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Summary. 

An integral equation is derived for the velocity on the surface of a given body of revolution or a given 
symmetrical profile in longitudinal flow, using the generation of a body by a vortex layer on its surface. The 
equation can be solved by the usual iteration method for linear integral equations of the second kind. 

The method of generating a body by a vortex layer leads to formulae expressing the components of the 
velocity outside the body by means of its pressure distribution. 

In general, the numerical work is greater for this method than for the indirect methods which use essentially 
a generation of the body by a distribution of sources and sinks on its axis. On the other hand, the method 
is not restricted to the case in which the analytic continuetion of the flow into the interior of the body does 
not meet singularities outside the axis. The only requirement is that the shape of the body must have a 
continuous tangent, whereas its curvature may have isolated discontinuities. 

Numerical examples are given for the two-dimensional case of a semi-infinite plate of constant thickness 
with a semi-circular leading edge, and for the three-dimensionM case of a semi-infinite cylinder with three 
different heads (hemispherical, 2 caliber ogival and ~ caliber rounded). The calculation is in good agreement 
with experimental results. 

Some numerical tables are given in order to facilitate the calculation of the kernel of the integral equation 
which forms the major part of the numerical work. 

1. Introduction. 

The  methods which have been developed by various authors (see, e.g. Ref. 1, 2) for the 

calculation of the velocity on the surface of a given body of revolution in a longitudinal flow, use 

essentially a generation of the body by a distribution of sources and sinks on its axis. First this 

generating distribution is determined (explicitly in Ref. 1, implicitly in Ref. 2) and then the induced 

velocities are obtained from its potential. 

It  is known that the generation of a body by a distribution of singularities on its axis requires 

the possibility of an analytic continuation of the flow into its interior without  meeting any 

singularities outside the axis (Ref. 3, p. 141). In some cases of practical interest, e.g. if the body 

has a straight cylindrical central part or a rather blunt bow, this condition is not satisfied. The  

above mentioned methods will then fail on principle. Sometimes, they may nevertheless give a 

practically sufficient approximation, but  it is rather difficult to estimate the degree of accuracy, 

and often the results of the calculation are obviously inadequate. 

* Replaces A.R.L. Report No. ARL/R1/G/HY/12/2--A.R.C. 14 579. 



These difficulties can only be overcome by distributing the generating singularities on the surface 
of the body instead of on its axis. An obvious generalisation of the methods 1,2 would be the use 

of a distribution of source rings on thesurface of the body. This will in fact give the solution of the 
problem in almost any case of practical interest, the requirement here being only that the shape 
of the body has a continuous tangent. 

The amount of numerical work involved in the solution for a particular body will of course be 
much greater for this method than for the methods of Refs. 1 and 2, due to the facts that a source 
ring is a much more complicated mathematical object than a point source and that the singularities 
are situated on a curved surface instead of on a straight line. 

A reduction of the numerical work can however be achieved by making a direct approach to the 
required velocity distribution without a previous determination of a generating distribution of 
source rings. This will be done in the present report. 

Instead of supposing the body to be generated by source rings, it will be supposed to be generated 

by a vortex layer on its surface (see, e.g. Ref. 4, p. 10). The circulation of these vortices per unit 
length of arc of the shape gives directly the required velocity at the surface of the body (with a 
negative sign). 

In the case Of the indirect method referred to in paragraphs 3 and 4 above, the generating source 
distribution can be obtained from an integral equation of the second kind which expresses the 

condition of zero normal velocity at the surface of the body. An application of the same idea to the 

case of a generating vortex layer would lead to an integral equation of the first kind. These equations 

present considerable mathematical difficulties and cannot be solved by the relatively simple method 

of iteration. 

An integral equation of the second kind for the generating vortex layer can, however, be obtained 

from the requirement that it must compensate the external parallel flow to zero in the interior of 

the body. This equation can be solved by iteration. 

The method of generating a body by a vortex layer on its surface requires for its application only 

that the shape of the body should have a continuous tangent, Whereas its curvature may have 
isolated discontinuities. 

This method is not restricted to bodies of revolution, but is equallysuitable for a two-dimensional 
body with an axis of symmetry, i.e. a symmetrical profile. In this case, the vortex layer consists of 

pairs of vortices of opposite circulation instead of vortex rings. Both cases of a body of revolution 
and a symmetrical profile will therefore be considered simultaneously in the following. 

From the practical point of view, the method of vortex layers will, however, be restricted to 
cases where the indirect methods are bound or at least likely to fail, as the numerical work involved 
is in general greater here. 

2. The Boundary Problem for the Determination of the Velocity on the Surface of a Symmetrical 
Body in Longitudinal Flow. 

(a) The following general consideration holds for a body of revolution as well as for a symmetrical 
profile: 

The shape of the body will be supposed to be a continuous curve, joining two points of the axis 
of symmetry at a distance L from each other. L may be infinite, in this case the diameter of the 

body may have a finite limit # O. The tangent of the shape will be supposed to be continuous, 
but its curvature may have isolated discontinuities. 



Let x denote the co-ordinate in the direction of the axis (x = 0 at the bow of tbe body), y the 
co-ordinate perpendicular to the axis. Let the shape of the body be given by 

x = x(s); y = y(s),  (1) 

s being its length of arc (s = 0 at the bow, s = S at the stern). Then 

and x(0) = y(0) = 0 

x(S)  = L; y (S )  = 0 for a.finite body ) (2) 
o r  

x(oo) = oe; y(oe) = Y for a semi-infinite body, 
respectively. 

In the case when the elimination of s from (1) gives a univalued function y(x) ,  preference will 
be given to the representation of the shape by 

with y = y(x) ' 

y(O) y (L)  = 0 ) (3) 
o r  

y(0) 0, y(o ) = Y. 

(b) The  surface ~ of the body divides the whole (two- or three-dimensional) space into two 

regions R~x t outside and Rin t inside the body. Assume now both regions R,x t and Rin t to be occupied 
by the fluid. Let the fluid in R ~  t move past the body with a velocity V (in the direction of + x), 

and let the f luid in Rin t be at rest (Fig. 1). 

The whole space Rex t+  Rin t can then be regarded as a single region of flow in which Z is a 
surface of discontinuity of the velocity. The  normal component  of the velocity being, however, 

continuous ( =  0) on ~] the remaining discontinuity of the tangential component  can be produced 

by a vortex layer on the surface of the body. 
Let w(s) be the velocity at the point s of ~ .  The  circulation of an element ds of Y~ will then be 

dF(s) = - sgn y w(s) ds, (4) 

i.e. the vortex layer will consist of vortex rings of the strength - w ( s )  per unit length of arc in the 
case of a body of revolution, and of pairs of vortices with equal strength and opposite sign in the 
case of a symmetrical profile (Fig. 2). 

(c) Let now a velocity - V in the direction of x be superpose d to the whole flow, so that the fluid in 
Rex t is at rest at infinity. There will then be a uniform parallel flow of velocity - V in Ri~lt , where 
the fluid was at rest before. The  potential ~int of this flow will be 

q~int = - Vx.  (5) 

This flow is produced by the vortex layer on the surface 2 .  The  problem of determinating the 
velocity w(s) on ~ is therefore equivalent to the following problem: 

'A distribution of vortices (rings or pairs) is to be determined on the surface ~; of the body 
which produces a uniform parallel flow of potential @i~t = - Vx in the region Rin t inside ~ ' .  

The  circulation of this vortex layer per unit length of arc gives the required velocity distribhtion 
on ~ .  The  pressure distribution can then be obtained from Bernoulli 's equation. 
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3. Derivation of an Integral Equation for the Velocity on the Surface. 

The boundary problem of the preceding section leads to a linear integral equation of the second 
kind for, the velocity. This equation will be derived in the following section, again simultaneously 
for the two-dimensional and for the three-dimensional case. 

Let P1 = (s) = (x, y) and P2 = (s + ds) = (x + dx, y + dy) be two points of the surface ~] close 
to each other (Fig. 3). If the vortex layer on ~ produces a uniform parallel flow of veloci ty--  V 
inside ~] the difference of the potential at P1 and P2 along the inner side of the element of arc ds 
will be 

dlI0in t = - V d x .  (6) 
This difference is produced by 

(1) the vortices on the part P1 P~ of Y~ 

(2) the vortices on Y~ outside P1 P~ 

dq)i~t = ~ + ~2. (7) 

The  contribution of the vortices on P~ P2 equals half of their circulation {cf. (4)} 

(,~ = - ~ w(~) ds .  ( 8 )  

The contribution of the vortices ~ on ~3 outside P1 P~ is obtained b y a n  integration. Let 

u ( , ,  e )  - w(e)ae 2~(~) u~(s, e) 
(9) 

v(., e) ~(~)d. v~(,, e) 2~(~) 
be the components of the velocity which a vortex (ring or pai r )of  strength -w(e)d{7, situated at 
the variable point (a) of the surface {co-ordinates ~(e), ~/(e)}, induces at the pivotal point (s) = {x(s), 
y(s)}. This vortex will then produce the difference of the potential between P1 and P2 

dG _ w(~)d~ {u.,(s, ,;)& + v*(s, e)dy}. (10) 
2,~v(~) 

All the vortices on Y, will therefore produce the difference of the potential 

f 
s 

d ~ i n  t = q51 -t- d~2 
o'~0 

1 f s  w(e) 
= - ½ w ( s ) d ~  - ~ 0 

From (6) and (1'1), the equation for w(s) is as follows: 

1 Lo(o) - V d x  = - ~w( s )d ,  - G 

Dividing by ½ Vds and introducing the non-dimensional velocity 

w * ( , )  _ ~(~) 
V '  

(12) is reduced to the final form 

w*(s)  = 2 dx 1 f s  
dE "iT 0 

u*dx + v*dv de. (11) 

u* dx + v* dy 
de. 

u*(s,  e)  dx  dy  
+ ~ ( ~ '  ~)--ds 

of a linear integral equation of the second kind for the velocity. 

