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Summary. 
The theoretical estimation of the buckling strength of a cylinder loaded in axial compression is improved 

by the use of a more representative deflected form for the buckled cylinder than has previously been used. 
Kempner's buckling strength for dead-weight loading is reduced by 18 ~o- The presentation of the magnitude 
and distribution of the constraint system required to maintain the mode is novel and instructive. 
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1. Introd~tction. " 

The failure of theoretical investigations to predict the observed buckling strength of cylinders 
loaded in axial compression has been discussed extensively in the literature 1 to 4. The measured values 

are significantly less than the best available estimates (Kempner4). Various attempts to explain away 
the discrepancy have been propounded, but none is wholly satisfactory. 

The theoretical investigations available follow a well-defined pattern, due to Karman and Tsien 1. 
The stress-strain, the compatibility conditions and the equilibrium of stress in the tangent plane are 

all satisfied but the equation of radial equilibrium is left unsatisfied and is replaced by an energy 
criterion. If the radial-equilibrium condition were to be satisfied by any solution based on a tentative 
mode for the deflected shape of the cylinder, an exact solution of the large-deflection analysis would 
have been found. Disequilibrium in the radial direction results in a stress-strain characteristic in 
which the mean axial stress, for any given mean axial strain, is necessarily high for all cases of stable 
equilibrium. The buckling conditions estimated on this basis are optimistic. 

If a simple expression for the mode of deformation of the cylinder is selected, it is unreasonable 
to expect that the stresses in the immediate post-buckled region (up to mean axial strains of the 
order of 1.St~R) will be accurate estimates of the unknown solution of the yon Karman large- 
deflection equations for the cylinder. Previous investigators lt°4 have chosen modes for the 



deformed state of the cylinder which have been assumed satisfactory on the basis of the observed 

extreme patterns of post-buckling behaviour. However, as will be seen below, such simplified modes 

cannot be justified in the region of minimum post-buckled stress. 
A simple mode of the type used by previous workers in the field 1 to ~ includes, as extreme patterns 

of deflection, the chessboard type 5 of buckling associated with small-deflection theory and which 

is known to be valid in the immediate neighbourhood of the small-deflection buckling region. For 

large strain, that is for the fully developed post-buckled state, a polyhedral form with diamond nodal 

lines is observed, and this nodal pattern is included in the assumed mode. However, a superposition 

of this diamond type of buckling on the chessboard type may not be satisfactory in the transitional 

region between these two extremes. It is in this region that errors in stress estimation will be most 

serious. 
The linear theory assumes a mode which comprises a uniform inward displacement together with 

a single periodic function of the co-ordinates (x, y). The first perturbation of this solution contains 

four additional terms ~ whose periodicities are respectively (0, 2) (2, 0) (1, 3) and (3, 1) in the x and y 

directions. The latter two terms have always been discarded, but, as will be shown below, they are 
important in the critical post-buckled region referred to above. By their inclusion, reductions in 

mean axial stress for a given mean axial strain in that region of the order of 18 to 25 per cent are 

realised, with comparable reductions in the buckling strength. 
In addition to the inclusion of the two terms previously discarded, the analysis given below 

examines the constraint system necessary to maintain the assumed mode. This takes the form of a 

pressure distribution over the cylindrical surface which varies from place to place. With a knowledge 

of this constraint system, those parts of the buckle pattern which are being pushed in (or forced out) 

can be seen to be deflecting too little (or too much) and a more realistic impression of the optimum 

mode is established. The influence of the constraint pressures diminishes as their frequency increases, 

and it is found that the pressure components corresponding to Kempner's omitted terms are two 

of the most important ones. 
The reduction in buckling strength indicated by this extension of previous work is more 

consistent with experimental data. A direct comparison with experiment is, however, beyond the 

scope of this paper, and it is intended only that this investigation should provide a more realistic 

theoretical estimate for the ideal structural element under ideal loading conditions than has been 

available hitherto. 

2. Buckling Criteria. 
The form of the stress-strain characteristic for the cylinder in the pre- and post-buckled conditions 

is illustrated in Fig. 2a. The portion OA corresponds to the uniform compression without deflection 

of the pre-buckled condition. The curve AE is appropriate to the deformed state of the cylinder. 

