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In Part I, consideration of the equilibrium of the anisotropic core of a cylindrically curved sandwich plate 
leads to the three simultaneous differential equations for the three orthogonal deformations. Boundary conditions 
on two sides are found by considering the equilibrium'at the core/face-plate interface. A separable solution 
leads to the two sets (symmetric and anti-symmetric) of three homogeneous equations for the flat sandwich 
plate with a honeycomb core. These two sets lead to non-dimensional determinantal frequency equations 
for the flexural and bubbling modes. The calculation of mode shapes is indicated and the non-dimensional 
frequency is plotted against other variables for all likely aircraft panel configurations. 

In Part II, a solution is found for curved sandwich plates by assuming that a flat-plate.core solution bounded 
by curved-plate edge conditions holds true. An indication, though not a proof, of the validity of this assumption 
is given. A determinantal frequency equation is thus found for curved plates and an expected anomalous 
frequency variation with circumferential wavelength becomes evident. 

The variation of frequency with wavelength for bubbling modes is only very slight for both flat and curved 

plates. 
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PART I 

With the Solution for Flat Plates 

By D. J. Mead, Ph.D., D.C.Ae. and A. J. Pretlove, B.Sc., Ph.D. 

1. Introduction. 

Much work has been carried out over the last ten or fifteen years on the analysis of elastic 

sandwich structures. Bending theories were followed by buckling theories and these eventually led 

to vibration theories which have only been developed in recent years. Most of the work published 

to date on the vibrations of elastic sandwich plates has been produced by Professor Yi-Yuan Yu of 

the Polytechnic Institute of Brooklyn. The aim of this paper is to analyse the vibrations of single- 

curvature elastic sandwich plates using the exact three-dimensional theory of elasticity with special 

reference to aircraft structures. Because the usual aircraft sandwich-panel cores are neither 

homogeneous nor isotropic (honeycomb cores) the core has been regarded as anisotropic. However, 

the core has had to be regarded as homogeneous, and this places limitations on the size of wavelength 

which can be considered (see Section 3.7). 

It is hoped to extend this work in a later report (by including external forcing terms which vary 
in time and space) to the analysis of the response of honeycomb sandwich panels when subject to 
acoustic excitation such as might be found on aircraft. The analysis will be carried out by representing 
the response of the panel by an infinite sum of principal modes in the usual way. The r.m.s, strains 
in the core close to the faces are of interest as fatigue failures in honeycomb sandwich plates under 
acoustic excitation have occurred here. This suggests that the symmetric 'bubbling' mode 
(see Section 2.2.1) could be excited to a greater extent than might at first be expected. For this 
reason a detailed analysis of this mode is included in this paper. 

Initially, the least number of simplifying assumptions compatible with obtaining an analytical 
solution is made, so that further simplifications can be made at a later stage and their effect on the 
solutions can then be judged. It has been found possible to compute almost exact solutions for 
some of the modes of simply-supported flat plates. Only the simply-supported case has been 
considered here. Although this boundary condition is rather unrealistic, an acoustic fatigue analysis 
for simply-supported sandwich plates can lead to certain conclusions which will be equally applicable 
to plates with other boundary conditions. 

In Section 2 of this report the nature of the possible modes of a simply-supported sandwich 

plate are described in order to define terminology. Also, in order to clarify the position concerning 

the simplifying assumptions used in this and other theories, Section 3 is devoted to a description of 
the various assumptions often made and to their significance. In Section 4 a concise review of past 
work on sandwich structures' is presented. Section 4 also indicates the assumptions of the work 
carried out so far by Yu (and to a lesser extent by Mindl{n) in the U.S.A. 

The principal differences between this analysis and the work of Yu are as follows: The approach 
to the problem here is an extension of a buckling theory '5 and starts with basic equilibrium equations, 
whereas Yu makes use of a variational approach. The application of this work differs also in that it 
deals rather specifically with honeycomb cores whereas Yu considered isotropic cores. A more basic 
difference is that, here, no assumption of planar or linear deformation or plane strain of the core is 
made. However, it is assumed that there is no shear deformation in the face plates (for reasons, see 
next paragraph) whereas ¥ u  does not make this assumption. A difference between Yu's work on the 
Vibration of cylinders 14 and this work is that this analysis is carried out for the vibrations of segments 
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of cylinders simply-supported at their edges whilst Yu's analysis was concerned with the axially 

symmetricand torsional types of modes of complete infinite cylinders. The reason for the solution 
of this type of vibration problem is that this work is concerned with applications to aircraft whilst 

Yu's paper is probably concerned with applications to space vehicles. 
The basic approach to the problem here is to obtain the equilibrium equations of the core and 

faces, and then to apply the boundary conditions giveri by the equilibrium at the core/face-plate 
interface. A separable solution is assumed for the deformation with harmonic time variation. For 
the flat plate two uncoupled sets of three homogeneousequations are thus derived in the six arbitrary 
constants which constitute the mode shapes of the symmetric and anti-symmetric modes (see 
Section 2). From these equations the frequency equation is derived and substituting the appropriate 
frequency back into the homogeneous equations, the appropriate mode shape can be found. The 
basic equations are derived in a similar manner (and with a similar notation) to that employed by 
Tod ~. The present paper neglects shear effects in the faces of the sandwich because only longer 
wavelengths can be considered due to the honeycomb core (see Section 3.7). For longer-wavelength 

modes Fig. 1 of Ref. 11 indicates that this assumption will be valid even though materials of different 
mass density and elastic moduli are being considered. The full'equations of motion are derived for 

the flat plate under these assumptions. For the flat-plate case with simply-supported edges the 

frequency equations and six first-order modes result. However, for the cases under consideration 

the modes can be safely decoupled. T h e  anti-symmetric 'flexural' mode and the symmetric 

'bubbling' mode are of the most interest. By assuming that the inertia forces in the plane of the 

plate are negiigible, solutions are restricted to those which correspond to flexural and bubbling 

modes. These modes are analysed in detail for the flat plate. Non-dimensional forms of solution for 

frequency are obtained and these are shown in the graphs at the end of the report. 

2. The Nature of the Possible First-Order Modes of Vibration of a Flat Finite Rectangular Elastic 
Sandwich Plate, Simply-Supported at its Edges. 

For a flat sandwich plate with symmetry about its middle plane there are two distinct sets of 
modes of vibration. The first, and perhaps the more important, is the anti-symmetric set. For this 
set the displacements in the plane of one of the face plates are equal but opposite in direction to those 
in the other face. Therefore the middle plane of the plate is a plane of 'anti-symmetry'. Clearly, the 
classical ftexural modes of the plate are anti-symmetric. There is also a set of symmetric modes in 
which the displacements in the plane of one of the face plates are equal to, and in the same direction 
as, those in the other face. It is found that there are three anti-symmetric first-order modes and 
three symmetric first-order modes. However, two of the anti-symmetric modes are of the same 
type as also are two of the symmetric modes. Thus there are only four types of mode. These modes 

are now described in some detail and are shown in Fig. 1. 

2.1. Anti-Symmetric Modes. 

2.1.1. Theflexural mode.--In this mode, the displacement normal to the middle plane of 
the plate (z-direction) varies with x and y (the orthogonal co-ordinates in the plane of the plate), 

but for most purposes it can be assumed not to vary with z (Fig. la). Energies associated with 

this mode are lower than those associated with other modes when the plate depth is small compared 
with its length and width, and therefore the first-order flexural mode will have a comparatively 

low frequency. 



2.1.2. Thickness-shear modes.--For the plate described above there are two thickness-shear 

modes, one associated with the x-direction and the other associated with the y-direction (Fig. lb). 

The displacements in the zero-order thickness-shear modes are independent of the x andy co-ordinates 

and are parallel to the plane of the plate. Displacements perpendicular to the plate are zero. The 

displacements of the first-order thickness-shear modes are also parallel to the plane of the plate 

but they now vary with x and y. For most purposes the first-order thickness-shear modes can be 

regarded as a linear variation of u and v with respect to the normal co-ordinate z. There will now be 

some displacement perpendicular to the plate surface and superficially the mode appears to be of a 

flexural type. These modes have a higher frequency than the flexural modes for the sandwiches 
considered here. 

2.2. Symmetric Modes. 

For the flat plate described, first-order symmetric modes are not coupled in any way with first-order 
anti-symmetric modes. 

2.2.1. The wrinkling or bubbling mode.--The motion in these modes produces direct 
tension and compression of the core in the z-direction, the faces moving in opposite directions 
(Fig. lc). Most of the strain energy is in the core. There is a variation of the z-wise displacement 

w with x and y however, and consequently there is some flexure of the faces. This mode usually 
has a higher-natural-frequency than its anti-symmetric counterpart, the flexural mode; the 

frequencies of the bubbling modes are possibly of the same order as those of the thickness-shear 
modes. It is probable that this mode is lightly damped, and owing to its high natural frequency it 
might become important where fatigue is being considered. 

2.2.2. Longitudinal modes.--These modes are the symmetric counterpart of the thickness- 

shear modes. Again, two such first-order modes exist for the plate under consideration , one with 

motion predominantly in the x-direction and the other with motion predominantly in the y-direction. 

Only displacements of second order of magnitude take place normal to the plate, and so all displace- 

ments can be assumed parallel to the middle plane of the plate. In this mode the top and bottom 

faces move by the same amount in the same direction (whereas in the thickness-shear mode they 

moved by the same amount in opposite directions). In the first-order mode u and v vary with x andy. 

The natural frequencies of these modes are comparatively high, and therefore they are not of much 
interest acoustically as they would be difficult to excite. 

3. A Summary of Assumptions Commonly Made in Elastic-Sandwich-Plate Theories. 

3.1. The Assumption of Plane Strain. 

A simplification of the exact three-dimensional theory of thin plates is possible when one of the 

characteristic dimensions is large. It can be assumed that strain in this long-dimension direction 
is zero 16. Thus for a plate which has a long side, the bending and vibration characteristics will 
depend almost entirely on the short dimension, and on the boundary conditions on the long edges. 
Only strains in the plane defined by the normal to the plate and the lines parallel to the shorter 

dimension need be considered, i.e. plane strain analysis is sufficient. It is often found convenient 
to make this assumption when the effect of other approximations is to be judged. Most sandwich- 

plate analyses to date have assumed plane strain and have been called 'one-dimensional' even 
though displacements, strains and stresses occur in two dimensions. 



3.2. The Assumption of Planar and Linear Deformation. 

Three-dimensional bending and vibration theories of thin plates often consider the in-plane 

deflections, u and v, to vary linearly with the co-ordinate z, i.e. straight lines which are normal to 

the plane of the plate in the unstrained state remain straight after loading. This is the linear 

deformation assumption. 
In two-dimensional theories a similar assunlption can be made whereby plane sections remain 

plane. This is a particular case of linear deformation where no deformation occurs in the direction 

of one of the in-plate co-ordinates. This is known as planar deformation. 
As far as long-wavelength low-frequency vibration theories of sandwich plates are concerned 

these assumptions are accurate enough. Exact elasticity theory shows the relationship between 

in-plate deformation and normal co-ordinate to be: 

u = Usin/3z.  

