cavity. So long as the boundary-layer thickness at separationis not large compared with the 
height of the step, the velocities of fluid in the cavity are small and a region of almost constant 
pressure extends from the step to a point where the fluid in the shear layer first impinges on the 
downstream surface. Past this region the development of the mixing layer continues without any 
appreciable influence from the wall below the cavity. At supersonic speeds the streamlines in the 
flow adjacent to the shear layer are straight and the pressure gradients both along and normal to the 

streamlines in the layer are zero. In this case especially, the mixing layer can be analysed without 
significant loss of accuracy on the basis of a flow model which considers the constant-pressure mixing 
between a uniform external stream and a fluid at rest, with initial conditions to represent the 
profile of the boundary layer after it has passed through t l',e centred expansion at the corner. 

At subsonic speeds the streamlines Outside the shear layer are not straight and the change in 
curvature from one streamline to another gives rise to a transverse pressure gradient. Nevertheless 
if the thickness of the shear layer is small compared with its length and with the radius of curvature 
of the adjacent streamlines it should be possible to neglect the effect of these factors on the mixing 
process. It will therefore be assumed that the development of the velocities along streamlines in the 
layer can be computed from the analysis of the constant-pressure flow model proposed for the 

supersonic case. At subsonic speeds however there is no abrupt deflecti6n of the flow at the corner 

and the velocity profile of the approaching boundary layer represents directly the initial conditions 

imposed on the subsequent development of the mixing layer. 

4.2. It was shown in Ref. 36 that except in the region close to the separation point the 
development of a free-shear layer from a turbulent boundary layer, and in particular the variation 
of the velocities along typical streamlines, could be-represented to some Considerable accuracy by 
the simple method proposed by Kirk 16. The comparison of the latter method with more detailed 
calculations was made for the case of incompressible flow but it was pointed out that there was 
no obvious reason why the same should not be true for flow at higher Mach numbers. It was 
demonst'rated that the real shear layer developing from an initial boundary layer could be replaced 
by an equivalent asymptotic shear layer growing over a greater distance from zero thickness, and 
that the distance between the origin of the equivalent system and the separation point could be 
equated to a simple multiple of the boundary-layer momentum thickness. In this way it is possible 
to make reference to all the results tor the asymptotic mixing layer and to allow" for the effects of 
the approaching boundary layer by nothing more than a simple shift of the origin. (See Fig. 7.) 

The problem of the asymptotic turbulent shear layer at low speeds has been investigated in some 
detail by Toll@en a7 and G6rtler 3s, and Abramovich 39 has discussed certain features of the problem 
in compressible flow up to the speed of sound. It has since been recognised that the result originally 
put forward by G6rtler as a first approximation, that is, the "error function' velocity profile, 

u e = ~  l + e r f  (4.1) 

is a good fit to the measured velocity profiles over quite a wide Mach number range 1°,1a, so long 
as the value of the constant e is chosen appropriately. There is some evidence that the value of 
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increases with Mach number (Fig. 6), indicating a reduced rate of spread of the shear layer, although 

the scatter in the available data is large. In the absence of more reliable measurements it would 

seem that at best a linear interpolation could be made as suggested by Korst and Trippa2: 

= 12(1 + 0 - 2 3 M e 2  ) . (4.1a) 

The basis of Kirk's approximation is that equation (4.1) can be employed to describe the mean 

velocity field in the pre-asymptotic turbulent mixing layer if x, the distance from the separation 

point, is replaced by x + x' (Fig. 7). Thus the scale of the velocity profile at a certain distance x from 

separation can be increased to take account of the initial thickness of the layer. The distance x' is 

assumed to be proportional to the momentum thickness 0 of the boundary layer at separation, or in 

the supersonic case to the momentum thickness t~ of the layer after it has negotiated the centred 

expansion at the corner. For consiste'ncy t~ will be used throughout the analysis in this section but it 
should be remembered that the meaning of ,9 is interpreted as above. 

The constant of propartionality, h, between x' and ,9 is determined a6 from the argument that over 
the distance x' the equivalent shear layer growing from zero thickness should have attained a 
momentum thickness, O, equal to tg. The momentum thickness, O(x), of a free-mixing laver is 
defined by 

where 
f 

o~ 

p@¢~,,@ = (1 - u*)d¢," (4.2) 
¢B 

f Yrof 

= Cr0 - p . d y  
O - - e t a  

~4.3) 

(see Fig. 8), and Croe is any reference streamline. The integrals can be evaluated assuming, say, the 
error-function velocity profile {equation (4.1)} and the relation between velocity and density in the 

shear layer for unit Prandtl number and zero heat transfer. In this way the constant h can be found 
as a function of Mach number, the value at low speeds being around 30. 

In the present analysis it is not usually necessary to compute tbe actual value of k in a particular 

case but use can be made of a result which may be derived from the following arguments. Within 

the framework of the assumption of a free-shear layer in a semi-infinite fluid it may be stated that the 

total momentum of the mean flow downstream of the separation point is conserved. If  the equivalent 

mixing layer at a station corresponding to the real separation point, i.e. a distance x' from its origin, 

is to generate velocity profiles at a point downstream which are identical to those in the real flow, 

it must represent a total momentum equal to that in the boundary layer at separation. This equality 

may be expressed as follows: if 6t~ is a streamline in tile external stream, at x = 0 

d Cr l30 E q u i v .  
S h e a r  
L ayel '  

B o u a d a r y  
:Lt~yer 

= ~F, say, (4.4) 

where u~F is the total momentum flux in the shear layer between the streamline Ch and the dead-air 
region, and ~b v = CB0 for the equivalent layer at x = 0. 
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N o w  from the definitions of t9 and f9 

f '~" ( 1 - u e ) & b  = Ch - ¢ s  - t F ,  (4.5) P e ~'U e 2t~ = P ,S 

and at x = 0, 

[¢q' (1-u*)d~b = ~b,~ - ~bBo - ~F. (4.6) Pe2ge2 0 = .j ~rBo 

Hence if 0 is put  equal to the momentum thickness t~ of the boundary layer at separation it follows 
firstly that 

~eo = ~bs (4.7) 

and secondly that if the 'median streamline '36 is defined as 

then 
4'i~± = G -'~F (4.8) 

(4.8a) 