Tsien 6 has shown how buckling criteria for the shell can be based on energy considerations. If the 

cylinder is compressed in a rigid-test machine the pressure is applied over the ends of the cylinder 

in such a manner that on buckling there is no loss of energy 

buckle, therefore, when the strain energy absorbed from the 
same value in the undeflected and deflected states. 

from the machine. The cylinder may 
test machine by the cylinder has the 

Fig. 2b shows the energy distribution in the cylinder for the various parts of the stress-strain 
characteristic. The figure has been drawn with a base of (e) 2 so as to linearize the energy in the 
pre-buckled state, (OA). From A to the minimum post-buckled strain, the load is decreasing and the 
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cylinder releases energy, so that the system is unstable. From C to E the cylinder increases in energy 

with increase in strain until it reaches a point B 2 at which the energy is equal to the value reached 
at the point A 2 on loading up from O to A. Further increase in strain leads to a rise in strain energy. 

Thus for the entire cycle, the cylinder is in stable equilibrium from O to A s and from B~ onward. 

Between A 2 and A, A and C, C and B 2 it is unstableprovided that the cylinder can freely take up the 

mode of deformation. Otherwise the region A~ to A is a meta-stable state and the cylinder will 
require a disturbance to produce buckling before A is reached. In practice there is always a source of 

extraneous energy present in which case the cylinder may not be loaded beyond A 2 without  buckling. 

The cylinder can only buckle before it reaches A s if there is a surplus of energy absorbed by the 

cylinder. It is reasonable to postulate that the cylinder, once it reaches a point X on the characteristic 

CB2, will stay buckled. It can buckle at a point X 1 before A s only if the energy ' jump'  X1X is 

spontaneously available from outside the test machine. This, in theory, can happen, so that at any 

point on OA between C 1 and A s buckling might occur. 
X 1 should, in practice, be close to A2, for the energy involved in effecting the jump X 1 to X is not 

small. To jump from C 1 to C requires a proportional increase in stored energy of the order of 

20%. This is unlikely to be available in practice. Nevertheless C 1 will be designated the lower fimit 

of buckling strain for rigid-loading-machine conditions while A 2 is the corresponding upper limit. 

The theoretically possible meta-stable region A2A is discounted, on the assumption that all modes 

are equally likely and that the cylinder has a preference for a mode with least possible strain energy. 

Corresponding to the upper and lower buckling strains for rigid-test-machine conditions, upper 

and lower buckling stresses can be established for dead-weight loading. Fig. 2c shows how the 

variation with (stress) 2 of the total potential energy-- that  is of the strain energy stored in the 
cylinder less the potential energy of the weight. From O to A, total potential energy falls, linearly 
with (a)~. From A to D, the cylinder unloads and is unstable. From D onward the cylinder begins 
to lose total potential energy (i.e. positive stiffness) until at B 1 the total potential energy is equal in 
the deflected condition to what it was at the point A 1 on loading up, and the cylinder stabilises. 
Thereafter total potential energy diminishes faster in the buckled shape than in the pre-buckled 

condition. A 1 is the upper limit of buckling stress, meta-stable states again being rejected. Since it is 
theoretically possible for jumps to occur from characteristic OA 1 to DB1, the cylinder can buckle 

at values of a intermediate between D 1 and A 1 . D 1 is the 'lower limit of buckling stress for dead- 
weight loading'. 

All practical tests are conducted on test machines with a finite rigidity. The extreme conditions 

of infinite spring stiffness and zero spring stiffness are the rigid-test-machine and dead-weight- 

loading conditions respectively. All finite rigidity conditions are intermediate between the extremes 

and upper and lower limits on buckling for this case can be formed in the same manner as above, for 
dead-weight loading if the total-potential-energy function includes the energy stored in the spring 

or test machine. AsB ~ (Fig. 2d) is representative of such a conditiop. When the cylinder reaches A3, 
by simultaneous application of stress and strain, it may unload to B~ along a line whose negative 

slope is the spring stiffness of the test machine. Fig. 2d shows the total-potential-energy diagram for 

this case. The cylinder loads up to A, unloads from A to a point G which is the point on AE where 

the slope is negatively equal to the spring stiffness. Thereafter the system has positive stiffness and 

becomes stable again at B 3 whereafter it continues to lose total potential energy along the characteristic 

B3E. It is obvious that every such case is intermediate between the extremes of rigid-machine and 
dead- weight loading. Hereafter only these two conditions will be discussed. 