For long-wavelength low-frequency vibrations, the maximum value of the argument/?z is small, 
and thus the sine can be replaced approximately by the argument- and the assumption of planar 
deformation is seen to hold true. However, for 'higher-frequency modes of vibration the argument 

/3z  is no longer small, and the planar-deformation assumption is likely to give rise to inaccurate 
results. For thickness-shear modes Yu 1° has had to apply corrections to his planar-deformation theory. 

3.3. The Assumption of Zero Transverse Shear Strain in the Face Plates. 

Bending theories of thin plates have shown that the effect of transverse shear strains is negligible 

unless the characteristic length (e.g. the wavelength of vibration) is of the order of the plate depth 

(see, for example, Ref. 7). Likewise, if the  faces of a sandwich plate are thin compared with the 

characteristic length then the inclusion of transverse shear effects is unnecessary. 

3.4. The Assumption of Zero Rotatory Inertia. 

The kinetic energy of a plate vibrating in flexure is commonly assumed to consist of the transverse 

translational energy only. Another component of kinetic energy exists due to rotational velocity 
of plate elements about an axis in the middle plane of the plate. Its origin lies in the so-called 'Rotatory 

Inertia' of the plate section. As with transverse shear, this effect becomes important when the 

characteristic plate dimension becomes of the order of the total plate depth. 

3.5. The Assumption of Zero Flexural Rigidity of the Face Plates about Their Own Middle Plane. 

In a deformed stiff-cored sandwich most of the strain energy in tile faces is extensional energy, 
i.e. the strain in the face is almost constant throughout the thickness of tile face. This, however, is 

not strictly true and the effect of the true variation of strain can be included by superimposing a 
flexural strain (with the middle plane of the face plate as origin) upon the extensional strain. Flexural 
rigidity of the faces about their own middle plane is included in this way. The flexural effect is much 
smaller than the extensional effect when the face thickness is small compared with the core depth 
and when the wavelength is large compared with the plate depth. When the face is very thin, its 

flexural rigidity can be neglected. 

3.6. The Assumption that Different Modes of Vibration of the Same Order are Not Coupled. 

It can be shown that there is no coupling at any time between the symmetric and anti-symmetric 

modes of vibration of a symmetrically arranged flat sandwich plate. However, co~ipling exists 
between the different symmetric and the different anti-symmetric modes. Ekstein s has pointed out 
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that weakly coupled vibrations of two zero-order modes are likely to become strongly coupled when 
the natural frequencies of the two modes approach each other. A similar effect can be expected 

for first- and higher-order modes. Usually the natural frequency of the first-order flexural mode is 
far removed from the natural frequencies of the first-order thickness-shear modes and also the 

natural frequency of the first-order bubbling mode is far removed from the natural frequencies of 
first-order longitudinal modes. In this case, therefore, the four types of mode can be treated separately 

with a reasonable degree of accuracy. However, as the plate thickness-wavelength ratio becomes 
larger and as the thickness of the faces becomes larger th e coupling will become stronger and it may 
be necessary to take it into account. 

3.7. The Assumption of a Homogeneous Core. 

The cores of sandwich plates used by the aircraft industry are often of the honeycomb type. 

This type of core is certainly not homogeneous as it consists of many small hexagonal cells bounded 
by metal foil. However, if the cell size is small compared with the characteristic dimension under 
consideration, then the assumption of homogeneity is a reasonable one. Care must be taken, however, 
when vibrational wavelengths become small. 

3.8. The Assumption of an Isotropic Core. 

The cores of composite sandwich plates are often assumed to be isotropic. Where practical 
applications are concerned this is not usually true and therefore here the differential equations are 
derived for an anisotropic core. For honeycomb cores, three of the six elastic moduli can usually be 
assumed to be zero. These are the direct moduli in the plane of the plate, and the shear modulus Gxv. 
For British honeycombs tl~e two non-zero shear moduli are usually in the ratio of 2 to 3. 

4. A Review of Previous Work on the Analysis of Elastic Sandwich Plates. 

4.1. Bending and Buckling Theories. 

Papers concerned with the bending and buckling of elastic sandwich structures started to appear 
soon after the war. Hemp's theory 1 of sandwich construction was published in 1948, and other 
papers by Reissner ~, Hoff 3, Eringen a and Tod 5 appeared soon afterwards. 

Reissner's paper was the first to derive the equilibrium equations for the bending deformation 
of a normal type of sandwich-construction shell. He has first derived the equilibrium equations of 
the core and faces. Then after finding 'the appropriate expression for the strain energy of the 
composite plate Castigliano's principle has been applied to minimise the complementary energy. 
The minimum of complementary energy gives the equilibrium stress system. The assumptions made 
in this work are that the faces are thin and thus behave like membranes (i.e. constant direct stress 
across the thickness and no shear stresses normal to the face), that the core behaves as a homogeneous 
elastic material in which only transverse stresses occur (two shear stresses, one direct stress), and 
that deflections are small. The equations have been obtained from the three-dimensional theory of 
elasticity, subject to the restrictions above, and for the ordinary type of sandwich plate (in which the 
skins are thin compared with the total depth of the sandwich) these assumptions hold good. 

4.2. Vibration Theories.' 

If Reissner's paper is to form the basis of work on the vibrations of sandwich plates then the 
restrictions of his theory, as stated in Section 4.1 above, must be borne in mind. For longer- 
wavelength low-frequency flexural vibrations of sandwich plates, assumptions similar to Reissner's 



can be made. Mindlin has derived the equations of flexural motion of elastic sandwich plates with 
thin faces by neglecting the flexural rigidity of the faces about their own middle plane, and by 
neglecting the transverse shear deformation and rotatory inertia of the faces. These assumptions are 
equivalent to  those made by Reissner in his bending theory, and they have given accurate results 

for low-order flexural modes of vibration of ordinary sandwich plates. 
The analysis of short-wavelength flexural vibrations of sandwich plates with, perhaps, thick skins, 

therefore becomes very complicated when a solution derived from the exact theory of elasticity is 

contemplated. The additional factors which must now be included are: 

(i) The effect of transverse shear deformation in the face plates. 

(ii) The effect of rotatory inertia of the faces. 

(iii) The coupling which might exist between the three anti-symmetric modes. 

(iv) For honeycombs, the fact that the cell dimensions are likely to be of the order of size of 

the wavelength. 

For a discussion of these factors and when they become significant see  Section 3. 
In a series of six recent papers 9,1°,1~,12,1a,14 Yu has developed a new theory of bending and 

vibration of elastic sandwich plates including transverse shear effects in the faces and based on the 

three-dimensional theory of elasticity. 
In his first paper 9 he has considered the bending of an infinite elastic sandwich plate in the 

so-called one-dimensional case, under the assumption of planar deformation, as described in 

Section 3.2, in each of the three components of the sandwich, although planar deformation of the 
cross-section as a whole has not been assumed. Thus he has been able to include the effects of 
transverse shear deformation in the faces. One advantage of this theory over previous bending 
theories of sandwich plates is that no restriction has been imposed on the thickness of the faces and 
the solution is therefore more general. As a result of including transverse shear effects in the faces, 
subsequent application of the theory of this paper to vibration problems applies up to higher- 
frequency modes than other papers have done. The frequency and wavelength at which departure 
from planar deformation becomes important is dependent on the skin thickness and density and 
the core mean density, and the departure becomes larger as the wavelength decreases and the 
frequency increases. And so at very high frequencies accuracy is gained by including transverse 
shear effects in the skin but at the same time it is lost by assuming planar deformation. The theory 
of this paper is only concerned with small deflections, as is usual. 

The second paper by Yu 1° is a short note on the simple one-dimensional thickness-shear modes of 

an infinite plate. The modes discussed are the zero-order modes of the type described in Section 2.1.2. 
Only free vibrations have been considered. For the case of infinite homogeneous isotropie plates, 

such modes have been discussed by Mindlin 15 firstly on the basis of a plate theory which takes 

account of transverse shear deformation and rotatory inertia but assumes plane strain and planar 

deformation, and secondly on the basis of exact elasticity theory (plane strain being assumed again 

but not planar deformation). The discrepancy between the lowest frequency values obtained by the 
two methods is removed by introducing to the former a factor K whose yalue is found to be rr2/12 
for a homogeneous isotropic plate. Yu's paper has investigated the one-dimensional zero-order 

thickness-shear modes of sandwich plates in exactly the same manner as Mindlin has done for 
homogeneous isotropic plates using the theory of Ref. 9 and matching the approximate frequencies 
to the frequencies derived from the exact elasticity theory with the factor K. However, for sandwich 



plates, it is found that K varies between ~r2/12 and 1. K = rr~/12 corresponds to the case of a 
sandwich plate with relatively thick faces whereas K = 1 corresponds to the case of a sandwich 
with relatively thin faces. As K = 1 implies perfect matching of frequencies between the exact 
and approximate theories, it is seen that the assumption of planar deformation is valid for thin faces. 
(Note.--This is true only in a broad sense because other factors do enter the argument. However, 
the relative thickness of the faces is the predominant factor.) The frequency equation for these modes 
derived from the theory of Ref. 9, has been given in this report, as has the equation obtained from 
exact elasticity theory. 

In Yu's third paper 11 the equations of motion of flexural vibrations of sandwich plates have been 
developed using the theory of Ref. 9 (one-dimerisional case). All of the usual effects are included in 
this analysis, the important assumptions being those of plane strain and planar deformation in 
each of the plate components. The theory therefore applies to sandwich plates with thick faces 
because transverse shear effects in the faces have been included, as pointed out previously. In the 
Introduction the need to include transverse shear and rotatory inertia in the theory has been 

emphasised again so that higher-frequency modes may be computed more accurately. The flexural 
vibrations of sandwich plates have also been analysed using exact elasticity theory which has been 
restricted to the so-called one-dimensional case at the outset so that results thus obtained can be 

compared with the results obtained from the approximate analysis. On the basis of these theories 

the flexural vibrations have been investigated with the emphagis on ordinary sandwich plates. It is 

shown, by a numerical example, that the two methods described above give almost identical results; 

which indeed they should, since the assumption of planar deformation holds good for the flexural 

vibrations of ordinary sandwich plates at the lower frequencies. It is found that the neglect of 

shear deformation in the core gives rise to inaccurate results and therefore this effect should be 

included at all times. It is also found that the joint flexural-extensional rigidity of the faces must 

be included in the analysis if accurate results are to be expected, unless the faces are exceptionally 
thin, in which case, the flexural rigidity of the faces can be neglected. For plates with very thin 
faces and vibration modes of a low frequency, the possibility of some considerable simplification is 
forecast. 

