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Summary. 

Two wings may be said to have equivalent pressure distributions if the distribution of M~, the component 
of surface Mach number normal to the local isobars, is the same in both cases. A simple approximate method 
is given of calculating Mn from a knowledge of the pressure distribution, and some satisfactory comparisons 
with a more accurate theory are obtained. It is then possible to define an equivalent two-dimensional pressure 
distribution from a knowledge of the three-dimensional, distribution, or vice versa. 

1. Introduction. 

In choosing the design pressure distribution for a swept wing at high speeds, or in analysing a 
measured pressure distribution on an existing wing, the concept of the 'equivalent two-dimensional 
wing' is of great importance; it is through this concept that improvements in two-dimensional 

section design can be incorporated in a real three-dimensional design, and it has also been used in 

predicting transonic effects on three-dimensional wings. For a swept wing of infinite extent and 

constant chord, the relationship with the corresponding two-dimensional section (which in this 

case is simply the section of the swept wing normal to the leading edge) is well known; the pressure 

coefficient on the swept wing (at a freestream Mach number M1), is given by 

G, = G '  cos~ A, 

where A is the angle of sweep and C~' the corresponding pressure coefficient in the two-dimensional 

flow at the Mach number M I cos A. But for a finite wing, particularly when taper is present, it is 

much less simple to define an equivalent two-dimensional pressure distribution, and it is the 

purpose of this paper to clarify the position as far as is at present possible. 
The salient feature of the equivalence previously mentioned between an infinite yawed wing and 

its normal section is that in the two flows the components of local Mach number normal to the 

surface isobars are the same in both cases. It is proposed to extend this definition to a general 

three-dimensional wing. That is, the flow at a particular spanwise station over a given swept wing, 

at a freestream Mach number M1, is said to be equivalent to the flow over a two-dimensional 

section at some reduced Mach number M~ e" provided that the local Mach number M'(~) at a fraction 

of the chord from the leading edge of the two-dimensional section is'equal to M~(~), the component 
of local Math number normal to the local isobar at the same fraction of the chord on the swept wing. 

The importance of this definition is that in an effectively transonic flow over a swept wing the 

principal non-linear features, and in particular the appearance and strength of the shock waves, 

may be expected (according to Bickley's criterion) to be governed by the distribution of M~ over 

the wing surface. 

J- Replaces N.P.L. Aero. Report No. 1028--A.R.C. 23,952. 



Unfortunately,  even when the pressure distribution over a three-dimensional wing is specified 

(measured or assumed) it is not  immediately possible to calculate the distribution of M s .  The  

reason for this is that, though a knowledge of C~ does imply a knowledge of the magnitude of the local 

surface velocity q (assuming isentropic flow), the direction of q is still unknown,  and this is of course 

required before M s can be found. The  next two sections will be devoted to a discussion of methods 

for calculating M~ ; the first gives a simple approximate method and the second a more accurate one. 

T h e  second method simplifies appreciably when the isobars follow the lines of constant ~ (as would 

often be assumed in an ideal design), and in particular it is possible to calculate the way in which 

the critical pressure coefficient (corresponding to M s = 1) varies with the local angle of isobar sweep. 

2. Approximate Theory. 
An assumption which has sometimes been made in attempting to resolve the difficulty mentioned 

above is as follows. Suppose that at any point on the wing surface the local isobar makes an angle A 

with the normal to the freestream direction. T h e n  we assume that the relation between M s and the 

pressure coefficient C~ is locally the same as that for an infinite yawed wing of sweep A, which is 

of course itself equivalent to a two-dimensional wing with pressure coefficient C1)' = C~ sec 2 A 

at a freestream Mach number  M 1' = M 1 cos A. Using the standard relation between local Mach 

number  and pressure coefficient for isentropic flow, we obtain the following expression for M~, 
the component  of local Mach number  normal to the isobar: 

1 + ½ ( y -  1 )M~ ~ = 1 + ½ ( y -  1)M1 '~ p[ c~. ~ ~: :-., . ,,~,,=~=...- ,. ..... ,.-.~ 
(1 + ½yM1 '~ C~')(~-I)/~ .2' 

_- 1 + ½ ( y -  1)M~ ~ cos  ~ A (1) 
(1 + ½yM1 ~ C~) (~'-1)I~' 

In  this way, the distribution of M s along the chord can be calculated from a knowledge of the local 

pressure coefficient C~ and isobar sweep A. 