The stability conditions are developed from calculations of the strain energy for a given applied 
strain. The stress associated with the given strain is calculated and the total potential energy deter- 
mined. The two energy diagrams for the extreme loading conditions are then prepared, and the 
buckling strain and stress in the two cases are found. 

3. Analytical Development of Solution. 

3.1. The General Conditions of Equilibrium and Compatibility. 

Equilibrium of the stresses in the tangent plane is assured if 

3% 3%v a% a%v 
- -  + - + = 0 (1) 
ax ay aS ax 

which conditions are satisfied automatically by the introduction of the Airy stress function F, where 

3e F OaF 32F 
crx - a y ~ '  ~-x~ - a x a y '  cry = a x e "  

The strain-displacement relations for the large deflections considered are 

3u l ( 3 w )  2 ~x=~+2 

. 

% = ~ + ~ _ _ _ _  - ~  f 

au av aw aw 

The equation of compatibility of strain is, therefore 

aee* ae% a e Y ~ -  {aewle  aewaew 1 aew 
ay~ + a.~ a.ay \aVay] a.e ay~ R ax=" 

The stress-strain relations may be written 

E c  x = (:r x - p c r y  

) Ee v cry -- vcr x 

Ey~u 2(1 + V)rx, 

where E is Young's modulus, and v is Poisson's ratio, which will be taken as 0.3. 
Substituting from equation (5) into (4) and using equations (1), we get 

1 [a=% 3e% 3~rxv t { aezv~ 2 a=waew 1 3ew 
( ay = + ~ -  2 a ~ y l  = \axOy] 3x ~ ay 2 R Ox 2 

(2) 

(3) 

(4) 

(s) 

or, on introducing F from equation (2), the equation of compatibility of strain in the tangent plane 

takes the form 
1_ {(  a~w~ e 32w32w t 1 32w 

V4F = \3xay] Oxe ay e) R ax e" (6) 



The equation of radial equilibrium is 

O tax ~ x  + t%u + trzv + 

+ ~  t~ ,  + ~ , ,  (7) 

where p is measm'ed positively in the z direction (p > 0 means external pressure) which, on using 

equations (1) and substituting from equation (2) gives 

DV~w = p + ~ g Z  + t [ ay~ ax ~ a~ ay ax ay + ax '~ ay ~ j"  (8) 

Equations (6) and (8) are the yon Karman large-deflection equations for the circular cylinder. 

3.2. Development of Sohttion for Assumed Modes w(x, y). 

For any specified conditions of loading, we seek simultaneous solutions w and F of equations (6) 

and (8). In practice this is not feasible and equation (8) is abandoned in favour of a minimum- 

energy criterion which, for free variation of w, is formally equivalent to equation (8). Given any 
tentative approximation to w, the choice of its parameters will be based on an energy criterion. 

The  linear solution of the cylinder problem has been knoven for some timO, and is obtained by 

omitting the terms in { } occurring in equations (6) and (8). This solution is 

w = wl{cos  (~xfAx) cos (~y/~,,)} + ~ .  (9) 

If, now, this solution is substi tuted into the right-hand side of equation (6), the first correction 
to F is found, and on substituting this improved estimate of F into equation (8), with zero pressure p, 

a better approximation to w is derived. 

This takes the form 

w = ~t{cos (~x/Ax) cos (~y/a~) + ~ cos (2~x/Ax) + /~  cos (2~y/~,,)  + 

+ r cos (~ . fA. )  cos (3~yfa~) + a cos ( 3 ~ . f ~ . )  cos (~yl~,.) + ~}, (10) 

In previous solutions of this problem Karman and Tsien took c~ = /3, and y = 8 = 0; which 
practice was followed by Leggett and Jones 2, and by Michielsen a. Kempner  a retained y = 8 = 0 

but  allowed c~ and/3 to vary freely. 
The  representation (10) of w is taken as appropriate for determining the post-buckled characteristic 

of the cylinder. 
On substituting from equation (10) into equation (6) and integrating the resulting equation, the 

following form for F is obtained: 

