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Summary. 
An inflatable lifting system basically consists of a flexible membrane attached to the periphery of a base 

containing an orifice. A load is suspended from the inner surface of the membrane and the base rests in contact 
with the ground; on inflating the device the load is raised and with suitable design and a continuous pressure 
supply the structure can lose ground contact and hover. An equilibrium configuration is said to have been 

reached when air is about to escape from the base orifice and ground contact is lost. 
A model of a system is considered in which the load is carried in a set of cords attached to the periphery 

of an annular base. These cords.are shorter than the length of fabric gore which lies between them and bows 
outwards under the excess pressure. The statics of  the structure are analysed and it is shown that for practical 
design purposes the base orifice area should be less than half the projected area of the canopy below theload 
suspension points. Possible equilibrium configurations are investigated and a method for calculating the fabric 
gore shape is given. Formulae for designing an actual system are included. 

Section 

1. 

2. 
i 

3. 

. 

L I S T  OF C O N T E N T S  

Introduct ion 

The  Model  

The o ry  of the System 

3.1 T h e  upper  canopy 

3.2 The  lower canopy 

Geometr ic  Parameters for the System 

4.1 A criterion for a possible equilibrium configuration 

4.2 Determinat ion of the configuration of the system with/~ < 1/~/2 

4.3 'Some practical considerations 

e Replaces R.A.E. Tech. Note No. Mech. Eng. 356--A.R.C. 24 501. 



Section 

5. 

LIST OF CONTENTS--continued 

The Calculation of the Gore Shape 

5.1 The upper-canopy gore 

5.2 The lower-canopy gore 

5.3 Stresses in the  fabric gore 

6. Conclusions 

List of Symbols 

List of References 

Table 1 

Appendices I to V 

Illustrations--Figs. 1 to 14 

Detachable Abstract Cards 

Appendix 

I. 

II. 

III.  

IV. 

V. 

LIST OF APPENDICES 

Evaluation of the elliptic integrals 

Tabulated co-ordinates for the canopy and gore shapes 

The configuration of the system before the equilibrium position is attained 

A higher approximation to the theory 

The configuration of the system with/z > 1/~¢/2 

LIST OF TABLES 
Table 

1. Values of )t and ~ for -~r/2 ~< 01 < ~/2 

Appendix H 

Table 

1. The lower-canopy co-ordinates 

2. The upper-canopy co-ordinates 

3. Gore co-ordinates for the upper canopy 

4. Gore co-ordinates for the lower canopy 

Appendix I V  

Table 

1. Higher-approximation co-ordinates for the upper canopy 

2 



•igu?'e 
1(i). 

l(ii). 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

L IST  OF I L L U S T R A T I O N S  

Diagram of a lifting system showing the notation used 

Sectionalised view of a lifting structure 

A section of the upper canopy 

Sectional forms for the upper canopy 

Diagram of a lifting system with single-point suspension 

A lifting system with an upper canopy and negative value of/3 

Diagram showing the notation used for the gore generation 

Diagram showing the notation used for the gore generating circle' 

Diagram showing the notation used for determining the gore length 

The complete gore 

Curves for the lower canopy 

An example of an upper-canopy semi-gore with a/h = 2.0 and n = 8 

Examples of the lower-canopy semi-gores for R/h = 2.0; n = 8; /~ = 0.5050, 

0.6585 and 0.6960 

Upper-canopy cord configurations for a/h = 2.0 (higher approximation) 
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1. Introduction. 
The general concept of an inflatable lifting system can be understood by considering a-flexible 

imporous membrane which is attached to the periphery of a base; this base, which may be regarded 
as rigid, is in the form of a disc with either a single orifice or an array of several orifices. For a 
completely collapsible structure the base is assumed to obtain its rigidity by means of, for example, 
inflated fabric ribs. A load mass is attached to points on the inner surface of the membrane by a 
series of cords. A mechanical unit is provided to inflate the system and when the pressure difference 
between the region interior to the membrane and the atmosphere is sufficient the load is lifted 
from the plane and supported by tensions in the fabric structure. On further increasing the pressure 
the system takes up some characteristic shape and a stage is reached where air commences to 
escape from the base orifice(s); by using a continuous air supply the whole structure can be made 
to leave the plane and hover. The position in which air is about to escape from the base orifice is 
regarded in this report as the equilibrium position. Whilst the load is being raised to this so-called 
equilibrium position and the base is still in contact with the plane there must be a ground reaction 

on the base; once the system loses physical contact with the plane this reaction is zero. 

This report is concerned with the equilibrium configuration of the structure when air is about 

to escape from the base orifice and the system loses contact with the plane; its object is to determine 

the shape taken up by the membrane and, if possible, to specify the optimum position for the 
cords supporting the load. The attraction of devices of this nature rests in their ability to raise a 

load of, say, 10,000 lb with a pressure difference of the order of 0.1 atmospheres or less. The 
system does not always work as intended: sometimes air escape occurs before the load has even 
been raised, or the base buckles and adequate pressurisation is impossible. In consequence, it is 
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desirable to provide some theoreticalguide' to design procedure for the basic structure: as a tentative 

approach to the problem a particular model is considered, based on the theoretical model for the 
parachute with cords over the canopy 1, which, although possibly unrepresentative of devices which 

have been constructed, is amenable to an approximate theoretical analysis and may. assist in  the 

formulation of a more generally applicable theory. 

Some brief observations are made in Appendices on the events occurring from the start of 

inflation to the attainment of the equilibrium configuration and on a higher approximation to 

the theory. 
It should be remarked that the report is not-concerned with the dynamical problems involved 

once ground contact is lost and air escape occurs. 

2. The Model. 

The base for the structure is assumed to be a circular annular hoop of outer radius R 1 and inner 
radius b; this doesnot imply that the analysis only applies to a structure with a single circular base 
orifice, it is valid for any arrangement of orifices having an area equivalent to that of the circle of 

radius b, i.e. 7rb 2. However, where several orifices are employed they must be suitably arranged to 
maintain stability and symmetry and allow for control of the device when hovering. Attached at 

each of n points at equal intervals around the outer circumference of the base is a cord of length L, 

where L is greater than R1; these cords are referred to as generator cords and their ends are joined 
together to form an apex at O. At a distance s I from 0 along each of the generator cords, is attached 

another cord of length l, referred to as a load cord, and these cords are attached to the load mass M. 

The surface regions between the generator cords and the outer circumference of the base are 

spanned by imporous fabric, the load cords passing through seals in the fabric, so that when the 

base is resting on a plane and the generator cords are fully extended, as if the system were suspended 

from the apex O, the configuration resembles a conical shell. For the present it is assumed that the 

shape of the fabric lying between adjacent generator cords, i.e. the gore shape, is undefined but 

there is a certain fullness in this fabric and it is gathered along the generator cords and can billow 

between them. The fabric, generator and load cords are all assumed to be inextensible and to 

have no flexural rigidity. 

When a positive pressure difference occurs between the inner region of the fabric shell and the 

atmosphere the generator cords take up a characteristic shape and the gore fabric bulges outwards 
between them. With a sufficiently high pressure differential and suitable geometry the load is raised 
from the plane and the final configuration may resenlble that shown in Fig. 1(i). A sectionalised 
three-dimensional view is shown in Fig. l(ii). 

It is assumed that the whole of the load is carried by the tensions in the generator cords and that 
the fullness of the gore fabric is such that only circumferential tension, which is assumed constant 
over the length of a gore, exists in it. Physically there must be some generator tension in the fabric 
gores, but gathering along the generator cords relieves this and it is to be expected that the generator 
tension can be made very small in comparison with the circumferential tension. 

The masses of the canopy, load cords and base are assumed negligible in comparison with the 
mass of the load; but, if a heavy base is used, account should be taken of this and the basic equations 
suitably modified. 

The fabric region above the points of suspension of the load cords is called the upper canopy 
and the region between these points and the base is the lower canopy. The pressure difference 
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across the whole of the canopy's surfaces and the base is assumed constant and equal to p; this 
assumption is reasonable before air escape occurs but may not be adequate once the structure leaves 

the ground, discussion of this situation is outside the scope of the present report. 
In Fig. 1 a point load is shown suspended by the cords attached to the suspension points, this 

involves ,some bracing of the structure. The same configuration could theoretically be attained by 

distributing the load uniformly around the suspension-point interface in the form of a ring of 
radius rl,  or as point loads M g / n  acting at each of the suspension points; in the latter case it would 

be necessary to connect radially opposite suspension points by cords in order to brace the structure. 

3. Theory  o f  the S y s t e m .  

Let the tension in the upper-canopy generator cords be T1; in the lower-canopy cords Tz; and 

in each load cord F. The lower-canopy generator cords leave the base at an angle ~ with the plane, 

as shown in Fig. 1, and in consequence there is a radial tension T8 in the base to balance the 

horizontal component of the generator-cord tension. Vertical distance x is measured downwards 

from O or O' and the radial co-ordinate from this vertical axis is r. The maximum distance of the 

upper-canopy cords from the axis is a and of the lower-canopy cords is R; the radius of the 

suspensi0n-point interface is r v The total arc length from a suspension point A to O, the apex, 

is s t and from A to C a point on the base, is s~. The tangent to the upper-canopy cords makes an 

angle ~b with Or and the tangent to the lower cords an angle 9- At A the upper-canopy cord makes 

an angle a with the horizontal and the lower-canopy cord an angle/3; the load cord for a point 

load is inclined at V to the horizontal. Fig. 1(i) as drawn shows the angle/3 measured counterclockwise 

and positive; this is for convenience in the analysis. In practice a positive/3 is undesirable since the 

tension in the lower canopy is then tending to pull the load down rather than raise it. It is normally 

expected that/3 will be negative for an efficient system and to this extent Fig. l(i) represents an 

impractical design. 
For the arc length from O to C: 

s t + s~ = L.  (1) 

For the upper canopy, neglecting the additional projected area due to bowing out of the gore: 

pzra ~ = n T  t .  (2) 

For the suspension-point interface: 

n T  x sin ~ - nT~, sin3 = nFs in  V = M g .  (3) 

For the whole system: 
= M g .  (4) 

For the lower canopy, again neglecting the added area due to bowing out of the gore, and using 

equation (4): 

For the base: 
pzr R ~ - M e = n T 2 = prr( R ~ -  b2) . 

pTr(R1 ~ -  b ~) = n T 2 sin 3. 

T3= T~ cos ~. 

(5) 

(6) 
(7) 

These equations only apply when air is about to escape and the ground reaction is zero: 

Appendix III  deals with the situation occurring before full inflation and Appendix IV gives the 

theory including the effect of additional projected area due to bowing out of the gore fabric. 