I t  is interesting to note that exactly the same result can be obtained from the alternative assumption 

that the component  of local surface Velocity along the isobar is U 1 sin A, where U 1 is the freestream 

velocity (i.e. that the perturbat ion velocity is normal to the isobar); this assumption is of course 

true for an infinite yawed wing, but  not necessarily in general. To  prove this, we note that the 

component  of velocity normal to the isobar is then given by 

q~ = q~ - U12 sin ~ A.  (2) 

Dividing by the square of the local velocity of sound a, it follows that 

M~ ~ = M 2 U12 - -aT sin ~ A, where M = a -q is the local Mach number  

= M 2 - M 1 2 s i n  2Aal~  
( t  2 " 

.But 
al  2 1 + 5 ( 7 - 1 )  M~ 
a T = 1 + ½ ~ - - 1 ) ~ 1 2 ' a n d s °  

1 + 1)M  
1 + ½(y-  1)M.~ ~ = 1 + ½(y-  1)M 2 - ½(y -  1)3//1 ~ sin 2 A 1 + ½(y-  1)M12" (3) 



Making use of the fact that 

1 + ½(7- 1) M2 1 
1 + ½(7- 1 )M? - (1 + ½~,M~'C~)<~-~>J~ ' 

equation (1) follows immediately. 
As an example of the use of equation (1), we can at once calculate the value of the critical pressure 

coefficient, by putting M s = 1; we obtain 

( 2  V - 1  )~,(~-1) 
½~,M?C, o,.,~ = ~ + ~ M Z  cos' A - 1. (4) 

This agrees with the starMard result, quoted for example by BagleyL Though originally d&rived 
for an infinite untapered wing, it has been used to define local values of C~)o~.it for a tapered wing" 

where the local sweep varies along the chord. 
We ar.e now in a position to define an equivalent two-dimensional pressure distribution. We 

choose a suitable mean sweep angle A* and corresponding mean Mach number 

M,~ * = M1 cos A *, 

and specify that the distribution of local Mach number, at a freestream Mach number M,~ ~', shall be 
the same as the distribution of M s,  given by equation (1) above. The equivalent two-dimensional 

pressure coefficient is therefore C~', given by 

1 + ½(~,- 1)M~ *' (5) 
1 + }ff  - 1)Ms' = (1 + ½yM,,~'C/)(7-~>~7' 

so that 
1 + ½(Y-1)M,~ *2 (1 + ½yMse"C~'~ (~-l)lr 

1 + ½(r -  1)MI' cos' A = ~ 1 - T ~  ] 

Equation (6) may be written %',~-%>.~". ' ' ~  

where . f [ 1 + ½(7- 1)M1' cos' A 1 ~'I(7-') 

= / 1 + ~ ( 7 - 1 ) M , '  cos' A"J " 

[Note that if the standard ratio of static pressure 'to total head for isentropic flow is 

12 = P(M),  where P = {1 + ½@- 1)M,}-,K,-I>, then 
H 

(6) 

(7) 

f = P ( M  1 cos Ae)/P(M1 cos A).]. 

It is sometimes convenient to think, as an intermediate stage, of an equivalent infinite yawed 
wing (at the same freestream Mach number) of sweep A e and pressure coefficient 

! 

C,* = C,~, cos 'A e 

This is related to the pressure coefficient on the actual wing by equation (7), which becomes 
f 

C~ f -  1 
= ~ M I  + f c , , * .  

(s) 



In a design problem, we shall normally specify that the local isobar sweep A is the same as that 
of the line ~ = constant, so that A will decrease linearly from A 0 at the leading edge to A 1 at the 
trailing edge. N o w f  < 1 when A > A* 

f =  l w h e n A = A  ~ 

and f >  l w h e n A  < A ;~. 