F = - (Et2/t,~W z) Z EL, ,~  cos (mrrx/)~x) COS (nrf.y/A,j) -- cryZ/2 (11) 
where 

is the average applied end compressive stress, 

t* = k~/a., 

= rr~Rt/2L,ae , 
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and the only  non-zero  f,,,,~ are the fol lowing:  

f02 = oo3tz4 [1 + 2 7 + 983]/32 

f o4 = 0021"47/64 

. f o 6  = c°2/.472/288 

f** = co/~ 4 [2~00(1 + 8) + 2/3oo(1 + 7 )  - 1]/(/* 2+ 1) ~ 

Aa = 00t *~ [2/900 + 18ay00 - y]/(/*~+9) 2 

k ~  = 200~/*4fir/(t *2 + 25) ~ 

f2o = 00 [(1 + 9y 2 + 28)00 - 8a]/32 

L2 = 00~/.4 [ 4 ~  + r + 4ra + a]/4(/* 3 + 1) 2 

f~4 = 003/.47(1 + 258)/16(/* 3 + 4) ~ 

f~, = 0#. 4 [2000 + 185800 - 9 8 ] / ( % ~ +  1) 2 

faa = 2oo3tz4(aY +fi3)/9(/* 2 + 1) 2 

f4o = 0023/64 

A~ = 002t*48(1 + 257)/16(4/*3 + 1) 2 

.f4~ = 003/.4y8/16(/* 2+ 1) ~ 

f s ,  = 2002/.4~8/(25/*~+ 1) 2 

f60 = 00282/288. 

(12) 

3.3. Strain-Energy  Functions. 

T h e  strain energy due to bending  is 

U 1 = ½D (V2w) 2 + 2 ( 1 - v )  \~-@y]  - ax 2 ~y7 

~D00% 
- 4R [(1+/.~)2 + 32a2/.4 + 32/32 + y2(/x2+9)2 + 82(9.2+ 1)3]. (13) 

T h e  strain energy due  to the extensional  stresses is 

G ~ ~ (v3F)3 + 2(1+~) ( a3F 12 a~F a~rt7 d~dy. 
= o ~o \ a ,  ay7 au2 ~ P I A  

On in t roduc ing  the non-d imens iona l  stress a s = e R / E t  and combin ing  U 1, U2, the  total strain 

energy is 

I 002 t,2)2 32fi ~ + 72(/*2+ 9) 2 + 32(9/z2 + 1) 2} + 
U = UI + U 2 = (rrLEta/R) 4 8 ( i L v ~ )  {(1+ + 32a3tz 4 + 

+ (~*)~ + (co4/.4/128¢){(1 + 2 7 + 9 8 2 )  2 + 47 2 + 74} + 

+ (o,2/.4/4(1 +/.2)2~,~) {(2~0011 + a] +250011 + r ]  - 1) 3 + 00~(4~# + 7 + 4 7 a  + a)~ + 

+ 400~(~7 + 5a) 2 + 00272a2} + 

+ (2/300 + 18c~700 - y)2002/*4/4(/zz + 9)2n 3 + (2a00 + 18/7800 7 9 8)2002/.4/4(9t* 2 + 1)3@ + 

+ fi272004/x4/(/*2 + 25)2n 2 + ~28~004/.4/(25/.3 + 1)2V 2 + y2(1 + 253)2004tz4/64(/*2 + 4)2V2 + 

• 1 + 82(1 + 257)%4/*4/64(1 + 4/.2)2~ 2 + (002/128~) {[(1 + 9y 3 + 28)co - 8~] 2 + 48~00 2 + 00284} • (14) 



3.4. Restrictions on the Variables. 

U is a function of (or e, ~, fi, Y, 8, co, "q, t z) but these eight parameters are not independent. 
The mean radial contraction of the cylinder is determined from the continuity condition for v 

i l l  2"ROy displacements o o0 fly dy dx = 0 which gives 

~e = (co~/8r/) (1 + aft 2 + 9y 2 + 8 2) - vcr*. 

1 fL (2.n 8u 
The mean axial strain e - 2rrLR 0 J0 dx dx dy = eet/R 

strain and on substituting and simplifying, we obtain 

e* = ere + (/,2co2/8r/) (1 + 8e~ 2 + y 2 + 9 82). (16)  

(15) 

say, where e e is a reduced unit of 

3.5. Choice of Parameters. 

If  the cylinder is loaded by strain increments as in a rigid-test machine, U has to be minimised 
for a given e e subject to the constraint (16). 

I f  we have dead-weight loading, the total energy of the system must include the potential energy 
of the (moving) applied load a, which has the value 

[~.R f L  8U dydx = (TrEtaL/R)(2er% e) (17) W = t% 8x 
d O  0 

and the parameters are determined from the condition that the total  potential energy U -  W is 
to be a minimum. 