This simplification has been carried out in the next paper to be published by Yu 1~. The flexural- 
vibration equations derived in Ref. 11 are complicated, and they hold good for a wide frequency 

range. For the low-frequency ranges and ordinary sandwich plates with thin faces a considerable 
simplification of the problem can be effected. In this paper these simpler equations have been 
introduced and their accuracy is determined by a comparison with the more complete equations 
of Ref. 11. 

In the theory developed in Refs. 9 and 11, it has been assumed that the transverse displacement is 
constant across the depth of the plate, and that the in-plate displacements are proportional to the 
plate normal co-ordinate, the derivatives of in-plate displacements in the core and faces, with 
respect to the normal co-ordinate, being different from each other. In this way all of the deformation 
energies have been taken into account. For sandwich plates with thin heavy faces the important 
factors have been found to be shear in the core, rotational and translational inertia of the core, 
translational inertia of the faces, and the joint effect of fl'exural and extensional rigidity of the faces. 
These effects have been included in this simpler analysis 1~. Two sets of equations have been derived. 

The derivation of the first set of simplified equations consists of a two-dimensional analysis with 
transverse shear deformation in the faces not being taken into account. The equations have been 
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derived from three-dimensional elasticity theory using a variational procedure as in Ref. 9. This set 

of equations has been found to yield the same frequency equation as a certain degeneration of 
equations derived in Ref. 11. 

The form of deformation used for these two simplified sets is as described above except that the 

in-plate deformation of the faces has been regarded as constant over the face depth. For the first 

set these displacements have been derived, in the faces, by considering the core as extending to the 

interface whereas for the second set the core has been considered as extending to the middle plane 

of the faces. The second set of equations thus obtained has also been found to be a degenerate 

version of the equations of Ref. 11, but the restriction necessary for the simplified frequency 

equation to hold is not as great as the restriction for the first set, and therefore the second set yields 

more accurate solutions. In this way a simplified analysis for the flexural vibrations of thin-skin 

sandwich plates in the lower frequency range has been found which yields solutions of good 

accuracy. 

In a paper concerned with the forced flexural vibrations of sandwich plates in plane strain 13 

Yu has started again with the displacement equations of motion derived in Ref. 9. Treating the case 

of a simply-supported plate he has expanded the response as a series ot~ principal modes which had 

been found previously 11 and the orthogonality condition of the principal modes has been derived. 

A method due to Mindlin and Goodman is has been used to analyse the response to time-dependent 

boundary conditions and an example has been worked out for this type of forced motion. The 

assumptions of Ref. 9 have been made for this work. 

Recently, Yu has also written a paper on the vibrations of sandwich cylindrical shells 14. This 

• analysis is almost identical to the analysis for flat plates in Ref. 9 except, of course, that the cylindrical 

quantities are introduced. The equations of motion so obtained have been simplified by making 

the assumption that the faces of the sandwich are very thin. The assumption of planar deformation 
has been made, and therefore as described previously in this section, shear coefficients K had to be 
calculated to match the thickness-shear frequencies in order to correct errors brought about by 

this assumption. The simplified equations have been used to analyse the axially symmetric and 
torsional vibrations of an infinite cylinder. 

Yu's papers are a useful set of works on the vibrations of sandwich structures, especially for 

one-dimensional analysis of flat plates and two-dimensional analysis for low-frequency thin-skinned 

flat plates. 

5. The Analysis of the Vibrations of Cylindrically Curved Sandwich Plates. 

5.1. Sandwich-Plate Core Equations. 

5.1.1. Stress-strain equations for an anisotropic homogeneous medium.--The convention for 

co-ordinates and face stress resultants is given in Fig. 2. These co-ordinates are much the same as 

those used by Tod 5 and are of the cylindrical polar type. The usual 0 co-ordinate is replaced by 

y where y = RO and R is the cylindrical curvature radius. R is assumed to be large compared with 

the thickness of the panel. The co-ordinate z is used with the middle plane of the plate as its origin 

and with the R direction as its direction. Measurement of x is parallel to the generator of the 

cylinder and in the middle plane of the plate. As mentioned in the Introduction, the core has had 

to be assumed homogeneous in order to obtain a solution. This limits the frequency and wavelength 
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down to which it is possible to obtain an accurate solution to the vibration problem for honeycomb 
cores (see Section 3.7). The  stress-strain equation is: 

where 

' ~ "Vxy Pxz- 
E~ E~ Eo 

P'gx 1 Py z 

Ex E. E~ 

%~ v,v 1 
E.~ E v E~ 

t:;;J 

IO" (1) 

and the matrix of coefficients of cr must be symmetric for a linear structure due to Clerk-Maxwell 's 

reciprocity theorem. The inversion of equation (1) will give: 

= B e (2) 

H 

where the matrix of coefficients must again by symmetric. For the particular type of core considered 

in this report (a honeycomb core) it can be assumed that E x = E v = 0, and therefore examination 

of equations (1) and (2) gives: 

A, B, E, F, H = 0, C = E~ and the only component of equation (2) which remains is 

%° = Ce~ (3) 

As far as shear stresses and strains are concerned it can be assumed that Gxv = 0 for the 

honeycomb material and we are therefore left with: 
x 

~zx ~ Gzxezog r 

%,., = ~ue~v . (4) 

However, we Will solve for the more general case of an anisotropic core (assuming there to be no 

coupling between shear strains and direct stresses) where the stress-strain relationships can be 

written: 
f 

(i) as equation (2) for direct stresses, and 

(ii) f ' % v l [ i O ] ( e x v  t 

and the special case of honeycomb cores will be brought into the solution later. 
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5.1.2. Equilibrium relationships.--The well-known equilibrium equations in cylindrical 
polar co-ordinates (see, for example, Ref. 16, p. 306), when body forces are included , and conversion 
to our form of axes has been effected, are: 

8%~ 8%v 8%~ 1 f 8%v } 
a ~ + - ~ y  + az R i Z - ~ y  - % "  + P * =  0 (6) 

8%~, O%v 8%~ 1 ( 8%y } 
o~ +~-y+ a~- RlZ-Wy - 2 ~  +p~=0 (7) 

8%x 8c% 8%~ I ( 8%v } 
o-V+~-y + o~ R / ~ f - % o + ~  +po=o (s) 

where Pi is the body force per unit volume in the positive i direction. 

5.1.3. Strain-displacement relationships.--The equations connecting strain and displace- 
ment in cylindrical co-ordinates are also well known (see Ref. 16, p. 305). These also have been 
suitably converted to the system of this paper (neglecting terms in z/R~), thus: 

~u 
exx = - ~  

8v 
eyy ~y 

aw 
ezz = -~Z 

~u 
.exy = -~y + 

Ov 
eYz = -~Z + - -  -- -- 

aw 
e~x = ~x + 

l {zaV w}* R Uy- 

8V ,~ 0U 

Ox R Oy 

8w 1 ~ 8w 

Ou 

Oz 

+v} 

(9) 

5.1.4. Overall core equilibrium equations.--Substituting equations (2), (5) and (9) in 
equation (6) we obtain: 

Oht Oht Oht ~2v 02w 
A ~ + L ~y~ + N~Z~z 2 + (E+L) ~ + (F+N)  ~ +px 

= ~  z ~  L 2Uy+ ~ +E~ N)~ oz/ (10) 

and substituting equations (2), (5) and (9) in equation (7) we obtain: 

3ht 32v 32v 82v 32w 
( L + E) o----x-oy + L ~x~ + B --ay 2 + M ~zz2 + ( G + M) ~ + Pv 

= --R -~y ( L + E ) -ox + 2 B Ty + ( G + M ) Fz - 8 y - M ~z + (11) 

* A term - wz/R ~ has also been neglected in the equation. It has thus been assumed that the radial deflection 
w is of the order of the sandwich thickness or less. 
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and substituting equations (2), (5) and (9) in equation (8) we obtain: 

32w 32w a2w 32v 3~u 

= -~ Z ~y ( G + M ) -~z + 2 M + ( E - F ) ~x + ( M + B ) -~y - C ~z . (12) 

5.2. The Equilibrium of the Face Plates. 

5.2.1. Equilibrium parallel to the face sur face . - -The  assumption of plane stress is made 

for the faces, i.e. %~ = %z = %~ = 0 (see Ref. 16, p. 30). This is another assumption which will 

limit the frequency and wavelength to which this work will apply, but it is reasonable to make this 

assumption having once limited the wavelength by assuming a homogeneous core. 

lh2 1 
~-I h 

T 
h =h  I + h 2 

For plane stresses in the faces we have: 

G, 
%x - 1 ~ -v ~ (exx +vevv) 

E m  
%v - 1 - ?~ (~exx + %~) 

E,~ 
%~ = aex~ - 2(1 + ~) e ~ .  (13) 

If  quantities at the middle surfaces of the face plates {i.e. at z = + (h 1+ h~/2)} are denoted by a 

dash and if quantities at the interface (z = + hi) are denoted by a subscript o then deflections in the 
face plate are given approximately by: 

Zt = U 0 ~ + . 
o 

v 

w = w o (14) 

noting that ex, o = (3u/dz)o + (Ow/Ox)o = 0, etc., and where ~ is a plate normal co-ordinate 
measured from the middle surface of the face plate (i.e. z = z'  + ~ where z'  = h 1 + h~/2). 

At the middle surface of the face plate ~ = 0 and we have: 

h~ (3w) 
u' = U o ~  ~ o 

v'= VoX-h"(a~y) 
-2 o 

w' = zoo. (15) 
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The in-plane direct and shear stress resultants are given by: 

( )} N*=(1-v2--~ -~x + V \ay] - R  +hi  - w '  
kay/ 

2(a + ,,)t tgy] + g~ ~ ~ gy 

N. 
(1-v 2) \-Oxx] \~y, R \ay] 

using equations (13) and (9) and taking the middle-plane value of the strains. The equilibrium of 
stress resultants in the x and y directions gives the equations: 

ax + - ~ - y - ; R _  ay -~=o  - ~x o o 

O. Qu {(av) (aw) } MVo Mhl (aw ) aNxu ON v h, aN,a + fvh~ + + ~" = - -  + M + -T- 
ax +-~-y -T-R a s = - % ~ o  R R - ~-zz o }TY o R R ~Y o 

where 

(17) 
wherefi  is the body force per unit volume in the i direction in the face plates. Substituting equations 
(16) into (17) to eliminate the stress resultants, and converting the dashed terms to subscript '0' terms 
using equations (15) we obtain the following two relationships: 

A t z =  + h i :  

aht 1 - v a 2 u  l + v  a2v h a a " 1 - v  ~ 
ax - ~  ÷ 2 ay~ + T axay g- -:2-ffxx V=W + --E-~mvm , fx 

= +g ~x+~ +~ h~ 2 axayV-~'ggx+hl(1-v)@~) (18) 

a2v 1 - v a 2 v  l + v  aht h~ a 1 - v  = 
2 axe+-2 a, ay-r-~-~ww+-gT, f ' , .  