N o w  the asymptotic turbulent  free-shear layer grows linearly with distance from its origin and 

for the equivalent mixing layer in the present problem we may express the local velocity u * in 

terms of the stream function and the position x by a relation of the form 

¢ ~  - ¢ = p.~.o~(x + ~ ' ) f ( . * ) ,  (4.9) 

where the form o f f  depends on the shape of the velocity profile and on the Mach number,  2kI~2 , 
of the external stream. The lower boundary of the flow field in the x - ~b plane, i.e. where u* = 0, 

is represented by the curve ~bB(x ) which is defined by 

¢ ~  - ¢ ~  = p ~ . ~ ( =  + = ' ) f (0 )  (4 .10)  

and at x = 0 

Hence the distance x '  between the origin of the equivalent mixing layer and the real separation 
point is given by 

x' - ¢ ~  - 4~o  
p ~ u ~ z f ( O )  - f ( 0 ) '  (4.11) 

and eliminating x' between equations (4.9) and (4.11) we obtain 

or finally, since 

~b M - ~b _ x f ( u * )  + v a f ( u * )  (4.12) 
p e ~ %  r i O )  ' 

¢,~r - ~bs = p e r u @ ,  

¢~ - ¢ - x f ( . * )  - e [1  - f l u * ) t  (4.12a) 
p@% [ f(O) ]" 

Hence the mass flux between the separation streamline and any adjacent streamline can be expressed 
in te rms of functions which relate to the velocity profile of the asymptotic turbulent  mixing layer, 
and the momentum thickness 0. of the initial boundary layer. 
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4.3. The datum from which the function f (u  '~) is measured, is the median streamline. In the 

asymptotic free-shear layer growing from zero thickness, the velocity on the median streamline is 

constant, equal to uc e say, and CM is then sometimes termed the 'constant-velocity streamline'. 

Tile median streamline is defined by equation (4.8), and if the velocity profile is expressed in its 

similarity form 
= 

where ~ = cry/2 and 2 is the distance from the origin of the asymptotic mixing layer, the location, 

~,,, of the median streamline is given by 

f "~ p%,~d* = f"~o Peu'*2d: (4.13) 
¢M 

where ~h is some station in the stream outside the shear layer. Hence with the density and velocity 
related by the equation 

the position of the median streamline and the velocity, u~ e, of the fluid on it are known as functions 

of the Mach number, Me~, of the external stream and the shape of the velocity profile. 
This latter dependence is fairly critical and special care needs to be taken. The use of the error 

function to represent the velocity profile is a powerful method of computing the velocities at various 

stations in the shear layer and except towards the edges of the layer where there is some deviation, 

good correlation with experiment is obtained. However, the form of equation (4.13) is such that the 

small errors incurred by this approximation are magnified and the value of u~ e derived from the 
error-function velocity profile, at low speeds, is 0.62 compared with 0.58 computed by the more 

precise methods of Tollmien and G6rtler. This would seem to indicate that at higher Mach numbers 

also the calculation of u~'* on the basis of the error function, as was done in Ref. 5, would lead to 

some overestimation of the correct values. 
An alternative indication of the trend of u~ e with Mach number can be obtained by making what 

appears to be a gross oversimplification of the velocity profile but which nevertheless at low speeds 

leads to a very precise value of Uc e. If the velocity profile is approximated by a linear relation of 

the form 
u ~ = 1(1 +ag) 

where a is some constant, the value of uc e is given by 

u"*2 = L1 ee ~ ~77_ c ] ] (4.15) 

where 

which at low speeds reduces to 

£2 = 
2 - ~e2 

1 + M~2~ 

1 
ue ~ - - 0"578. 
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Equation (4.15) is plotted in Fig. 9and  compared with the variation of uc e2 with Mach number 
computed from the error function (Ref. 5). It is seen that there is a considerable discrepancy between 
the two curves. Further detailed calculations and indeed precise experiments on. free-shear layers, 
are required before a more reliable assessment of the increase of ue e with Mach number can be made. 

For the present the calculations throughout the subsonic range will be based on the value of ue e 
correct for incompressible flow, i.e. 0.58, and for supersonic speeds u; ~ will be assumed to 
follow the law 

u~ e-° = 0.348 + 0.018M~ (4.16) 

which lies between the values given by the error function and the linear velocity profile. (See Fig. 9.) 

4.4. Hence in principle at least, the median streamline ~b M can be identified and its associated 
velocity uo* determined. The function flu*) is then given by 

1 
[¢11± P eu* d~. (4.17) 

Once the value of uo* is known to the necessary precision the value of f (u  e) is not unduly sensitive 
to the form of the velocity profile and no significant loss of accuracy will be incurred by representing 
the profile by the error function or even by simplifying it still further over that part where the 
velocity gradient is nearly linear. In fact this latter is to some extent justified since the variation of 
f i s  required principally over the range of u e which corresponds to small values of ~. Initially however 
the error-function velocity profile 

u* = ½(1 + erf ~) (4.18) 
is assumed. 

The function f(u*) is defined by equation (4.9) and since the stream function is given by 

f can be expressed i~ terms of the velocity profile by 

f lue ) = _1 [Gu O%~e rig. (4.19) 
cr d g  

Making a change of variable from ~ to u e we obtain 

1 rue* d[ f = -g ,,, P cue  due,  

and extracting the derivative from equation (4.18) 

= p%t%g 2 du e 

which for small values of ~ becomes 

.f = "V'~ (~* peue due. (420) 
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Now from equation (4.14) 

u*du* = dp* 
( r -  1)Me ~p .2 

and hence a further change of variable may be made from u* to pe and equation (4.20) reduces to 

f = ( y _  - -  = P* (y_  1)eMez ~ log a, (4.21) 

where 

1 + - u '2) 

A = o~ - (4.22) p0~ 1 + r _ 1 

Thus for small values of ~ it has been possible to express the function f i n  this simple way in terms 
of the logarithm of a parameter 2~ which can be found easily from the velocity ratio u e. Equation 
(4.12a) involves also the limiting value of f as u* tends to zero and in this case the condition of small 
is strictly violated. Nevertheless the term in f(0) is small, and looking ahead to the final results which 
will be derived from the present analysis it can be shown that the error incurred by computing f(0) 
from equation (4.21) is negligible until the ratio of boundary-layer thickness to step height becomes 

large and then the validity of the method in general is questionable. Hence it will be assumed that 

both f(u*), for the range of u* in which we are interested, and f(0) can be evaluated in this way. 