(12) 

(13) 

(14) 



In the practically most important case in which the shape of the body can be represented by a 
univalued function y = y ( x )  {cf. (3)}, (14) can.still be somewhat simplified. (14) is multiplied by 

ds ~/(1 +y,S) (15) 
' " dx 

The introduction of the strength of the vort ~.x layer per unit length of the axis 

ys = w 'V(1  +y,2) (16) 
gives then the result 

• j y~(x) = 2 1 L uS + y ' v  ~ _ _ yS(~) d~:. (17) 
z r  0 r ]  

If ys has been determined from this equation, (16) gives immediately the velocity 

w~-(~ )  - ~ , s ( ~ )  ~/(1 +y'~) (18) 

The non-dimensional velocity components u s, v s in the kernel of the integral equations 
(14) and (17) are in the two-dimensional case of a symmetrical profile 

u s Y 1 77+ 1 
. . . .  = 

= + i y -  1) = ( ~ ) s +  i Y +  1) 
(19) 

s Y 1 2 -  = + ( y  2 • 
+77- 77+1 

These expressions can easily be derived from the.potential of a pair of vortices of circulation + F 
situated at the points ~ + ~7. 

O) = ~ tan-~ y - ~7 tan -~ Y + (20) 
X ~ X - -  " 

In the three-dimensional case of a body.of revolution, u s and v s are 

with 

N / { ( ~ ) s + ( y + I )  = } 

'72 s = 

t - 7 - )  + 

~7 " r l  

4_2 
k2 = r/ 

, 

K ( k )  ~/(1 - k  s sin s ~b): = 
d O  d O  

X/(1 - k  2 sin 2 ~)&b. 

 ,k,l l (21) 

(21a) 



These expressions can be derived, for example, from the stream function of a vortex ring (Ref. 5 

paragraph 161). Tables of u e and v* for the vortex ring have been computed by Kfichemann 

(Ref. 6). 

4. Discussion of the Integral Equation. 

For simplicity, the following discussion will be restricted to the most important case that the 

body is finite and that its shape can be represented by a univalued function y(x), i.e. to the form (17), 

(18) of the integral equation for the velocity. The extension of the more general cases is not difficult 

and gives essentially the same result. 
The two-dimensional and the three-dimensional case will be treated separately, as far as the 

kernel of (17) is concerned. The iteration method for the solution will, however, be discussed 

simultaneously for both cases. 

4.1. Two-Dimensional Case. 

In the discussion of the kernel of (17) 

u ~ + y 'v  e K(x, ~:) - , (22) 
7/ 

i.e. with respect to (19) 

K ( x ,  ~) = (y  + ~1) - y ' ( x  - ~) _ (y  - "q) - y ' ( x  - ~) 
( ~ _  ~)~ + ( y  + ~)~ ( ~ _  ~)~ + ( y _  ~)2 

2-q {(x-  ~:)2 + (r/~ _y2) + 2 y y ( x -  se)} 
X(x, ~:) = { ( . _  ~:)= + (y + ~)~} {(x_ ~:)~ + ( y _  ~)~}, 

in the two-dimensional case, special attention has only to be paid to the cases 

and to the combined cases 

~ = 0 , ~ = L , ~ = x  

= x = 0 a n d ~  = x = L ,  

(23) 

(24) 

(25) 

The case ~ = x has to be treated by means of a development in series. For sufficiently small 

values of ( x -  ~), ~1 will be 

m y - ( x - ~ ) y '  + ½(x-~)2y,,. (26) 

The  introduction of (26) into (24) gives the result 

1 y" 
K(x,  x) = ½ Y + I ~ ]  " (27) 

K(~, O) = K(~, L) = 0. 

where singularities may be expected. 

Consider first the case x # 0 and x # L. The introduction of ~ = 0, ~ = 0 and ~: = L, ~/ = 0 

into (24) gives then immediately the result 



K(x, ~) is therefore finite at ~ = x in the case x # 0 and x # L. As y(x) and y'(x) are supposed to be 

continuous in 0 < x < L, K(x, ~) has a discontinuity at ~ = x only, if y"(x) is discontinuous, i.e. at 

the points where the curvature Of the shape is discontinuous. 

Consider now the cases x = 0 or x = L, y = 0. In order to cover the cases of practical interest, 

suppose fur ther  that 

First 

y g a ~ / x  f o r x ~  0 

y ,.~ b ( L - x )  for x ~-, L, b > 0. 

K(0, ~) = lim K(x, ~) and K(L, ~) = lim K(x, ~) 
x--->O x--+L 

(28) 

(29) 

(30) 

have to be determined. 

K(0, ~) is obtained by the introduction of 

x = 0, y = 0, lira 2yy' = a 2 (31) 
x---> 0 

into (24): 

K(0, ~) = 2~(~z + ~72- az~) (~z+~2)~ (32) 

N ow  let ~ -> 0. The n  K(0, 0) will be with respect to ~7 ~ a~/~ 

K(0, 0) = lim 2 a ( ~ 2 + a ~ -  aZ~)~/~ = 0. (33) 

K(L, ~) is obtained correspondingly by introducing 

x = L , y  = 0, lim 2yy '= 0 (34) 
x.-+ i 

into (24). 

27 
K(L, ~) - (L-~)~ + ~'~" (35) 

Now let ~ -+L. T h e n  K(L, ~) will be with respect to ~ -+b(L-~)  

2b 1 
K(L, ~) -+ 1 + b 2 L - ~ + oo. (36) 

The  integral 

? T = y*(~)K(L, ~)d~ (37) 
0 

will, however,  be finite, as the velocity w(x) and therefore 

' w(x)  
r*(*)  = V ( 1  (38) 

tends to zero for x --> 1, where the flow past the symmetrical profile has a stagnation point. 
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4.2. Three-Dimensional Case. 

The  discussion of K(x, ~) in the three-dimensional case follows the same general line as in two 
dimensions. With respect to (21), (K(x, s ¢) will be 

K(x, es) - 

with 

u ~ + y'v* 

1 
~/{(x-~)2 + (y+ ~l)2} [K(k) - { 1 

o r  

2W(y-~) ~ } 
+ (~_  ~)2 + ( y _ ) 2  E(k) - 

2~y ~o~ E(k)}] ( x -  ~)~ + ( y -  ~)o] (39) 

h2 = 4y~ 
(~_  ~)~ + (y+  7) 2 (3%) 

1 y '  

2v[y - ~9 - y ' ( x -  ~:)] E(k)7. ' ]  i~40~ 
- ( 7 - - ~ ?  7 ( y - v )  ~ 

Consider first the case x :# 0, x ¢ L. The  introduction of s e = 0, W = 0 or ~ = L, 7/ = 0 into 
(40) gives then immediately 

K(x, O) = K(x, L) = 0. (41) 

The  case ~ ~ x has again to be treated by means of a development in series which gives the result 

- -  1 for ~ ~ x.  (42) K(x,~) ~ ~y in i x _ ~ l s / ( l _ y , 2  ) +  l + y ' 2  

K(x, ~) has a logarithmic singularity at ~: = x, i.e. is integrable. T h e  finite part of K(x, x) is 

discontinuous only, if y"(x) is discontinuous, i.e. at the points where the curvature of the shape 
is discontinuous. 

Now consider the cases x = 0 or x = L. T h e k e r n e l  has then to be determined as 

K(0, ~:) = lim K(x, ~) and K(L, ~:) = lim K(x, ~). (43) 
x-->0 x--->L 

According to (39a), the modulus k of the elliptic integrals in K will be small for small values of y. 

The  integrals K(k) and E(k) can therefore be replaced approximately by 

K(k) ~ ~ 1 +  ~ + k 4 ; E(k) ~ ~ 4 

The  introduction of (44) into (39) gives the results 

K(0, ~:) - 

K(L, ~)  = 

3) 
64 k4 " (44) 

(~2+ r/2)a/2 + @ x-,01im 2yy' 

{(L-~:)2 + r/2}ai21 ( L - ~ ) 2  + r/2 lim 2yy' . 
cc-> L 

(45) 

(46) 



4.3. Sohttion of Linear Integral Equations 

The  usual method for the solution of linear integral equations of the form (17) 

7*(x) 2 -  1 f L  = -- y*(~)K(x, f)d~ (47) 
77 .] 0 

is an expansion of.y*(x ) in powers of the 'parameter '  ~ = - 1/rr. This expansion is obtained by 

repeated integrations. 

2 f r  2 fL fL K(~I, ~2)d~2K( x, ~l)d~l - . . . .  (48) r*(x) = 2 - ~ o K(X' ~l)d~l + Tr zJo  Jo  

The series (48) is convergent, if 
1 
- .  < Iho[, (49) 

7 7 "  . 

where A 0 denotes the smallest eigen value of K(x, ~). The rapidity of the convergence depends of 

course on the ratio 1/~ : ]A01. 
As an estimation of A 0 is rather difficult, some special cases will be considered, where the solution 

of equation (17) is known. The  behaviour of the series (48) in these cases will give sufficient 

information for all cases of practical interest. 

Consider first the two-dimensional Flow past a circular cylinder. The  introduction of 

y = ~ / ( 1 -  x=), 2yy' = - 2x 

into the kernel of (17) (equation 24) gives the result 

2~/(i - ~) { ( . -  ~)~ + ~ - ~ - 2 ~ ( ~ -  ~)}  - o .  
, ¢ ( x ,  ~:) = [ ( x -  ~)2 + { V ( 1  _ x 2) + V (  1 _ ~:2))~1 [ ( x -  ~)~ + { V ( 1  - x ~) - V ( 1  - ~2)}2] 

(5o) 

(51) 

K(x, ~) being identically zero in this particular case, the iterated kernels of the series (48) are 
equally zero, and the solution of (17) is 

y,*(x) = 2 + 0 + 0 + . . . .  2 

w * ( x )  - r * ( x )  - 2 C ( 1 - x  ~) = 2 s i n e  
~/(1 +y'~) 

X ~ COS ¢ .  
with 

(52) 

(53) 

(54) 

(56) 

The  solution of the integral equation (17) .is therefore in this case 

3 
7*(x) = ~. 