3.1. The Upper Canopy. 

The  equil ibr ium of the fabric be tween two planes corresponding to x = x and x = x + 3x is 

considered. For  an element  of generator cord 8s the outward pressure forces must  balance the 

tension. T h e  tension in the fabric where  it meets  the generator cord is everywhere  at right angles 

to the cord and so the tension in the cord is constant over its length. 

Referring to Fig. 2, which represents a section of the upper  canopy: 

2wr 
T 1 sin 3~b - p - -  8s 

n 

or, in the limit: 
2 ~ r  

T~8~h = p - -  8s. (8) 
n 

Also 
a, = as cos #s. (9) 

N o w  

and using (2): 

&b 3~b 8s 21rr 1 

dr - 8s 8r = p n T ~ c o s ~ b  

2r 
cos $ = (10) 

T h e  integration of (10) gives 

' [sin ~bl ,1, 
J a  ~P0 

but  

= . 

La _l o' 

therefore 

-gg 

r o = a when  ~o = ~ and 

r 2 
sin #, = a- ~ (11) 

which  gives the equation of the upper -canopy  generator cords. This  equation (11) represents the 
wel l -known Taylor  shape. 

At the suspension points A: 
r = r 1 and ~b = ~ r - ~ ,  

hence 
r l  = = a 2 sin ~. (12) 

3.2 The Lower  Canopy. 

Similarly for the lower-canopy generator cords 

2 ~ r  
T=8~ = p - - -  8s 

n 

and using (5): 
8r = 3s cos so 

dq~ 2r 
c o s g d r  - R ~ - b  ~" 

(13) 

(14) 
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Intregrating this 

F [sin ~o]g = LR T -  b ~ j r  ° . 

When 
~00 = /3, Y0 = rx  = + ( a2  sin ~)1/~ ; 

therefore 
r ~ - a s sin 

sin 9 - sin/3 = R~ _ b2 

When 

therefore 

9T 
c ? = ~ ,  , r=  R; 

( R  z - b 2) s i n / 3  = a ~ s i n  c~ - b ~ . 

Thus, from (15) and (16), 

sin 9 = \ ~ b _  b2 ] 

which gives the equation of the lower-canopy generator cords. 

(15) 

(16) 

(17) 

4. Geometric Parameters  f o r  the Sys t em.  

The equatiops of the upper- and lower-canopy generator cords enable the arc lengths and vertical 

co-ordinates of the system to be calculated. For the upper canopy: 

r ~ dr 
a- ~ = sin ~b and ds - cos ~b 

whence 

s = 2 Jo  ~/sin ~b 

and the total arc length s 1 from O to A is given by. 

s 1 _  1 ( ~ - ~  d~b 

a 2 J 0  ~/sin~b" 

For the vertical co-ordinate x, measured from O: 

dx = tan Sdr 

and hence 

f #  ~/sin ~bd$ 
a 

and the height of the upper canopy alone is given by 

fTr--~ x 1 _ 1 @sin ~bd4s. 
a 2 o 

Similarly for the lower canopy where 

r 2 - -  D ~ 

s i n ~ -  R~ _ b2, 

s = j ~  2V{(R~_ b~ ) sin qo + b2}" 

(18) 

(19) 

(20) 

(Zl) 

(22) 



Setting 
b = /~R where 0 < /z  ~< 1 

the total arc length s~ from A to C is given by 

s~ _ 1 ~ , ~ - s  (1-/*~)d9 

R 2 Jp ~/{(1 - / ,~)  sin 9 +/,~}" 

For the vertical co-ordinate x, measured from O': 

x _ 1 ( ~  (1 - /x  ~) sin 9d~o 

R 2 J z  ~/{(1 - t  *2) sin 9 +/,=} 

and the height of the lower canopy is 

X 2 

R 

The  integrals involved in (18) to 

evaluation is given in Appendix I. 

(23) 

(24) 

(25) 

1 ?~-e (1 - / ~ )  sin ~d 9 
(26) 

2 JB ~/{(1 - t ,  ~) sin ~o +/,2}" 

(26) are all elliptic and their reduction to standard forms and 

4.1. A Criterion for a Possible Equilibrium Configuration. 

Consider the equation for the lower generator cords: 

r 2 _ b 2 

sin 5o = R~ _ b~. 

Now r is always real and positi~/e and 

[sinai 1 ; 
hence 

r 2 - -  b 2 

~ _ - ~  ~ 1, 

o r  

R z - r; 
1 R~ - ~< 1, 

therefore 
R 2 _ r 2 

R ~ _ b ~ 

With b = / z R  and 0 < / ,  ~< 1 this becomes 

~<2. 

0 ~< R 2 - r 2 ~< 2(1-/~2)RZ 
o r  

r 2 /> (2/, 2 -  1)R ~. 

For it to be possible to make a system consisting of a lower canopy only with a single suspension 

point at the apex this inequality must be valid for all r <~ R and can then only be satisfied if 

2t~ ~ - 1 ~ 0. (27) 

Hence, in these circumstances, before.an equilibrium configuration can exist it is essential that 

R 
o < b .< V--2" (28) 



This implies that wkh a single-point suspension the maximum load which can be lifted is 

7rR2 (29) 
, Mg=prrb ~<~p-2 ' 

but this, as shown in Section 4.3, is practically somewhat lower. Thus, for a given maximum lower- 
canopy radius R and pressure difference p, the maximum load is specified by the limitations on b. 
The effective maximum lifting surface of the system is equal to half the maximum projected area 
of the lower canopy. For a system.to be designed to carry a load from multiple points and also to 
be usable with single-point suspension the relations (28) and (29) must still be applied. 

If a system is only required to carry a load from a number of points and a possible single-point 
suspension is excluded, the restriction (27) on the value of/z no longer applies. Instead it is essential 
to have an upper canopy with the radius at the suspension-point interface satisfying the inequality 

This situation presents some difficulties for it will be shown that when/~ is larger than say 0.6 to 0.7 
the lower canopy becomes Very squat and may not be high enough to accommodate the load beneath 
the suspension points. To overcome this it appears that for large values of/x the load would have to 
be cantilevered from the suspension points to get it clear of the ground. It is questionable whether 

this is of practical value. 
In general the ensuing analysis applies only to the cases where 0 </z ~< 1/@2 and single-point 

suspension is possible. Appendix V considers the problem with/~ > 1/@2; separate consideration 
is necessary since the integrals (24) to (26) for the arc length and height of the lower canopy lead to 
different results in general, depending whether / ,  is greater or less than 1/@2. 

Further limitations on the value of/* arise in Section 4.3 where the height of the suspension 
points above the ground is considered, and the more accurate analysis of Appendix IV shows that 
the restrictions on/~ can be slightly relaxed. The practical limit for/z however appears to be largely 

unchanged when the limits of the theory are borne in mind. 

4.2. Determination of the Configuration of the System with/~ < 1/@2. 

In order for the configuration of the system to be determinate the values of some of the geometric 
parameters involved must be specified. Suppose, for example, that the given factors are the annular 
base radii, R 1 and b; the maximum radius of the lower canopy R; and the two arc lengths s 1 and S2: 
a knowledge of these factors is sufficient to determine the resulting configuration of the whole 

system. From equ~/tions (19) and (24): 

Sl = s l (a ,  

from equation (16): 

and from equation (17): 

= b, 3); 

= a ,  b ,  

= * ( R .  R, b). 

These four equations involve the four unknowns ~, /3, 3, and a and the problem is determinate. 
The solution of the equations is a rather cumbersome though straightforward process involving 
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the use of tabulated values of elliptic integrals. When a, ~, 3 and a havebeen  determined it is possible 

to calculate the vertical co-ordinates, x, for the system, and the radial co-ordinates r, thus enabling 

the configuration to be plotted graphically. For  a given load the required pressure can be obtained 

f rom equation (4) and the resulting tensions in the generator cords and base hoop from equations (2) 
to (7). 

To  discuss possible equil ibrium configurations the results obtained in Appendix I for the 

geometric parameters of Section 4 are required and a summary and discussion of these results 

follows. 

For  the arc length of the upper  canopy measured from O to some point on the generator cord 
with co-ordinate ¢: 

s 1 (rr @2 ) 1 F ( ~ _ _ _ _ ~ )  a-V Y - V 2  o, (30) 
where 

0 = cos -1 (~/sin ¢) (31) 

and the total arc length s 1 is given by putt ing ¢ = 7r - c~. Now the maximum value for ~b is ~r - c~ 
and ~ can take values such that 

0 < a < ~ - ,  

when ~ is measured in a clockwise direction as in Fig. l(i); an increase in s I thus results in a decrease 
in ~. The  corresponding range for 0 may be taken as 

"W 71" 

where 0 = - 7r/2 corresponds to a = 0 and 0 = + ~/2 corresponds to ~ = ~r. Depending on the 

angle ~ the upper  canopy is either a section of the curve taken by a plane which lies above the 

plane containing r = a, or a section by a plane lying below that containing r = a. These  two 

sections are shown in Figs. 3(i) and (ii). 

For  the vertical co-ordinate of the upper  canopy the result obtained is: 

- ~ / 2 E  O, , + ~ F  O, (32) 

where the range corresponding to 0 < ~b < 7r is 

7r TF 

For  the lower canopy s is measured from A to some point on the generator cord with co-ordinate 

% where ~o has a maximum value of 7r - 3 and a min imum value of fi, where fi may be negative. 

I f  there is no upper  canopy at all the minimum value of fl occurs when r = 0 and then 

~2 

Even with an upper  canopy fi is still negative where r < b. These  cases are illustrated in Figs. 4 
and 5. , 
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The arc length s for the lower canopy is given by 

s ~/(1 - / z  2) F (~:1, 1 ~/{2(1_ __/~Z)}) ~ / (1 - /~  2 ) (6:, 1 ~/{2(f -/xz)}) (34) R - @2 , ~/2 F , 
where 

~1 = cos  1~/{(1-/~z) sin/3 +/~z} (35) 
and 

6: = cos-~¢/{(1 -/*~) sin ~ +/z~}. (36) 

For  - ~-/2 ~ q) ~< 7r/2, ~ must  be taken to lie in the range ~r/2 t> 6:>1 0 where ~ = 0 corresponds 
to qo = 7r/2 and 6: = ~r/2 corresponds to ~o = sin-l{/,~/(1 _/o.)}. When q~/> 7r/2, ~ lies in the range 

0 /> ~ / > - ~ r / 2  where 6: = 0 corresponds to ~o = 7r/2 and ~ = -  7r/2 corresponds to 

cp = - sin-l{/~/(1-/z~)} + ~r. The  total arc length s2 from A to C is given by equation (34) with 

~o = 7 r -  3. 
The  vertical co-ordinate x, measured downwards  from A, for the lower canopy, is given by 

- =  - 

~/{2(1 -/z2)}) E 

~/{2(f_/z~)))_ ] (37) 

with the corresponding ranges of 6: and q) as for the arc length s. N o w  from equation (16) 

a 2 s i n a  = b ~ + ( R  ~ - b  2) sin/3 

and using (23) and (35) 

therefore 

But 

where 

a ~ sin a = /z~R 2 + (1 - /z2)R ~ sin/3 = R 2 cos 2 ~1 

a~/sin a = R cos ~:1. 