(aw av) K°'[h &o ) 1 {  1+~  ah, azo a~v K* } 
= +_K* ~jy+-~z - T ~ - j j  +-v +-~ .h, 2 axayT--g-y+2hzg-y2+--2~ -Q" (19) 

and K*' - M(1 - v ~) 
E,,,h~ 

K - N(1 - , ,~)  

and as far as equation (19) is concerned 

8 
Qv = - D ~ V2w. 

oy 

5.2.2. Equilibrium normal to the face surface.--For the face moment stress resultants we 
have, according to the code shown in Fig. 2: 



Neglecting terms in h2/R and 1/R 2, the resulting equations are: 

M x = - D L\ax2/° + ~ \ay=/o T N h, \ay=]o + ~ o 

M u  = - D Iv (3~'[ ~3%'[ l{h ' (3%'~ 3 v  

L\axay]o ~ \a~y]o -T- ~ -3~ o 
(21) 

where D = E~h2a/12(1 - v~'). Equilibrium of the transverse loads on a skin element gives: 

aG ( a ~  ~)aGey G + l-T- --=- +ff i2  = + (22) 

and by considering also the equilibrium of shears and couples on the element, we have: 

aMx 
Q x -  Ox 

_ - - +  l-r- 7)-y + g ~ o  (23) 

Q,, = T +  1 -v -~-y +~-%o. (24) 

By substituting equations (23) and (24) into (22) to eliminate Qx and Qv we obtain: 

2_Rh_, ) _~)cq~'Mxt,, h 2 [(ao-,~_] (1T--~)(,9o"~y'~ ] 

+fih~ Nv + . = ~ - ¢ = o .  (25) 

By using equations (5) and (9) to obtain ~ in terms of displacement, and by substituting equations 
(21) into (25) to eliminate Mx, My, and M~v we obtain at the interface: 

D,7,~',~,[~ ~o ~-t (~- ~o/-1 ,~, r.~u ~] 
- - ~  N [ax2 + OxazJ + M ~ +  Oy2.j j + C-d-ffz +_ L 3x +, G -f~h2 

R ( 1 -  ~)  ~' ~ + ~ + " 
(26) 

It will be seen that the last term is of order h2/R 2. This term has not been neglected because it 
is not multiplying a derivative and because Era-is assumed to be much greater than any of the core 

moduli. 
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Equations (10), (11), (12), (18), (19) and (26) constitute the total equilibrium equations of the 

composite plate when under the influence of the body force systemp andf. (N.B. No external loading 

is included in these equations.) For free motion the body forces can be expressed: 

p~ = Pl a2ui (i = x, y, z) 
g c3t 2 

Pt = weight density of the core 

A= - -}7 g + gh~ at 2 ] U = displacement 

where the adhesive mass is assumed to be spread uniformly over the face. 

p~ = weight density of the faces 

r = weight of bonding per unit area of face. 

If harmonic motion of frequency (0 is a dynamic solution of interest: 

32ui _ 
(02U i 

Ot ~ 

SO 

( 0  2 

P~ = P1 g- u~ 
f 

A = 7 .~ p2 + = P~ 7 "~" (27) 

Equations (10), (11), (12), (18), (19), (26) and (27) now constitute the equations of harmonic 

motion of an elastic sandwich plate with a general anisotropic core, under the assumptions: 

h 2 1 
( i ) ~ a n d ~  < 1 

(ii) Core homogeneity 

(iii) No shear deformation in the faces. 

5.3. The Differential Equations of Harmonic Vibration of Cylindrically Curved Honeycomb- 
Cored Elastic Sandwich Plates. 

For honeycomb cores we have seen that we can assume that there are only three non-zero elastic 

moduli. In our notation these three moduli are C, M, and N. Some of the equations of motion can 
thus be simplified, and for honeycomb cores the six equations (10), (11), (12), (18), (19) and (26) 
can be rewritten: 

N~z +g~-x + P x -  R N + g ~ -  

M N  N + ~  + p y = ~ -  z ~ f ~ -  ~ + ~  

(30) 
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for core equilibrium in the three directions x, y and z. The  three boundary-condition equations 
at the interface are: 

3eu 1 - v 3 e u  l ~ - v  ~ev he a 1 - v  e 
3x ~ + 2 Oy ~ + 2 Ox~y g- -2 3xvaw + -~m fx 

(3w &t~ 1 [ l + v 3av 3w a2u- 1 
= +_K 37x + 3z} + R  h, 2 3xay-T- vTx +h*(1-v )  ay~_l 

1 - -  "b ' a  3av 1 - v a e v  l + v  3au h a O v 2  w +  . f,, 
ay ~ + 2 ax e + 2 Oxay g 2 ay E,,~ " 

+ K ; , ( a T f  av) K:~'( 3w ) 1 [ l + v  3Zu 
= -  + ~z - ~ -  h~ g-j +_ v +_ X h~ 2 axay 

(31) 

Ow Oev K ~ 0 -q 
q + 2he D T ~ D ~  w~ J " 4 "  . ]  

(32) 

hal (a w a%l aw DVaw - -2 N ~Oxa + ~ ]  + M \~y3z + ~y~]] + C ~ z  -f~h~ 

= - -  + 3hlV 2 . . . .  -Y- 2hl + h 1 + v R - aye ayj ~ -  ~ ~ - ~  R~-->) ~ +~S + 
(33) 

and it w i l lbe  observed that equations (31) and (32) are identical to equations (18) and (19) as no 
simplification of these is possible. 

6. Solutions of the Equations Listed in Section 5.3. 

6.1. A Separable Form of Solution for Curved Panels. 

Let us assume a separable solution of the form: 

w = W(z) sin --nrrx sin __mrry (34) 
a b 

which can only hold for simply-supported edges.. The in-plate deflections u and v must then take 
the form: 

nrrx m~ry 
u = U(z) cos - -  sin - -  (35) 

' a b 

and 

v V(z) sin n~x m~y = cos - -  (36) 
a b 

If eqt~ations (34), (35) and (36) are now substituted into the core equilibrium equations (28), (29) 
and (30), we obtain: 

ii) Equation (28). 

N S a + ~ - + 0 ,  U+ N- -mr  8 + .  W =  0 (37) 
a 

where 3 is an operator denoting differentiation with respect to z; 

(ii) Equation (29). 

M~ e + ~ - + p ,  V + M T  1 -  6+ W = 0 ;  (38) 
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(iii) Equation (30). 

a - M - b -  1 -  _ 3 - ~  V +  C 3 2 + ~  - -  N + 

-I- M - 2 ~ -  - 01 W = 0 .  ( 3 9 )  

Equations (37), (38) and (39) are three simultaneous differential equations in U, V, and W. 
The  solution of these equations is complicated because the coefficients are, in some cases, variable 
(with z). It was thought that it might be easy to find a series type of solution to this set of equations, 
but it proved to be immensely cumbersome and was not completed. It was found that the six 
modes for the curved plate corresponding to the three symmetric and the three anti-symmetric 
modes for the flat plate (N.B. these modes for the curved plate are in fact neither symmetric nor 
anti-symmetric) were coupled together, whereas for the flat plate, the symmetric and anti-symmetric 
modes were uncoupled. The degenerate case of the flat plate can be solved by putting 1/R = O. 

6.2. A Solution for Flat Panels. 

It is now assumed that the coupling between symmetric modes with the same nodal pattern is 
negligible and similarly that the coupling between anti-symmetric modes with the same nodal 
pattern negligible. This coupling exists by virtue of x-wise and y-wise inertia forces in the core, but 
is only significant when the core is very heavy or the face plates are very thick. Hence we ignore the 
in-plate inertia terms of the core for flexural and bubbling modes. Equations (37), (38) and (39) 

now become: 

(i) Equation (37). 

(ii) Equation (38). 

nTT 
3 z U + - 3 W =  0; (40) 

a 

m T f  
~ V +  T 3W = O; (41) 

(iii) Equation (39). - 

~ - - ~ V +  CS 2 -  N -  

Integration of equatiofis (40) and (41) gives: 

dU nrr 
- W + F  

dz a 
and 

+ M  - P l  W =  0. (42) 

d V  m~" 
- W + A  

dz b 

and substituting (43), (44) in (42) gives: 

d 2 W oo2 M m_~_ N mr 
' - - W =  A +  P .  C dfi-z2 + Pl g a 

The solution of the differential equation (45) is: 

W = @ sin/?z + A cos fiz + ~g-pl J { M b-turf A 
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+ N ~  P} .  (46) 
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Substituting equation (46) into (43) and (44) we find the corresponding modal shapes of U and 
V, thus: 

U -  mrl  0 Asin.~z+ zg { mrr N 7  } ] a - ~ c ° s / 3 z + ~  P~°J ~ M ~ - A +  P + £ z + E  (47) 

V m ~ [  @ Asin/~z + zg { mTr Nmr }1 - - - -  M - g - A +  P + A z + 1 1 .  (48)  b ~ COS 13Z + )- Pl c°2 a 

The solutions for U, V and W {equations (46), (47) and (48)} have one part corresponding to the 
symmetric modes, the other corresponding to the anti-symmetric modes. It can easily be shown, by 
substituting these equations into the boundary-condition equations (31), (32) and (33), that the 
symmetric and anti-symmetric parts are not coupled in any way. They can therefore be treated 
separately. 

6.2.1. A solution for flexural modes of flat panels ignoring rotatory inertia.--Extracting the 
anti-symmetric parts of equations (46), (47) and (48) we have: 

W =  Acos/3z+ g M A +  P 
pi~o ~ -b- a 

[~ { mTr Nmr p}] U -  mr A s i n [ 3 z +  zg M A +  + Dz 
a pi w~ T a 

b Ptc° ~ M ~ -  A + N P + Az. (49) 

If these equations are substituted into the boundary-condition equations (31), (32) and (33) 
with 1/R = O, we then obtain a set of three homogeneous equations in A, P and A. Thus a 
determinantal frequency equation is obtained. For long-wavelength flexural modes the in-plate 
inertia forces of the faces can be regarded as small and thef~ andfu terms in equations (31) and (32) 
are thus neglected. This assumption is effectively that of ignoring rotatory inertia for ordinary 
sandwich plates and has been shown to hold true both by an analysis of the authors and by Yu ll. 

The resulting frequency equation in matrix form is then: 

I nrrl~ F sin 4' 
 -L5 + 

+ cos 4 

mwl 2 [sin 

 -L5 + 

+ cos4 

(DI 4 -  h2p/~---~)x 

x cos 4 - C/~ sin 4 

M 

M 

" ~ pij 

- mmr2ab Mhl (12v)]  

plw~ + - -  

M h~ 

g rn~ h2m~r-I 

N L ab plo~.~ 

mmr2 hl (l + N 2 

N [tDl4- h~&~---~) x 

g nrr h~n~] 
.x--T2--- + plo~ a 2- 

A 

A 

= 0 (50)  

P 
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where 
/~2 __ O02D1 ( ~ ) 2  [?F/7.r] 2 

C g '  d? =3h~,  F = + \ b ] ' 

¢ =  + ~ - \ b ]  ' e~- = + ~ " 

The frequency equation is obtained by putting the determinant of the matrix equal to zero. This 
equation is then easily non-dimensionalised by substituting the following non-dimensional 
quantities: 

h~ a b 
*' = v , '  & - 

,~ _ E _ P2 ~. = h ~ e ,  ~e  = h ~ e e ,  

C Pl' 

N 
= -C' ~b = hl=l ~. 