This is in fact the well-known velocity distribution of a circular cylinder. 
The  series (48) may therefdre be expected to converge rather quickly for a shape y(x) which 

does not differ too much from a circle, i.e. for fairly thick profiles. 
In the corresponding three-dimensional case of the flow past a sphere, the velocity distribution 

is known to be 
3 

w*(x) = ~ ~/(1 - x~). (55) 



f Introducing this solution into (17), the value of the integral Kd~ is obtained 

3 _ 2 _ 1  (+13 
2 ~r O-1-2 K(x, ~)d~ (57) 

1 1 (+1K(x, = 5' (s8) 
~" d - I  

The series (48) for y* will then be 
2 2 2 2 

r*(x) = 2 - ~ + ~ - 2 - 7  + ~ -  + . . . .  (59) 

This series converging fairly quickly, a similar behaviour may be expected for rather short and thick 
bodies of revolution. 

As there is more practical interest in elongated forms of profiles as well as of bodies of revolution, 
the flow along an infinite circular cylinder of diameter 2 or an infinite plate of thickness 2 will now 
be considered as an extreme case of this kind. Let therefore 

y(x) - 1 for - oo < x < oo (60) 

in both the two-dimensional and the three-dimensional case. The boundary y = 1 being a 
streamline of the original parallel flow, the velocity w(x) is obviously 

w*(x) -- 1 (61) 

and the solution of the integral equation is equally 

y ~ ( x ) -  1 (62 i 

The integral equation (17) is reduced to 

y*(x) = 2-1f 2 <(#)u*(x, (63) 

in this case. Equations (62) and (63) give immediately the value of the integral 

in both the two-dimensional and the three-dimensional case. 
With respect to (64), the series (48) for y* will then be 

y*(x) = 2 - 2 + 2 - 2 + 2 -  + . . .  (65) 

This series being of the oscillating type, a rather slow convergence of the series (48) may be 
expected in the practically most important cases of elongated profiles and bodies of revolution. 

The convergence of the series (48) can, however, be greatly improved in these cases by a 
suitable transformation. Equation (48) can also be written in the form 

~o(X) = 2 _  _1 fL  2K(x, ~)d~ 1 
77" , )  0 

r%(.) = 2 _  _1 (66) 

f 7r , )  0 

y*(x) = lim re~(x). [ 
~---~ O0 . )  

10 



Here, 7*(x) is obtained as the limit of the infinite sequence of functions [7%(x)]. If  this sequence 

is convergent, the sequence 

y % ( x )  0; y % ( x )  = 2 -  ~ ~ = - y*o~(~)K(x, ~)d~ = 2 
7r ,j o 

~*0(~) = ½(~% + r % )  = 1 

2- f = - y*0(~)K(x, ~)d~; y*~(x) = - 
~" 0 77" 0 

r%(*) = ½(y% +r%) 

r ~ 1 1 ( ~ ) K ( x ,  s-C:)d~: 
(67) 

7%~(x) 2 - - 1 f  L I f  L = - V%_l(~)K(x, es)d¢;'y%2(x) = 2 - - y%(¢)K(x,  ¢)d¢ 
~r 0 -or 0 

y%(x) = 1 / . ,  + . ,  g k g  ~ i  Y n21 

will have the same limit ye(x), but  its convergence will be more rapid in the case of an oscillating 

sequence (66). 
An application of the scheme (67) to the case y(x) ~ I gives immediately the solution 

[r*,(x)] = [1]->yV(x) = 1. (68) 

In practice, it may prove useful to use the schemes (66) and (67) together in different parts of 
the body. It  will likewise be convenient to calculate in every step of these schemes only the 
difference between the improved function y%(x) and the preceding approximation y%_,(x).  The  
iteration schemes (66) and (67) start from an estimated solution y z 2 or 1, respectively. It will 
often be possible to use a better estimation in a particular case. This  will reduce the number  of 
steps necessary for obtaining the required degree of accuracy of the result. 

5. Formulae for the Velocity Outside the Body. 

The generation of a body by a vortex layer on its surface leads immediately to formulae 
expressing the velocity components at a point out'side the body by the velocity distribution on its 

surface (Reference 7, Appendix). 
Let (x, y) be a pivotal point in the field of flow outside the body and w(e) the velocity distribution 

on its surface Y, The  velocity components induced at (x, y) by the vortex layer on ~ will then be 

1 w(e) ~(e) ' , / (e )  de (69) u(x, y) - 27 . ( e )  

1 w(~) ~(e) ' @ )  d~.  (70) 
v(x, y) = 27 ~(e) 

Here, .u* and v* are again the non-dimensional velocity components of a vortex ring or pair, 
introduced in equations (9) and (19) (two-dimensional case) or (21) (three-dimensional case), 

respectively. 
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The pivotal point (x, y) being supposed to be outside the body, u e and re` are finite in the whole 
interval of integration.. The numerical evaluation of these integrals presents therefore no difficulties. 

6. Numerical Examples. 

The general method developed in the preceding sections will now be used for the determination 
of the velocity distribution in the two-dimensional case of a semi-infinite plate with a semi-circular  
leading edge and in the three-dimensional case of a semi-infinite cylinder with three different 
heads (hemispherical, ogival and rounded). In all these cases, the curvature of the shape has 
discontinuities so that the method of singularities on the axis cannot be used. 

The major part of the following numerical calculations is required for the computation of the 

kernel of the integral equation for a certain number  of pivotal points on the surface. Special 

attention has therefore to be paid to a suitable selection of these points in order to obtain a 

sufficiently accurate result with only a small number of pivotal points. Generally, these points 

should be chosen fairly close to each other in all parts of the body, where irregularities of the velocity 

distribution can be expected (e.g. at a suction peak or at a discontinuity of the curvature); their 

spacing can be wider in the other parts of the body. The first step of the iteration procedure should 

be carried out with only a few pivotal points; their number is then increased in the following steps 

accord!ng to the requirements of the special problem. The variation of 7e` along the body is often 

smaller than the variation of we`; the special form (17), (18) of the integral equation will then be more 

suitable for the numerical work than the general form (14). 

6.1. Two-Dimensional Case. 

Consider first the two-dimensional case of a semi-infinite plate of thickness 2, extending from 

x = 1 to x = co, with a front part in the form of a semi-circle (Fig. 4), i.e. let 

~ / 2 x - x  ~ f o r 0 < x <  1 
y(x) = (71) 

1 f o r l < x <  oo. 

The kernel of the integral equation (17) for ~,e  ̀is obtained by introduction of equation (71) into 
the general form (24) of K(x, ~) in the two-dimensional case. This gives the formulae for K(x, ~) 
shown in Table 1 (Opposite). 

For the numerical calculation of the successive approximations ye,~(x), the kernel K(x, ~) has 
first to be calculated for a certain number of pivotal points x. Fig. 5 gives some typical curves for 
X(x, ~). 

In this figure, the relatively great difference between the curves x = 0.8, 1.0 and 1.2 is to be 
noted from which a rather rapid variation of 7 '~ (and therefore of w è  too) near the point x = 1 may 
be expected. At this point,  the radius of curvature of y(x) is discontinuous (p = 1 for x = 1 - 0, 

p = oo for x = 1 + 0). It is in fact known that w(x) has a vertical tangent at the points of discon- 
t inuity of p (Refs. 8 and 9). The general form of w at these points is 

w ~ a + b(x-Xo)In I x -  x0t. (72) 

The most interesting part of the pressure distribution is 'its behaviour in the front part of the 

body between x = 0 and x ~ 3. In this part, the  body may be considered as 'thick' so the scheme 

(66) was used for the calculation. 
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TABLE 1 

Kernel of the Integral Equation for the Body of Figure 4 
( Two-Dimensional Flow) 

1. x = O  
r-o 
I 

g(o ,  as) = j 2(as- 1) 2 
[_ (as~ + 1)~ 

2. 0 < x < l  

f ° 
K(x, as) = 

[(as- 1)2 

3. x = l  !o 
0 

K 0 ,  as) = ½ 

4. l < x < ~  

K(x, as) = 

f o r O <  as< 1 

- -  f o r l  < as< or.  

/ 

2(as- 1)2 

f o r 0 <  as< 1 

for 1 < as< co. 

+ 2 ( 1 - x )  (as- 1) + 2] 2 - 411 - ( l - x )  2] 

f o r O <  as< 1 

f o r a s =  1 - 0  

f o r a s =  1 +  0 

I 2 for 1 < as< oo. 
I ( 1 - a s ) ~ + 4  

r- 2 ( x -  1) [ ( x -  1) + 2(1 - as)]~/{1 - (1 - as)2} for 0 < as < 1 
[(x-as)~ + 2 - ( 1 -  as)~]z - 411 - ( 1 -  as)z] 

2 
( x - l )  2 + 4  foras = 1 

2 
(x-as)~ + 4 

f o r l  < as< oo. 

(73) 

(74) 

(75) 

(76) 

A suitable estimation for ye0 is in this case 

2 f o r 0 < x < l  
y~eo(X) = (77) 

1 f o r l < x <  oo, 

i.e. the exact solution for a circular cylinder on the semi-circular part and the exact solution for an 
infinite plate on the straight part. 

With the aid of this estimated approximation, two further approximations 

f 
co 

y~l(x) = 2 -  
~r 0 

y%(x) = 2 _  _1 f~o 
T" 0 

13 

~/%( as)K(x, as)d as (78) 

y*l( as)K(x, as)d as (79) 



were calculated. The evaluation of the integrals was carried out numerically for the range 0 < ~ < 10, 

the influence of the range from ~ = 10 to infinity was estimated by using the asymptotic behaviour 

of the kernel and of 7 e. 
2 

K(x, ~) - ~ . -  (80) 
( x -  ~)~ 

v*(x) -~ 1 (81) 

The result of this calculation is shown in Fig. 6. The difference between ve~ and V*l is small 

compared with the difference between 7"1 and ~*0; a further step in the iteration procedure will 

therefore give a result which is practically not  different from ~e 2. 