~/2 s 1 ~/2 sly/sin ~ ~/2 s 1 cos 01 
a a~/sin a R cos 6:1 

cos 01 = ~/sin 

' and hence equation (30) can be writ ten in the form 

Let 

then 

R cos 6:1] cos 01 = F 2 '  - F 01,  ~ - ~  . 

(38) 

(39) 

11 

Values of this function h for - ~v/2 ~< 01 ~< ~r/2 have been calculated and are given in Table  1 with 

the corresponding values of a. 

A = . ~ / 2  s 1 ( 4 0 )  

R cos 6:1 



At 01 = rr/2: 

f 1 F 01 , 

A ( 0 1 =  2)  = Lt ' ~ / ~  - ~-2 

and at 01 -- ~r/2 this is indeterminate. Applying L'HSpital 's  rule: 

= 

01---->hi2 

01_,~/z sin 01@(1- ½ sin S 01 

which is determinate at 01 = 7r/2; 

therefore 
A ~ a / 2 .  

When 01 = - 7r/2, )t is infinite and hence A is restricted to lie in the range 

oe > ~ > v /2 .  (42) 

Thus  for a possible equilibrium configuration A must be greater than ~/2, and from (40) it follows 

that  the inequality 

S1 
> cos ~1 (43) 

must be satisfied. 

But 

s 1 $ 3 L 

R + R - R  

• and hence the following inequality must also be satisfied 

S~ L (44) ~, + co s  ~:1 < ~. 

It  is now a quite simple matter to determine whether a given system can have an equilibrium 
configuration, and conversely it is possible to predict systems which will have an equilibrium 

configuration and be capable of supporting a given load under a given pressure. 
As an example of the assessment of a system suppose that R1, R, b, s 1 and s~ are given. It  is firstly 

postulated that 
b 1 0<~=~</--~. 

We calculate sJR and also 

s in3  = R 1 2 -  b2 
R ~ _ b ~ . (45) 
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Now from (34) 

where 

and 

also 

s~ _ V(1- / .2)  IF  @1, 1 
.R V 2  V{2(1 -/*=)}) - 

~, = cos-* ~/{(1 -/*~) sin 13 +/.2} 

7r 
Ox~- ~lX< ~ , 

~2 = c°s-1 ~/{(1-/*~) sin 8 +/.2}. 

From equation (45) there are two possible values for 8: 

(i) such that 8/> 7r/2 when 0 ~< ~2 ~< ~r/2 and 

(ii) such that 8 ~ ~r/2 when - 7r/2 ~< ~2 ~< 0. 

1 
F @~, /{2(1_t~)})1 (46) 

(47) 

(4s) 

For 8/> 7r/2, s~/R cannot be greater than the maximum possible arc length between the points where 

hence the  inequality 

/.2 ) ~r 
~o = sin-* 1 7/.2 and ~o = ~:  

,~ V(1-/*=) (= 1 ) 
R < ~/z F ~,o ¢{2(i-/*~)} 

must be satisfied. 
For 8 ~< rr/2, s~/R cannot be greater than the maximum arc length between 

(49) 

and hence 

/,2 /*2 

1 )  
< ~/{2(1-/*~)}F 'V{2(~-/.2)} " 

It should be noted that the inequalities (49) and (50) merely provide upper bounds and do not tell 
us whether 8/> ~r/2 or ~< rr/2, unless the inequality (50) is satisfied and (49) not satisfied; in this 
case 8 must be > rr/2. If the inequality (49) is satisfied 8 may lie in either region. 

Let us suppose that the inequality (49) is satisfied without (50) being satisfied, or that both (49) 
and (50) are satisfied; it should then be possible to find the equilibrium configuration. Suppose 
it is assumed that 8 1> rr/2 with 0 ~< $2 < ~r/2. 
We foim 

,~ V(1-/*~) 1 
R + ~/2 F @2' ~/{2(1-/.2)}) 

and using a set of tables of elliptic integrals we endeavour to find a value of ~,, such that 
0 <~ ~, <~ rr/2, which makes this expression equal to 

V(1-t* ~) (~,, i 
V2 F V{2(1-/*~)}) 
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If  there is no value of ~1 satisfying this then 8 < ~r/2 and - ~r/2 ~< ~ < 0. In this manner the value 
of 8 is found and also the value of ~1. Equation (47) now enables fi to be found and 

where 

An equilibrium configuration 

c°s~ ~1 -/*~ 
sin/8 = ~ 1 - / x  ~ (51) 

/.2 ) rr 
sin-1 1---f* ~ < p < 2 "  

then exists if 

S 1 
> c o s  6 .  

Since s 1 is given, A can be calculated and the corresponding value of ~ found from Table 1. 
Equations (32) and (37) can then be used to find the vertical co-ordinates x for the system and the 

configuration can be plotted graphically. 
As another example of the assessment of a system suppose that the total generator-cord length L, 

the base radii R 1 and b, and the maximum lower-canopy radius R are given. Again, for equilibrium, 

it is postulated that 
b 1 

0 < < 

We calculate L/R and if this is such that 

> 

then an equilibrium configuration exists provided that 

s~ Cr 1 }) 
< ~ /{2 (1 - /~ )}F  ~ , - / { 2 ( f _ / , 2  ) . 

I f  

then s~/R must be chosen so that 

s 2 L 
+ c o s  < 

and since 0 ~< ~1 ~< rr/2 this can be done with the aid of a set of tables. Having chosen s 1 and s 2 to 
satisfy the equilibrium conditions we may proceed as before and determine the complete 
configuration of the system. 

4.3. Some Practical Considerations. 

It is necessary to remark that, although the analysis of Section 4.2 may indicate that the system 
has an equilibrimn configuration, it does not follow that this configuration is of any practical use: 
it is essential for the suspension points to lie above the plane surface at the base level otherwise 
the load can never be raised, and these points must also be high enough to accommodate the load 

and still allow i t  to be raised above the level of the base. This statement may seem trivial and 
obvious but it imposes limits on the values which can be taken for fz which are more str ingent 

than that of 0 </* < 1/~/2. 
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In  Fig. 10 are plotted some members of the family of curves for the lower canopy where 

sin 9 = R--T7 b~ = 1 - / z  2 

and reference to these curves readily reveals some interesting features. The maximum height of 
the suspension points for the load above the plane surface where q0 = % 8 = 0 and r/R = /z occurs 

• when they are situated at the upper points given by ~ = O, r/R = /x. I f  full advantage has to be 

taken of the maximum height of the lower canopy then the base angle 8 must be zero; if 8 = ~r/2 
then only half of this maximum height is available. The  maximum height H can be obtained using 
equation (37) with ]3 = 0 and 9 = ~ and is given by 

H _  2~/{2(1 _/~2)} E [cos_l ~, 1 Icos_l/x ' 1 

with 
qT 

0 < cos -1~  < 2" 

Values of H/R have been calculated for/z up to 0.7 and are given approximately in the Table below. 

TABLE 

Values of H/R for O. 1 <. tz <. O. 7 

b 
~ = ~  

0.1 
•0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

--=- = o )  

1"19 
1-14 
1"05 
0"96 
0"83 
0.70 
0"54 

[The values given are only approximate: the reason for this is that the elliptic-functions tables of 
E(O, k) and F(O, k) are usually given with sin - i  k at intervals of 1 ° and 0 at intervals of 5 °. In order 
to obtain accurate values at intermediate points extensive interpolation is necessary, and in the 

circumstances not Worthwhile, for the figures given should be accurate to about + 2% which for 
all practical purposes is adequate.] 

I f  the system is to be efficient in the sense that the heaviest possible load can be lifted with the 
minimum pressure difference then ~ should be fairly large, say 0 .6  to 0.7. A disadvantage occurring 

here is that when/z  is of this magnitude then H/R is rather small (about 0.6) and the lower canopy 

is rather squat; a large upper canopy may thus be required to accommodate the load. If  the load is 
rather bulky and a tall lower canopy is required then the efficiency must be reduced and a higher 
pressure difference applied to raise the load. The  upper canopy must in any case be such that the 
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load suspension points lie above the base level 3 = 0, qo = 7r and in Fig. 10 the curve for/~ = 0. 6960 
immediately shows that the radius of the circle at the suspension-point interface, rt, must  be such 

that r l/R is greater than approximately 0.1 ; there is thus a minimum size for the interface radius r 1 

whenever /z  exceeds a certain value: this value can be determined by considering the case where 

there is no upper canopy. The  first acceptable configuration (which is practically useless) is that 

where the singl e suspension point is on the same level as the base S = 0, 9 = ~r. By plott ing the 

difference between the maximum height ratio H/R and the distance between the suspension point 

where 

and its image point where 

/£2 

/,2 

(again as a ratio of distance/R), against/x, the value of/x for which this difference i s  unity can be 

obtained and gives the critical value for/~ as being approximately 0.665. Hence, whenever/~ exceeds 
0. 665 there must be an upper canopy and by plotting the curve for the required value of /z  the 

minimum value for r 1 can be determined. Also, in order to make a system without  an upper canopy 

and with a single suspension point it is essential that /x should be less than 0. 665. 
These criteria for/~ have been referred to the case where 8 = 0 and if the system is designed 

With 8 other than zero, say lying between 0 and ~r/2, the critical value for/z at which the suspension 
points are level with the base is further reduced and must be determined for each individual case 

by reference to the curve of 

sin qo - 1 - /~2 

for the appropriate value of/~. For 3 = ~/2 the critical value is approximately/~ = 0" 6. 
Practically, in order to keep the weight of the system and the amount  of material used to a 

minimum it should be designed with the annular base of the same outer radius as the maximum 
radius of the lower canopy. The  angle ~ is then 7r/2 and there is no radial tension in the base hoop. 