3y M. 
2 C '  

and by suitable rearrangement to obtain zeros the determinantal frequency equation becomes: 

0 

~rr [s in4 /~ " ] U ~ -  + 2 cos 

~ cos ~ \120~_>) 

_ ~2) _ ~ sin ~ 

[A,,,2 @~ + 2 ~  ( 1 -  v~) ) - 

2 7) 

3w72 [2 - A/~ + 

3 2 

3y 
(1 - v ~) (A,2 + A,,))] 

2/zA 

3~r" 1 + v] 

J 2 2 

= 0 . ( s l )  

It will be observed that P/Pl has been replaced by A in some places and that in this way the weight 
of the bonding has been omitted. This has been done so that non-dimensional graphs of frequency 
can be plotted against the variables A~,  A~, and/~ (y and ;t are regarded as constants for one type of 
honeycomb). The results of computations using equation i51) are shown in Fig. 3. 

All of the graphs at the end of this report were computed using quantities associated with 
British CIBA (ARL) 'Aeroweb' honeycomb type 142. This aluminium-foil honeycomb, with a cell 
size of 0.25 inches, is commonly used by the British Aircraft Industry. Other design graphs, like 

21 



those given in this report, however, can easily be constructed for other materials by solving the 

equations given herein. Vaiues of constants for 'Aeroweb'  142 are as follows: 

M = 31,900 Lb/in = 

N = 21,300 Lb/in 2 

C = 238,640 Lb/in ~ 

Pl = 4 Lb/f t  a 

and the constants used were: 

E,,~ = 107 Lb/in 2 (Aluminium) 

c = 1123 ft/sec" 

g = 32-2 ft/sec ~ 

p2 = 167.5 Lb/f t  a 

r = 0"09228 Lb/f t  ~ 

v = 0" 34 (Aluminium). 

The  range of values of parameters for which these computations were carried out is as follows: 

(i) Non-dimensional  wavelength 

from A,~,,~ = 16 to A,~,,~ = 96. 

(ii) Core/face-plate thickness ratio 

f rom ~ = 0.05 to /z  = 0 .20 .  

For  a particular honeycomb panel the apparent natural frequency, ~o0, is computed from the 

value of ¢ thus: 

¢ ~/Cg (52) 

and this must  then be corrected for the mass of the interface adhesive using the equation 

where h 1 is measured in inches and r is in Lb/ft 2. 
This  equation has been derived assuming that w does not vary with z in the core (flexural modes 

only). 
This  method of correction does not give exact answers, but  the maximum error for the range of 

values of the variables used in the computations is small (not greater than 4 per cent). Equations (52) 

and (53) are plotted in Figs. 4 and 5 and these graphs can be used in conjunction with Fig. 3 to 

determine the natural f requency of flexural vibration of any flat honeycomb panel within the limits 

of the assumptions of this report  (N.B. T h e  graphs only apply to CIBA honeycomb 142 with 

Aluminium face plates but  similar graphs for other sandwiches can easily be constructed). 
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6.2.2. A solution for bubbling modes of flat panels.--Again, the in-plane inertia of the core 
is neglected as it will be small. The symmetric mode of principal interest is the bubbling mode 
because its frequency is lower than the frequencies of the corresponding longitudinal modes (to 
which it is only very lightly coupled, see Section 6.2). 

Extracting the symmetric parts of equations (46), (47) and (48) we find for symmetric modes that: 

W = 6) s in  f l z  

U mr 6) 
- cos 5z % 

- 5  
mw 6) 

v = T ~ cos/~z + n .  (54) 

If this set of equations is now substituted into the interface boundary-condition equations (31), 
(32) and (33) with 1/R = 0 (as before in Section 6.2.1) a set of homogeneous equations in 6), E and 
II is found, thus: 

- -  ~ ] l+vmn~v2-6)] -I 2nw [ c°s-phl - sinfih 1 e 
a [ fi 2 ab 

2 mw [_cos_~h t h~ sin ~hl] 1 + v mnw z e* E 

l T L  ~ 2 2 ab = o .  (55) 

[Dl4-h~p¢~---~] sinSh I + 0 0 II 

+ C~ cos ~h, 

The only permissible solution to this equation is: 

c~ 
tan ]5hl = [DI~_h~&~_S] (56) 

or, by using the non-dimensional form of Section 6.2.1: 

tan ~ = 5b A/za~ (57) 

/~A~b~ 12(1 - v ~) 

It has been found that the second term in the denominator of the right-hand side of equation (57) 
is much smaller (10 -a × at least) than the first term, for ordinary sandwich plates, and it can 
therefore be neglected. Equation (57) then becomes: 

/~k} tan ~ - 1 -- 0. (58) 

Thus the bubbling-mode frequency i s  virtually independent of wavelength. This would be 
expected because the contribution of the flexural strain energy of the face plates to the total strain 
energy is clearly very small. 

Bubbling-mode frequency parameter is shown plotted against/z in Fig. 6. 

Here again for non-dimensional plotting ;t has been used in place of Py/Pl. However, for the 
bubbling mode, w varies considerably with z and the mass ratio of equation (53) will not apply. The 
generalised mass in this mode will depend on an integration of mass times displacement squared 
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throughout the depth of the plate. If we assume the face and bonding to move as point masses, and 

if we assume a linear deformation of the core (this latter should be sufficiently accurate, as the core 
is usually much lighter than the faces) then the frequency correction equation corresponding to 
equation (53) becomes: 

[~°~2 = P l +  3Pdx(1 +/~) (Sg) 
l 0] Ol + 3p~(1 +/~) + 36T/h 1 

for bubbling modes. This is plotted in Fig. 7. 

6.2.3. Flat-panel thickness-shear and longitudinal modes.--These vibration modes are of 
less interest than the flexural and bubbling modes because they are usually of a higher natural 

frequency and because they would not be directly excited by normal pressures. However, in certain 
cases, it may be desirable to calculate their natural frequencies and this can be done by including 
the in-plate inertias in the equilibrium and boundary condition equations. The fre~tuency equations 
can be found as before but the solution (i.e. finding the roots of the determinantal equation) is rather 
more tedious. 

7. The Possibility of Excitation of Flat Finite Sandwich Plates by the Acoustical Coincidence Effect. 

/ Wavefront 

Direction of incident 
sound field 

b 

If we have a sound field of harmonic plane waves impinging on a flat plate as shown in the figure 

above, at an angle 0 to the plate, then there is a unique type of excitation possible, kriown as the 
coincidence effect. When the effect occurs with higher-order modes, the generalised force exciting 

the mode is very much larger than that occurring when waves of normal incidence impinge on the 
plate. Plate stress can consequently become high. If there is no structural damping the panel then 
becomes virtually 'transparent' to the acoustic pressure field (i.e. the panel surface is vibrating at the 
particle velocity of the incident acoustic field). )~, is the projected sound wavelength in the plate 
and is known as the 'trace' wavelength. We have: 

A T sin0 = A s (60) 

where A s is the sound wavelength perpendicular to the sound wavefront. The coincidence effect 
occurs when the sound frequency is the same as the plate natural frequency and when the natural 
wavelength of the plate is also equal to the trace wavelength, i.e. 

2b = (61)  
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(b is the plate semi-wavelength). A necessary condition for the coincidence effect to occur is that 

?~s < 2b as can be seen by considering the figure. If  the natural frequency of the panel is co rad/sec 

then for the coincidence effect to occur: 

A S - -  

where c is the speed of sound in air. Also: 

so that: 

27/'C (62) 
tT,0 

;~s = )tT sin 0 = 2b sin 0 (63) 

7rc 
sin 0 - (64) 

~ob 

or in non-dimensional form, using equation (52): 

7rc N / O g  (65) 
sin 0,~. ~, - Am , ~¢ 

Calculations have been carried out taking a particular honeycomb-sandwich configuration 

(see Section 6.2.1). In consequence a specific (constant) value of .~/(pl/Cg) has been used, together 

with a value for c of 1123 ft/sec. 
Equation (65) then reduces to: 

0.2125 
sin 0m,~ - Am ,~¢ (66) 

This equation can be superimposed on the frequency vs. wavelength graphs (Fig. 3) by plotting 

lines of constant sound-field incidence angle 0 and are shown in Fig. 8. However,  owing to the 
nature of Fig. 3, there ",viii clearly be two sets of constant 0 lines, one set for coincidence in the 

• x-direction and the other for coincidence in the y-direction. As stated above, a necessary condition 
for the coincidence effect to occur is that A~ < 2b or alternatively, the right-hand side of equation (66) 
must be less than unity. For certain small regions of Fig. 8 (or Fig. 3) this condition is not fulfilled 
and in these regions no coincidence effect can occur. These regions are edged by a shaded line in 

Fig. 8. 
No coincidence effect is considered in detail for bubbling modes as the frequencies of these 

modes are comparatively high. To illustrate this we will consider two examples: 

(i) For a plate 24 in. x 24 in., skin thickness 0. 036 in., core depth 0.5 in., ¢ = 0.448 (bubbling 
mode, frequency = 56,900 c/s), A~ = 96 and thus from equation (66) 0~ = 0-283 °. 

(ii) For a plate 24 in. x oo, skin thickness 0.024 in., core depth 6 in. (corresponding approxi- 
mately to a control surface constructed from a honeycomb wedge), ¢ = 1.189 
(frequency = 12,600 c/s), A~ = 8 and from equation (66) 0~ = 1-278 °. 

From these examples it can be seen that (a) the frequency of bubbling modes of normal sandwich 
plates is well outside the expected excitation range (0 to 20 Kc/s), and (b) that the bubbling modes of 
all sandwich plates are only excited by the acoustical coincidence effect when the sound-field 

wavefronts are nearly parallel to the plate surface. 
In fdct, normal aircraft sandwich panels have thinner face plates than those quoted above, a n d  

therefore their frequencies will be even higher. 
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8. Discussion. 

This analysis has assumed that a state of plane stress exists in the face plates of the sandwich 
and an exact deformation solution has been found for the core under this assumption. On the other 

hand Yu, in his recent work, has made the assumption of planar deformation in the core but has 

included shear effects in the face plate. Yu's analysis therefore applies to vibrations of sandwich 

plates with all thicknesses of face plates but is frequency limited because of the breakdown of the 

planar deformation assumption at high frequency. Thus, his work applies perfectly adequately 

to the low-order flexural vibrations of most sandwich plates. This paper is necessarily limited in 

application to sandwiches with thinner face plates, but will treat high-frequency modes (bubbling 

modes, for example) with accuracy. As this work is being carried out with aircraft sandwich 

structures specifically in mind, the assumption that face plates are thin is reasonable. The analysis 

of this paper applies down to wavelengths of approximately four inches (for a core depth of 0.5 inches 

and a cell size of 0.25 inches). The cell size is the critical parameter for the lower limit of wavelength 
because the assumption of a homogeneous core becomes doubtful when the plate half-wavelength 
is less than about 16 times the cell size. This length, however, should be adequate enough for the 
analysis of first-order modes of typical aircraft sandwich panels. 