For either of these problems, the choice of parameters is resolved by using a direct minimization 

procedure on a digital computer. The programme used in this paper is due to RosenbrockL 

For rigid-machine-loading conditions U is minimised for a given e e~ and the mean axial applied 

stress ~* which reacts against the machine is deduced. The appropriate post-buckled stress-strain 
relation for this loading is found. 

Similarly for dead-weight loading U - W is minimised for a given ere and the mean axial strain 

e ~ which is developed under the load is deduced. The appropriate post-buckling stress-strain curve 
for dead-weight loading is obtained and coincides with the stress-strain characteristic for rigid- 
machine loading. 

If  ere, e e are values of mean axial applied stress and strain which correspond to a point of this 

Characteristic, then the set of parameters ~, fi, 7, 8, oo, ~7, I • which are optimal for e e in the first 
problem is identical with the set which is optimal for ae in the second. 

For optimal choice of parameters the energy variation (U) in the first problem is shown as a 

function of (ee) 2 in Fig. 3 and the total potential energy ( U -  W) in the second as a function of 
(ere)2 in Fig. 4. The  mode shape appropriate to the opt imum solution of the first problem for a 

post-buckled strain e* = 1 is shown in Fig. 5. The modal parameters % fi, 7, 3, co, ~? and t~ ~ are 
plotted against ere in Fig. 6 and show the smooth transition through the region of minimum post- 

buckled stress which suggests that the approximation of equation (10) is valid. 

The  post-buckled stress-strain curve for the cylinder is shown in Fig. 7, with an indication in 

broken line of that portion of the characteristic which has not been computed which corresponds 
in either problem to unstable equilibrium. 



4. The Effect of Equilibrating Pressures. 

The approximate solution to the formal problem is an exact solution of an allied problem, namely 

that of a cylinder which carries loads not only over its ends, but  over the curved surface as well. For 
the assumed mode of  equation (10) and the Airy stress function derived from equation (11), 

equation (8) is satisfied if, and only if, there exists a pressure distribution over the curved surface, 

whose value is given by substituting for w and F into equation (8). This pressui'e is referred to as 

the constraint pressure, p. Work is done on the cylinder by the pressure system p, which acts over 

th e displacement w of equation (10), and does the quantity of work 

~2nR fL W = pw dy dx.  (18) 
,dO 0 

Substituting from equations (10), (11) into equation (8) we find that 

p ~ / U t ~  = -(0,~/12(1 - ~)){(~= + 1)~ cos ( = . / ~ . )  cos (~y/ay)  + 1 6 ~  cos  ( 2 ~ . / ~ )  + 

+ 16/3 cos (2rry/Av) + ~,(/a~2 + 9) 8 cos (rrx/Ax) cos (37ry/Av) + 

+ ~ ( 9 ~ 2 +  1)8 cos (3~x/~x)  cos (~y/~,,)) - 

1 
- - Z Z m2/mn -cos (mrrx/Ax) cos (mrY/Au) - 

-- /~%~* (cos (~rx/A~) cos (~ry/Ay) + 4a cos (2~rx/)t~) + 

+ 7 cos ( ~ x / ~ )  cos (3,~y/~) + 9a cos (3~X/~x) cos (~y/~,,)) + 

o) 
+ ¥ ( /X  X [(m +n)2{cos [ (m+ 1)~-x/)~z] cos [(n-1)Try/au] + 

+ cos [(m-- 1)rx/A.] cos [(n+ 1)Try/Ay]} + 

+ ( m - n ) 2 , { c o s  [ ( m +  1)=x/a . ]  cos [ ( n +  1)~y/£~] + 

+ cos [ ( m -  1)TrX/Ax] cos [ ( n -  1)Try/.~u]}]f,~ + 

2c~co 
+ - -  ~2 Z n 2 {cos [(m + 2)rrx/A.] + cos [(m - 2)~rx/Ax] ) cos (nrry/,~v)fm,~ + 