However, if a wire grommet or tension cord is used for the base, R 1 = b, and then S = 0. A certain 
amount of extra fabric is required below the point B and the base cord may have to be substantial 

to withstand the radial tension loads. A poss!ble shape is shown in Fig. 5. 
If, on the other hand, S is larger than ~r/2, the lower canopy does not attain the maximum radius R 

and there is a radial compression on the base. With the system envisaged the whole device is 

intended to be collapsible and the rigidity of the base obtained by means of inflated ribs; these may 
be satisfactory under tension but are liable to buckle under  fairly low compression and it would 

appear undesirable to have a system designed with 3 > 7r/2. 
In general, the most efficient and economical structure should be that designed w i t h  3 = rr/2 

so that the radial stress in the base is zero. In this case the height of the system can be kept to a 
minimum, the centre of gravity as low as possible, and the base area to a maximum. These factors 
should all be instrumental in promoting the static and dynamic stability of the device. With a small 
base area and 3 < 7/2 the system might easily be unstable when subjected to small disturbances. 
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It may be desirable for the generator cords in both the upper and lower canopies to be equally 

stressed. In this case 

and from equations (2) and (5) 

also from equations (3) and (4) 

T ,  = T,, ( 5 2 )  

a = R _ b2,  ( 5 3 )  

b 2 
sin ~ - sin ]3 = ~ .  (54) 

These equations may be used for rapid calculation of a and ~ when ]3 is known. 
This section has been concerned with determining the configuration taken up by the generator 

cords of a system with specified geometric parameters, alternatively the equations derived enable 
one to design a system. Having determined the configuration of the generator cords it is necessary 

to consider a possible shape for the fabric gore lying between them, and to calculate the stress in 

this fabric. 

5. The Calculation of the Gore Shape. 
In choosing gore shapes for the canopies it is essential that these should be such that the initial 

assumption of zero generator stress in the fabric is satisfied as far as possible. Without crinkling 
the gore surface is not plane and as it is usual to cut the gore from a plane sheet of fabric and not 

to mould it, the true gore shape cannot be represented in two-dimensional co-ordinates. In order 

to avoid this difficulty and arrive at a gore shape which can be represented two-dimensionally al{d 
thus cut from a plane sheet, the method used is to specify a means of generating the true gore 

surface without crinkling, calculate the true gore length as measured along the mid-gore line and 
then to assume that the width of the gore to be cut from plane fabric is equal to the length of the 
arc of the gore generating curve lying between two adjacent generator cords. It is then demonstrated 
that the plane gore so derived must be gathered along the generator cords in order to make it fit 
and in consequence the fabric should make no appreciable contribution to the tension already 
existing in the generator cords. It should be emphasised that the plane gore shape derived in this 
report is merely a particular case and there are many possible alternatives depending on the shape 

of the gore generating curve. 
• Consider the plane MPQ (%) containing the normals to a pair of adjacent generator cords at 

corresponding points P and Q situated at equidistant intervals from the vertex O of the upper 
canopy. It is supposed that the surface of the gore of both the upper and lower canopies is generated 

by a circle of constant radius h, lying in the plane %, and passing through P and Q, sweeping down 
the generator cords from O to the base of the upper canopy and from there to the base hoop. 

Let OD and OE be adjacent generator cords; P and Q corresponding points on these cords at 
distance r from the axis Ox; and M a point on Ox such that MP and MQ are the normals to OD 
and OE at P and Q respectively, as in Fig. 6. PHQ is an arc of the generating circle lying in the 
plane MPQ (%), this circle is centred 'at I and has a constant radius h; H is the mid-point of the 

arc PQ. Another circle, centred at M, and of radius 

PM = r cosec $,  
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lying in the plane 7r 1. cuts the line M I H  at G and the arc PG (=  GQ) subtends an angle e at M 

as shown in Fig. 7. The  arc HQ subtends an angle ~/at I. Now the straight line PQ = 2r sin ~r/n 
and hence 

From AIQM: 

therefore 

Let a r c H Q  = w =  h~ 7 
then 

e =  s i n - l ( s i n T r s i n ~ )  " n -  (55) 

h r cosec ~ r cosec 

~r sin (Tr- ~/i sin ,/ 
sin - sin 

n 

/e ~T 
sin ~/ = ~ sin -'n (56) 

and this equation gives a measure of the half-gore width. 

To obtain the length of the gore consider Fig. 8. Let 

P P ' =  Q Q ' =  3s (58) 

H H '  = dS (59) 

where s is arc length measured along the generator cord and S arc length measured along the 
mid-gore line. 
Now 

therefore 

But, from AIQM, 

and 

/ 

therefore 

and using (56) 

ds - M1G3 $ 

M1H3 ~ - H H '  

M1H = M 1 G + G H  

dS Lt H H '  (M1G + GH~ 
d-s- = p _ y p ,  PP' - Lt  \ ~ / i ~  / 

- I + G H  d~ 
ds 

G H  = M I + I H - M G  

= M I + h - r c o s e c ~ .  

(60) 

M I  r c o s e c  4~ 

sin IQM sin ~7 

I Q M =  ~ / - s i n - l (  sinTrsin$)n- 

GH = r cosec ,/(1 - - - c o t  V + h - r cosec ¢ 
n ~z 

G H  = r c o s e c ~  1 - s i n  2 ~ s i n  ~$ - h  1 -  sin 2 + h - r c o s e c $ .  
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Hence, to first-order terms: 

From (60) and (61): 

d S  1 +  r sin 2~ - s i n  
ds 2 n 

(61) 

~] d~N. (62) 

[This form, and the preceding analysis of the gore shape, is alnmst identical with that used in the 
calculation of the gore shape for a parachute with cords over the canopy (see Ref. 1), but in the 
present case n is not assumed to be large and the exact value for the angle e is used, as opposed to 
an approximate value.] 

5.1. The Upper- Canopy Gore. 

For the upper canopy: 

r ~ d~b 2r 
sin ~ = a- ~ and ds. - a s" 

Substituting in equation (62) 

S - S - s i n 2  n { h ( r ) a - ( r )  ~} 7 { 1 _ ( ~ ) '  )" 
o ;? 

Performing the integration: 

(63) 

a - s i n ~  ~ 1 -  1 2rh~ 
- 3 a  ~ ]  - a + 

+ 3@2.sin~ zr IF (c°s-1 r '  ~ 2 ) - n  - F.(2 ' @2)1 (64) 

and also from (30) 

s 1 { (2 ~,-~2) ( r 1 ) (65) a - ~ 2 2  F , - F  cos - l a , ~ 7 2  " 

Hence, given the values for n and h, equations (57), (64) and (65) can be used to determine the 
gore shape for the upper canopy. 

5.2. The Lower-  Canopy Gore. 

For the lower canopy: 

r2 _ b 2 
sin 9 = .RZ _ bZ and 

Putting b = /~R and substituting in (62) 

7T 
s i n  2 -- 

S - s n ~r/~ 

R - (1--/£ 2) | J r1 /R 

d9 2r 

ds R ~ -  b 2" 
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The evaluation of this integral is described in Appendix I and the result is: 

R - n L 3 ~ c / ~ f ~ )  E cos -~ ~ ,  ~/(2(1 - t~ ~) + 

~/2 (1 - 2/x2) F (cos_X r 1 ) 
+ 6~/(1- /x  e) R '  ~/{2(1 :/x2)} + 

- 

h 2( 1 - /x ~) J rl.'R 

also from equation (34) 

(67) 

= ~¢/2 " R '  5/{2(1-/~2)} - F c°s-X R '  ~/{2(f-lz~)} . (68) 

Equations (67) and (68), in conjunction with equation (57), enable the gore shape for the lower 
canopy to be determined and hence the shape of the gore for the whole canopy is known. 

Suppose that the gore for the upper canopy is cut to the shape OP 1 H 1 Q1 and that for the lower 
canopy to the shape P tP~H~QzQ1 as shown in Fig. 9. For the upper canopy S is measured 
downwards from O as far as H 1 and for the lower canopy it is measured from H 1 down to H,~ with 
w as the semi-gore width. The points P1 and Qt are made to correspond to two adjacent suspension 
points on the generator cords and P~ and Q~ to two adjacent points on the base hoop. 

Now 

OP1 > OH1 > sl, 

where s 1 is the total length of the upper-canopy generator cord, and hence when the fabric OP 1 
is ranged along this generator cord it must be slack in comparison with the cord itself. Similarly 
for the lower-canopy gore 

P1P~ > H1H2 > s2 

and the fabric P1 P~ when ranged along the generator cord is slack compared with the cord itself. 
The particular type of gore generated by the circle of radius h thus satisfies the assumption 

made in Section 2 that the gore fabric should have a minimum of tension in the direction of the 
generator cord. 

5.3. Stresses in the Fabric Gore. 

If the extension of the fabric used for the gore is neglected the approximate circumferential 
tension can be calculated using membrane theory. It has been assumed that the generator tension 
in the gore fabric is negligibly small in comparison with the circumferential tension in this fabric; 
this implies that the radius of curvature of the gore fabric in the generator direction is very large 
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in comparison with that in the circumferential direction. In these circumstances the radius of 

curvature in the circumferential direction is approximately equal to the radius of the gore generating 
circle h and approximately 

P = ~- (69) 

where T c is the circumferential tension in the fabric. Using equation (7): 

Mgh (70) 
Tc =  b2-. 

(Mg)m x - 

which can be written 

If the yield strength of the fabric is Tcm~x then the maximum load which the system might be 
expected to support is given by 

wb 2 
h Tcmax (71) 

~rab 
. . . .  2b T c m,~,: • (72) (Mg,)max 2 h a 

Thus, the greater the value of a/h or b/a the greater is the maximum load the system can support 
without the fabric breaking down. 

The values of a/h (or R/h) determine the fullness of the gores and the larger these ratios the less 

the tension in the fabric for a given load, which enables a low-tensile-strength fabric to be used. 

The actual bulk of the fabric system is directly proportional to the area of a gore and the fabric 
thickness--the gore area increases with 1/h andthe fabric stresses are reduced--so that the optimum 

value for h should occur when the product of the gore area and 1/h is a minimum. This minimum is 

of particular interest if the bulk of the system is of major importance: in parachute theory, which 

corresponds to the upper canopy only, it is usual to take a value for a/h of two (2) as this gives an 

approximate minimum, this is probably a reasonable value to take for the present system. 

It must be stressed that the theory involved in the calculation of the gore shape is at best a very 

crude approximation. It may be better to design the gore so that the value of 'h' for the upper 

canopy is different to that for the lower canopy, e.g. for the upper canopy so that a/h = 2 and for 

the lower canopy so that R/h = 2, and it is then necessary to match the fabric shape at the suspension- 

point interface. It may be desirable to have very little fabric billowing between the generator cords, 

in this case a stronger fabric with a larger value for h may be required. These factors must be 

determined in relation to the requirements for a particular system and experiment will finally 
decide whether a system is satisfactory. 