The vibration solution for sandwich plates has been found by solving the core differential 
equations under the boundary conditions imposed on them by the face plates. The determinantal 
frequency equations for the flexural and bubbling modes (predominantly z-wise motions) have 
been obtained by neglecting the in-plane-of-plate inertia of the core and faces. This assumptiop, 
which is, in effect, the neglect of rotatory inertia, has been found to be sufficiently accurate for all 
of the configurations of sandwich plate under consideration. (Yu also draws the same conclusion 
in Ref. 11.) These equations are in non-dimensional form for ease of display, and, because the 
bonding weight has been included in the analysis, a correction has been applied to the frequencies 
obtained, as this parameter could not be included in non-dimensional work. This correction is not 
exact, but it does not give rise to errors in excess of 4% over the ranges of variables considered. The 

error is due, of course, to the assumed form of displacement used in the calculation of the 
generalised mass. For flat-plates, flexural-mode frequencies in their non-dimensional form are shown 

in Fig. 1 for various values of/z, the ratio of skin to core thickness. Bubbling-mode frequencies are 
shown in Fig. 6. Neither the cross-sectional mode shapes for the flexural modes nor those for the 
bubbling modes have been computed. For flat plates these ratios can easily be found however by 

substituting the appropriate frequency back into either equation (50) or equation (55). Figs. 3 and 6 

for frequencies of flexural and bubbling modes respectively, were computed for CIBA (A.R.L.) 
'Aeroweb' Honeycomb type number 142, which is a honeycomb commonly used by the British 

Aircraft Industry. 

9. Conclusions to Part I. 

Fig. 3 shows that the variation of frequency with wavelength takes the usual form. It was found 
that the bubbling-mode frequencies were virtually independent of wavelength (see Fig. 6), for the 
range of wave!engths considered. This is due to the relatively small amount of strain energy stored 
by flexure of the face plates. Computations carried out by the authors, but not listed in this report, 
have shown that Rotatory Inertia of the cross-sections can be safely regarded as negligible for the 
range of values described in Section 6.2.1 but the shear deformation effects in the core must be 
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included for an accurate analysis of the flexural and bubbling vibrations of sandwich plates. This 

confirms the identical conclusion reached by Yu in Ref. 11. 
The acoustical coincidence effect was found to occur over a wide range of sound-field incidence 

angles for the wavelength range considered. The cut-off areas on the graphs (Fig. 8), where it is 
impossible for the coincidence effect to occur, were a very small part of the total range. This  area 
coincided with longer plate wavelength vibrations. Thus it is concluded that the coincidence effect 
can occur for sandwich plates under acoustic excitation, and, because of the wide range of 
sound-field incidence angles at which the effect can occur, the effect may be caused by any of the 

types of sound fields normally associated with aircraft (viz. jet noise, boundary-layer pressure 

fluctuations, etc.). 

PART II 

The Solution for Cylindrical Plates 

By A. J. Pretlove, B.Sc., Ph.D. 

10. Introduction to Part II. 

In Part I of this report the differential equations of motion of cylindrically curved sandwich plates 

were derived. Only the fat-plate frequency solutions were obtained, under the assumption that the 
inertia forces in the plane of the plate were negligible. For the curved plate the same assumption is 

made and thereby frequencies are restricted to those which correspond to flexural and bubbling 
modes, these modes consisting predominantly of motion normal to the plate surface. In the problem 

of acoustic excitation of sandwich structures (to which this work is ultimately to be directed) the 
only modes likely to be excited are these flexural and bubbling modes. 

An exact solution of the differential equations of motion with curvature included cannot be 
obtained analytically. In the early work on this problem a perturbation technique was attempted in 
order to obtain a solution. In this, the solution for curved-plate core deflection was assumed to be a 
perturbed flat-plate deflection. The problem formulated in this way was not solvable. However, it is 
argued that the use of a flat-plate core-deflection solution together with curved-plate boundary 
conditions gives sufficiently accurate values for natural frequencies. Hence, by using the same 
technique as in Part I, six homogeneous equations are obtained in six variables (arbitrary constants) 
and the determinant of coefficients is equated to zero to find the natural frequencies. The frequency 

solutions have been obtained using a numerical technique and a digital computer. 
In the 1940's Arnold and Warburton noticed an unexpected variation of natural frequency with 

variation of flexural wavelength around the circumference of thin cylinders. It appeared that the 
natural frequency, for a certain configur~/tion, was dropping as the circumferential wavelength 

decreased. Subsequently, they propounded a theory :9 wh{ch showed that this effect could occur, 

and which agreed remarkably well with their experimental results. A physical explanation of the 

mechanism of this surprising effect is to be found in the types of strain energy involved in a deflection 
from the equilibrium state. The type of strain energy associated with the small deflections of thin 

flat plates (viz. flexural or bending strain energy) is present. Also, however, it is now possible for 
in-plane direct strain of the mid-surface of the plate to occur involving an energy which is comparable 
in magnitude to the flexural strain erlergy. For a given ce::tral deflection and radius of curvature this 

in-plane stretching energy intrinsically decreases as the wavelength decreases, because the sector 
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angle of the plate is becoming smaller (i.e. nearer the flat-plate condition). Thus,  it is this variation 

of the in-plane mid-surface stretching energy which causes the unusual variation of curved-plate 

natural frequency. This effect has been noticed for some configurations of the curved sandwich 
plates, and Fig. 9 shows such a variation. 

In a paper by Yu 14 on the vibrations of cylindrically curved sandwich plates the axially symmetric 
and torsional vibrations of complete cylinders are considered. It is interesting to note tha t  he uses 
the same type of core deflection in this paper as he had previously used for flat plates in an earlier 
paper. This core deflection was assumed to be linear (see Part I, Section 3.2). 

11. A Vibration Solution for Cylindrically Curved Panels. 

In Part I of this report a separable form of solution was assumed for a cylindrically curved panel 

and equations (37), (38) and (39) were derived for the z-wise variation of the three orthogonal 
deflections in the core. Inertia terms in the plane of the plate are now ignored for-flexural and 
bubbling vibrations and these core equilibrium equations become: 

$~ U + - -  ~ +  W = O  (67) 
~ - k n  1 a h i ] ,  

[ ~3'] V+b[(l-z ~P 8+hlf-t-I W=O_] (68) 

- - - 2 M  ? W .  ( 6 9 )  + h i +  N + M  PIg ) 

Now an exact solution of these core equilibrium equations is not feasible and an alternative 

approach must be sought. If  the terms in the core equations with P as a factor are neglected the 

general solution can be found for the core {viz. the flat-plate core deflection solution given in equations 

(47), (48) and (49)}. Applying the curved boundary conditions of equations (31), (32) and (33) to 
this core solution we can obtain a set of frequencies and mode shapes for this hypothetical condition 
which will be denoted by a zero subscript. An attempt was made to perturb this solution for 
deflection of the core in order to obtain a more accurate solution for the complete curved problem. 

In fact we will argue that the frequency obtained using the flat-plate core deflection is sufficiently 
accurate for this particular core configuration. The  hypothetical deflection solution is perturbed in 
order to fit it to the full core equilibrium equations (67), (68) and (69) above, thus: 

U~ = U,,~ o + ~ Un o ~ 

V~ = V~o + ?V~o ~ 

= + 

and a perturbation of frequency must also be allo.wed: 

(70) 

(71) 

~- These terms will be referred to later. 
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In this way, only a first-order perturbation is allowed, but this will be sufficient for sufficiently 
small ~. If equations (70) are now substituted in equations (67), (68) and (69), the terms with 

• different powers of ~ can be separately equated to zero because the equations are valid for all ~. The 
equations of order one are: 

82U,~o + n~ ,~W~o = 0 
a 

m r  
,32V, o + ~ -  ,~W~o = 0 

--~mr [ { (mr) 2 ~  [~-,)/mzr\2 - p ,  ' ° ' ~ / ~  W,~ o 0 . (72)  - N n r  ~U~oo- M b ~ V ~ o  + C~ 2 -  N + M = 
a g ]l 

These equations correspond exactly to equhtions (40), (41) and (42) of Part I. The solution of 
equations (72) is exactly similar to the flat-plate solution obtained in Part I, equations (46), (47) and 
(48), but the constants will be slightly different (they will be denoted P', A', 0 ' ,  A', ~', IF[') 
because curvature terms will be retained in the boundary conditions {equations (31), (32) and (33)}. 

Now the equations of order f derived from the substitution of the perturbed deflection are as 
follows: 

n r  I nr  ] 
~ U ~ o  ~ + - -  ~W,~o  ~ = - ~ U ~ o  + - -  w ~ 0  

. a a 

[ m r  l mr ~w~0* = - ~v~0 + ~ -  (1 - z ~ ) w ~ 0  32V~°* + -b- 

- 2  - M T - -  - P 1 ~ - j j  0 

m r  (l+z~)V,~ -= CS + 2Mz Who. - M - ~ -  o (73) 

This set of equations gives the differential relationships for the perturbation deflections U~ o e , etc., 
and because these functions must also satisfy the identical boundary conditions to the solutions of 
equations (72) we can expand them as an infinite series of the natural modes of equations (72) but 
omitting the  mode with which we are concerned, i.e. 

co  

U~ o* = E am U,~ o 
n = l  
n : / : r  

¢o  

VI. 0 :~e" = • an  V,~ o 
i 1=1  
n # r  

O9 

I/V,. 0* = • a~ W~ 0- (74) 
i1=1  
n # r  

Note that a~ is the same for all series as the combination U, V, W makes up the natural mode. 
Substitution of equation (74) into equations (73) gives: 

(a) For the first two equations, some trivial equation because inertia terms have been dropped. 