250, 
+ Z E m '~ cos (m~x/a~){cos [(n + 2)~y/a~] + cos [(n-2)~y/a~]}f,,,,~ + 

yw 
+ ~ E E [(3m+n)={cos [(m+ 1)~./a.] cos [(n-3)~yp,,.] + 

+ cos  [(m - 1)~x/~] cos [(n + 3)~y/~, ,]}  + 

+ (3m-n)2{cos  [(m+ 1)~x/)tx] cos [(n + 3)Try/)tv] + 

+ cos [ ( m -  1)~rxfAx] cos [ ( n -  3)rryl2~,]}]f,,,.~ + 

8o~ 
-~ - -  Z Z [(m+3n)2{ cos [(rn+ 3)~x/A.] cos [ (n-1)~y/av]  + 

+ cos [ ( m -  3)vx/A.] cos [(n + 1)Try//~v]} + 

+ ( m -  3n) 2 {cos [(m + 3)~rxlAx] Cos [(n + 1)rrylav] + 

+ cos [(m - 3)~rx/,~] cos [(n - 1)KylAv]}]f,~, , . 

9 

(19) 



This expression can be written 

pR2/Et  2 = p ~  cos (Trx/Ax) cos (Try/2v) + P~o cos (27rx/,~x) + P0~ cos (2rry/,~v) + 

+ p,~ cos ffxfAx) cos (3~yfa~) + p,~, cos (3~rx/~,) cos (Try/~v) , 

plus thirty other terms which do no work over the displacement system of equation (10). 
There is no mean pressure present. 

The coefficients in p which do work over the displacement system zv are 

p~, = dow(/~2 + 1)2/12(1 _ v~) - f n / ' o  - I -&o~* + "l 

dO 

+ -{2(1 +7)fo2 + 87fo4 + 2(~ +/3)k~ + 2/?ka + 2(1 + 8)k o + 4(7+ 8)J'~2 + 
~7 

+ rf.a4 + 2af3~ + 8aAo + 8A~} 

p~o = 4 ~ d O ~ / 3 ( 1 -  ~ )  - 4Lo/~ - 4~dOo~* + 

+ -~ {(1 + a)A~ + 9rA~ + 8fiL~ + f ~  + 9 r f ~  + ~A~) 

pl~ = ( ~  + 9)~rdO~/12(1 - ~) - A~/~ - ~dO7 ~ + 

(A) 

+ - {2fo2 + 8J;4 + layfo~ + 2fif, t + 18~f,a + 2fif~a + 18yf~ o + r~ 

+ 4(1 +43)L., + (1 + 258)f~ + 18~f~ a + 258A~ + 168A~ } 
and 

Pa, = (%~+ 1)~ad0~/12(1- ~)  - 9fal/V - 9~2dOa~ * + 

+ -~ {18afo~ + 2~A1 + 2f~o + 4 (1+47) f~  + 25r f~  + 185f~1 + 

+ 185f~:, + 8Ao + (1 +257) f~  + 16yf~ + 2~f~z + 188f6o}. 

(20) 

(21) 

For any given solution (a, fi, y, 8, w, r],/,) corresponding to a specific ~* or e *:, the derived solution 

10 

5.1. Root-Mean Constraint Pressure. 

The constraint pressure over the curved surface of the cylinder is periodic and consists of a 
number  of superposed pressures of the form 

p = p,,,,~ cos (m~rx/~t,) cos (nrry/,~v). (22) 

is exact if this pressure system is assumed to have been present throughout the loading-up process. 

The pressure system, which is fictitious, is different for each point on the post-buckled characteristic 

but for each such point a measure of the opt imum selection of the modal parameters (c~,/3, 7, etc.) is 

furnished by the proportion of the total stored energy U which derives from l~. 

The five pressure coefficients in equation (21) are, or should be, all zero and their vanishing 

corresponds to the stationary property of U (or for dead-weight loading U -  W) with respect to the 
amplitudes ~:, c~, fi, y, 3 respectively. 

Thus P~o = 0 implies aU/ao~ = 0 for strain-increment loading. Residues in these p's  indicate 
insufficient progress in the minimizing procedure. 

The pressure, however, is not zero over the entire surface, but is merely orthogonal to w(x, y).  The 

thirty component pressures which survive are also of interest, and will be discussed below. 



The root-mean-square pressure ff is defined by 

(P)z - 2 r r R L  o .~ o 

or 

where 

1 f L  c2~rR 
- 2 r r R L  o . ~ o  y~ (p,,,~).a cos ~ (mrrx/Z-,) cos ~ (nrry/A.,,)dx dy  

/~ = {Z (P.,.~)2K}'/'~, 

K = } if neither m or n is zero 

K = ½ if one of them is zero. 