6. Conclusions. 

The analysis shows that an equilibrium configuration can only exist for the model system allowing 
for single-point suspension if the base orifice area is less than half the total projected area of the 
lower canopy and that further restrictions of a geometric nature then determine whether an 
equilibrium configuration is possible; these latter restrictions can only affect such factors as the 
total height of the system and the position of the points of attachment of the load cords. All the 
necessary formulae for the design of the system are given, including the calculation of a particular 
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type of gore shape, and an estimate is also made of the maximum load which could be carried with 
a given fabric and system geometry. The tensions in the generator cords can be.determined easily 

and an approximation is given for the te1~sion in the gore fabric. 
The advantage of the structure considered, apart from the fact that it lends itself to approximate 

analysis and provides a theoretical design basis which could readily be applied using nothing more 
than a set of tables and a hand calculating machine, is that it makes the most economical use of 
fabric, the approximate stress distribution is known,-and full account can be taken of design 
requirements such as maximum permissible height or headroom, position of load and the total 

bulk of the structure. Practically there seems to be no serious difficulty involved in constructing 
a system of this type; care is needed in choosing fabrics and, although inextensibility is desirable 
to accord with the theory, as long as the extensibility of the generator cords is less than that of the 

fabric gore the theory should give a reasonable approximation. 
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LIST OF SYMBOLS 

Legendre's incomplete elliptic integral of the second kind 

= u, incomplete elliptic integral of the first kind 

Tension in a load cord 

Maximum height of the lower canopy 

Total generator-cord length from the apex to the base of the system 

The load mass 

Maximum radius of thelower  canopy 

Outer radius ,of the annular base hoop 

The arc length for the fabric measured along the mid-gore !ine 

Tension in the upper-canopy generator cord 

Tension in the lower-canopy generator cord 

Radial tension in a base hoop rib 

Tension in the circumferential direction in the gore fabric 

Maximmn radius of the upper canopy 

Radius of the orifice in the base hoop (a, b and c are also used in the Appendix 

in a different context in giving standard forms for elliptic integrals) 

Radius'of the gore-fabric generating circle 

Modulus of the elliptic integrals 

= ~/(1-k2),  the complementary modulus 

The length o f a  load cord 

Number of generator and load cords 

Pressure difference across the fabric 

Radial distance 

Radius'at the canopy suspension-point interface 

Arc length measured from various origins as stated in the text 

Total arc length measured along a generator cord from the apex of the upper 
canopy to the suspension-point interface 

Arc length measured along a generator cord of the lower canopy from the 
suspension-point interface to the base hoop 

Semi-gore width of the fabric 
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LIST OF S Y M B O L S - - c o n t i n u e d  

Vertical distance measured from various origins as stated in the text 

Height of the upper canopy from apex to suspension-point interface 

Height of the lower canopy from the suspension-point interface to the base hoop 

Angle made by the upper-canopy generator cord with the horizontal at the 

suspension-point interface 

Angle made by the lower-canopy generator cord with the horizontal at the 

suspension-point interface 

Angle made by a load cord with the horizontal 

Angle made by a lower-canopy generator cord at the point of contact of the base 

hoop with a plane surface. (These angles ~, fl, y, 8 are measured in the 

directions shown in the figures) 

Angle defined in Section 5, equation (55) 

Angle defined in Section 5 

Defined by equation (31) = cos-l(~/sin ~) 

~/2 s 1 
Defined by equation (40) = R cos ~1 

b 
Parameter defined as = 

R 

Defined in equations (35) and (36) 

Angle made by the tangent to the lower-canopy generator cords meashred from 

the horizontal position r = b 

Angle made by the tangent to the upper-canopy generator cords measured from 

the horizontal position at the apex r = 0 
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TABLE I 

Values of  A and o~ for  - rr/2 <~ 01 <<. ~r/2 

A - -  "V/2q 
R cos # 

O 0  

104 .8  
51 .76  
34 .07  
25 .23  
19.941 
16.421 
13 .913  
12 .038  
10 .585 

9 . 4 2 6  
8 . 4 8 2  
7 . 6 9 9  
7"040  
6 . 4 7 7  
5 .993  
5 . 5 7 1 9  
5 . 2 0 2 7  
4 . 8 7 6 8  
4 .5873  
4 . 3 2 8 6  
4 . 0 9 6 6  
3 . 8 8 7 4  
3 . 6 9 8 0  
3 .5257  
3 -3690  
3 .2255  
3 .0942  
2-9733 
2 .8621  
2 -7594  

, 2 - 6 6 4 6  
2 . 5 7 6 4  
2 . 4 9 4 7  
2 . 4 1 8 9  
2 . 3 4 8 4  
2 . 2 8 2 6  
2 . 2 2 1 2  
2 . 1 6 4 0  
2-1103 
2-0603  
2 .0135  
1-9697  
1 .9286  
1 .8901 
1 .8541 

01 ° 

- 9 0  
- 8 8  
- 8 6  
- 8 4  
- 8 2  
- 8 0  
- 7 8  
- 7 6  
- 7 4  
- 7 2  
- 7 0  
- 6 8  
- 6 6  
- 6 4  
- 6 2  
- 6 0  
- 5 8  
- 5 6  
- 5 4  
- 5 2  
- 5 0  

0/, ° 

0 
0 ° 4 '  
0 ° 17' 
0 ° 37' 
1 ° 7 '  
1 ° 43 '  
2 ° 28'  
3 ° 21 '  
4 ° 21 '  
5 ° 29 '  
6 ° 43 '  
8 ° 4 '  
9 ° 31' 

11 ° 5 '  
12 ° 44 '  
14 ° 29'  
16 ° 18' 
18 ° 13' 
20 ° 13' 
22 ° 17 ' ,  
24 o 24 '  

R cos 

1 .8541 
1 .8203 
1 .7885 
1 .7589  
1 .7311 
1 .7051 
1 .6805 
1 .6577  
1 .6364  
1-6166  
1-5979 
1 .5804  
1-5643 
1.54% 
1 . 5 3 5 4  
1 .5225  
1 .5105 
1 .4995 
1 .4895 
1 .4802  
1 .4717  

01 ° 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

- 4 8  
- 4 6  
- 4 4  
- 4 2  
- 4 0  
- 3 8  
- 3 6  
- 3 4  
- 3 2  
- 3 0  
- 2 8  
- 2 6  
- 2 4  
- 2 2  
- 2 0  
- 1 8  
- 1 6  
- 1 4  
- 1 2  
- 1 0  
- 8 

- 6  
- 4  
- 2  

0 

26 ° 36'  
28 ° 51'  
31 ° 10' 
33 ° 31' 
35 ° 56' 
38 ° 23'  
40 ° 53'  
43 ° 24 '  
45  ° 59 '  
48 ° 35'  
51 ° 13' 
53 ° 52 '  
56 ° 34'  
59 ° 17' 
62 ° 1' 
64 ° 46 '  
67 ° 33'  
70 ° 18' 
73 ° 5 '  
75 ° 49 '  
78 ° 43 '  
81 ° 30 '  
84 ° 24 '  
87 ° 12' 
90 ° , 

1 .4640  
1-4572 
1-4509 
1 .4453 
1-4403 
1 .4359 
1 .4319  
1 .4287  
1 .4259  
1-4234  
1 .4214  
1-4196 
1-4181 
1-4172 
1 .4163 
1 .4155 
1 .4152  
1 .4149  
1 .4147  
1 .4146  
1 .4145 
1 .4144  
1 .4143 
1 .4142  
1-4142 

42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 
66 
68 
70 
72 
74 
76 
78 
80 
82 
84 
86 
88 
90 

O~ ° 

90 ° 
92 ° 48 '  
95 ° 36'  
98 ° 30 '  

101 ° 17' 
104 ° 11' 
106 ° 55'  
109 ° 42 '  
112 ° 27 '  
115 ° 14' 
117 ° 5 9 '  
120 ° 43 '  
123 ° 26'  
126 ° 8' 
12.8 ° 47 '  
131 ° 25 '  
134 ° 1' 
136 ° 36'  
139 ° 7 '  
141 ° 37'  
144 ° 4 '  
146 ° 29'  
148 ° 50' 
151 ° 9 '  
153 ° 24'  
155 ° 36'  
157 ° 43 '  
159 ° 47 '  
161 ° 47 '  
163 ° 42 '  
165 ° 31'  
167 ° 16' 
168 ° 55'  
170 ° 29'  
171 ° 56' 
173 ° 17' 
174 ° 31'  
175 ° 39'  
176 ° 39 '  
177 ° 32'  
178 ° 17' 
178 ° 53 '  
179 ° 23 '  
179 ° 43 '  
179 ° 56'  
180 ° 
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A P P E N D I X  I 

Evaluation of the Elliptic Integrals 

T h e  integrals of Sect ion  4 are of  the  type:  

/1 = 2 @sin  ~b' 1 f @sin ¢d¢; 

I f (1 - /x2 )d¢  • I~ = l f  (1 _/~2)s in  ¢d¢  . 
Ia = 2 ~/I(1 - / z  e) sin ¢ +/x2} ' 2 @{(1 _/~2) sin ¢ + t~} ' 

whe re  2/, = - 1 ~< 0, and the  integrals are taken be tween  the  appropr ia te  limits. In  I1 and I~ set 

sin ~ = t 2 and in I a and I 4 set (1 - / z  2) sin ¢ + / z  2 = #,  whence  on re-ar ranging in the  appropr ia te  
fo rm:  

f dt . 
I ,  = V{(1 -- t 2) (1 + t2)} ' 

! / { ( 1  - # )  (1 + P ) }  = ~ _ t ~  ] d t  - I 1 ; 

and 

f (l~t~)d t 
/ a  = 1 / { ( 1  - t 2) (1 - 2 / .  2 + t2)} 

f (# -- t~2)dt 
I~ = V { ( 1  - ~ ~  + t~)} 

taken be tween  the  appropr ia te  limits. T h e s e  integrals,  in t e rms  of  t, may  n o w  be evaluated by 
making  use of  the fol lowing s tandard  forms--(see, e.g. Ref. 2): 
wi th  

a 
a 2 + b 2 = c 2 , k = - 

C 

and 

A(% k) = ~/{1 - k 2 sin 2 9}, 

(i) 

whe re  cos ~o = x/a ; 

(ii) 

whe re  cos ~o = x/a ; 

(iii) 

whe re  A(% k) = x/c ; 

(iv) 

where  A(~o, k) = x/c. 

f ~ dt 1 
~, V{(a  ~ - r )  @ + t~)} = c F(% k) 

x ~ \  a~-t-2] dt = cE(qo, k) 

f c dt 1 
V{(c 2 _ t2 ) (t ~ _ b2)} = ~ F(V, k) 

f o #dt  = cE(% k) 
V { ( c ~  - t~) (t2 - b~)} 
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F(~o, k) is the Legendre normal integral of the first kind 

F(% k) = de, 
o ~/(1 - k  2 sin 2 ~b) 

and E(9, k) is the normal integral of the second kind 

E(9, k) = ~/(1 - k  2 sin 2 ~b)d~b. 
0 

E and F are tabulated in most sets of tables of higher functions, usually in terms of qo and e~ 

where 
E(% k) = E(% sin ~) 

F(% k) = F(9, sin a) 
such that 

~" 9T 
0~<~o~< 2 , 0 ~ < c ~ < ~ .  