4.5. To sum up then we are now in a position, using equations (4.12a), (4.21) and (4.22), to 

determine the variation of the flow parameters along selected streamlines in the shear layer, for 

given conditions of the Mach number, Me~, of the stream just outside the layer and the momentum 

thickness, 8, of the boundary layer at separation. Before proceeding to apply the reattachment 
criterion however it will be necessary to attach some value to the length, l, of the shear layer. In the 
discussion of the flow model, in Section 2 above, it was suggested that the mixing process in the 
shear layer could be regarded as continuing until the layer impinged on the downstream surface. 
At supersonic speeds since the mixing layer proceeds along an almost straight path front the corner 
and the angle of declination of the layer relative to the wall is determined at once in terms of the 
Prandtl-Meyer angles of the flow outside the layer, the length 1 is given approximately by 

t 
1 = sin (v,~- v,~)' (4.23) 

where t is the height of the step and ~, is the Prandtl-Meyer angle corresponding to the local Math 
number of the external stream. 

At subsonic speeds in principle a relation could be derived for the external flow between the 
length of the cavity and the base pressure using free-streamline theory. At present however no 
suitable data are available for substitution in the analysis and the length 1 of the mixing layer will 
be left as a free parameter. 

5. The Reattachment Region. 

The base-flow solution is closed by the reattachment condition. It has been seen (Section 2 above) 
that the total pressure on the reattachment streamline ~b n can be equated to the static pressure P~ at 
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the reattachment point, on the downstream surface, and that this pressure is related to the ambient 

static pressure and the base pressure by an expression of the form 

P.-P  
- N ,  ( 5 . 1 )  

P t  - P~ 

where the value of N remains to be found. 

Without  at the moment  attempting to attach a value to N some useful relations can be established. 
Along the streamline Cn the pressure rise from Pb to P,  is associated with the fall in the velocity 

from u s to zero and an increase in the density from PR to some value p,., say. If  this compression is 
assumed to be quasi-isentropic we can at once write 

OR ~ • (5.2) 

Now for unit Prandtl  number,  the recovery temperature along the wall is the same as that in the 

cavity and hence the density of fluid in the cavity, Pb say, is related to Pr by the ratio of the pressures: 

P~ Pb 

pr P,.' 
an'd from the last two equations 

\ g , . /  " ( 5 . s )  

This equation can be expressed in terms of the density parameter it, {see equation (4.22)}. If 

we have "- 

itR = -p~ and A b - p* 
PR Pb 

Pb) (7-1)Ir 
) R = Z~ ~,. . (5.4) 

The quantity A b is a function only of Me2 since 

1 + ~ Mez ~ 
Ab= 

y - - 1  
1 + - ~ - -  Mo~(1 - u W )  

(5.5) 

and ue * is either assumed constant or varies with Me2 according to equation (4.16). The parameter A R 
is a measure of the pressure rise to reattachment and equation (5.4) may be used to determine the 
value of the function f on the reattachment streamline. From equations (4.21) and (5.4) 

f (un* ) = ( y _ l ) e M  ~log A b ~ , (5.6) 
"2 

and also 

log { P~{r-1)/r 
f ( u R * ) -  1 \Phi • (5.7) 

f(0) log A~ 

It  now remains to apply the reattachment condition to the known development of the shear layer 

at a distance I from separation. The  reattachment streamline is located within the shear layer by the 
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continuity requirement in the cavity. Assuming a bleed mass flux q into the cavity from an external 
source (base bleed) the streamline CR is specified by 

C s  - = q (5.8)  

and from equations (4.12a) a~d (5.8),with the values off(uR e) and f(uRe)/f(O) given by equations 
(5.6) and (5.7), the base-flow solution for subsonic flow is given formally by 

F ( 
(5.9)  

L t 

i P'~ (T-1)17 
= pe2Ue2 ~ - -  l ~ - M e 2  

P~ (y-1)/7-1 

0 j .  (5.10) 

At supersonic speeds the correction must be made for the change in momentum thickness of the 
boundary layer as it passes through the expansion fan at the corner. Also the length l of the sbear 
layer can be expressed in terms of the step height t and the Prandtl-Meyer angles associated with 
the Mach numbers Me1 and Mez. From equations (3.10), (4.12a) and (4.23) we have 

tf(un*) M~l~ { ! - f (uR*)l  (5.11) 
q = Pe2Ue~ sin (ve~--re1 ) PelU~,l 0 M~2 ~ j '  

I ~/~rt tlog Z o - log ) 
\ 

= Pe~u~ (V- 1)GM~2Z sin (v~2-- v~l ) -- 

log (P,)  (~-~)/~ 
MOl~ E (5.12) 

- P~lu~lO M,~ ~ log A~ 

The procedure for computation is as follows: 

(a) For a given approach Mach number M,1 values of Me2 are chosen corresponding to a range 
of values of the base pressure ratio P~/P1 {equation (3.11)}. The parameters cr (equation 
(4.1a), uc "e {equation (4.16)} and ;~b {equation (5.5)} are functions of M,~ and can be computed, 
and also the quantities (pc2u,~/p,lue]) and (vc~-v,1 ). 

(b) A value of N {equation (5.1)} is assumed and for each value of P~ considered in (a) the 
reattachment pressure Pr is found and the value of the functions f(u_n e) and .f(une)/f(O ) 
computed, {equations (5.6), (5.7)}. 

(c) If the bleed rate q is specified, equations (5.10) or (5.11) give the boundary-layer momentum 
thickness necessary to produce this level of base pressure. 

(d) If the boundary-layer momentum thickness is specified, equations (5.10) or (5.11) give the 
variation of base pressure with bleed mass flow. 
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6. Special Cases. 

In this way the theory has been formulated to predict not only the base pressure as determined 
by the thickriess of the boundary layer upstream of the base, but also the increase of base pressure 
which can be achieved by the continuous bleed of fluid into the cavity. Earlier methods have 

demonstrated the extent to which the effect of base bleed can be estimated theoretically, and we shall 
now illustrate the use of the theory to predict the variation of base pressure with the thickness 

of the approaching boundary layer. 