It may be noted that the curve yea(x ) is outside the region between 7"o and ye 1 in 0 ~< x < 1 

and between ye 0 and 7el for x > 1. This means that the successive approximations are likely to 

tend monotonically to 7 e in the front part of the body and to oscillate about y* in its rear part. 
This behaviour was in fact to be expected from the general discussion of the iteration procedure 

in Section 4.3. 
The  behaviour of V*(x) near x = 1 is in good agreement with the behaviour which was to be 

expected from (72), though of course a decision whether the tangent of y*(x) is really vertical at 

x -- 1 or not, could not be obtained by the limited accuracy of the numerical integrations. 

From 7*(x) ~ 7*~(x), the velocity we(x) and the pressure p/q were calculated 

w(x)  e(x)V(2x-x  ) for  0 < x < 1 
- - ( 8 2 )  

V ~/(1 +y'Z) Ve(x ) for 1 < x < oo 

P - 1 -  . ( 8 3 )  
q 

The result is shown in Fig. 7. For comparison, the pressure distribution of a circular cylinder 

is also drawn in this figure (dotted line). The minimum of the pressure is of course smaller for the 

body than for the circular cylinder ( ~  - 1.65 instead of - 3), its position is slightly moved towards 

the bow (x ~ 0.8 instead of 1.0). The discontinuity of the curvature causes, however, a rather 

rapid increase of  the pressure near x = 1 which may affect the boundary layer. 

6.2. Three-Dimensional Case. 

In the three-dimensional case, special attention has to be paid to a suitable arrangement of the 
numerical calculation in order to reduce the considerable numerical work as far as possible. For 
simplicity, the following general remarks will be restricted to the special form (17) of the integral 
equation and to the iteration scheme (66); the more general form (14) of the integral equation and 

the iteration scheme (67) do not present any new difficulties. 
At first the kernel has to be calculated for a certain number of pivotal points x, selected according 

to the general remarks in Section 6.1. The form 

zt e + y '  v e 

K(x, ~:) = ~ ' ~  ~ '77 (84i 
~7 

of the kernel (17), together with its development (42) for s e g x, could be considered as suitable 
for the calculation, as tables for u e and v* have been computed (Ref. 6). These tables being, 
however, largely obtained by graphical interpolation from a relatively small number of calculated 
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points, their accuracy is not always sufficient for the present purpose. Moreover, their intervals 

were found to be still too wide for the necessary double interpolation at a distance from ~ = x, 
where the development (42) could no longer be used. 

Generally, the use of Kiichemann's  tables becomes difficult, if the distance between the variable 

point (~, ~1) and the pivotal point (x, y) is smaller than about 0.5 7. For the present purpose, the 

tables were only used for values of ~ on the cylindrical part of the body. Here, the kernel can be 

calculated once for all, if the pivotal points on the curved head are selected so that y has certain 

fixed values. 

Table 2 gives the values of ue/rr and v*/rr on the cylindrical part of the body as functions of 

( x - ~ ) / % y  1 for different values of Y/%ye The scale of ( x - ~ ) / % y  1 is at first quadratic {for 

0 > ( x -  ~)/%yi > 1} in order to facilitate the numerical treatment of the singularity of the kernel 

K(x, ~) which is discussed below. In this part of the table, interpolation is not advisable, at least 

not in the direction of x - ~. I f  more points are required, they can be calculated with the aid of 

(21) and (21a). The values ofue/rr and ve/Tr are given until ( x -  ~ ) / ~ e y l  = - -  10. For ( x -  ~)/%yl < - 10, 

u ~ and v ~ are approximately 
U # X - - ' ~  - 3  

-- (8s )  

7r N 2 7Icy 1 \ ~ c y l  7' 

The last line of Table 2 gives the values of the integrals of ue/rr and ve/rr from - 10 to - oo, 

calculated from (85) and (86). 
For the calculation of K(x, ~) on the curved part of the surface, (40) and (42) are suitable. Near 

= x, but outside the range of validity of (42), it is convenient to use the complementary modulus 

= 1 - = + ( y _  (87) 
( . -  + (y + 

instead of k e (39a) for the determination of the elliptic integrals K and E in (40). The  Tables 3, 4 

and 4a give the values of E/rr and (K-E)/rr functions of k e and k 'e. For more-accurate tables see 

Refs. 10 and 11. A calculation with three figures will often be sufficient, more than four figures 

will be necessary only in exceptional cases. 

A certain difficulty in the use of equation (40) near ~ = x is the calculation of the factor of E(h 2) 

F = 2V[y - V - y ' (x -  ~)] (88) 
( x -  + ( y -  

For x = ~, F has the form 0/0 with the finite limit 

yy" 
lim F = y,2'  (89) 
~-~x 1 + 

i.e. its calculation requires a rather good knowledge o f y '  and y". I f  the shape is given by a simple 

analytical equation, the calculation of y '  and y" is in general not difficult. Sometimes, it will then 

even be possible to transform F analytically so that it has no longer the form 0/0 for ~ = x. This is 

the case if, for example, the shape is given in th e form of a polynomial in x or x 11~-, or if it is composed 
of arcs of circles as in the three following examples (Fig. 8). In this latter case, F is simply 

F -  ~7 f o r y  = b+~e/{r 2 - ( x - a )  ~} (90) 
y - b  

= b + V{, = 
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I f  a simple analytical equation for the shape does not exist, it will always be possible to find a 

sufficiently accurate interpolation formula for a certain neighbourhood of x = ~ and to use this 

formula for the determination of F. 

Another difficulty is the numerical evaluation of the integrals of ye,~K(x,  ~) in tl~e neighbourhood 

of the singularity ~ = x. This  singularity can be removed by a suitable transformation of ~ (see 

Ref. 12, Appendix) .  Let  

y*~,(¢)K(x,  ¢)d¢ = + + + (91) 
0 0 a x b 

where a and b are arbitrary values between 0 and x or x and ~ .  The. integrands of the second and 

third integral are infinite at ~ = x. With the substitutions 

x - ~ = X 2 d~ = - 2 x d x ,  (92) 
o r  

- x  = X 2 d~ = 2 x d x ,  (93) 

respectively, these integrals become . 

~ ~ (x ~a) [, ~/ (b-x) 
y~,~ K 2xd  X and Y~n K 2xd  X . (94) 

, ) 0  ,~ 0 

The  behaviour of the t ransformed integrands near X = 0 will no~v be 

y , ~ - K 2  X N const, x l o g x  -+0 as X --~ O. (95) 

T h e  integrals can therefore be determined by the usual numerical methods. A suitable choice of 

the interval tx - a I to Ix - b[ is a length equal to the radius of the cylinder. 

The  infinite interval of integration in the last te rm of (91) can be transformed into a finite interval 

in a similar manner  (substitution ~ = X-l). I t  is, however, sufficient in this case to calculate the 

integral for a suitable finite interval (about 5 diameters of the body) and to estimate the small 

contribution o f  the remaining part f rom (85), (86) and the asymptotic behaviour y * - +  1 of the 

solution. 

(a) Hemispher ical  Head.  

In the case of a hemispherical head (Fig. 8a), the shape of the body is given by 

~ / ( 2 x - x  2) f o r O < x <  1 

y (x )  = (96) 

1 f o r l  < x <  oo. 

y being a univalued function of x and the form (17) of the integral equation can be used. The  

iteration scheme (66) is likely to be suitable for the numerical solution of (17), as the body can be 

considered as ' thick' in its front  part, where the pressure distribution is required. 

Some typical curves for the kernel of the integral equation are drawn in Fig. 9. As in the 

corresponding two-dimensional  case (Fig. 5), the curves x = 0.8,  1 and 1-2 show a considerable 

difference i n  their area, though not so obviously, due to the influence of the singularity. A rather 

rapid decrease of ye may therefore again be expected near x = 1. 
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The transformation (92), (93), of the kernel for the numerical treatment of its singularity is 
shown in Fig. 10. For the numerical determination of the integrals of y*~K, the transformed kernel 
has to be multiplied by yen; the integrals can then by evaluated either graphically or numerically. 

For the determination of the successive approximations 7"~ of the solution 7* of (17), 7*0 was 
estimated to be 

1.5 for0  < x <  1 
7%(x) = (97) 

1 f o r l < x <  co, 

i.e. the exact solution for a sphere on the spherical part and the exact solution for an infinite 
cylinder on the cylindrical part of the body. With this estimated solution, two further approximations 
yel and 7e2 were calculated from (66) 

7"1(x) = 2 -  ~;%(~:)K(x, se)d~: (98) 
o 

f 
c o  

y*2(x) = 2 -  7*l(~:)K(x, ~)d~. 
o 

(99) 

The result is plotted in Fig. 11. The difference between 7"1 and 7"2 being small in comparison 

with the difference of 7"0 and 7"1, 7*2 could be considered as a sufficiently accurate approximation 
i 

for 7". 
With 7" ~ 7*2, the velocity 

7*(x) V ( 2 x - ~ 2 ) 7 " ( x )  for 0 < x < 1 
w * ( x )  - - (100) 

~/(1 +y,2)  y * ( x )  for 1 < x < co 

was calculated from equation (8). The pressure distribution of the body was then obtained from 
Bernoulli's equation 

P 
~ v  = 1 - w * ( x )  2 .  

P_ V 2 
2 

(~ol) 

The calculated pressure distribution is plotted in Fig. 12, together with experimental results of 
H. Rouse, J. S. McNown and En-Yun Hsu (Ref. 13a), obtained in an open-jet water tunnel of 
13 in. diameter with a model of 1 in. diameter (Reynolds number Vd/v = 2 x 105). 