To extend the range of these tables one can make use of the following relations: 

E ( - %  k) = - E(e, k) 

F ( - ~ ,  k) = - F(e, k) 

E(mrr +_ % k) = 2mE -~, k 

F(mrr +% k) = 2mF (2, k ) 

On evaluation the results obtained are: 

where 

+_ E(v, k) 

+_ f (% k) 

, - ~ F  0, , , s  _ 1 (2 
= a  : 2  0@sin~b @ 2 F  

0 = cos-* (x/sin ~/,); 

x 1 #~/sin~bd~b = .~/2E ~,  - ~ / 2 E  0, - I ~ ,  
I2 a - 2  o 

and the corresponding ranges for ~b and 0 are discussed in the main text; 

s 1 ~ (~-~2)d¢ 
Ia = R = 2 oB ~/{(1 _/,2) sin ~b +/,2} 

-- V(I--/,2)IF (~,, V{2(~_/£2)})- f (~, ~/{2(~_/.2)})] 
~g2 

where 

and 
~:, = cos-* V'((1 _/*2)sin fi +/,2} 

= cos-i V{(1 - ~2) sin e + ~2} ; 

x 1 I * (1 _/~2) sin $d4 
/4 - R - 2 .~ ~/{(1 _/,2) sin ~ + ~2} 

the corresponding ranges for ~ and 9 being discussed in the main text. 
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T h e  integral (63) of Section 5.1 can be evaluated part ly in terms of  e lementary  funct ions and 
comple ted  using the s tandard  form (i). T h e  integral (66) of Section 5.2 is slightly more complicated 
and can be wr i t ten  in the form 

S - s  

R 

/~s s in  s _ ~ 

n f,l #dt  
~ 2 ( 1  -/,s)~/s to ~/{(1 - #) (k 's + kSt2)} 

+ 

where  

+ 

qT 
R sin s - 

n f t~ tadt 
~/2(1 -/~s)~/~h to if{(1 - #)  (k 's + k2t~)} 

sin 2 _ n f,1 t4dt 
~/Z(1 -/~2)3/2 to ~/((1 - #)  (k '~ + kZtS)} 

1 r k s = 1 - k '2 - 
2 ( 1 - ~ t 2 ) '  t = ~ .  

These  three integrals can be evaluated using the fol lowing s tandard  results: (see Ref. 3) 

f tmdt f cosm + 
C.~ = - ~{(1  - t ~) (k '2 + k~tS)} = ~/(1 - k s sin 2 ~o) 

= f cn m udu 

where  
t = C O S ~  = c n u .  

Co = f a .  = .  = F(% k) (9 = am . )  

C 1 = f cn udu - c°s-lk(dn u) _ sin -1 (kk sn u) 

f C s = cn~ udu = ]~ [E(% k) - k'2u] 

f 1 [(2kS_ 1) sin -1 (k sn u) + k sn u dn u] C3 = c n  3 u d u  = 

C~ = f cn 4 udu 

1 
- 3k~ [ ( 2 -  3k~)k'~ + 2 (2ks -  1)E(% k) + k s s n .  cn u an ~] 

where  
sn (u, k) = sin 

cn (u, k) = cos 9 

an  (u, k) = ~/[1 - k s Sin s (am (u, k))] 

~o = am (u, k) ;  u = F(% k) ;  
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and the relations 

s n  2 u + cn  2 u = 1 

dn 2u = 1 - h  2sn ~'u 

= h '2 + h a cn 2 u 

: c n  ~/2 + k ~2sn  2 u  

enable the integrals to be reduced to more convenient forms. 

The result of the integration is given as equation (67). 

A P P E N D I X  II  

Tabulated Co-ordinates for the Canopy and Gore Shapes 

The values of x/R and r/R are given in Table 1 for the following values of/x: 0. 1833, 0.2555, 

0.3074, 0.3845, 0-5050, 0.5773, 0.6585 and 0.6960. Using this table the lower-canopy shapes 

given by 

sin c? - 1 - / ~  

can be plotted graphically: this is done in Fig. 10. 
The  co-ordinates in Table 2 for the upper-canopy shape are calculated using 

y2 
sin ~ = a- ~ 

and give the Taylor shape. 
Table 3 gives the gore co-ordinates for the upper canopy. This table is calculated with a/h = 2.0; 

n = 8, 12 and 16. The semi-gore shape for n = 8 is plotted in Fig. 11 up to r/a = 1-0. From the 
table it can be seen that the differences between the gore lengths for n = 8, 12 and 16 are only a 
few per cent and in practice these differences may be of little significance. 

The  gore co-ordinates for the lower canopy are given in Table 4. This table has been calculated 
for R/h = 2.0; n = 8, 12 and 16; and for the same range of values of /x  as in Table 1. The  

semi-gore shapes for R/h = 2.0;  n =  8; /~ = 0.5050, 0.6585 and 0.6960 are shown plotted in 
Fig. 12. For  values of /z  below 0. 5773 the gore shape is practically unchanged as is evident by 

referring to Table 4; only for higher values of/~ do appreciable changes occur. 
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T A B L E  1 

The Lower-Canopy Co-ordinates 

X 
Values o f - -  

R 

T 

R 

O. 000 
O. 087 
O. 174 
0.259 

0 . 3 4 2  
O. 423 
0.500 
0.574 
O- 643 
0.707 
0.766 
0.819 
O. 866 
0-906 
O. 940 
0.966 
0.985 
0.996 
1.000 
0. 996 
0. 985 
0. 966 
0. 940 
0. 906 
0. 866 
0.819 
0.766 

0.1833 

0.000 
- 0.003 
- 0.004 
- 0.003 
+ 0.002 

0.012 
0.026 
0.046 
0.072 
0.103 
0.140 
0.182 
0.228 
0.278 
0-331 
0- 387 
0.446 
0-506 
0. 566 
0. 627 
0. 687 
0.745 
0. 801 
0. 855 
0- 905 
0-951 
0.993 

0.2555 

O- 000 
- 0 . 0 0 6  
- 0 - 0 1 0  
- 0 . 0 1 2  
- 0 . 0 1 0  
- O. 003 
+ 0 . 0 1 0  

O. 028 
0.052 
0.082 
0.117 
0.157 
0.202 
0.251 
0. 303 
0.358 
0.415 
0.474 
0.534 
0.593 
O. 652 
0.710 
O. 765 
0.817 
O. 866 
0.911 
0.951 

0. 3074 

O. 000 
- 0 - 0 0 9  
- 0 - 0 1 6  
- 0 . 0 2 1  
- O .  021 
- 0 . 0 1 7  
- 0 . 0 0 6  
+0-010  

0. 032 
0. 060 
0. 094 
0-,133 
0- 176 
0. 224 
0- 275 
0. 329 
0.386 
0.444 
O" 502 
0.561 
0-619 
0- 675 
0- 729 
0-781 
0- 828 
O- 872 
0.911 

1 

/ * =  

O- 3845 

0.000 
- 0 . 0 1 5  
- O. 028 
- 0 . 0 3 9  
- 0. 044 
- O. 044 
- 0 - 0 3 8  
- 0 . 0 2 6  
- 0 . 0 0 7  
+0-018  

O- 049 
0-085 
O. 126 
O. 172 
O- 221 
O- 273 
0- 328 
O- 384 
O. 441 
0-498 
0.554 
0. 608 
0. 660 
0.710 
0.755 
O. 797 
0.833 

O- 707 
O. 643 
O. 574 
O. 500 
O. 423 
O. 342 
O. 259 
O. 176 
0.087 
0.000 

1. 029 
1. 060 
1. 086 
1.106 
1.121 
1.131 
1.135 
1.137 
1.135 
1.132 

O- 986 
1.016 
1. 040 
1- 058 
1- 070 
1- 077 
1. 080 
1- 078 
1. 074 
1. 068 

O- 944 
O- 972 
O- 995 
1.011 
1.021 
1.026 
1- 025 
1- 021 
1.014 
1. 004 

O" 864 
O" 889 
0" 908 
O" 920 
0.926 
0-926 
O. 920 
0-910 
O- 897 
0-881 

0"5050 

0.000 
- 0 . 0 3 1  
- 0 . 0 6 0  
- 0 . 0 8 5  
- 0 . 1 0 4  
- 0 . 1 1 6  
- 0 . 1 2 0  

- 0 . 1 1 7  
- 0 - 1 0 6  
- 0 - 0 8 8  
- 0.063 
- 0 . 0 3 2  
+ 0 . 0 0 4  

0. 045  
"0. 090 
0.139 
0.189 
0.242 
0.295 
O- 348 
0.400 
0.451 
O. 499 
O. 544 
O. 585 
0"622 
O" 652 
O" 677 
0" 695 
0" 706 
0" 709 
0"705 
O" 693 
0" 674 
O" 650 
O" 621 
O" 589 

/o6 

O. 5773 

O. 000 
- 0 . 0 5 0  
- O- 096 
- 0 . 1 3 7  
- O .  1 6 9  

- 0 .  193 
- 0.207 
- 0 . 2 1 2  
- 0.208 
- 0 .  196 
- O .  176 
- 0 - 1 5 0  
- 0 - 1 1 8  
- O. 080 
- 0 . 0 3 9  
+0.0O7 

0.054 
0.104 
0.154 
0.204 
0. 254 
0.301 
0. 346 
0.388 
0. 425 
0.458 
O. 484 
O. 504 
0.516 
O. 520 
0.515 
0.501 
O. 477 
0. 444 
0.404 
0.358 
0- 308 

O. 6585 

O. 000 
- O -  102 
- 0 . 1 9 6  
- 0.276 
- 0 . 3 3 9  
- O. 387 
- 0 . 4 2 0  
- 0 - 4 3 9  
--0-447 
-- 0.445 
--0-433 
- -0 .414 
--0-387 
--0-355 
- -0-318 
-- 0- 278 
-- 0- 234 
--0-189 
- -  0.143 
-- 0- 096 
--0.051 
--0.007 
+0-033  