Thus a typical yawed-wing pressure distribution will be distorted by the effect of taper (in order 
to keep the same distribution of Ms) as sketched in Fig. 1. Since C~ and C~ * are usually fairly small, 
the dominant term in equation (8) is (f-1)/½yM12, which ensures in particular that the pressures 
at the leading edge are correctly related in the two cases. 

The local wing loading 1{= C~o(lower) - C~(upper)} for the tapered swept wing is related to 
the value l e for the yawed wing by 

I = f l  ~ . (9) 

Somewhat surprisingly, this means that the loading on the tapered wing must be reduced relative to 
the yawed wing near the leading edge, and increased near the trailing edge; but the effect is normally 
smaller than that of the first term in equation (8), which affects both upper and lower surfaces 
equally. In a practical design procedure it is usually the upper surface that is of primary importance, 
so that it will often be sufficient to adjust the thickness and loading to obtain the correct correspondence 
with the given two-dimensional section on the upper surface only, without paying too much 
attention to achieving the same correspondence on the lower surface as well. 

So far nothing has been said about the choice of the mean angle of sweep A ~. At first sight it 
appears possible to choose this arbitrarily, so long as it lies between the leading-edge sweep A 0 

and trailing-edge sweep A~, If we start from the pressure distribution on a given tapered wing, then 

for any value of A * we shall arrive at a corresponding two-dimensional pressure distribution on a 

hypothetical wing section, still to be determined. But if A ;~" is not chosen correctly then this two- 
dimensional section will either close before the trailing edge is reached (if A ~ is too small) or have a 

finite trailing-edge thickness (if A ;x~ is too large). Since there is no simple criterion whether a given 

pressure distribution determines a closed section, this question can only be solved by experience; 

though again in practice it is often necessary to achieve complete equivalence between two and 
three dimensions only over the forward part of the sections, so that A ~ may be chosen somewhat 
larger than suggested by the above considerations. 

3. I m p r o v e d  Theory.  

The calculation of the separate components of velocity in potential flow at the surface of a wing 
from a knowledge only of the pressure distribution has been considered by Der and Raetz ~. If  ~1 and 
~, are orthogonal curvilinear co-ordinates on the wing surface and hi, h a are the corresponding 
metrical coefficients (such that an element of length ds on the surface is given by ds ~ = h12d~i ~ +.  

h~d~2~),  then the component of vorticity normal to the surface is 

1 I ~ l  ~ 1 

4 



where ul, u 2 are the components of velocity in the ~1 and ~2 directions respectively. If the external 
flow is assumed to be irrotational, then f ~  = 0, so that 

8 
~:1 (h~u~) = ~ (hl.~), (10) 

and also 
. ~  + . ~  = q~(~,~, ~,~), (11) 

where q2 is a given function of ~1 and ~2, obtained from the pressure distribution by means of the 
isentropic equation 

l q  l(7=X)Mle ( 1 _ ~ _ ~ )  = (~;)(7-1)h, } (12) 

- (1 + ½7M~C~)(~-~)I~ 

where Pl is the freestream static pressure. For a given wing shape it is first necessary to specify the 
co-ordinate system; in a general case this may be a matter of some complexity, but for a wing with 
straight leading and trailing edges and similar streamwise sections (so that the surface is conical 
with respect to the tip) a natural co-ordinate system is as shown in Fig. 2 (cf. Ref. 2). If  S is the tip 
then we take ~2 to be the distance of the point P from the tip along the generator PS. The co-ordinate 
~1 orthogonal to ~2 may be chosen to be the angle 0 between the generator PS and the leading 
edge when the surface is developed into a plane. In this case we have 

hi= ~2, h~ = 1, 
so that equation (10) becomes 

3u2 3ul (13) 

It is still necessary to determine ~t and ~ in terms of the Cartesian equation of the surface. If  the 
root section (assumed to be of unit chord) is 