The agreement of theory and experiment is almost complete in this figure. The only experimental 
point which does not quite fall on the theoretical curve, is at x = 1, where the hemisphere is 
attached to the cylinder. This behaviour which is also to be observed in the following examples, 
was to be expected from theoretical considerations (cf. Ref. 9), as the boundary layer will somewhat 
smooth the rapid increase of the pressure at the points of discontinuous curvature where the 
theoretical pressure distribution has a vertical tangent. T he  small size of the model used in the 
experiments maizes it, however, difficult to separate the influence of the boundary layer from that 
of experimental errors and inevitable imperfections of the model as the horizontal distance Of 

the experimental point from the theoretical curve is only about 1/25 in. in actual size, and the 
diameter of the pressure hole was of the same order of magnitude (1/32 in.). 
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(b) 2 Caliber OgivaI Head. 
In, the case of a 2 caliber ogival head (Fig. 8b), the shape 'of  the body is given by 

+ V { 1 6 - ( ~ / 7 - x )  ~ } - 3 f o r  0 < x < ~ / 7  
y = (102) 

1 for ~/7 < x < co. 

As in the preceding example, y is again a univalued function of x. The  form (17) of the integral 

equation can therefore be used for the numerical work. But contrary to the case of a hemispherical 

head, the front part of the body has now to be considered as elongated; the iteration scheme (67) 
will therefore be more suitable than (66) for the solution. 

A suitable estimation for 7% is simply 

= 1 (lO3) 

which is likely to give rather small corrections almost everywhere on the body, except in the 
immediate neighbourhood of its b o w x = 0, where the solution y'~(x) must be zero. With Y~o - 1, 
the first approximation 

V%ffx) = 2 - f  ~ 
0 

P 

d 0 

J 
(lO4) 

was calculated (Fig. 13). Several points of the following approximation 7'~21 were then calculated 
and found ' to  be practically on the curve 7'~l(x) (small circles in Fig. 13). 7~'1(x) could therefore be 

considered as a sufficiently accurate solution of the integral equation. 
With 7~"(x) ~ 7'x~l(x), the pressure distribution of  the body was calculated from 

- 
y'~(x) 7':~'(x) 1 - for 0 ~< x ~< ~/7 

+ y ' 3  (105) 
VO~(x) for ~/7 < x < o~ 

and Bernoulli 's equation (101). The  result is plotted in Fig. 14 and compared with the experimental 
results of Rouse, M c N o w n  and Hsu (Reynolds m~mber 2 x 105, Ref. 13b). As in the preceding 
example, the agreement of theory and experiment is almost complete, with the exception of the 
transition from the curved head to the cylinder (x = ~/7). The  rapid increase of the theoretical 
pressure curve is here again somewhat  smoothed by the influence of the boundary layer. 

(c) Flat Head. 
In the case of a flat head with a ~} caliber radius (Fig. 8c), the shape of the body cannot be 

described by an equation y = y(x), as y(x) would not be a univalued function at the bow x = 0. 
The  calculation has therefore to be based on the general form (14) of the integral equation for 
w'X'(s). The iteration scheme (66) is likely to be suitable for the numerical work, as the body can be 

considered as ' thick' in its front part. 
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Introducing the length of arc s of the shape, the co-ordinates of a point (x, y) on the surface and 
their derivatives with respect to s become 

y(s) = s, x(,) = 0 

dy 1, dx I for 0 < s < 5 (106a) 

y(s) = 511 + s i n (2 s -1 ) ] ,  x(s) = 511 - cos(2s-1) ]  
~ T  

dy dx for ~ < s < 5 + ~ (106b) 
dss = cos (2s -  1), ~-s = s i n (2 s -  1) 

t 

y(s) = 1,x(s) = s - T r /  

% 

7, f o r ½ +  < s <  oo (106c) 

dy 0 ,dx  = 1 J :* ds ds 

The calculation of the kernel of (14) can be carried out as in the preceding examples and does not 

present any difficulties. 
A good estimation zv::~0 of the solution of (14) seems rather difficult. Fortunately the iteration 

converges so quickly that even a considerable difference between we0 and w '>: in the front part is 

not very important, w ~ will increase from zero at the stagnation point s = 0 to a maximum value 

greater than 1 somewhere on the curved part, then decrease again and tend rather quickly towards 

its asympotic value 1 on the cylindrical part. w'~o was therefore estimated as 

3s on the flat front disc (0 < s < 5) 

W*o(S) = 1-5 on the rounded part (5 < s < ½ + 4)  (107) 

l on the cylindrical part 5 + 7 < s <  co . 

With this estimated solution, two further approximations w*l and w~2 were calculated, using 
the iteration scheme (66). The result is shown in Fig. 15. On the front part of the body, the 
difference between w*0 and w~l is still rather great. Nevertheless, the difference between w~2 and 

w* 1 is very small, and so small in comparison with w~:'0 - w* 1 that w~'~ can be considered as a 
sufficiently accurate solution of the integral equation (14). 

The pressure distribution was then calculated from Bernoulli 's equation with w*'; ~ w'~ (Fig. 16). 

The comparison of the theoretical curve and the experimental results of Rouse, McNown and Hsu 

(Reynolds number 2 x 10 a, Ref. 13c) shows again a very good agreement between theory and 

experiment. 

7. Conch~sion. 
The direct iteration method described in the present report has proved suitable for the 

determination of the pressure distribution of symmetrical profiles and of bodies of revolution in 
longitudinal flow. The  amount  of numerical work required for this method being, however, rather 
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great, it will be restricted, from the practical point of view, to cases where the indirect methods 
are bound or at least likely to fail. This is especially the case, if the bow of the body is too blunt or 
if its shape is composed of arcs of different curves, e.g. circles and straight lines. 

The method was used for the calculation of the pressure distribution of a semi-infinite plate 

with a semi-circular leading edge and of a semi-infinite cylinder with heads of various shapes 
(hemispherical, 2 caliber ogival, } caliber rounded). In the latter case, the theoretical results could 

be compared with experiments. The agreement was found to be very close. Near the transition from 

the head to the cylinder, where the curvature of the shape is discontinuous, the theory gives a 
rather rapid increase of the pressure curve with a vertical tangent at the transition point. The 
experiments show that this rapid increase is somewhat smoothed in an actual fluid due to the 
influence of the boundary layer. 

It is of some interest to compare the minimum pressure of a cylinder (p--p0)min = {-- 3(½pV2)} 
with that of the semi-infinite plate with a semi-circular leading edge { -  1.65(½0V2)} and the 
minimum pressure of a sphere {-1.25(½pV2)} with that of the semi-infinite cylinder with a 
hemispherical head { -  0.77(½pV2)}. In each case, the minimurh pressure is considerably reduced 
by the influence of the attached straight part ( -  48% and - 38%). A similar behaviour may be 
expected for other shapes O f the head, if the body obtained by symmetrical continuation of the 
head with respect to the point where it is attached to the cylinder, has its minimum pressure at 
the centre. A suction peak near the bow of the head is of course likely to be less affected by the 
influence of the straight cylindrical part. 
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TABLE 2 

u*fir and v*Izr on the Cylindrical Part of the Body for the 
Calculation of K = (u* + y' v*)/~ 7 

7]cyl  

0 
- 0.01 
- 0 . 0 4  
- 0 .09  
- 0 .16  
- 0 .25 
- 0 .36  

- 0-49 
- 0 .64  
- 0-81 
- 1 . 0 0  

- 1 . 2  

- 1 . 4  

- 1.6  
- 1 . 8  
- 2 . 0  
- 2 . 2  
- 2 . 4  
- 2 . 6  
- 2 . 8  
- 3-0 
- 3-2  
- 3 . 4  
- 3 .6  
- 3 . 8  

- 4 . 0  

- 4 . 5  

- 5 . 0  

- 5 . 5  

- 6 . 0  

- 6 - 5  

- 7 . 0  

- 7 . 5  

- 8 . 0  

- 8 . 5  

- 9 - 0  

- 9.5  
- 1 0 . 0  

q?" X/Vcyl+ 10 7f:¢ d 7~oYl 

Y 
= 1  

~cyl 

1 
_ U q ~  

97 

O0 

0.905 
0 .684  
0 .554  
0 .462  
0 .389 
0 .328  
0 .276  
0 .230 
0 .189 
0-154 
0 .124  
0.101 
0 .0830 
0.0683 
0 .0567 
0 .0448 
0.0397 
0 .0336 
0-0285 
0 .0244  
o.o2'1o 
0.0182 
0.0158 
0 .0138 
0 .0122 
0-0090 
0 - 0 0 6 8  
0 .0052 
0.0041 
0.0033 
0 .0027 
0-0022 
0.0018 
0.0015 
0.0013 
0.0011 
0 .0010 

0 .0050 

Y - 0 .99  
~oyl 

1 

"/7 

32"9 

16"9 
2"57 
0"947 
0"588 
0 .442  
0 .354  
0-290 
0"238 
0-194 
0-157 
0"126 
0"103 
0"0840 
0.0691 
0 .0572 
0 .0477 
0 .0400 
0-0338 
0 .0287 
0 .0246 
0 .0212 
0.0183 
0.0159 
0-0139 
0 .0122  
0"0090 
0-0068 
0 .0052 
0.0041 
0-0033 
0 .0027 
0 .0022  
0"0018 
0-0015 
0"0013 
0"0011 
0-0010 

0.0050 

1 

- -  V q ~  

0 
- 2 5 . 1 2  

- 1 1 . 7 9  

- 5 .46  
- 3 .04  
- 1.89  
- 1.25 
- 0 .859  
- 0 .599  
- 0 .420 
- 0 .294  
- 0 .208 
- 0.151 
- 0-111 
- 0 .0832 
- 0 .0632  
- 0 .0485 
- 0 .0386 
- 0-0298 
- 0 .0236 
- 0 .0190 
- 0.0153 
- 0 .0126 
- 0-0104 
- 0-0086 
- 0 .0072  
- 0 .0048 
- 0.0033 
- 0 .0024 
- 0 .0017 
- 0 .0013 
- 0 .0010 
- 0 .0007 
- 0.0005 
- 0 .0004  
- 0 .0003 