The  coefficients Pm~, which have the values other than zero are: 

4(.0 
Po, = - -  {yk~ + A s  + A s  + 8~G~ + %faa} 

t)06 

P08 ~'~ 

P15 ~'~ 

9 ~  {Yf,  a + As} 

16~orAd~ 

- A s / r / +  - -  Yfo~ + 4fo, + 9fo6 +/3As + 25=f,~ + 8yA2 + 

9 + ; 9 ~ L 4  328A4 } + + 

P17 = - {8yfo4 + 1S foG + 2]3f~5 + 2STA,} 

P19 = 18oJyfoJ~? 

4~ 
p~z = - 4L~/V ÷ - -  (4=fo2 + (V+ 8)f~ + (1 +48)f~a + 4yf~5 + 4fif2o + 

+ 2fif2a + (1 + @ ) L 1  + 2c~f~2 + 48Lx} 

69 

p ~  = - 4f~,/~ + - {64~fo4 + yf l l  + (1 +25~)A~ + (9 + 4 % ) f ~  + 8/3f~ + 

-+ 25yfsl + 9f3s + 32~f44} 

40~ 
P26 = - -  {36~fo6 + (1 + 168)f~5 + 2flf24 + 9yf83} ~7 

P~8 = ~ o y f l d v  

9~o {23fo~ + 88fo~ + 2~f~a + 2yf2o + f24 + 2fif3z + P38 = - 9f3d~ + - -  

+ 8~Ao + A~} 

11 

(23) 

(24) 



02 

pa5 = - {723fo4 + 1628fo 6 + 50o~A5 + 4yA~ + f ~ ,  + 18fif~a + 

+ 49yf4,,. + 16f44} 

02 

PaT = - {1628fo6 + yf24 + 64yf4,,} -- 
r] 

• 402 
Pao = - 16f4o/r~ + - -  {8A1 + f a ,  + 97/aa + 8fiA~ +f~1} 

~7 

02 
P ~  = - 1 6 f 4 d v  + - { S A ~  + 258Aa + 8~A-,, + (1 +25y)fa, + 9faa + 

+ 64fifao + 32fif44 + (9 + 49y)f~,} 

1602 
P44 = - 16f4~/~q +- 

rl {aAa + 4aA5 + 2oG~ + rfa, + 25A~ + 4yf51} 

02 

P~6 = - {498f~5 + 9yfaa + 32/3f44} 

P 5 1  --~ 

02 

- 25f~l /v  + - {28f2o + 168A~ + 2o~fa , + 8f4o + ( 9 + 4 9 y ) f 4 ~  + 

+ 647f4~ + 50firs, + 18fGo} 

.O9 

P~a = - (48A~ + 498f24 + 18o~faa + 72yf4o + f4~  + 16f44 + r/ 

+ 50fifs~ + 1627f6o} 

2502 
P55 - {Sfz~ + Yf42} 

P57 = 1602yf4~/r] 

902 
P6o = - 36f6o/~ + - -  {3fal + fal} 

~7 

402 
P6~ = - -  {98Aa + 2o~f,z + (1 + 16y)f51 + 36fif6o } 

02 

P~4 = - {98faa + 32af44 + 49yf51} 

03, 

P7~ = - {88Ao + 258A~ + 2~j~1 + 18fGo} 

02 

P 7 3  ~ -  
~7 

{8f4~ + 648f44 + 1627f6o} 

P75 = 16023fa4/r/ 

Pso = 16028J51/n 

P82 = 023f51/rl and  

P91 = 18023f6o/V. 

(24) 
continued 
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The root-mean constraint pressure rises steadily as the mean axial strain increases. Typical 

values of IF (at e ~ = 1) are 0. 204 for the mode w of equation (10) and 0.315 for Kempner's case. 
The root-mean constraint pressure is an index only of the lack of completeness of the solution. The 

individual pressure coefficients influence the deflection of the cylinder, but those associated with 

higher-frequency products of cos (m~rx/,~z)cos (nrry/,~v) are, for the same amplitude, far less 
influential than those of lower frequency, for the bending produced is reduced. 

For Kempner's case, e* being taken equal to 1, the largest pressure coefficients are, with values 

p2~(0.497), P3x(- 0.366), p40(0.262); p~3(0.213) and pd0 .0895) .  