{ ;=f (x )  (O<~x~ 1 ) 0 ,  

\, 

and the tip S is (Xo, Yo, 0) then the equatioh of the wing surface is 

where ~ = (xy o -Xoy)/(y o -y)  is the usual chordwise co-ordinate. Then clearly 

~ = v ' { ( x - ~ 0 )  ~ + ( y - y 0 )  ~ + ~ } ,  
and it can easily be shown that I (15) 

f ~ v'[1 + [f'(~)}~] d~. 0 = Yo 
0 (~0- ~Y ~ :~70~ T f V )  

For a thin wing it will almost always be possible to neglect the terms in z 2 a n d f  ~ in (15), giving 

~ --~ ~/{(x-Xo) ~ + (Y-Yo)~} 

f e  ~/[1 + {f,(~)}2] 
O-'-yo o (xo -~ )2+yo  ~ 

d~, 

but the additional approximation of neglecting the term in ~f'(x)} 2, which is equivalent to replacing 
the wing surface by its projection on the plane z = O, may not always be justifiable, particularly 



near a rounded leading edge. At the leading edge, or more precisely along the 'quasiastagnation line' 

there (the line of minimum velocity), the velocity component  u 1 is zero and u 2 = q, so that initial 

data for u 1 and u~. are known along this line. It  is therefore possible to integrate equations (11) and (12) 

numerically, starting from this line (which is either at or very close to the leading edge ~1 = 0). 

For  a given velocity distribution of general type the numerical problem is still quite difficult; but  

if the whole or part of a wing is such that the pressure (and hence q) is constant along the generators 

(~1 = constant), then a considerable simplification occurs. Such a condition would of course be 

assumed for a wing designed so that the chordwise pressure distribution is independent  of spanwise 

position. In this case u 1 and u 2 will both be functions of ~1 (or 0) only so that equation (13) becomes 

simply 
du2 

d ~  = ul 

with the initial conditions u 1 = 0 

= V ( q ~ - ~ ) ,  

q =  - u  2 = U l s i n A  0at  0 = 0. 

(16) 

This  equation can be solved numerically by standard methods; alternatively we can assume as a 

first approximation that u~ = - U 1 sin (A 0 -  0), and use equation (16), in the form 

• fo 
u 2 - U~ sin A 0 + %/(q2-u22)dO (17) 

0 

to obtain successive approximations to u 2 by iteration. Th e  required velocity component  normal to 

the isobar is then simply 
ul = ~ / ( q ~ - u ~ ) .  

T h e  local velocity of sound is given by Beronelli 's equation in the form a~/U12 = (1/M12) + 

½ ( y - 1 )  ( 1 -  q2/U~), so that the Mach number  component  M,~ = u~/a can be found at once. T h e  

equivalent ya'~,/ed-wing pressure distr ibution can then be found from M,~ as described in Section 2. 

The  result of applying this procedure to a typical pressure distribution is shown in Fig. 3. The  
S o wing chosen has a leading-edge sweep A 0 = 71 ° and trailing-edge sweep A 1 = 66 , and the 

freestream Mach number  is 2 .0;  the value of the sweep A e for the equivalent yawed wing has been 

taken to be 70 °. The  result of the approximate theory of Section 2 {equation (8)} is included for 

comparison; it appears that in this case the error involved in the assumptions of Section 2 are small. 

(The  difference between 0 and A 0 - A has been neglected.) 

4. Calculation of the Critical Pressure Coefficient. 

T h e  approximate equation (4) suggests that the critical pressure coefficient is a unique function 

of the freestream Mach number  and the local isobar sweep. This  is not precisely true, and in fact 

the exact value of the critical pressure must depend also on the whole pressure distribution upstream 

of a critical point. I t  is interesting to consider a wing of tapered planform such that the pressure along 

the lines of constant ~1 is exactly critical f rom just  downstream of the leading edge; this is obviously 

important  in the design of three-dimensional wings which correspond to ' roof- top '  sections in 

two dimensions. In  this case the theory of Section 3 enables an explicit solution to be obtained, as 

follows. 