0.070 
0-102 
0-129 
0" 148 
0-160 
0.162 
0-154 
0-135 
6-102 

+0-054  
- O- 003 
- 0 . 0 8 9  
- 0 . 1 8 3  
- 0 . 2 8 5  

0.6960 

O. 000 
- 0 . 2 3 0  
- 0 . 4 1 6  
- 0 . 5 5 3  
- 0 . 6 5 2  
- 0 . 7 2 2  
- 0 . 7 7 0  
- O .  801 
- 0 . 8 1 7  
- O. 820 
--0.813 
--0"798 
--0.775 
-- 0-746 
--0-712 
-- O. 673 
- -0 .632 
--0.589 
-- O" 545 
- -  O. 501 
- 0 . 4 5 8  
--0"416 
- 0 " 3 7 8  
- O. 344 
--0"315 
- O" 292 
- 0 . 2 7 6  
- 0-270 
- 0 . 2 7 3  
--0.289 
- 0 " 3 1 9  
--0"368 
--0-438 
--0 .537 
-- O. 674 
- -0 .860 
- 1. 090 
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T A B L E  2 

The Upper-Canopy Co-ordinates 

0.000 
0.087 
0-174 
0.259 
0.342 
0-423 
0-500 
0.574 
0.643 
0-707 
0-766 
0.819 
0.866 
0.906 
0.940 
0.966 
0.985 
0.996 
1.000 

0-000 
0.000 
0.000 
0-006 
0-013 
0.025 
0.042 
0.064 
0.092 
0.125 
0.163 
0-206 
0-254 
0-305 
0.360 
0.417 
0.476 
0.537 
0.598 

T A B L E  3 

Gore Co-ordinates for the Upper Canopy 

S 
a 

20 

a r 

a 

n = 8  n =  12 n =  16 n =  8 n =  12 n =  16 

0.000 
0-174 
0.342' 
0.500 
0.643 
0- 766 
0. 866 
0.940 
O. 985 
1.000 

O. 000 
O. 174 
O- 343 
0.505 
O. 659 
O- 806 
O. 947 
1- 084 
1.217 
1.349 

0-000 
0.174 
O. 343 
O. 504 
O. 657 
O. 802 
O. 941 
1- 074 
1- 204 
1-332 

O. 000 
O- 066 
0-133 
O- 196 
0.257 
0.313 
O. 362 
O. 402 
O. 427 
O. 436 

O- 000 
O. 174 
O- 343 
O- 507 
O. 664 
0.816 
O. 964 
1.109 
1.252 
1.394 

0.000 
0.044 
0.089 
0.131 
0.170 
0.204 
0-232 
0.254 
0.267 
0- 272 

0.000 
O- 034 
O- 067 
0-098 
O. 127 
0.152 
O. 172 
0.188 
O. 197 
O. 200 
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T A B L E  4 

Gore Co-ordinates for the Lower Canopy 

t o  

r 

0.000 
0.174 
0.342 
0.500 
0-643 
0.766 
0.866 
0.940 
0.985 
1.000 

n = 8  

0.000 
0.066 
0.133 
0-196 
0.257 
0.313 
0.362 
0.402 
0-427 
0.436 

7,0 

n = 12 

0-000 
0.044 
0.089 
0.131 
0.170 
0-204 
0-232 
0 . 2 5 4  
0.267 
0.272 

n = 16 

0.000 
0.034 
0.067 
0.098 
0.127 
0-152 
0.172 
0.188 
0.197 
0.200 

S 

/~ = O- 1833 

n = 8  

0.000 
0.176 
0.343 
0.506 
0.663 
0.814 
0-960 
1.103 
1.244 
1.384 

n = 12 n = 16 
i 

0-000 0.000 
0.175 0.174 
0.343 0.342 
0.504 0.503 
0-657 0.655 
0.803 0.799 
0.942 0.935 
1.077 1.067 
1.208 1.195 
1.338 1.321 

1 

S 

/z = 0.2555 

n = 8 

0.000 
0"174 
0-344 
0.506 
0.622 
0.812 
0.957 
1-090 
1-238 
1-376 

n = 12 n = 16 

0.000 0-000 
0.174 0.174 
0-343 0"343 
0.504 0.503 
0.656 0.654 
0.800 0.796 
0.938 0.931 
1.071 1.061 
1.201 1.187 
1.329 1.311 

S 

= 0.3074 

n = 8 

0-000 
0.174 
0.344 
0.506 
0-661 
0.810 
0.954 
1.094 
1.232 
1.369 

n = 12 n = 16 

0"000 0.000 
0.174 0.174 
0-344 0.343 
0.504 0-503 
0.655 0.653 
0"798 0.794 
0"934 0.927 
1.066 1.055 
1.194 1.180 
1.320 1-302 

S 

/z = 0.3845 

n = 8  

0.000 
0.176 
0.346 
0.509 
0-663 
0.810 
0.952 
1-090 
1-225 
1-358 

n = 12 n = 16 

0"000 0"000 

0"176 0"176 

0.346 0.345 
0.506 0.505 
0.656 0-653 
0.797 0.792 
0.930 0.922 
1.059 1.048 
1.183 1.168 
1.307 1.288 

r 

0-000  
0.174 
0.342 
0.500 
0.643 
0.766 
0.866 
0.940 
0-985 
1.000 

S 

= 0.5050 

n = 8  

0.000 
0.184 
0.360 
0.524 
0.678 
0.823 
0.961 
1.094 
1-223 
1.351 

n = 1 2  n = 16 

0.000 0.000 
0.184 0.184 
0.359 0.359 
0-520 0.519 
0.669 0.665 
0.806 0.800 
0.935 0.925 
1.057 1.044 
1.175 1.158 
1.292 1-270 

I 

S 

= 0.5773 

n = 8 n = 12 n 

0.000 0.000 C 
0.199 0.199 C 
0.385 0.384 C 
0.555 0.550 C 
0.710 0.698 C 
0.854 0-833 C 
O.99O 0.959 G 
1.119 1.077 1 
1.244 1.190 1 
1.368 1.301 1 

= 16 

0.000 
0.199 
0.383 
0.548 
0.694 
0-826 
0-947 

.061 

.170 

.277 

S 

= 0.6585 

n = 8 n = 12!n  

0-000 0"000 
0.263 0.263 
0.489 0"486 
0.678 0.669 
0.840 0-822 
0.985 0.956 
1"119 1.077 
1.244 1-190 
1.364 1.297 
1.482 1.401 

= 1 6  

0.000 
0.262 
0-485 
0-666 
0.816 
0.946 
1.062 
1.170 
1.272 
1.371 

S 

/z = O. 6960 

n =  8 n =  1 2 . n =  16 

0.000 0-000 [0 .000  
0.452 0.452 0-451 
0.751 0.746 0.744 
0"963 0"951 0.946 
1"134 1.111 1.102 
1.282 1.246 1.232 
1.416 1.365 1.347 
1.540 1.475 1.541 
1.657 1.578 1.550 
1-772 1-679 1.645 



APPENDIX III  

The Configuration of the System before the Equilibrium Position is Attained 

Consider a lifting structure designed in accordance with the theory of the main text and only 

partially pressurised. The load is assumed to be clear of the ground but the extent of the pressurisation 

is such that the equilibrium configuration still has to be attained. During the inflation process the 
only constant factors are the arc lengths of the generator cords and the inner and outer radii of 

the base; before the design equilibrium configuration is taken up it is to be expected that at any 
instant of time the maximum radius R' of the lower canopy is somewhat larger than the design 

radius R, similarly the angle 3' differs from 3 and so-on. Whilst the base is still in contact with 
the ground there must be a ground reaction, N say, acting upon it, and to analyse the series of 
configurations taken up by the structure before the equilibrium configuration is reached it is necessary 
to modify equations (4), (5) and (6) to take account of this ground reaction; hence, denoting by 
dashes the conditions at some time before reaching equilibrium: 

p'~rb 2 + N = Mg (74) 

p'Tr(R'2-b ~) = riTz' + N (75) 

p'~r(R1 i -  b ~) = n T2' sin 3' + N .  (76) 
Setting 

Mg = p'zrC ~ (77) 

and proceeding as in Section 3.2 the equation of the lower-canopy generator cords is found to be 

r t2 _ C 2 

sin qo' - R ' ~ -  C a 

or, with 
C = /~'R' 

( { r ' ~  2 - ,~ 

/~,- )" 

as in Section 4.1 the condition that In equation (80) [sin ~o'1 ~< 1 and 

1 - 
0~< 

1 -/~'~ 

can be obtained. It follows from this that 

~<2 

(78) 

(79) 

(80) 

(81) 

O < / z ' <  1 
and also ) 

2/~ '~ - 1 ~ 0. 
Hence 

(82) 

RI 
0 < c < V--2" (83) 

When the pressure p' is increased there is a resulting decrease in C from (77), since Mg is constant, 
and there is also a decrease in R'. The canopies continue to change shape during inflation until 
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b = C and R = R', at which stage the ground reaction is zero and the structure is about to leave 

the ground. Clearly, with a low pressure p '  the value of C must be large, as must that for i~', and 
it is possible by assuming a constant generator-cord length to plot the changes in the canopy 
configuration with the variation of/~' from a high value at the start of inflation to the stage where 
the equilibrium configuration is reached and/z '  = /~. 

A P P E N D I X  IV 

A Higher Approximation to the Theory 

Because of the particular type of construction, in which the fabric bows out between the canopy 

generator cords, the projected areas on which the pressure acts in equations (2) and (5) are 

underestimated and allowance should be made to account for this if a more accurate theory is 

required. Before it is possible to determine the true projected area the shape of the gore generating 

curve must be specified; in the particular case considered in this report it is assumed that, as in 
Section 5, the gore is generated by a circle of radius h. 

For the upper canopy, referring to Fig. 7, the true maximum projected area can be obtained 
by putting 

qT 
~b = ~ ; P M  = QM = a = r 

it is mlh ~ + 2n x area AIQM and this is 

and e = - : 
n 

n h ~ s i n - ~ ( h s i n ~ )  + n a h s i n [ s i n - ~ ( h S i n n ) - n ) ] "  

It  should be noted that when n is large this area is approximately 

- + nah - = ~a ~ nh2 ]z n 

and the projected area 7ra ~ used in equation (2) is an adequate approximation. However, for a 
relatively small number  of cords, such as might be used in a lifting structure, the approximation 
is not really accurate enough and it may be desirable to use  the true projected area. 