6.1. No Bleed (q = 0). 

If q is placed equal to zero in equations (5.10) and (5.12) expressions are obtained for the 
boundary-layer momentum thickness necessary for a given base pressure ratio Pb/P1 to be achieved. 

For subsonic flow 
0 - C~ A(A_~--- B )  (6.1) 
l / J  

where 
A = log h b 

(p~) (v-~)lv 
B = log 

and for supersonic flow 

where 

-V/•T 
C 1 = ( . y -  1)~rM~a2 ' 

o A ( , a -  B) 
----' Ca (6.2) t B 

Pe2ue2Me2 2 C1 
Ca - pquqMela sin (v~2- re1 ) ' 

(Mo, ~ 4  ~ C, 

= sin V l)" 

Tel and Tea are the values of the stream temperature corresponding to the Mach numbers Me1 and 
Mea respectively, and the ratio of the specific heats y is taken as 1.4. 

At high subsonic speeds, a centred expansion develops at the corner as soon as the Mach number 
of the stream outside the free-shear layer exceeds unity and account should be taken of the effect 
of the expansion on the boundary-layer momentum thickness. The geometry of the cavity, and thus 
the vahie of l/h, is not however specified in terms of the Prandtl-Meyer angles until the stream 
approaching the step reaches sonic velocity. There is then an intermediate range of Mach number, 
from approximately 0.85 to 1.0, when the solution should be written 

0 A ( A - B )  (5.3) 
l Ca B ' 

where 

C a = \M~ITq / Ct, forl, = 1.4. 
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It is to be remembered that in the subsonic cases, equations (6.1) and (6.3), the solution contains 
two parameters which are as yet unspecified, the length l of the free-shear layer, and the 

reattachment parameter N which appears in the quantity B. The present theory makes no attempt 
to assess the value of these terms analytically. The length of the shear layer would appear to depend 
both on Math number and on the base pressure ratio. The reattachment parameter N which is 
also involved in the solution {equation (6.2)} for supersonic base flow will be seen to be principally a 

function of Mach number. 

6.2. Limiting Base Flow (0 = 0). 

As the thickness of the boundary layer approaching the step decreases to zero, the base pressure 

tends to its limiting value and the solution becomes simply 

i.e. 

or in terms of N {equation (5.1)} 

A-=B, 

F, 
(6.4) 

= 'I 1 .m 1 + N (;~V)~/(7-~- 1 

Ab is given by equation (5.5) for the value of Me~ obtained by assuming the stream of Mach number 
M~I to expand isentropically from pressure P1 to P~ {equation (3.11)}. It is noted that the limiting- 
base-flow solution does not involve the length of the free-shear layer and can therefore be applied 
directly 'to the subsonic case without further reference to empirical factors. 

7. Some Calculated Results and Discussion. 

7.1. We have seen that the base-flow solution for both subsonic and supersonic flow depends 
on a reattachment parameter which must for the present be assessed empirically. Some data on this 
parameter have been collected from the results of experiments on various types of reattaching 
flows and are presented in Fig. 10. The scatter is considerable but a definite trend of N with 
fl'ee-stream Mach number is clearly evident. At subsonic speeds reattachment generally takes place 
at a point where the surface pressure is greater than the ambient static pressure (Fig. 2a) as is 
shown by the values of N being greater than unity. In incompressible flow the value of N would 
appear to be in the region of 1.6 and with increase of Mach number through the subsonic range 
its value is seen to fall slowly followed by an abrupt decrease as sonic velocity is approached 1~. 

At supersonic speeds there is I~O significant overshoot in the static pressure along the downstream 
surface and the pressure at reattachment is less than the static pressure in the free stream (Fig. 2b). 
The tests of Ref. 15 extended to a Mach number of 1.10 by which time the value of N had fallen 
to 0.35. This figure also appears to be a rough mean of the available results for supersonic 
reattaching flows. There is a need for systematic tests to measure the reattachment parameter in the 
supersonic range and to investigate any dependence it may have on factors other than Mach number 
such as the thickness of the reattaching boundary layer. It would also be interesting to know whether 
the operation of base bleed would have any appreciable effect on its value. 
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It is worth noting at this stage that since the pressure recovery which takes place downstream of 

the reattachment point in the supersonic case is assumed to be associated with the rehabilitation of 

the velocity profile, it is by no means certain that the conditions which determine the value of N 

for the flow past a step will be precisely similar to those which determine the value of the 
corresponding parameter for the case of the flow in the wake of a blunt-trailing-edge aerofoil. 

Indeed it could be argued that the absence of the solid boundary in the latter case must necessarily 
lead to a redistribution of local shear stress in the recompression region and affect the ability of 
fluid to negotiate the residual pressure rise from the point of stagnation onwards. 

7.2. The variation of base pressure with boundary-layer, momentum thickness at a Mach 
number of 2.0 is illustrated in Fig. 11. The theoretical curve is computed from equation (6.2) 

taking N = 0.35 and assuming uc* to vary according to equation (4.16). The predicted values are 

compared with the available data on the base pressure on backward-facing-step models from tests 

by Sirieix 1°, Tholnann a~ and Badrinarayanan ~, and it is seen that the measure of agreement obtained 

is very encouragihg. Also presented in Fig. 11 are some data on the base pressure on blunt-trailing- 

edge aerofoil sections.J- From the tests by Gaddet  al 1~" a point is shown representing the minimum 

base pressure reached when, with increasing Reynolds number, the transition point moves upstream 

past the trailing edge. (See Section 1.2 above.) The momentum thickness has been estimated on the 

assumption of laminar flow on the body surface. A similar data point has been extracted in this way 

from tt/e tests on transitional base flow by Van Hise 14 by an interpolation between his results 

for M = 1.95 and 2.22. These cases demonstrate the extent to which small values of the ratio of 

boundary-layer momentum thickness to base height can be achieved during the transitional phase, 

and it is observed that the measured base pressures under these conditions are in good agreement 
with the values predicted by the present theory. 

