
R. \& M. No. 3377

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL
REPORTS AND MEMORANDA

## Inflated Mobile Lifting Structures:

 Circular PlanformsBy W. G. S. Lester, M.A., D.Phil.

LONDON: HER MAJESTY'S STATIONERY OFFICE 1964
PRICE I8s. $6 d$. NET

# Inflated Mobile Lifting Structures: Analysis of Generator-Cord Construction for Circular Planforms 

By W. G. S. Lester, M.A., D.Phil.<br>Communicated by the Deputy Controller Aircraft (Research and Development), Ministry of Aviation

Reports and Memoranda No. 3377*
July, 1962

## Summary.

An inflatable lifting system basically consists of a flexible membrane attached to the periphery of a base containing an orifice. A load is suspended from the inner surface of the membrane and the base rests in contact with the ground; on inflating the device the load is raised and with suitable design and a continuous pressure supply the structure can lose ground contact and hover. An equilibrium configuration is said to have been reached when air is about to escape from the base orifice and ground contact is lost.
A model of a system is considered in which the load is carried in a set of cords attached to the periphery of an annular base. These cords.are shorter than the length of fabric gore which lies between them and bows outwards under the excess pressure. The statics of the structure are analysed and it is shown that for practical design purposes the base orifice area should be less than half the projected area of the canopy below the load suspension points. Possible equilibrium configurations are investigated and a method for calculating the fabric gore shape is given. Formulae for designing an actual system are included.

## LIST OF CONTENTS

## Section

1. Introduction
2. The Model
3. Theory of the System
3.1 The upper canopy
3.2 The lower canopy
4. Geometric Parameters for the System
4.1 A criterion for a possible equilibrium configuration
4.2 Determination of the configuration of the system with $\mu<1 / \sqrt{ } 2$
4.3 Some practical considerations
[^0]
## LIST OF CONTENTS-continued

## Section

5. The Calculation of the Gore Shape

### 5.1 The upper-canopy gore

5.2 The lower-canopy gore
5.3 Stresses in the fabric gore
6. Conclusions

List of Symbols
List of References
Table 1
Appendices I to V
Illustrations-Figs. 1 to 14
Detachable Abstract Cards

## LIST OF APPENDICES

## Appendix

I. Evaluation of the elliptic integrals
II. Tabulated co-ordinates for the canopy and gore shapes
III. The configuration of the system before the equilibrium position is attained
IV. A higher approximation to the theory
V. The configuration of the system with $\mu>1 / \sqrt{ } 2$

## LIST OF TABLES

## Table

1. Values of $\lambda$ and $\alpha$ for $-\pi / 2 \leqslant \theta_{1} \leqslant \pi / 2$

Appendix II
Table

1. The lower-canopy co-ordinates
2. The upper-canopy co-ordinates
3. Gore co-ordinates for the upper canopy
4. Gore co-ordinates for the lower canopy

Appendix IV
Table

1. Higher-approximation co-ordinates for the upper canopy

## LIST OF ILLUSTRATIONS

## Figure

1(i). Diagram of a lifting system showing the notation used
1(ii). Sectionalised view of a lifting structure
2. A section of the upper canopy
3. Sectional forms for the upper canopy
4. Diagram of a lifting system with single-point suspension
5. A lifting system with an upper canopy and negative value of $\beta$
6. Diagram showing the notation used for the gore generation
7. Diagram showing the notation used for the gore generating circle
8. Diagram showing the notation used for determining the gore length
9. The complete gore
10. Curves for the lower canopy
11. An example of an upper-canopy semi-gore with $a / h=2 \cdot 0$ and $n=8$
12. Examples of the lower-canopy semi-gores for $R / h=2 \cdot 0 ; n=8 ; \mu=0 \cdot 5050$, 0.6585 and 0.6960
13. Upper-canopy cord configurations for $a / h=2 \cdot 0$ (higher approximation)
14. An example of the lower-canopy curve for $\mu=0.7906>1 / \sqrt{ } 2$

## 1. Introduction.

The general concept of an inflatable lifting system can be understood by considering a flexible imporous membrane which is attached to the periphery of a base; this base, which may be regarded as rigid, is in the form of a disc with either a single orifice or an array of several orifices. For a completely collapsible structure the base is assumed to obtain its rigidity by means of, for example, inflated fabric ribs. A load mass is attached to points on the inner surface of the membrane by a series of cords. A mechanical unit is provided to inflate the system and when the pressure difference between the region interior to the membrane and the atmosphere is sufficient the load is lifted from the plane and supported by tensions in the fabric structure. On further increasing the pressure the system takes up some characteristic shape and a stage is reached where air commences to escape from the base orifice(s); by using a continuous air supply the whole structure can be made to leave the plane and hover. The position in which air is about to escape from the base orifice is regarded in this report as the equilibrium position. Whilst the load is being raised to this so-called equilibrium position and the base is still in contact with the plane there must be a ground reaction on the base; once the system loses physical contact with the plane this reaction is zero.

This report is concerned with the equilibrium configuration of the structure when air is about to escape from the base orifice and the system loses contact with the plane; its object is to determine the shape taken up by the membrane and, if possible, to specify the optimum position for the cords supporting the load. The attraction of devices of this nature rests in their ability to raise a load of, say, $10,000 \mathrm{lb}$ with a pressure difference of the order of 0.1 atmospheres or less. The system does not always work as intended: sometimes air escape occurs before the load has even been raised, or the base buckles and adequate pressurisation is impossible. In consequence, it is
desirable to provide some theoretical guide to design procedure for the basic structure: as a tentative approach to the problem a particular model is considered, based on the theoretical model for the parachute with cords over the canopy ${ }^{1}$, which, although possibly unrepresentative of devices which have been constructed, is amenable to an approximate theoretical analysis and may assist in the formulation of a more generally applicable theory.