Putting M~ = 1, we get 

u 2 a 2 1  ( q 2 )  
G ~ -  Vd - ] 1 / / 2 + ½ ( y - 1 )  1 - ~  . 

Since ul e = q2 _ u 2 ,  it follows that 

7-I 

where 
2 

f f~= 1 +  
( 7 -  1)M1 ~" 

Substituting in equation (16), we obtain 

G = ~ I  ~- v:~l  " 
(18) 

At 0 =  0, we can assume that conditions are the same as on an infinite wing of sweep A0, so that 

u2 = - U l s i n A  o w h e n 0 =  0. 

Equation (18) can then be integrated to give 

where 

Then  

- sin i 0o - (19) G \7+ 11 ) t 

Oo = sin-1 (~ sinao) • 

_ 2 { ,  } 
G 2 7 + 1  ~ +½(7-1)+u~2 

7 +  1 

and the critical pressure coefficient follows from equation (12). We obtain finally 

[~--~qf { - (7 -  l '~el-I  ~'~u-" ~2-'YM~2C. c,.it = {1 + ½(7-  1)Mz ~} cos" 0o \7 + 1] ) ]  - 1. (20) 

Since the actual shape of the wing that will produce this hypothetical pressure distribution is not 
specified, /9 is not known precisely in terms of the wing geometry, and it is reasonable to take 

0 = A 0 - A (the value for a flat wing). With this assumption, the value of C~ °rig given by equation 
(20) can be compared with that given by simple sweep theory {equation (4)}. The  two agree of course 

for A = A0, but for A < A 0 the simple theory slightly overestimates the value of ( -  Cp otis)" An 
example is shown in Fig. 4 for M 1 = 2.0, A 0 = 70 °. I t  is interesting to note that in this case C~ cri~ 
should be zero for A ~ 61 °, not 60 ° as might be expected. The  reason for this apparent anomaly is 

that, though when Cp = 0 the magnitude of the velocity vector q is equal to U1, the direction 
of q is not necessarily the same as that of the freestream. 

7 



S. Conclusions. 

T h e  examples shown in Figs. 3 and 4 suggest that the error in using the simple sweep theory of 
Section 2 is unlikely to be serious, unless the taper is large; and in that case the whole idea of 
equivalence with a yawed-wing or two-dimensional pressure distribution is probably not a sensible 
one. But there is no doubt that for wings of small or moderate taper the concept introduced in this 
paper is a valid one and should be considered when selecting the design pressure distribution for a 
tapered swept wing. Unfortunately, however, i t  gives no help in specifying the actual shape of 
the wings involved; and though the problem of finding the shape from the pressure distribution is 
comparatively easy in the two-dimensional case, it is clear that more research needs to be done on the. 
three-dimensional aspects, with particular reference to the thickness problem. 
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.LIST OF SYMBOLS 

Cartesian co-ordinates 

Co-ordinates of effective wing tip (S in Fig. 2) 

Curvilinear co-ordinates (see Section 3) 

Distance from leading edge divided by local chord 

Components of velocity'in the directions ~1,~2 

Metrical coefficients (see Section 3) 

Freestream velocity 

Total velocity { = ~/(u~ 2 + u~)} 

Angle of sweep (suffices 0, 1 denote leading and trailing edges respectively) 

Sweep of quarter-chord line 

Sweep of equivalent yawed wing 

Mach number 

Freestream Mach number 

= cos A *  

Component of Mach number normal to local isobar 

Static pressure 

Freestream static pressure 

Total pressure 

Pressure coefficient on three-dimensional wing 

Pressure coefficient on equivalent yawed wing 

= C~ e sec 2 A e, pressure coefficient on equivalent two-dimensional section 

Velocity of sound 

Function defined by equation (7) 

Wing loading {= Cr(lower ) -  C~(upper)} 

Loading of equivalent yawed wing 

Angle defined in Section 3 (see Fig. 2) 

Ratio of specific heats 

2 
1 + ( 7 -  1)3//12 

sin-l(t~ -1 sin A0) 
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