For the mode w of equation (10), the corresponding largest pressure coefficients are 

p2~(0-250), p51(0. 178), P15( - 0- 132), P53( - 0.119), P40( - 0.111) and P~4( - 0. 107) 
P31 and p~a are, of course, negligibly small. 

An examination of the constraint pressure system over the range e * varying from 0- 3 to 1- 2 shows 
that the following eight pressure coefficients always include the six largest pressure components for 
e ~ in that range: 

P15, P22, P24, P33, P4o, P4~, P51 and P53" 

The pressure systems are plotted, over the area covered by the mode diagram in Fig. 5, for both 

Kempner's case and the present paper in Figs. 8 and 9 respectively. 

Examination of the pressure distributions and their correlation with the modal pattern shows 

that for the Kempner case, the pressures are highest at the extremes of the deflections, and at the 

saddle point between hills and dales. These are regions of considerable bending where inaccuracies 

of the modeshape  are most important. By°contrast, these important zones are all associated with 

low pressure levels using the extended mode w of equation (10) and indicate that minor corrections 
only are to be sought in the mode pattern. 

To improve the solution still further, an improved mode may be calculated from equation (8) 

using expressions (22) forp, (11) for F and (10) for w on the right-hand side. This shows that if the 
mode is to be improved, it should include those terms whose periodicities in x and y correspond 
with those of the pressures enumerated above. The influence of all, or some of these further 
perturbing terms is likely to be far less marked than the inclusion of the two additional terms to 
Kempner's mode, with the possible exception of the (2, 2) term. 

6. Conclusions. 

A significant reduction in the post-buckled stress levels for a given strain is achieved using a full 
perturbation of the linear solution to this problem. By direct calculation of the system of pressures 
necessary to maintain the mode, it is clear that only small improvements in tl~e stress-strain 
characteristic can be expected from further analysis and that the 'true' solution of the von Karman 
large-deflection system for the given problem is not far below the characteristic given. 

No importance is attached to advanced post-buckled behaviour, which, in this ideal investigation, 
is of little significance, but it is interesting to note that the post-buckled stiffness of the cylinder in 
the immediate post-buckled condition (dead-weight-loading case) is about !0% of the initial 
unbuckled value compared with a predicted 16.5% in Kempner's case. 

Specific values for buckling stresses and strains are given in Tables 1 and 2 for the extreme loading 
conditions. 
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LIST OF SYMBOLS 

Cartesian co-ordinate measured along a generator~ 

I 
Cartesian co-ordinate measured around cylinder 

I 
Cartesian co-ordinate measured radially inward J 

Direct stresses parallel to axes Ox, Oy respectively 

Shear stress in the tangent plane 

Airy stress function 

Direct strains parallel to axes Ox, Oy respectively 

Shear strain in tangent plane 

Displacements parallel to axes Ox, Oy and Oz 

Young's modulus 

Poisson's ratio 

Radius Of cylinder 

Radially inward pressure 

Thickness of cylinder 

1 
Flexural rigidity of cylinder = ~ Eta(1 - p~)-I 

Wavelengths in x, y direction associated with mode w(x, y) 

Non-dimensional displacement parameters 

7r~ Rt  / Ay 2 

Coefficients occurring in F 

Mean axial stress and strain respectively 

Total, bending and extensional strain-energy functions 

Reduced mean axial stress = 17R/Et 

Reduced mean axial strain = eR/t  

Potential energy of loading device 

Work done by constraints 

Pressure coefficients 
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T A B L E  1 

Rigid-Loading Conditions 

Upper limit of buckling strain e e 

Lower limit of buckling strain e e 

Energy jump to buckle at lower ,limit 

Proportional energy increase to j u m p  

This paper 

0.336 

0. 287 

Kempner 

0.360 

0.306 

0.0149 

0-0159 

Kempner 
This paper 

1.071 

T A B L E  2 

Dead-H/eight-Loading Conditions 

Upper limit of buckling stress a "e 

Lower limit of buckling stress a ~'~ 

Energy jump to buckle at lower limit 

Proportional energy increase to jump 

This paper 

0.1861 

0.1496 

0"0319 

1.571 

Kempner 

0.2240 

0.1824 

0.0352 

0.961 

Kempner 
This paper 

1-204 

1-219 
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FIG. 5. Modal  pattern for eR/t = 1 showing contours of alternate hills and dales. 
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