- 0.0003 
- 0 .0002 

- 0.0005 

Y 

1 
q]- 

~cyl 

7"20 
6 ' 9 4  
4"61 
2"09 
1-048 
0"646 
0"457 
0-347 
0 .272  
0.215 

0"170 
0.135 
0-109 
0"0880 
0 .0720 
0"0593 
0 - 0 4 9 2  
0"0411 
0 .0346 
0 .0294 
0-0250 
0.0215 
0"0186 
0-0161 
0.0141 
0 .0124  
0.0091 
0 .0068 
0-0052 
0 . 0 0 4 1 .  
0.0033 
0 .0027 
0 .0022 
0 .0018 
0.0015 
0.0013 
0.0011 

0 .0010 

0.0050 

= 0 .95 

1 
_ ./.) e# 

"W 

0 
- 1.25 
- 3 . 1 7  
- 2 . 7 3  
- 1.80 
- 1.17 
- 0 . 7 8 8  
- 0 . 5 4 1  
- 0 . 3 7 6  
- 0 . 2 6 2  
- 0 . 1 8 2  
- 0 . 1 2 8  
- 0 . 0 9 2 0  
- 0 - 0 6 7 4  
- 0 . 0 5 0 1  
- 0 . 0 3 8 0  
- 0 . 0 2 9 0  
- 0 . 0 2 2 5  
- 0 . 0 1 7 7  
- 0 . 0 1 3 1  
- 0 . 0 1 1 3  
- 0 . 0 0 9 1  
- 0 . 0 0 7 4  
- 0 . 0 0 6 1  
- 0 . 0 0 5 0  
- 0 . 0 0 4 2  
- 0 . 0 0 2 9  
- 0 - 0 0 1 9  
- 0 . 0 0 1 3  
- 0 . 0 0 1 0  
- 0 . 0 0 0 7  
- 0 . 0 0 0 6  
- 0 . 0 0 0 5  
- 0 . 0 0 0 4  
- 0 . 0 0 0 3  
- 0 . 0 0 0 2  

- 0 . 0 0 0 2  
- 0 . 0 0 0 1  

- 0 . 0 0 0 5  
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T A B L E  2--continued 

7]oyl 

0 
- 0-01 
- 0-04 
- 0.09 
- 0.16 
- 0 . 2 5  
- 0.36 
- 0.49 
- 0.64 
- 0.81 
- 1 . 0 0  

- 1 - 2  

- 1 . 4  

- 1 - 6  

- 1.8 
- 2 . 0  
- 2.2  
- 2-4 
- 2 . 6  
- 2.8 
- 3 . 0  

- 3.2 
, -  3-4 
- 3 . 6  
- 3.8 
- 4 - 0  

- 4-5 
- 5 . 0  
- 5 . 5  
- 6.0 
- 6 . 5  
- 7 . 0  
- 7-5 
- 8 . 0  

- 8.5 
- 9 . 0  
- 9.5 
- 1 0 - 0  

1 f c o  g ~  

~r X/~cy l+  10 V ~# X}eyl 

Y 

"~eyl 

1 

"/7" 

3"93 
3"89 
3-45 
2"37 
1"40 
0"858 
0"577 
0"417 
0"314 
0.242 
0-187 
0-146 
0"116 
0.0932 
0"0755 
0"0618 
0"0511 
0"0425 
0"0357 
0"0301 
0-0257 
0"0220 
0"0190 
0"0164 
0-0143 
0"0125 
0"0092 
0"0069 
o.oo53 
0.0042 
0.0033 
0.0027 
0.0022 
0.0018 
0.0015 
0-0013 
0.0011 
0.0010 

0-0050 

= 0.90 

1 -- Vq~ 
7g 

0 
- 0 . 3 2 7  
- 1.138 
- 1-629 
- 1.445 
- 1.070 
- 0 . 7 5 8  
- 0 - 5 3 2  
- 0 - 3 7 3  
- 0 - 2 6 1  
- 0 . 1 8 1  
- 0 . 1 2 7  
- 0 . 0 9 0 8  
- 0 . 0 6 6 1  
- 0 . 0 4 9 1  
- 0 . 0 3 7 0  
- 0 . 0 2 8 3  
- 0 . 0 2 1 9  
-0 -0171  
- 0 - 0 1 3 4  
--0-0108 
--0-0088 
- 0 . 0 0 7 1  
-0"0058  
- 0 . 0 0 4 9  
- 0 . 0 0 3 9  
- 0 . 0 0 2 6  
- 0 - 0 0 1 7  
--0-0013 
--0"0009 
- 0 . 0 0 0 7  
-0"0005  
- 0 . 0 0 0 4  
- 0 - 0 0 0 3  
--0.0O02 
- 0 . 0 0 0 2  
-0.0001 

- 0 . 0 0 0 1  

- 0 - 0 0 0 5  

Y 

~qcyI 

1 
-- U# 
77 

2-82 
2-79 
2-66 
2-18 
1-52 
1"001 
0"677, 
0-481 
0"355 
0.267 
0-204 
0 '159 
0"124 
0'0986 
0"0790 
0"0644 
0"0530 
0-0440 
0-0367 
0-0308 
0"0263 
0-0225 
0"0193 
0"0167 
0"0145 
0"0127 
0.0093 
0"0070 
0"0053 
0"0042 
0"0033 
0"0027 
0-0022 
0"0018 
0"0015 
0"0013 
0"0011 
0"0010 

0.0050 

- 0.85 

. 

9T 

, 

- 0 - 1 4 8  
- 0 . 5 5 5  
- 0 . 9 7 6  
- 1.084 
- 0 . 9 2 5  
- 0 . 7 0 4  
- 0 . 5 1 2  
- 0 . 3 6 5  
- 0 . 2 5 6  
- 0 . 1 7 8  
- 0 . 1 2 6  
- 0 . 0 8 8 9  
- 0 . 0 6 4 7  
- 0 - 0 4 8 0  
- 0 . 0 3 5 9  
- 0 - 0 2 7 2  
--0-0208 
--0"0163 
--0"0127 
--0-0102 
--0"0083 
--0"0067 
--0"0056 
--0-0047 
--0"0038 
--0"0025 
--0"0018 
-0"0013  
--0"0009 
--0"0007 
--0-0005 
--0-0004 
--0"0004 
--0"0003 
--0"0002 
- 0" 0002  
--0-0001 

- 0 . 0 0 0 4  

Y 

'~cyl 

1 

~T 

2"26 
2"25 
2"19 
1"94 
1"51 
1'08 
0"754 
0 '537 
0"393 
0'293 
0"220 
0.171 
0"133 
0-104 
0-0825 
0-0669 
0-0548 
0"0454 
0"0376 
0.0315 
0"0268 
0"0230 
0"0196 
0"0169 
0.0147 
0.0129 
0.0094 
0.0071 
0.0053 
0.0042 
0-0033 
0-0027 
0.0022 
0.0018 
0.0015 
0"0013 
0-0011 
0-0010 

0.0050 

- 0.80 

1 

7r 

0 
- 0 . 0 8 4 2  
- 0 . 3 2 4  
- 0 - 6 2 6  
- 0 . 8 0 2  
- 0 . 7 7 5  
- 0 . 6 3 7  
- 0 . 4 8 3  
- 0 . 3 5 2  
- 0 . 2 5 0  
- 0 . 1 7 4  
- 0 . 1 2 5  
- 0 - 0 8 6 9  
- 0 - 0 6 3 4  
- 0 - 0 4 6 8  
- 0 . 0 3 4 7  
- 0 . 0 2 6 1  
- 0 . 0 1 9 7  
- 0 . 0 1 5 4  
- 0 . 0 1 2 0  
- 0 . 0 0 9 7  
- 0 . 0 0 7 8  
- 0 - 0 0 6 4  
- 0 . 0 0 5 ~  
- 0 - 0 0 4 6  
- 0.0038 
- 0 . 0 0 2 4  
- 0 . 0 0 1 8  
- 0 . 0 0 1 3  
- 0 - 0 0 0 9  
- 0 . 0 0 0 7  
- 0 . 0 0 0 5  
- 0 . 0 0 0 4  
- 0 . 0 0 0 4  
- 0 . 0 0 0 3  
- 0 . 0 0 0 2  
- 0 - 0 0 0 2  
- 0 - 0 0 0 1  

- 0 . 0 0 0 4  
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T A B L E  2--continued 

~ o y l  

0 
- 0-01 
- 0-04 
- 0.09 
- 0.16 
- 0.25 
- 0.36 
- 0.49 
- 0.64 
- 0-81 
- 1 . 0 0  

- 1 . 2  

- 1 . 4  

- 1.6 
- 1 . 8  
- 2.0 
- 2 . 2  

- 2 . 4  

- 2 . 6  

- 2 - 8  

- 3 - 0  

- 3 . 2  

- 3 . 4  

- 3 . 6  

- 3 . 8  

- 4 . 0  

- 4 - 5  

- 5-0 
- 5 - 5  
- 6 . 0  
- 6.5 
- 7 . 0  
- 7.5 
- 8 . 0  

- 8 . 5  

- 9 . 0  

- 9.5 
- 1 0 . 0  

7"i" x f i l c y l + l O  v* d ~cyl 

Y 

'r/eyl 

1 
__ U'-I¢ 

'77 

1.92 
1.92 
1.88 
1.74 
1.46 
1.11 
0-808 
0-584 
0.427 
0.316 
0.236 
0.182 
0.141 
0.109 
0,0858 
0-0693 
0.0565 
0.0466 
0.0385 
0.0323 
0.0274 
0-O234 
0-0200 
0-0172 
0.0149 
0.0131 
0.0094 
0.0071 
0.0054 
0.0043 
0.0034 
0.0027 
0.0022 
0.0018 
0.0015 
0.0013 
0-0011 
0.0010 