Herme, instead of equation (2), we may write 

p~a?  = nT1 (84) 
where 

~ r a t ~ : n h 2 s i n - l ( h S i n n )  + n a h s i n l s i n - ~ ( h S i n n ) - n ) ] "  (85) 
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Proceeding as in Section 3.1 the equation of the upper-canopy generator cords is found to be 

[ r 2 ]  r " 

[sin ¢],o = L J,. ° 
Now when ¢ = ~r/2, r = a and hence the cord equation is 

sin ¢ = r2 + a12 - a~ (86) 
a l  2 

At the canopy apex r = 0, but  ~ cannot be zero unless a = a 1, consequently in general the canopy 

is not flat but  slightly conical and 
6/2 

sin @0 = 1 - - -  (87) 
a l  2 • 

At the actual apex there is a discontinuity in the slope of the cords; for example with a / h  = 2 and 

n = 8 the angle ~o is approximately 7 °, and with n = 12 it is approximately 3 °. 

T h e  vertical co-ordinate of the upper-canopy cords, measured downwards  from the apex O, is 

given by 

f 
* al 2 sin ¢d~ 

sih-l(l_~2/a12/2~/{al 2 sin @ - (al ~ -  a2)} 

which on integration leads to 

- F cos-  " ( s s )  

Similarly for the lower canopy the true projected area is 

= z r R  '2 say 

and equation (5) is replaced by 

p~r( R ' 2  - b 2) = n T2 . 

Proceeding as in Section 3.2 

when 

and when 

+ n R h s i n  [sin-1 R . 

sin 9 = , i - -  b2 ; 
~o 0 r 0 

~ o = / 3 ;  ro 2 = r l  ~ = al 2 s i n ~ - ( a l  2 - a  2) 

7r 
~ o = ~ ;  r =  R ,  

hence the equation of the lower-canopy generator cords is 

r 2 _ (b 2 + R 2 -  R'2) 
sin ~ = R, 2 _ b2 
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The vertical co-ordinate for the lower cords, measured downwards from the suspension-point 
interface is given by 

f 
~p (R '~ - b ~) sin ~d~o 

x = 2~/{(R ' 2 -  b ~) sin + (b 2 + R ~ -  R'2)} ' 

which gives on integration, with b = /xR, 

x R' 

- E  ( 1 )1 

where 

and 

1 ) 
~ /E2(1_ (~)~}1 ~' 

- F  ~1, / i 2 { l _ ( R / z ) 2 } l  R (92) 

~1 : cos-1 ~ / I { 1  - ( ~ ,  tz)2) sin/3 + 

~ = cos-1 ~ / I { 1  - (R /* )2}  s in9  + 

b 2 + R 2 - R ' ~ - ]  

A R'2 

b ~ + R ~ _ R ' !7  
~ , i  _] 

For a possible equilibrium configuration 

and using equation (91): 

o r  

[sing[ ~< 1 

R 2  _ r 2  
0 <  - - ~ < 2  

R,~ _ b ~ 

r z/> 2/z z + 1 - 2 R ~ 

for all r ~ R allowing for single-point suspension. This inequality can only be satisfied if 

o r  

2/x 2 + 1 - 2 ~< 0 

2 - 1  .. 

O < b < ~ R  2 (93) 
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Since R'/R 1> 1,/# can take somewhat  larger values than the limiting value of 1/~/2 given in the 

main text; for example with a/h = 2 and n = 8, R'/R - 1. 075 and for an equil ibrium configuration 

0 < ~ 0 . 8 1 ;  

with n = 12, R'/R - 1.031 and for equilibrium 0 < /x  ~< 0.75. 
Thus ,  for each particular case, given the values of n and a/h, it is possible to determine more exact 

equil ibrium configurations than those given by the theory of the main text. However ,  it is difficult 

to assess the practical importance of the higher approximation to the theory: it is impossible to 

either cut or sew a fabric to the exact shape specified, the elasticity of the fabric has been neglected 

and the assumptions made initially are of a tentative nature; in consequence the first-order theory, 

which is simpler, should be acceptable and satisfactory for use in most cases. Should it prove 

necessary this more accurate theory can be developed on exactly the same lines as that given in 

the main text and calculations of the gore shape for a given system can be made. 

In  order to show the effect of having only a small number  of cords, the co-ordinates of the upper  

canopy for the cases n = 8 and n = 12 with a/h = 2 .0  are given approximately in Table  1 and 

plotted in Fig. 13, together with the standard Taylor  shape resulting from the first-order 

approximation, whose co-ordinates are given in Table  2 of Appendix II. I t  can be seen that with 

a small number  of cords the upper  canopy is not so flat as the Taylor  shape and it is appreciably 

deeper. T h e  upper  canopy alone corresponds to the parachute with cords over the canopy, and it 

has been found in practice that parachutes designed according to the first approximation do take 

up a shape less flat and deeper than that predicted by the theory. The re  may thus be some 

justification for making use of the higher approximation when the number  of cords is small. 

T A B L E  1 

Higher-Approximation Co-ordinates for the Upper Canopy 

0.000 
0. 174 
0" 342 
0" 500 
0.643 
0. 766 
0" 866 
0- 940 
O- 985 
1-000 

n = 8  

O. 000 
O. 026 
O- 060 
O. 108 
O- 174 
0.259 
0.361 
0.476 
O. 602 
0.733 

n =  12 

0-000 
0.014 
0.036 
0.074 
O. 132 
O. 209 
O. 304 
0-414 
0.534 
O- 660 
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A P P E N D I X  V 

The Configuration of the System with tz > 1 / { 2  

It  has been shown in Section 4.1 that single-point suspension is impossible unless /z < 1/@2 

and that when /~ > 1 / { 2  an upper canopy is necessary and the radius of the suspension-point 

interface must satisfy the inequality 

( ~ ) ~ >  2/.2 - 1. (94) 

(This is a necessary but not sufficient condition.) 
The  integrals (24) and (25) of Section 4 for the arc length s and vertical co-ordinate x lead to 

different general results according to whether 

2/* 2 - 1 >< O: 

for the case where this expression is positive the integrals can be evaluated using the standard 

forms (iii) and (iv) of Appendix I to give ,\ 

s _ (1_F2) FF{$1, {[2(1-t,D]}- F{$, {[2(1-t,~]}] (95) 
R L J 

and 

where 

X 
-~ = E{[I, { [2 (1  _/%2)]}_ E{$, { [2(1  _/£2)]}_ 

- t* 2 [F{~1, { [ 2 ( 1 - t ~ ) l } -  F{~', { [2(1- tL~) ] } ]  (96) 

J 1  + sin fi (97) 
~1 = COS--1 2 

J 1 + sin ~ (98) 
= c°s-1 2 

For - ~ / 2  ~< 9 < ~/2:~r/2 > ~ > 0 where ~ = 0 corresponds to 50 = zr/2 and ~ = ~/2 corresponds 

to 50 = - ~r/2; for 50 > /w/2 :0  >/ ~ > - 7r/2 where $ = 0 corresponds to 50 = w/2 and $ = - 7r/2 

corresponds to 50 = 37r/2. 
It should be noted that when F = 1 / { 2  the equations (95) and (96) are identical with (34) and 

(37) respectively of Section 4.2, as is to be expected. 
Usin.g (96) in conjunction with the equation 

sin 50 - 1 - / z  2 (99) 

it is possible to plot the lower-canopy generator-cord shape for cases where F > 1 /{2 .  As an example 
the ease t~ = 0-7906 (/~2 = 0.625) has been plotted in Fig. 14, the origin has been arbitrarily 

placed on the x/R axis so that x/R = 0 coincides with 50 = - ~r/2 for the starting point of the curve; 
this origin is not the same as that used in Fig. 10. I t  is seen that the curve only exists when 

> { (2 t ,  2 -  1) = 0.5 
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and that for any practical purpose the interface radius r 1 would have to be larger than the lower 

limit of 0-SR and probably have a value near to tzR, i.e. approximately 0 .8R.  T h e  maximum 

height the lower canopy could have in this case is abou t  0 .3R,  which leaves little room to 

accommodate a load unless it is mounted  on a platform or cantilevered into the upper  canopy. 

T h e  maximum total height for the whole structure is given with an upper-canopy radius a = r 1 = / z R  

wl~ich again limits the size of permissible load. 
T h e  maximum height of the lower canopy H/R f o r  different values of t* > 1/%/2 is shown 

approximately in the table below. 

T A B L E  

Values ofH/Rfor tz > 1/%/2 

b 
/ z -  R 

0.7071 
0.7473 
0.8406 
0.9354 
0.9924 

H ~(3 = O) 

0.533 
0.467 
0.304 
0.127 
0.015 

It should be remarked that f rom a practical point of view the part of the curve lying between 

r/R = /z and r/R = 1 can be regarded as an arc of a circle of radius (1 - /z ) ,  in fact a semicircle 

centred at r = ~R, for values of tz larger than 1/%/2. 

It  is not intended to pursue fur ther  in this Appendix the study of configurations wi th/z  > 1/%/2: 

there is some doubt  as to whether  systems with/~ > 1/%/2 could be sufficiently pressurised to reach 

the hoveiing state and the necessity of cantilevering the load, with a large F, to get it off the ground 

demands the use Of additional members to brace the structure and may invalidate the statical 

discussion of the present report. Experiment  only can decide whether  configurations with b* > 1/%/2 

are of practical use. .  
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FIG. l(i). Diagram of a lifting system showing the notation used. 

FIG. l(ii). Sectionalised view of a lifting structure. 
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• y'-+ g "r 

8~c 

Fro. 2. A section of the upper canopy 
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I \  ! 

\ \  / I  
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(i) . . . . . . . . . .  

O 

0 0  

Fins. 3(i) and (ii). Sectional forms for the upper 
canopy. 
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Fie. 4. Diagram of a lifting system with single-point suspension. 
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FIG. 5. A lifting system with an upper canopy and negative value of ]3. 
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Fro. 6. Diagram showing the notation 
used for the gore generation. 

FIG. 8. Diagram showing the notation 
used for determining the gore length. 

Yl 

FIG. 7. Diagram showing the 
notation used for the gore 

generating circle. 

P; 

Q2 

P2  

Fro. 9. The complete gore. 
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Curves for the lower canopy. 
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FIG. 11. An  example of 
an upper-canopy semi-gore 
with a/h = 2-0 and n = 8. 
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0 O.S ~/R 

FIG. 12. Examples of the 
lower-canopy semi-gores for 
R/h= 2 - 0 ; n =  8 ; / z =  0-5050, 

0. 6585 and 0. 6960. 
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FIG. 13. Upper-canopy cord configurations for a/h = 2.0 (higher 
approximation). 
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FIG. 14. Example of the lower-canopy 
curve for/z = 0"7906 > 1/~/2. 
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