For the case when the transition point is well forward of the trailing edge, Chapman et al s present 

the results of a large number of tests on aerofoil sections in which the ratio of boundary-layer 

momentum thickness to base height was varied over a wide range. The momentum thickness was not 

measured during the tests but an assessment of it can be made since the Reynolds number is quoted 

and the flow can be assumed turbulent downstream of the transition wire fixed to the models. 
The mean curve derived from the results in this way is shown in Fig. 11, and lies below the values 
computed from the theory and the data points from Refs. 24 and 31 relating to the base pressure on 
step models. It is extremely unlikely that an error of sufficient magnitude could have been made in the 

estimation of the momentum thickness to account for such a discrepancy and the measurements of 
Chapman et al should be reliable. 

The test by Thomann al was carried out at a Mach number of 1.8 and therefore for a true 
comparison with the other data in Fig. 11 a correction would need to be made to the base pressure 

to take account of the difference in Mach number. According to the present theory however the 
correction would not be large at this relatively high value of O/t and at most the data point in question 

could be displaced downwards by about 0.015 in Pb/P1 and would remain distinct from the values 

given by Chapman et al. Thus if this result and that of Badrinarayanan 24 are to be believed it would 

appear to be an indication of a general effect that when the thickness of the boundary layer is large 

t For the purposes of comparing the results of the aerofoil sections with those of the backward-facing-step 
models the height t is in the former case identified with the trailing-edge semi-thickness. 
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the variation of base pressure with momentum thickness is not the same for the blunt-trailing-edge 

aerofoil and the backward-facing step. As suggested above a mechanism does exist for some 

divergence between the values of N for the two cases which could lead to a difference in base pressure, 

but it would be premature to come to any definite conclusion on the evidence currently available 

and further experimental results are required. If the value of N and hence the base pressure is 

influenced by the presence of a solid boundary in the recompression region it would be a simple 

test to insert a thin splitter plate into the wake behind a blunt-trailing-edge section in a supersonic 

flow and observe any change in base pressure which might be brought about. 

If further experiments do not show a significant difference between the results for steps and 

isolated sections it would seem that the validity of the present theory deteriorates when the ratio 

of boundary-layer thickness to base height ceases to be small. Indeed this would not be unexpected 

since several of the assumptions then become questionable. For instance the equivalence between 

the free-shear layer developing from an initial boundary layer and one developing over a greater 
distance from zero thickness is reasonably precise only at distances from separation greater than 

some multiple of the initial thickness. At low speeds 3G, for distances from the separation point less 
than about 80 times the boundary-layer momentum thickness Kirk's approximation predicts a 
lower velocity on typical streamlines than is found from a more detailed analysis. In the present 
problem at high speeds, as the thickness of the approaching boundary layer increases the ratio of 
the length of the shear layer to the momentum thickness falls and the velocity on the reattachment 

streamline may tend to be underestimated also. This will lead to an overestimation of the base 
pressure under these conditions which is qualitatively consistent with the trend observed in Fig. 11. 

Some further calculations based on the present theory are presented ii1 Fig. 12. At a Mach number 

of 2.3 it is seen that there is a significant discrepancy between the predicted values and the 

measurements of Fuller and Reid °. However it is difficult to interpret this since the experimental 

data in question are not in line with measurements at neighbouring Mach numbers. It must be stressed 
that the scarcity of reliable data on base pressures is acute, and until more systematic tests are 

carried out under conditions where the ratio of boundary-layer thickness to base height is relatively 

small a really valid comparison with the theory cannot be attempted. In Fig. 12a two data points 

are shown derived from the tests on transitional base flow at M = 2.22 by Van Hise TM, and are seen 

to be in good agreement with the predicted values. 

At a Mach number of 3 (Fig. 12b) the experimental data, which include base pressures measured 

by Gadd et al  1~ on models at the Reynolds number for which' the transition point was located at 

the trailing edge, correlate more closely for smaU values of O/t and do follow the trend established 

by the theoretical curve. Comparing ttlis diagram with Fig. 11 it would appear that the stage at 
which, with increasing boundary-layer thickness, the theory begins to overestimate the base 
pressure, is reached earlier as the Mach number is increased. The theory can be brought into line 

with the experimental results by accepting a progressive reduction in the value of N with increase 
of the thickness of the boundary layer at separation. However it is conceivable that the flow model  
on which the present method is based becomes less valid at the higher Mach numbers, and in 
this respect we may note the findings of Charwat and Yakura 13 that strong interactions between 
the component parts of the model become increasingly apparent at a Mach number of 3. Even 
viewed in this light the theory is seen to be a substantial advance from earlier methods 1G, is, 19 in which 
the significance of the parameter N was not considered. That of 'Carri6re and Sirieix is is typical of 

these and is illustrated in Fig. 12b. 
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Also shown in Figs. 11 and 12 are the points given for O/t = 0 by the theory of Korst s and it is 

seen that a number of data points lie below the level indicated by this method. The limiting base 

pressures derived from the present analysis are substantially lower than the predictions of Korst 

and are not violated, according to the evidence available, by the occurrence of cases where lower 

base pressures can be measured. 

Before leaving this discussion on the comparison between the available data and the predictions 

of the present theory it must again be stressed that the validity of some of the measurements could 

be questioned. Indeed we have already pointed out (Sections 1.1 and 1.2 above) that in a few tests 

the small span of the models employed may have led to significant cross-flow effects and that these 

can provide a mechanism for some decrease in the base pressure from the values appropriate to 

strictly two-dimensional flow. However the justification of the present method does not depend on 

these data, and moreover the fact that in general satisfactory correlation is found between the results 

of these tests and those obtained under more ideal conditions tends to suggest that the effect of 

cross flows on base pressure may not always be large. 

7.3. The apparent success with which certain base pressures measured 12,24 in the transitional 

Reynolds number range have been correlated with the results of the present theory leads us to attempt 
a further exercise. It was found that the minimum base pressure reached when the transition point 
was located on the aerofoil surface but close to the trailing edge could be predicted from the theory 

by estimating the boundary-layer momentum thickness on the assumption of laminar flow on the 
body surface. With increase of Reynolds number from this condition the transition point moves 
upstream over the body and the increasing thickness of the boundary layer at the trailing edge brings 

about a rise in base pressure s,12. It would seem then that if the boundary-layer growth could be 
estimated during this phase the increase in base pressure with Reynolds number on a particular 

section could be predicted. 