0.0050 

- 0.75 

1 
q r  

0 
-0 .0542  
- 0 . 2 1 1  
- 0 . 4 2 9  
-0 .601  
- 0 . 6 3 9  
- 0 . 5 6 5  
- 0 - 4 4 9  
- 0 . 3 3 5  
- 0 . 2 4 1  
- 0 . 1 6 9  
- 0 . 1 2 0  
-0 .0841  
-0 .0612  
-0 .0449  
-0-0331 
-0 -0249  
- 0 . 0 1 8 8  
-0 .0146  
-0 .0115  
-0 .0092  
-0-0075 
-0 .0061  
-0 .0051 
-0 .0043  
-0 -0036  
-0-0023  
-0 .0017  
-0 .0012  
-0 .0008  
-0 .0006  
-0 .0005  
-0 -0004  
-0-0003 
-0-0003 
-0 .0002  
-0 .0002  
-0 .0001  

-0 .0004  

Y 

~cyl 

1 

77" 

1"69 
1-69 
1"67 
1"58 
1-38 
1"11 
0.843 
0"623 
0"458 
0"339 
0.251 
0.193 
0"148 
0"114 
0"0891 
0"0716 
0.0582 
0-0477 
0.0395 
0-0331 
0"0279 
0"0237 
0"0203 
0-0174 
0-0151 
0.0132 
0"0095 
0.0071 
0"0054 
0-0043 
0"0034 
0.0027 
0"0022 
0.0018 
0.0015 
0.0013 
0-0011 
0.0010 

0.0050 

= 0.70 

1 
m 7 ) ~  
,'gg 

0 
- 0 .0377  
- 0 . 1 4 8  
- 0 . 3 0 8  
- 0 . 4 5 8  
--0.524 
- 0 . 4 9 4  
- 0 . 4 1 !  
-0 -315  
- 0 . 2 3 0  
- 0 . 1 6 2  
- 0 . 1 1 4  
- 0 .0812  
-0 .0589  
-0 .0430  
-0 .0315  
-0 .0237  
-0 .0178  
-0 .0139  
-0 .0109  
-0 -0088  
-0 .0071  
-0 .0059  
-0 .0049  
-0-0041 
- 0 .0034  
- 0 .0022  
-0 .0016  

• -0-0011 
-0 .0008  
--0.0006 
-0-0005  
- 0 .0004  
-0 .0003  
-0 .0003  
--0.0002 
-0 .0001  
-0 .0001  

- 0 .0004  

Y 

" ~ e y l  

1 

7/" 

1-41 
1"41 
1"40 
1.36 
1"25 
1-08 
0"874 
0"675 
0-508 
0.377 
0"278 
0"213 
0"161 
0-123 
0.0955 
0.0761 
0.0615 
0.0500 
0.0411 
0.0344 
0.0288 
0.0244 
0.0208 
0.0178 
0-0154 
0.0134 
0.0097 
0.0072 
0.0055 
0.0043 
0.0034 
0-0027 
0.0022 
0-0018 
0-0015 
0.0013 
0.0011 
0.0010 

0.0050 

- 0-60 

1 

0 
-0 .0209  
-0 .0828  
- 0 . 1 7 8  
- 0 . 2 8 2  
- 0 . 3 5 4  
- 0 . 3 6 9  
- 0 . 3 3 3  
- 0 . 2 6 9  
- 0 . 2 0 3  
- 0 . 1 4 6  
- 0 . 1 0 3  
-0 .0736  
- 0 .0532  
-0 .0385  
-0 .0281  
-0-02O9 
-0-0158  
-0 .0123  
-0 .0096  
-0 .0078  
-0 .0063  
-0 .0053  
--0.0044 
--0.0036 
--0-003O 
- 0 .001 9  
-0 -0014  
-0 .0010  
-0 .0007  
-0 .0005  
- 0 .0004  
-0 .0003  
-0 .0003  
-O.0OO2 
- 0 . 0 0 0 2  
-0 .0001  
-0 .0001  

-0 .0003  
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T A B L E  2--continued 

?~cyl 

0 
- 0.01 
- 0.04 
- 0-09 
- 0.16 
- 0-25 
- 0.36 
- 0.49 
- 0-64 
- 0.81 
- 1 . 0 0  

- 1 . 2  

- 1 . 4  

- 1 . 6  

- 1 . 8  

- 2 . 0  

- 2 . 2  

- 2.4 
- 2 . 6  
- 2,8 
- 3 . 0  

- 3 . 2  

- 3 . 4  

- 3.6 
- 3 . 8  
- 4 . 0  
- 4 . 5  
- 5 . 0  
- 5-5 
- 6 . 0  

- 6 . 5  

- 7 . 0  

- 7 - 5  

- 8 ; 0  

- 8 . 5  

- 9 . 0  

- 9.5 
- 1 0 . 0  

1 ( . c o  u *  s e 

J v* d 
7r X P l c y l + l O  7Icy I 

Y 

~cyl 

1 

7/" 

1"24 
1"24 
1"23 
1"20 
1"14 
1"03 
0"880 
0"708 
0"551 
0"411 
0"306 
0"229 
0"172 
0"131 
0"102 
0"0802 
0"0640 
0"0519 
0"0426 
0"0353 
0"0296 
0"0251 
0"0213 
0"0182 
0"0158 
0"0137 
0"0099 
0"0073 
0"0055 

0"0043 
0"0034 
0"0027 
0"0022 
0"0018 
0"0015 
0"0013 
0"0011 
0"0010 

-- 0.50 

1 

7r 

0 
-0 .0130  
-0 .0507  
-0 .111  
- 0 . 1 8 3  
- 0 . 2 4 5  
- 0 - 2 7 2  
- 0 , 2 6 2  
- 0 . 2 2 0  
- 0 - 1 7 2  
- 0 - 1 2 7  
-0 .0898  
-0 -0640  
- 0 . 0 4 6 2  
-0 .0331  
-0 .0243  
-0 -0180  
-0 .0135  
-0 .0105  
-0 .0083  
-0 .0068  

- 0 . 0 0 5 6  
-0 .0046  
-0 .0038  
-0 .0031  
-0 .0025  
-0 .0017  
-0 -0012  
-o.obo9 
-0 .0006  
-0-0005  
-0 .0004  
-0-0003  
- 0 . 0 0 0 2  
-0.0O02 
-0 .0002  
-0 .0001  
-0 .0001  

Y 

~ c y l  

1 

77" 

1"14 
1"14 
1"13 
1"10 
1-06 
0"984 
0"866 
0"719 
0"573 
0'436 
0.324 
0.242 
0.181 
0.138 
0.107 
0.0840 
0.0666 
0.0534 
0.0439 
0.0363 
0.0304 
0.0256 
0.0218 
0.0185 
0.0160 
0.0139 
0.0100 
0.0074 
0-0056 
0-0044 
0.0035 

, 0-0028 
0.0023 
0.0018 
0.0015 
0.0013 
0.0011 
0.0010 

= 0.40 

1 

77" 

0 
-0 -0084  
- 0 . 0 3 3 4  
-0 .0719  
- 0 . 1 2 1  
- 0 . 1 6 6  
- 0 . 1 9 4  
- 0 . 1 9 6  
=0.173 
- 0 . 1 3 9  
- 0 . 1 0 3  
-0-0741 
--0.0528 
-0 .0378  
-0.0273,  
- 0 . 0200  
-0 .0148  
-0 .0111  
- 0 .0087  
-0 .0069  
-0 .0056  
-0 .0046  
--0"0038 
-0-0031 
--0.0025 
-0-0021 
-0 .0013  
-0 -0010  
--0.0007 
--0.0005 
--0.0004 
-0 .0003  
- 0 .0002  
- 0 .0002  
--0.0001 
-0 .0001  
-0 .0001  
--0.0000 

Y 

?Tcyl 

1 

7/" 

1-07 
1-07 
1-06 
1-04 
1.02 
0-952 
0.853 
0.727 
0"586 
0.452 
0"338 
0.252 
0"188 
0"143 
0"111 
0.0866 
0.0685 
0.0551 
0.0450 
0.0369 
0-0309 
0-0261 
0-0221 
0.0188 
0-0162 
0.0141 
0.0101 
0.0075 
0.0056 
0.0044 

0.0035 
0.0028 
0.0023 
0.0018 
0.0015 
0-0013 
0-0011 
0-0010 

0.0050 -0 .0003  0-0050 -0 -0002  0-0050 

= 0.30 

I 1 

7/" 

0 
- 0 - 0 0 5 4  
- 0 .0214  
-0 -0468  
-0 -0780  
- 0 - 1 1 0  
- 0 . 1 3 5  
- 0 . 1 3 9  
- 0 . 1 2 7  
- 0 . 1 0 3  
-0 .0783  
- 0 .0564  
- 0 . 0 4 0 4  
- 0 . 0 2 9 4  
-0 .0213  
-0 .0157  
-0 .0118  
-0 .0087  
-0 .0068  
- 0 .0054  
- 0 . 0 0 4 4  
-0 .0036  
-0 -0030  
- 0 . 0 0 2 4  
-0 -0019  
- 0 .0016  
- 0 .0010  
- 0 .0007  
-0 .0005  
- 0 .0004  
-0 .0003  
- 0 . 0 0 0 2  
- 0 .0002  
-0 .0001  
-0 .0001  
-0-0001 
-0 -0000  
- 0 .0000  

--0.0002 
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T A B L E  2--continued 

m 

7~eyl 

0 
0.01 
0.04 
0.09 
0.16 
0.25 
O. 36 
0.49 
0.64 
0.81 
1-00 
1-2 
1.4 
1-6 
1-8 
2-0 
2.2 
2-4 
2.6 
2-8 

3 -0  
3.2 
3.4 
3-6 
3-8 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 

- 8.0 
- 8 . 5  

- 9 . 0  

- 9.5 
- 1 0 . 0  

u *  '~:  

v* d ~qcyl 7"/" x/~lcyl+ 10 

Y 

"qcyl 

1 

"/7 

-- 0"20 

1 
- -  a d ~  

7/" 