(b) For the third equation: 

P--~ E a,,,(o-',.o2-W~o2)W.,~o = - M - m ~ ( l + z S ) V , . o -  CS+P12%o%o*+2Mz  W,.o.(75) 
g n = l  g 

n=Pr 
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If  equation (75) is differentiated with respect to z, multiplied by 8W r 0, and integrated over the 
z-domain, we get: 

P~ ~ { } m~r~ hi (2,+z,2)Vro,Wrodz_ 
h e r  

. ~ hl 
PI 2cor 0~Or 0. 8WroSWrodz " (76) 
g d--h 1 

N o w  the first two terms on the right-hand side of equation (76) can be neglected. If  the 

combination Ur0, Vro, Wro was either a purely symmetrical or a purely anti-symmetrical mode 
these two terms would be identically zero because the integrands would be odd functions of z (the 
z-domain being from z = - h 1 to z = hi). N o w  this would be true for flat-plate core-deflection 
solutions when bounded by flat face plates (the problem in Part I). However,  for curved face plates 
bounding a flat-plate core deflection, small cross-coupling terms exist between the symmetrical 
and anti-symmetrical core modes. The  modes previously called 'symmetrical '  now have a very small 
anti-symmetric component  and vice-versa. Thus,  these two integrals have non-zero, but  small 
values derived from the cross-coupling between the now wrongly called symmetric and anti-symmetric 
modes. These terms, being small, will be neglected. The  equation (76) then reduces to: 

~J~1 8WroSWnodz 
~0 ~ an ((.O n 0 2 ) d--hl co,,0 _ F~ ~ -  - 1 ( 7 7 )  

¢°r0 I,=l ~ °~,' 0~ -F l~i-1 
l ~ WroS Wrodz n~r 
0 -- h,1 

If  the flat-plate core-deflection solution is to be a sufficiently accurate solution for this problem then 

it must be shown that cot 0*/cot0 is a small quantity ( 4  1). If  this can be proved then we can say that 
~r is sufficiently represented by °Jr 0, the error term being of second order of small magnitude, and 
only a flat-plate core-deflection solution is needed to find this frequency. In order to show that 

%.0~/°Jr 0 is small we must: 
(a) Find some value for an, using an orthogonality condition. 
(b) Show that the product  of the large term (co n 02/%. o ~ - 1)a n , and the ratio of integrals is small. 
(c) Show that the series converges, and that it converges on to a small value. 

These tasks are complicated and have not, as yet, been completed. However,  this hypothetical 
solution can be shown intuitively to be a good approximation. The  application of the face-plate 
boundary conditions to a core solution of deflection for honeycomb sandwiches is, in essence, a 
matching of the surface impedances of the face plates to the core. N o w  following from the 
explanation in the Introduction, the surface impedances of a curved plate to flexural-type deflection 
are considerably different from those of a flat plate, because in-plane direct strain occurs. On the 
other hand, the surface impedance of a cylindrical honeycomb core of normal proportions is likely 
to be little different from that of a flat core since direct in-plane strain effects are negligible (A and B 
are very small) and curvature shear effects {terms indicated by ]- in equations (67) and (68)} are also 
likely to be negligible. Therefore, the use of a flat-core deflection solution (and hence of a flat-core 
surface impedance) should' not give rise to large errors in the natural frequencies of curved sandwich 
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plates. The effect of curvature on the assembled plate is restricted to the face plates, therefore, which 

will be stiffer when curved. Thus, the matching of impedances which occurs when the full face-plate 
boundary conditions are applied to the flat-plate core-deflection solution will ensure that the major 
effects of curvature are included in the analysis. ~% 0 will therefore give a good approximation to the 

true natural frequency. 
The solution for co s 0 is easily found by substituting a flat-plate-type core solution for deflection 

{see equations (46), (47) and (48) of Part I} into the curved-plate boundary-condition equations which 

are given in full in Part I {see equations (31), (32) and (33)}. 

Six homogeneous equations result thus: 

[A] {F'} = 0 (78) 

where {F'} is the column vector {P', A', ®', A', E', II'}. 

The characteristic determinant of equation (78) is equated to zero to give natural frequencies. 

A simplified and non-dimensionalised form of this determinant is shown in Table 1. The characteristic 
equation has been solved numerically for flexural and bubbling frequencies using a digital computer. 

The numerical method used to obtain the solution of the characteristic equation was a successive 
application of the rule of false position. Results are shown in Tables 2 and 3 and specimen graphs 

' show typical variation of frequency with the various parameters involved. The non-dimensionalised 
parameters used are the same as those of Part I. The frequencies were evaluated for the set of 
constants and the range of wavelength given in Part I, Section 6.2.1. The range of values of ~ for 
which frequencies were calculated is from P = zero to P = 0. 020. This range is likely to cover the 
curvatures of fuselage, wing, and control-surface panels. A correction to be applied to frequencies 
to take account of the bonding mass is, to the same degree of approximation used in the solution, 
the same as that given in Part I, Sections 6.2.1 and 6.2.2 for flexural and bubbling modes of flat panels. 

12. Concluding Remarks. 
The frequencies of flexural and bubbling modes have been found for cylindrically curved 

sandwich plates. They are shown in their non-dimensional form in Tables 2 and 3. The anomalous 

variation of frequency with circumferential wavelength shown in Fig. 9 was not unexpected. This 

effect, viz. a decrease in frequency with decrease in circumferential wavelength for some plate 

configurations, is associated with the relative proportions of strain energy stored by flexure and 

in-plane stretching, and was first found and explained by Arnold and Warburton 19. It should be 

noted, however, that this effect is only sufficiently significant to show this decrease in frequency 

with a decrease in wavelength at higher curvatures. An inspection of Table 2 will confirm this 
'statement (i.e. Fig. 9 is not a typical variation of frequency with circumferential wavelength). 

Figs. 10, 11 and 12 show the typical variations of flexural frequency with axial wavelength, 
skin-core thickness ratio, and curvature respectively. 

Fig. 13 shows the variation of bubbling-mode frequency with skin-core thickness ratio. For the 
ranges of parameters chosen it was found that the variation of bubbling-mode frequency with both 
wavelengths and curvature was only very slight. The maximum variation of this frequency with 
wavelength was less than 0. I°/O, and with curvature less than 0.2%. This is due, in exactly the same 
way as it was for flat plates, to the high proportion of strain energy stored in direct stretching of the 
core, compared with the strain energy stored in flexure and stretching of the faces. 
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As in Part I a correction must be applied to the computed natural frequencies to take account of 
the bonding mass. Now the curved-plate-core mode shape has been assumed, on reasonable grounds, 
to be of the same form as the flat-plate-core mode shape, to the first order of magnitude. Therefore 
the correction equations (53) and (59) of Part I will apply to the flexural-'and bubbling-mode 
frequencies of the curved panels of this report. 

The ranges of parameters chosen for the computations were the same as those used in Part I. 
These ranges were considered to be representative of aircraft structural elements. The values of 
curvature used in the computations covered the range which included low-curvature wing panels 
and the higher-curvature fuselage panels. 

The modal shapes have not been computed for the curved-plate core because of the complexity 
of the .terms involved. However, these mode shapes can be found by substituting the frequency 
back into the equation (78) in the usual way. 

The problem has not yet been solved of showing analytically that the flat-plate core deflections 
applied to the curved boundary conditions do give satisfactory values for curved-plate natural 
frequencies. The difficulties involved in showing that the perturbation of frequency will only be of 
second older of small magnitude compared with the first-order perturbation of deflection have been 
described in the text. However, it has been possible to explain why this simplification can be made, 
on physical grounds. It appears to give reasonable results which conform to established patterns. 
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NOTATION 

Plate lengths in x and y directions 

Elastic moduli 

The speed of sound in air 

The plate flexural rigidity (=  Emh28/12(1- v2)) 

Strain 

Face-plate body force per unit volmne 

Gravity 

Sandwich-plate depth 

Sandwich-core depth 

Face-plate thickness 

N(1 - W)/E~hz 

3/(1 - v2)/Emh2 

Number of half-waves in the x and y directions 

Core body force per unit volume 

Force and moment resultants as shown in Fig. 2 

Cylindrical radius of the plate 

Time 

Cylindrical orthogonal co-ordinates as shown in Fig. 2 and 
their respective displacements 

plaJ ~ 
cg 

d/dz 

z-wise co-ordinate with origin at the middle plane of the 
face plates 

Incidence angle of plane waves on a plate 
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Pl 

P~ 

P/ 

G 

7 

09 

V ~ 

D, A, O, A, E, II 

N o n - D i m e n s i o n a l  Quant i t ies  

A ~  

A m  

7 

37/2 

h 

/x 

7-' 

¢ 

N O T A T I O N - - c o n t i n u e d  

Wavelength of sound 

Trace wavelength (see Section 7) 

Core density 

Face-plate density 

= p~ + ~'lh~ 

Stress 

Bonding weight per unit area 

Frequency of vibration (rad/sec) 

Laplace's operator, ~ / ~ x  2 ÷ O~/8y 2 

Mode arbitrary constants 

= a /h ln  

= b /h lm  

= N / C  

= M / C  (For British honeycombs) 

= hi 2¢ 

= hl2e @ 

= E m / C = m / m  

= h~/h 1 

Poisson's ratio 

= ~hl 

= h i l l  2 

N o t e . - - T h e  incidence of a + sign or T sign does not indicate a choice. This is simply a shorthand 
method of writing two equations as one. The upper signs give the equation connected with the 
upper face plate and vice versa. 
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TABLE 1 

Simplified Form of the Non-Dimensional Characteristic Determinant 

~ [ - / z  . . 1 -] 
A~qL ~sln q) - ~COS / 

F. Z~@ 
sin ~ LI~) z~¢~ + (i-~)j + 

+ ¢ co~ ¢ 

At,2 2 + v sin 

Am ~ ( 1 - v 2 )  + ~ +  

1 + v ~ - 2  ( 3 - ~ ) ~ 2 1  
+ 2 d,~ ~ 2 Am2 , + 

+ sin~ { 1 - v  + 2 @ ~ ( 1 - u 2 ' - 1 2 J ]  

12A~_--v2 ) - 4 A m ~ -  

1 - v ~ A ~  

Am 

7-1-2 
~ ~7?(1-~) 

?~2 (1 + v 

L 2 

. A,27 
- -  - (1 -  v) ~,, 2J 

7"/" 
- ~ , ~ ~  

A m 

0 

p ( 3 - ~ ) .  ~ 
2 A,~A m 

I 3y ~v 2 { 
-- 2 ~ - - - -  

7r ~ 1 + v] 
+ A,~ 2 2 

A.~ L ~ 2 0 - > )  4 

< ~  ] 
~(i - ~)] 
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T A B L E  1--contimted 

fTr[ (3-- v) sin ¢ vr~] ' 

PAlm cos¢ ( 1 - v  ~)+ 

- ~ - )  - 

sin4~ {3ZX 2/*~rz 

+ 2 A~ 2 2 A ~  

t - 

- cos¢~  (4(T2_;~)+ 7¢/*Y}] A 11~, 2 
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1 +  v "n "2 /J,2~/ 3y 

2 &2 12j + 2 ~ ( 1 - ' ~ )  

- -  2/* 
+ A.~ ~ 2 

; n ~  [ s i ;  q~ /2cos ~ l - - +  
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co~ ¢ U 2 ~  ) + ( i -~ )  

-- 4 sin q~ 

{ 3y/L rr 

&A,,,~ L 2¢~ 

+ 

w o 1 + v 3 7 ( 1 - v  2) 
A,,~ 2 2 2 A/z 

3y zr 

+ ¢~(1- ~,~) P + 7 i - j j  

I~.2 Ir 2 (1+ v)] 
P ~ ( 1 - v )  A,,~ u 3 

r - -  ('1+ ~) - 
A n A m  

A n  2 

Am 2 (1 - u) - 

- .~ 2/* + 2/zA ~'~ 
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T A B L E  2 