Standard methods are available (e.g. Ref. 47 for low speeds) for computing the momentum thickness 

at the trailing edge of an aerofoil once the position of the transition point is specified. From the 

results of Gadd et a112 and Van I:[ise ~ the transition Reynolds number appropriate to their test 

conditions is known since it is equal to the chord Reynolds number at which the minimum base 

pressure was reached, in fact in the former paper the stage at which the transition point moved 

on to the body is indicated. Assumivg the transition Reynolds number to remain constant the 

extent of turbulent flow can be assessed at any higher chord Reynolds number and hence the 

momentum thickness of the boundary layer at the trailing edge computed. 

The variation of O/t, where t is the trailing-edge semi-thickness, with Reynolds number for the 

wedge section in Ref. 12 has been calculated (on the basis of flat-plate theory) and is shown in 

Fig. 13a. The transition Reynolds number indicated by T was taken as 0.8 x 106. For these values 

of O/t the corresponding variation of base pressure with Reynolds number, derived from the present 

method, is seen to be in reasonable agreement with the measurements. The correlation would 

incidentally have been marginally better if the transition Reynolds number had been taken at the 

actual minimum in the measured curve, i.e. approximately 106 , rather than the value quoted in the 
paper. This of course raises the issue that transition from laminar to turbulent flow Occurs in fact 
not at a point but over some finite distance and if for the purposes of an approximation an equivalent 
'transition point' must be assumed there can be a measure of latitude in its selection according to the 
particular problem. The discontinuity of slope in the predicted variation of base pressure with 
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Reynolds number is also of course introduced as a result of the assumption of a definite point of 
transition. 

A similar comparison between the measured and the theoretical variation of base pressure with 
chord Reynolds number for the test on an ogive model by Van Hise ~4 is illustrated in Fig. 13b for a 
Mach number of 2.22. Here the transition Reynolds number is taken as 2.4 x l0 G which corresponds 

to the point of minimum base pressure. The predicted increase of base pressure with Reynolds 

number is in good agreement with the measured values except for a slight difference in overall 

level of approximately 0.02 in P~/P1. In view of the number of uncertainties in the present 

calculations, such as the variation of e and Uo e with Mach number or the value of N, a discrepancy 
of this magnitude is not to be considered significant. 

These two examples serve to illustrate the use of the present theory to predict, firstly the minimum 

base pressure reached in the transitional Reynolds number range when turbulent flow first occurs 

at the trailing edge of the section, and secondly the variation of base pressure with increasing chord 

Reynolds number from this condition. It is important to note the consequence of the higher transition 

Reynolds number in the tests by Van Hise as compared with that in the tests by Gadd et al. In this 

latter the transition Reynolds number was 0.8 x 106 and the onset of turbulent flow at the trailing 

edge occurred while the laminar boundary layer was still relatively thick. Thus the value of O/t did 

not fall below 0. 012 and the minimum base pressure ratio was approximately 0.32. In the experiment 

by Van Hise however laminar flow was preserved up to a Reynolds number of 2.4 x 106 allowing 

the thickness of the boundary layer to continue decreasing. Hence when the transitio~ Reynolds 

number was finally reached the value of O/t was as small as 0. 007 (the ratio of trailing-edge thickness 
to chord was the same in the two cases), and the transition to turbulent flow resulted in the fall 
of the base pressure, even allowing for the difference in Mach number, to a substantially lower value. 

Thus it would appear that the longer laminar flow is preserved, (in terms ot Reynolds number), 
the lower will be the base pressure when the onset of turbulence does take place. This fact should 
be taken into account when boundary-layer laminarization schemes for blunt-trailing-edge wings 
are being considered. 

7.4. The present theory has been applied to the problem of predicting the variation of base 
pressure with boundary-layer thickness for both backward-facing steps and blunt-trailing-edge 

aerofoils at supersonic speeds. The agreement between theory and experiment has been very 

encouraging especially for the cases when the ratio of boundary-layer thickness to base height was 

not large. We shall now" attempt to use the theory to explain certain features of the subsonic flow 
past a backward-facing step. 

It was seen in Section 7.1 above that the variation of the reattachment parameter N with Mach 

number through the subsonic and transonic ranges was marked and it will be shown that this will 

dominate the variation of base pressure. In this respect the calculations will depend to a large extent 

on empirical data and this dependence will be all the more so since it is recalled that the base-flow 

solution for subsonic speeds in all but the limiting condition involves an additional free parameter, 

namely the length of the turbulent mixing layer. It will not therefore be possible to make any 

predictions of the base pressure in general cases at this stage, but the validity of the analysis will be 
checked against the results of an experiment on the flow past a step by Nash et al is. In this series 
of tests the base pressure on a backward-facing step was recorded and measurements were made of 
the location of the reattachment t~oint and its position with respect to the pressure rise through the 
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reattachment region. Hence a set of data was obtained relating the base pressure, the length of the 
free-shear layer and the value of N through the Mach number range 0.4 to 1.1. 

The variation of N with Mach number derived from this experiment was presented in conjunction 
with other data in Fig. 10 and has been referred to already. (See Section 7.1.) Using these values the 
variation of limiting base pressure with Mach number can be computed from equation (6.5). At 
subsonic speeds the base pressures can be expressed more conveniently as coefficients and the 
results are presented in this form in Fig. 14. The limiting base pressures are indicated by the 
chain-dotted curve. It is to be noted at this stage that the abrupt fall in the base pressure near sonic 
velocity is accounted for by the theory and is in fact directly associated with the similar decrease 
in the value of N. 

The length ot the free-shear layer, or to be more precise its projection on the downstream surtace, 
over this range of Mach number is shown (inset) in Fig. 14. Through the subsonic range the value 
of lit is seen to increase steadily reaching a maximum of 11 but shortly after the flow adjacent to 

the cavity becomes sonic the shear layer begins to deflect sharply at the corner and the value of 

lit decreases again. As soon as the flow in the free stream becomes supersonic the wake geometry is 
known in terms of the Prandtl-Meyer angles of the external stream and the empirical values of l/t 
are no longer required. 