Y 
~ey l  

1 
"/T 

- 0 . 1 0  

1 
- -  , / )~  

Y 

"q eyl 

1 

7P 

- 0 . 0 0  

1"03 
1"03 
1"03 
1"01 
0"985 
0.927 
0"840 
0"707 
0.592 
0.461 
0"347 
0"257 
0"192 
0"146 
0"113 
0.0882 
0.0698 
0"0560 
0.0455 
0"0376 
0"0313 
0"0264 
0.0223 
0.0190 
0.0164 
0-0142 
0.0102 
0.0075 
0.0057 
0.0044 
0.0035 
0.0028 
0-0023 
0-0018 
0.0015 
0.0013 
0-0011 
0.0010 

O. 0050 

0 
-0 .0031 
-0-0126 
-0 .0284  
-0-0484 
-0 .0691 
-0 .0848  
-0 .0911 
-0 .0828  
-0 .0678  
-0-0522 
-0-0379 
-0-0269 
-0-0199 
-0-0149 
-0-0110 
-0-0082 
-0.0061 
-0-0047 
-0 .0037 
-0 .0030 
-0-0025 
-0 .0020 
-0 .0017  
-0 .0013 
-0 .0011 
-0 .0007 
-0 .0005 
-0 .0004  
-0 .0003 
-0 .0002  
-0 .0001 
-0 .0001 
-0 .0001 
-0 .0001 

0.0000 
0.0000 
0.0000 

-0 .0001 

1"01 
1"01 
1"01 
0"993 
0"965 
0.916 
0"834 
0.722 
0.595 
0"464 
0"350 
0"260 
0"195 
0.148 
0.114 
0.0891 
0-0703 
0.0563 
0.0457 
0.0378 
0.0315 
0.0265 
O.0224 
0.0191 
0-0164 
0-0143 
0.0102 
0.0075 
0.0057 
0.0044 
0.0035 
0.0028 
0.0023 
0.0018 
0.0015 
0.0013 
0.0011 
0.0010 

0-0050 

0 
-0 .0015 
-0 .0059 
-0 .0132  
-0 .0227 
-0 .0331 
-0 .0417 
-0 .0442  
-0 .0408 
-0 .0334  
-0-0264 
-0 .0191 
-0 .0137 
-0 .0104  
-0 .0076 
-0 .0057 
-0-0042 
- 0 . 0 0 3 2  
-0 .0024  
--0.0019 
-0 .0015 
-0 .0013 
-0 .0011 
-0 .0009  
--0.0007 
--0.0006 
-0 .0004  
--0 .0003 
--0-0002 
--0.0002 
--0.0001 
-0 .0001 

- 0 - 0 0 0 1  
0-0000 
0.0000 
0.0000 
0.0000 
0.0000 

-0 .0001 

1- 000 
1.000 
0-998 
0- 987 

! 
0- 963 
0.913 I 
0.834 
O. 724 
O- 598 
0.466 
0-353 
0- 262 
0-196 
O- 149 
0.114 
O- 0894 
O- 0705 ] 
0.0565 ] 
O. 0459 i 
O. 0379 
0.0316 
O. 0265 
O. 0224 
0.0191 
0.0164 
O. 0143 
0.0102 
0.0075 
0.0057 
0.0044 
O. 0035 
O. 0028 
O. 0023 

i 

0.0018 
O. 0015 
O. 0013 
0-0011 
O- 0010 

0.0050 

1 

7 r  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

- 0  
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
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T A B L E  3 

(1/,~)E(k '~) 

k ~ 0 1 2 3 4 5 6 7 8 9 10 

0.0 0.500 0.499 0.497 0.496 0.495 0.494 0.492 0.491 0.490 0.489 0.487 0.9 

0.1 0.487 0-486 0.485 0.483 0.482 0.481 0.479 0.478 0.477 0.475 0.474 0.8 

0.2 0-474 0.473 0.471 0.470 0.469 0.467 0-466 0.464 0.463 0-462 0.460 0-7 

0.3 0.460 0.459 0.457 0-456 0.454 0.453 0-451 0.450 0.449 0-447 0.445 0.6 

0.4 0.445 0.444 0.442 0.441 0.439 0.438 0.436 0.435 0.433 0-432 0.430 0.5 

0.5 0.430 0.428 0.427 0-425 0.423 0.422 0.420 0.418 0.417 0.415 0.413 0.4 

0.6 0-413 0.412 0.410 0.408 0.406 0.405 0-403 0.401 0.399 0-397 0.395 0-3 

0.7 0.395 0.393 0.391 0-389 0.388 0-386 0.384 0.381 0.379 0.377 0.375 0.2 

0.8 0.375 0.373 0.371 0.369 0.366 0.364 0-362 0.359 0.357 0.354 0-352 0.1 

0.9 0.352 0.349 0.346 0.344 0-341 0.338 0.334 0-331 0.327 0-323 0.318 0.0 

10 9 8 7 6 5 4 3 2 1 0 k '2 

27 



T A B L E  4 

(1/~-) [K(k 2) - E(k2)] 

k 2 

0"0 
0"1 
0"2 
0"3 
0"4 
0-5 
0-6 
0-7 
0-8 
0-9 

0 
0.0260 
0.0544 
0.0855 
0.120 
0.160 
0.207 
0.265 
0.343 
0.469 

10 

1 

1 

O. 00251 
O- 0287 
O. 0574 
0.0888 
O. 124 
0.165 
0.213 
0.272 
0-353 
0.488 

2 

0. 00504 
0.0315 
0. 0604 
0. O922 
0.128 
0.169 
0.218 
0.279 
0.363 
0.508 

0- 00758 
0- 0342 
0. 0634 
0- 0956 
0.132 
0.174 
0. 223 
0. 286 
0- 374 
0-531 

0.0102 
0. 0370 
0- 0665 
0. 0989 
0-136 
0.178 
0- 229 
0. 293 
0.385 
0.557 

0.0128 
0. 0398 
0- 0695 
0. 102 
0. 140 
0- 183 
0. 235 
0-301 
0- 397 
O- 588 

0"0153 
0" 0426 
0. 0726 
0- 106 
0" 144 
0. 187 
0. 241 
0.309 
0.409 
0. 626 

4 

0. 0179 
0.0456 
0' 0758 
0.110 
0. 148 
0" 192 
0.246 
0.317 
0.422 
0. 674 

0" 0206 
0"0485 
0. 0790 
0.113 
0.152 
0.197 
0.253 
0" 325 
0"437 
0" 740 

0.0233 
0.0514 
0- 0823 
0.117 
0.156 
0- 202 
0-259 
0.334 
0.452 
0.853 

10 

O- 026O 
O- 0544 
O. 0855 
O- 120 
O. 160 
O- 207 
O. 265 
O- 343 
0.469 

O0 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.0 

k,2 

TABLE 4a 

(1 fir) [K(k 2) - E(kZ)] f o r  k 2 ~ 1 in f u n c t i o n  

o f  k '~ = 1 - k ~ 

k'2 × lO-(S+n) × 10-7 × 10-6 × 10-5 × 10-4 × 10-3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

3.06 + 0.37n 
2.95 + 0.37n 
2.88 + 0-37n 
2.84 + 0.37n 
2.80 + 0-37n 
2-77 + O. 37n 
2-75 + O. 37n 
2.73 + O. 37n 
2.71 + O. 37n 
2- 69 + O. 37n 

2.69 
2.58 
2.51 
2.47 
2.43 
2.40 
2.38 

2 . 3 6  
2.34 
2.32 

2-32 
2.21 
2-15 
2.10 
2.07 
2.04 
2.01 
1.99 
1.97 
1.96 

1 96 
1 85 
1 78 
1 74 
1 70 

'1  67 
1.65 
1.62 
1.61 
1.59 

1.59 
1.48 
1.41 
1.37 
1.33 
1-30 
1.28 
1- 26 
1-24 
1.22 

1.22 
1.11 
1.05 
1.00 
0.965 
0.935 
0-911 
0.889 
0- 870 
0- 853 
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FIG. 1. Generation of a symmetrical body 
by a vortex layer on its surface. 
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FIG. 2. T h e  strength of the 
generating vortex layer per unit 
length of arc equals the velocity 

at the surface. 
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Fro. 3. Notation. 
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FIG. 4. Numerical example for the two-dimensional 
case: semi-infinite plate with a semi-circular leading 

edge. 
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FIG. 5. Semi-infinite plate with a semi-circular leading edge: kernel of the integral 
equation. 
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Semi-infinite plate with a semi-circular leading 
edge; solution 7*(x) of the integral equation. 

+ l  

°I 
x 

- 2  

J 

I 
I 

I 
i 

I t_.....--.-----..---~ 

/ 
I 

I 
i I  

z l 

1 f m  's I \ / 
'\, ii x 

- " 7i 

0 I 2 

FIo. 7. Semi-infinite platewith a semi-circular leading 
edge: pressure distribution, calculated from 728 . For 
comparison, the pressure distribution of a circular 

cylinder (dotted line). 

FIG. 8. Numerical examples for the three-dimensional 
case: semi-infinite cylinder with three different heads 
(hemispherical, 2 caliber ogival and ¼ caliber rounded). 
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FIO. 9. Kernel of the integral equation for a semi-infinite cylinder with a hemispherical 
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FIG. 11. Semi-infinlte cylinder with a hemi- 
spherical head. Solution 7*(x) of the integral 

equation. 
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Fic. 12. Semi-infinite cylinder with a 
hemispherical head. Pressure distribution. 
Theoretical curve and experimental results. 

(Re = 2 x 105, Ref. 13a.) 
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FIo. 13. Semi-infinite cylinder with a 2 caliber 
ogival head. Solution ~,e(x) of the integral equation. 
Circles = points of the second approximation y~le(x). 
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FIG. 14. Semi-infinite cylinder with a 2 caliber 
ogival head. Pressure distribution, theoretical and 

experimental. (Re = 2 x 10~.) 
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FIo. 15. Semi-infinite cylinder with a ~- caliber 
rounded head. Velocity distribution as function of the 

length of arc. (Solution of the integral equation.) 
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FIO. 16. Semi-infinite cylinder with a ¼ caliber 
rounded head. Pressure distribution as function of 
the length of arc, theoretical and experimental. 

(Re = 2 × 105.) 
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