Curved Honeycomb-Sandwich Pl'ate. Non-Dimensional 
Natural Frequencies for Flexural- Type Modes 

(a) Values of ~b for t~ = O" 05 

As 

96 
70 
50 
25 
17 
96 
70 
50 
25 
17 
96 
70 
50 
25 
17 
96 
70 
50 
25 
17 
96 
70 
50 
25 
17 

96 
96 
96 
96 
96 
70 
70 
70 
70 
70 
50 
50 
50 
50 
50 
25 
25 
25 
25 
25 
17 
17 
17 
17 
17 

~ = 0  

0.001877 
0.002672 
0"004246 
0.012612 
0.022769 
0.002682 
0.003462 
0"005007 
0.013243 
0"023282 
0.004295 
0.005045 
0.006535 
0.014515 
0.024322 
0:013225 
0.013835 
0.015054 
0.021766 
0"030365 
0.024725 
0"025199 
0.026154 
0.031562 
0-038807 

P = 0"002 P = 0"005 

0.002082 
0.002898 
0.004447 
0.012707 
0.022825 
0.002770 
0.003577 
0.005134 
0.013324 
0.023334 
0.004327 
0.005090 
0.006595 
0.014576 
0.024367 
0"013230 
0.013840 
0.015061 
0.021783 
0.030386 
0.024726 
0.025200 
0"026155 
0.031566 
0.038816 

0.002931 
0.003874 
0.005379 
0.013193 
0.023117 
0.003188 
0.004126 
0.005754 
0.013744 
0.023606 
0-004488 
0.005315 
0-006904 
0.014895 
0.024603 
0.013251 
0.013864 
0.015095 
0.021872 
0.030499 
0.024731 
0.025206 
0.026162 
0.031591 
0.038863 

P = 0.008 

0.004054 
0.005219 
0.006778 
0"014051 
0.023650 
0.003841 
0"004985 
0:006754. 
0-014492 
0.024103 

"0-004770 
0-005708 
0.007443 
0-015469 
0-025036 
0-013291 
0-013910 
0.015158 
0.022037 
0.030708 
0-024741 
0.025216 
0.026175 
0.031636 
0.038950 

= O- 020 

0.008983 
0.011428 
0.013838 
0.019965 
0-027820 
0.007213 
0.009515 
0-012344 
0.019794 
0.028022 
0-006636 
0.008296 
0.011007 
0.019731 
0.028495 
0.013622 
0.014286 
0.015686 
0.023403 
0.032452 
0.024822 
0-025300 
0.026280 
0.032021 
0-039690 
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T A B L E  2--continued 

(b) Values of ~ for/x = 0.10 

d~  

96 
70 
50 
25 
17 
96 
70 
50 
25 
17 
96 
70 
50 
25 
17 
96 
70 
50 
25 
17 
96 
70 
50 
25 
17 

A m ~ =  0 

96 0.002055 
96 O. 002894 
96 0.004511 
96 0.012363 
96 O. 020955 
70 0.002915 
70 O. 003725 
70 O. 005289 
70 O- O12944 
70 O. 021400 
50 O. 004606 
50 O. 005361 
50 O- 006826 

• 50 O. 014108 
50 O. 022298 
25 0-013321 
25 O. 013858 
25 O. 014920 
25 O. 020554 
25 O- 027445 
17 O- 023502 
17 O" 023879 
17 O. 024637 
17 O" 028873 
17 O" 034459 

P = 0-002 

0.002260 
0.003132 
0.004731 
0.012477 
0-021028 
0.002995 
0.003841 
0.005426 
0-013042 
0.021468 
0.004630 
0.005402 
0.006889 
0.014182 
0.022357 
0.013323 
0.013861 
0.014925 
0.020574 
0.027473 
0-023502 
0.023880 
0.024637 
0.028878 
0.034471, 

= 0-005 

! 
0.003121 
0.004165 
0.005751 
0.013062 
0.021404 
0.003382 
0.004400 
0.006095 
0.013548 
0.021818 
0.004754 
0.005611 
0.007212 
0.014564 
0.022661 
0.013332 
0.013874 
0.014952 
0.020679 
0-027618 
0.023502 
0.023881 
0.024641 
0.028906 
0.034531 

= 0.008 

0.004279 
0.005596 
0.007275 
0.014083 
0.022086 
0:004000 
0"005281 
0"007173 
0"014439 
0"022454 
0"004976 
0"005979 
0"007774 
0"015249 
0"023215 
0"013349 
0"013900 
0"015003 
0"020872 
0"027885 
0"023503 
0"023882 
0"024646 
0"028958 
0'034643 

P = 0.020 

0.009496 
0.012266 
0.014947 
0.020908 
0.027262 
0-007345 
0.010019 
0:013194 
0.020575 
0.027327 
0.006528 
0.008472 
0.011514 

: 0.020205 
0.027532 
0.013491 
0-014110 
0.015426 
0.022465 
0.030089 
0.023508 
0-023895 
0.024693 
0.029399 
0.035591 
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T A B L E  2--continued 

(c) Values of ~b for/x = 0.15 

As  

96 
70 
5O 
25 
17 
96 
70 
50 
25 
17 
96 
70 
50 
25 
17 
96 
70 
50 
25 
17 
96 
70 
50 
25 
17 

A~ 

96 
96 
96 
96 
96 
70 
70 
70 
70 
70 
50 
50 
50 
50 
50 
25 
25 

~ = 0  

0.002130 
0.002972 
0.004557 
0.011797 
0.019311 
0.003003 
0.003805 
0.005319 
0.012332 
0.019710 
0.004689 
0"005417 
0'006806 
0.013397 
0.020514 
0.012937 
0"013409 

= O. 002 

0.002335 
- 0.003217 

0.004788 
0.011925 
0.019395 
0"003081 
0.003922 
0"005462 
0.012442 
0.019788 
0.004711 
0.005458 
0.006872 
0.013480 
0.020582 
0"012938 
0.013411 

25 0-014340 
25 0-019207 
25 0.025089 
17 0.022028 
17 0.022345 
17 0.022982 
17 0.026543 
17 0.031254 

0"014345 
0-019230 
0-025121 
0.022027 
0.022345 
0.022982 
0.026550 
0"031267 

= 0.005 

0.003202 
0.004275 
0.005855 
0.012575 
0.019830 
0.003458 
0.004489 
0.006161 
0.013004 
0.020193 
0.004824 
0.005664 
0.007207 
0.013906 
0.020934 
0.012944 
0.013423 
0.014372 
0.019348 
0-025289 
0-022027 
0-022345 
0.022985 
0.026582 
0.031338 

= 0 . 0 0 8  

0.004375 
0.005743 
0.007439 
0.013701 
0.020613 
0.004064 
0.005385 
0.007282 
0.013989 
0.020924 
0.005026 
0.006027 
0.007790 
0.014665 
0.021571 
0.012955 
0.013443 
0.014421 
0.019564 
0..025599 
0.022027 
0-022346 
0-022991 
0.026641 
0.031469 

= O- 020 

0.009710 
0.012604 
0.015377 
0.021036 
0.026414 
0.007406 
0.010220 
0-013509 
0-020605 
0.026395 
0.006469 
0-008514 
0.011650 
0.020045 
0.026435 
0.013046 
0.013616 
0.014839 
0.021339 
0.028123 
0.022020 
0.022350 
0.023036 
0.027149 
0-032576 
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T A B L E  2--continued 

(d) Values of 4 for/x = 0-20 

Am 

96 
70 
50 
25 
17 
96 
70 
50 
2 5  
17 
96 
70 
50 
25 
17 
96 
70 
50 
25 
17 
96 
70 
5O 
25 
17 

~ = 0  

96 
96 
96 
96 
96 
70 
70 
70 
70 
70 
50 
50 
50 
50 
50 
25 
25 
25 
25 
25 
17 
17 
17 
17 
17 

= 0.002 

0.002175 
0-003010 
0-004550 
0.011288 
0.018085 
0.003049 
0-003833. 
0-005291 
0.011787 
0.018453 
0.004712 
0.005410 
0.006724 
0.012779 
0.019195 
0.012529 
0.012954 
0.013789 
0-018141 
0.023400 
0-020835 
0-021115 
0.021677 
0-024831 
0.029033 

= O. 005 

0.002380 
0.003258 
0.004789 
0-011427 
0.018177 
0.003126 
0.003952 
0-005439 
0-011906 
0-018539 
0.004733 
0.005450 
0.006792 
0.012869 
0.019270 
0.012530 
0.012956 
0.013795 
0.018165 
0.023435 
0.020835 
0.021115 
0-021677 
0.024838 
0.029048 

= 0.008 A~ 

0.003249 
0.004332 
0.005885 
0-012126 
0.018657 
0.003498 
0.004526 
0.006159 
0.012512 
0.018986 
0.004841 
0.005657 
0.007137 
0.013329 
0.019658 
0.012535 
0.012967 
0.013822 
0.018293 
0.023621 
0.020835 
0.021115 
0.021681 
0.024873 
0.029127 

0.004429 
0.005821 
0.007508 
0-013329 
0.019515 
0.004099 
0.005432 
0.007310 
0.013566 
0-019788 
0.005034 
0.006022 
0.007738 
0-014144 
0.020358 
0.012544 
0.012986 
0.013874 
0.018529 
0.023963 
0.020834 
0.021116 
0.021687 
0.024940 
0"029273 

= 0.020 

0.009829 
0.012788 
0.015600 
0-021007 
0.025753 
0.007443 
0.010328 
0.013664 
0-020512 
0-025680 
0.006431 
0.008521 
0.011689 
0.019822 
0.025612 
0.012620 
0.013152 
0.014306 
0.020448 
0.026726 
0.020829 
0.021123 
0.021741 
0.025505 
0.030503 
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TABLE 3 

Curved Honeycomb-Sandwich Plate. Non-Dimensional Natural 
Frequencies for Bubbling- Type Modes 

(N.B. This natural frequency is almost independent of wa?elength and curvature.) 

0"05 

0-10 

0-15 

0"20 

0. 640-0. 641 

0.470 

0. 389 

0.339 
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(a) A n t i - s y m m e t r i c  m o d e s  
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(b) S y m m e t r i c  m o d e s  
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FIG. 1. First-order mode shapes of a simply-supported 
sandwich plate. 
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FIC. 2. Sketch showing plate and skin 
conventions. 
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FIG. 3a. Flat-plate flexural-mode frequencies 
(non-dimensional):/~ = O" 05. 
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Flat-plate flexural-mode frequencies 
(non-dimensional) :/x = 0-10. 
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FIG. 3c. Flat-plate flexural-mode frequencies 
(non-dimensional) : / ,  = 0.15. 
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FIG 8a. Flat-plate flexural-mode frequencies 
with incidence angles for the coincidence effect: 

F = 0.05. 
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FIe.  8b. Flat-plate flexural-mode frequencies 
with incidence angles for the coincidence effect: 

F = 0-10. 
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