Hence with these values of N and lit the present theory is used to estimate the base pressures 

corresponding to the appropriate boundary-layer thickness. In the experiment of Ref. 15 the ratio 

of the boundary-layer momentum thickness to the height of the step was found to be in the region 

of 0. 026 and this value has been assumed in the calculations. The base pressures are computed for 

the three flow r6gimes. In the range where the flow is everywhere subsonic the solution is given by 

equation (6.1) and is valid up to a free-stream Mach number of approximately 0.86. When the flow 
is everywhere supersonic equation (6.2) is used. In the intermediate range of mixed flow the wake 

geometry is not yet specified and the calculations must continue tO rely on the measured values of 
lit. However the effect of the abrupt expansion at the corner is beginning to be felt and the 
correction must be applied to take account of the decrease in momentum thickness suffered by the 
boundary layer as it negotiates the expansion. This is provided for in equation (6.3) which is seen 
(Fig. 14) to link the other two solutions for wholly subsonic and wholly supersonic flow. In all these 
calculations the values of ~ and uc e correct for incompressible flow were assumed. 

In this way the variation of base pressure with Mach number through the subsonic and transonic 
ranges has been computed in this particular case, and the measure of agreement with the experimental 
points is demonstrated in Fig. 14. It is observed that both the extent and the position, with respect 
to Mach number, of the transonic fall in base pressure has been estimated with good precision and 
i t  would appear that the reasons for its occurrence are understood and can be represented adequately 
in the present flow model. The abrupt decrease in base pressure is seen to be associated with the 
change in the pressure distribution through the recompression region at reattachment brought 
about by the establishment of supersonic flow outside the reattaching boundary layer. With the 
disappearance of the overshoot (Fig. 2a) in the pressure distribution along the downstream surface 
reattachment takes place at a point where the pressure is below free-stream ambient pressure, and 
in order to accommodate the pressure rise to reattachment determined by conditions in the 
free-shear layer the base pressure is forced to decrease. 

A further point worth mentioning concerns the magnitude of the increase in base pressure from 
the limiting values brought about by the presence of the boundary layer upstream of the base. 
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The effect of the initial boundary layer on the reattachment process, and hence on the base pressure, 

arises insofar as the velocity profile at separation causes the development of the free-shear layer 

to depart from its asymptotic form. As the length of the shear layer increases therefore, the influence 

of the initial perturbations is diminished and the base pressure will decrease towards its limiting 

value. In the case under consideration the length of the free-shear layer increases to a maximum at a 

Mach number of 0.95 after which it falls again as supersonic flow is established and the layer 

begins to deflect sharply at the corner, and over the short Mach number range in which the values 

of l i t  are high the presence of the boundary layer is seen (Fig. 14) to result in only a small increase 
in base pressure. This result might explain to some extent the fact (see Section 1.2 above, and 

Ref. 1) that at Mach numbers near unity the base pressure on aerofoil sections does not vary 
significantly with decrease of the ratio of trailing-edge thickness to chord until values of this ratio 

as low as 0.02 are reached. 
Through the subsonic speed range the base-pressure coefficient appears to be relatively constant 

and the predict'ed level is in satisfactory agreement with the measurements. The present analysis 

could be claimed to go some way towards providing a method for estimating the base pressure on 
rearward-facing steps. If the values of AT derived from the experiment of Ref. 15 are representative 
the limiting base pressures can be assessed, and if data become available on the length of the 

free-shear layer under different conditions the variation of base pressure with boundary-layer 

thickness could be readily predicted. In general, at subsonic speeds the wake behind a blunt- 
trailing-edge aerofoil is dominated by periodic effects and the present flow model does not 

adequately represent the true picture. However if techniques are perfected for inhibiting the 

formation of vortices and steady flow can be achieved, the base pressures on aerofoil sections could 

be predicted on the basis of the present theory. 

7.5. At this stage it is well to examine more closely the implications of the main point made 

in the present paper, namely the significance of the parameter N. It has been seen that for turbulent 

base flow at both subsonic and supersonic speeds the acceptance of values of N different from 
unity not only pays more attention to the observed behaviour of the flow in the recompression 

region but leads to a greatly improved representation of the effect of the approaching boundary 

layer on base pressure. Moreover it enables the theory to explain more readily certain anomalies 

arising from the concept of the limiting base pressure. However aside from the discussion presented 
in Section 1 above, it could still be argued that the assumption of N = 1 in the analysis is more 

well-founded than is indicated just by the agreement obtained in the supersonic case between the 
method of Korst and the body of experimental data to which we have already referred. 

Indeed although for the present we have dealt with the turbulent case it remains to look for a 
moment at the relevance of these results to the laminar base flow. At supersonic speeds the variation 

with Mach number of the limiting base pressure has been computed by Chapman et al 4 on the 
assumption, to use the present notation, that N is equal to unity. If in the case of turbulent base 
flow it is conceded that conditions of zero boundary-layer thickness at separation are impossible to 
realise in practice, it is important to remember that Chapman et al were able to devise experiments 

on laminar 'base flow' in which separation was provoked at the leading edge of the models in order to 
reduce the influence of the initial boundary layer to a minimum. The fact that good agreement 

was obtained between the base pressures measured under these conditions and the values predicted 

by the theory is highly significant and some indication of an explanation is certainly called for. 
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While further examination of this point is necessary it would seem at first sight that the difficulty 

could be resolved by one of two arguments; either the assumption of N = 1 is valid for laminar 

flow, or again the true limiting condition had not in fact been approached in the experiments in 

question. The first is more unlikely since there is no obvious reason why the laminar reattachment 

should be qualitatively different from that in turbulent flow, and indeed the data on the value of N 
submitted in Fig. 10 include a result obtained in tests on laminar flow ~7. In the context of the latter 

suggestion a definite conclusion must await some calculations to determine the extent to which the 
limiting base pressure can be approached under experimental conditions. If the value of 3P~/OO 

in the neighbourhood of the limiting condition is an order of magnitude greater in the laminar case 

than the present analysis indicates for turbulent base flow (and this is not implausible), one might 
well be led to question the assertion in Ref. 4 that the boundary-layer effect was negligible. Moreover 

the term 'leading-edge separation' itself needs careful interpretation. 
At low subsonic speeds the theory of steady base flow makes no distinction between the limiting 

base pressures in laminar and turbulent flow since the velocity on the median streamline under 

asymptotic conditions is in both cases approximately 0.58. AS an exercise the theory of supersonic 

laminar base flow was extrapolated to M = 0 by Chapman et al 4, and the value of the limiting 

base-pressure coefficient so derived, - 0. 526, was found to agree well with Roshko's measurements 4s 

of the base pressure on the leeward side of bluff cylinders when the wake was stabilised by a splitter- 

plate. Now in the supersonic case the implication of the present theory was that the true limiting 

base pressure was lower than that predicted by previous methods. At subsonic speeds however 

the available evidence suggests that the value of N is greater than unity and therefore the theoretical 

limiting base pressure ought to be higher than that indicated by the pressure coefficient computed 

by Chapman et al. If the values of N at low speeds suggested by the data in Fig. 10 are representative 

of conditions relevant to the flow past bluff bodies, it would be necessary to examine more closely the 

discrepancy between the predictions of the present method and the experimental results of Roshko. 
It might be argued that the length of the splitter plates used in these tests was insufficient to 

completely stabitise the wake but similar low base pressures were measured on the rear of a flat 
plate normal to the stream by Arie and Rouse 49 when the length of the splitter plate (in terms of the 

height of the model) was considerably greater. More probably the values of N indicated in Fig. 10 
are not representative of the subsonic flow past bluff shapes. The extent of the overshoot in the 
pressure distribution would appear to be dependent on the thickness of the reattachmeilt shear layer, 
al~d it could be argued that the value of N will decrease with increase of thickness of the shear !ayer. 

In the case of bluff sections the length, and hence the thickness at reattachment, ot the free-shear 
laver are proportionately greater than the" corresponding values for the flow past a step. Thus for a 
bluff shape a reduced value of N could be to some extent anticipated, and the observation of lower 

base pressures in this case would not necessarily undermine the essential argument put forward 

in the present paper. 
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Conclusions. 

(a) The present poskion of the theory of supersonic turbulent base flow has been reviewed and 

attention is drawn to a number of shortcomings. In particular an examination has been made 

of experimental data which appear to evade Korst's predictions of the limiting minimum 

base pressure approached at a given Mach number as the thickness of the boundary layer 
upstream of the base tends to zero. On the basis of this exercise and of considerations of 
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the magnitude of the boundary-layer effect in other resuks it is suggested that the theory 

of Korst is incorrect and that the true limiting base pressures are substantially lower than 

the values predicted by that theory. 

(b) The analysis of two-dimensional turbulent base flow has been formulated in general on the 

basis of a flow model which considers the passage of a stream past a backward-facing step 

in a otherwise plane boundary. In contrast with the reattachment criterion used in previous 

attempts at the solution the total pressure on the reattachment streamline is equated not to 

the final recovery pressure far downstream of the base but to the static pressure at the 

reattachment point which is left to be determined. Experimental results on reattaching flows 

are collected which indicate that reattachment does not generally take place at a point where  

the local static pressure is equal to the final recovery pressure and a parameter N is introduced 
which is the ratio of the pressure rise to reattachment to the difference between ambient 

static pressure and the base pressure. At subsonic speeds N is shown to take values greater 
than unity while at supersonic speeds the value of N is smaller and, on the evidence available, 
appears to lie in the region of 0.35. 

(c) At Mach numbers between 2 and 3 the theory is used to predict the variation of base pressure 
with boundary-layer momentum thickness and satisfactory agreement is obtained with the 
available data, at least until the ratio of boundary-layer thickness to base height ceases to be 

sma!l, if N takes the value 0.35. It is pointed out that a mechanism exists by which the 
base pressure on a step may not be the same as that on an isolated aerofoil section under 
nominally identical conditions. The experimental evidence can be interpreted as indicating 

that this is true when the thickness of the boundary layer approaching the base is large, but 
any definite conclusion on this matter would at this stage be premature. 

Attention is drawn to the extent to which the low base pressures observed in the 

transitional Reynolds number range can be attributed to the very small values of the ratio 

of momentum thickness to base height which can then be reached. It is shown that both 

the minimum base pressure and the rise of base pressure with increasing chord Reynolds 

number from this condition can be estimated by the present theory once the transition 

Reynolds number is known. 

(d) At subsonic speeds the validity of the present flow model is checked against the results of an 

experiment on a backward-facing step by Nash et a115, and the basic assumptions made in 

the analysis for subsonic flow appear to be supported. At transonic speeds the abrupt fall 

in base pressure which occurs as sonic velocity is approached can be accounted for on the 
basis of the present theory and is seen to be associated with a similar decrease in the value 
of the parameter N referred to above. 
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LIST OF SYMBOLS 

Cartesian co-ordinates 

Velocity components 

Pressure 

Temperature 

Mach number 

Densky 

Specific heat 

Ratio of specific heats 

f pu dy, stream function 

Prandtl-Meyer angle corresponding to Mach number M 

Momentum thickness of boundary layer approaching base 

Momentum thickness of boundary layer immediately downstream of centred 
expansion 

Momentum thickness of free-shear layer 

Integral defined by equation (4.4) 

Parameter related to rate of spread of shear layer {equation (4.1)} 

Distance between virtual origin of equivalent shear layer and separation 
point 

Distance from origin of equivalent asymptotic free-shear layer 

ay 

Length of free-shear layer 

Height of step; equivalent to semi-thickness of blunt trailing edge 

Base-bleed mass flux 

Non-dimensional stream function defined by equation (4.9) 

Density ratio defined by equation (4.22) 

Functions defined in Section 6 

Reattachment (or recompression) parameter {equation (5.1)} 
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Subscripts 

1 

2 

b 

T 

0 

L I S T  OF SYMBOLS- -con t lnued  

Conditions outside viscous layer 

Conditions far upstream 

Conditions in free-shear layer 

Conditions in cavity behind base 

Conditions at~reattachment point 

Conditions at x = 0 

Conditions on specific streamlines: 

Separation streamline 

Reattachment streamline 

M Median streamline 

Conditions on median streamline of asymptotic free-shear layer 

h Conditions on reference streamline outside free-shear layer 

Ratios of quantities in the viscous layer to those at the edge of the layer are denoted 

by an asterisk, e.g. u s = u/u e, p *~ = P/Pe. 

Conditions in the free stream are denoted by subscript el, e.g. Me1, uel. 

P - P 1  
The pressure coefficient C~, is defined by C~ - 1 2 

~-Pe, l U e l  

The term 'external stream' is used to refer to the quasi-inviscid flow adjacent to the 

viscous flow in the boundary layer and free-shear layer. 
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