Some brief observations are made in Appendices on the events occurring from the start of inflation to the attainment of the equilibrium configuration and on a higher approximation to the theory.

It should be remarked that the report is not concerned with the dynamical problems involved once ground contact is lost and air escape occurs.

## 2. The Model.

The base for the structure is assumed to be a circular annular hoop of outer radius $R_{1}$ and inner radius $b$; this does not imply that the analysis only applies to a structure with a single circular base orifice, it is valid for any arrangement of orifices having an area equivalent to that of the circle of radius $b$, i.e. $\pi b^{2}$. However, where several orifices are employed they must be suitably arranged to maintain stability and symmetry and allow for control of the device when hovering. Attached at each of $n$ points at equal intervals around the outer circumference of the base is a cord of length $L$, where $L$ is greater than $R_{1}$; these cords are referred to as generator cords and their ends are joined together to form an apex at O . At a distance $s_{1}$ from O along each of the generator cords, is attached another cord of length $l$, referred to as a load cord, and these cords are attached to the load mass $M$. The surface regions between the generator cords and the outer circumference of the base are spanned by imporous fabric, the load cords passing through seals in the fabric, so that when the base is resting on a plane and the generator cords are fully extended, as if the system were suspended from the apex $O$, the configuration resembles a conical shell. For the present it is assumed that the shape of the fabric lying between adjacent generator cords, i.e. the gore shape, is undefined but there is a certain fullness in this fabric and it is gathered along the generator cords and can billow between them. The fabric, generator and load cords are all assumed to be inextensible and to have no flexural rigidity.

When a positive pressure difference occurs between the inner region of the fabric shell and the atmosphere the generator cords take up a characteristic shape and the gore fabric bulges outwards between them. With a sufficiently high pressure differential and suitable geometry the load is raised from the plane and the final configuration may resemble that shown in Fig. 1(i). A sectionalised three-dimensional view is shown in Fig. 1(ii).

It is assumed that the whole of the load is carried by the tensions in the generator cords and that the fullness of the gore fabric is such that only circumferential tension, which is assumed constant over the length of a gore, exists in it. Physically there must be some generator tension in the fabric gores, but gathering along the generator cords relieves this and it is to be expected that the generator tension can be made very small in comparison with the circumferential tension.

The masses of the canopy, load cords and base are assumed negligible in comparison with the mass of the load; but, if a heavy base is used, account should be taken of this and the basic equations suitably modified.

The fabric region above the points of suspension of the load cords is called the upper canopy and the region between these points and the base is the lower canopy. The pressure difference
across the whole of the canopy's surfaces and the base is assumed constant and equal to $p$; this assumption is reasonable before air escape occurs but may not be adequate once the structure leaves the ground, discussion of this situation is outside the scope of the present report.

In Fig. 1 a point load is shown suspended by the cords attached to the suspension points, this involves some bracing of the structure. The same configuration could theoretically be attained by distributing the load uniformly around the suspension-point interface in the form of a ring of radius $r_{1}$, or as point loads $M g / n$ acting at each of the suspension points; in the latter case it would be necessary to connect radially opposite suspension points by cords in order to brace the structure.

## 3. Theory of the System.

Let the tension in the upper-canopy generator cords be $T_{1}$; in the lower-canopy cords $T_{2}$; and in each load cord $F$. The lower-canopy generator cords leave the base at an angle $\delta$ with the plane, as shown in Fig. 1, and in consequence there is a radial tension $T_{3}$ in the base to balance the horizontal component of the generator-cord tension. Vertical distance $x$ is measured downwards from O or $\mathrm{O}^{\prime}$ and the radial co-ordinate from this vertical axis is $r$. The maximum distance of the upper-canopy cords from the axis is $a$ and of the lower-canopy cords is $R$; the radius of the suspension-point interface is $r_{1}$. The total arc length from a suspension point A to O , the apex, is $s_{1}$ and from A to C a point on the base, is $s_{2}$. The tangent to the upper-canopy cords makes an angle $\psi$ with $\mathrm{O} r$ and the tangent to the lower cords an angle $\varphi$. At A the upper-canopy cord makes an angle $\alpha$ with the horizontal and the lower-canopy cord an angle $\beta$; the load cord for a point load is inclined at $\gamma$ to the horizontal. Fig. 1(i) as drawn shows the angle $\beta$ measured counterclockwise and positive; this is for convenience in the analysis. In practice a positive $\beta$ is undesirable since the tension in the lower canopy is then tending to pull the load down rather than raise it. It is normally expected that $\beta$ will be negative for an efficient system and to this extent Fig. 1(i) represents an impractical design.

For the arc length from O to C :

$$
\begin{equation*}
s_{1}+s_{2}=L . \tag{1}
\end{equation*}
$$

For the upper canopy, neglecting the additional projected area due to bowing out of the gore:

$$
\begin{equation*}
p \pi a^{2}=n T_{1} . \tag{2}
\end{equation*}
$$

For the suspension-point interface:

$$
\begin{equation*}
n T_{1} \sin \alpha-n T_{2} \sin \beta=n F \sin \gamma=M g . \tag{3}
\end{equation*}
$$

For the whole system:

$$
\begin{equation*}
p \pi b^{2}=M g \tag{4}
\end{equation*}
$$

For the lower canopy, again neglecting the added area due to bowing out of the gore, and using equation (4):

$$
\begin{equation*}
p \pi R^{2}-M g=n T_{2}=p \pi\left(R^{2}-b^{2}\right) \tag{5}
\end{equation*}
$$

For the base:

$$
\begin{align*}
p \pi\left(R_{1}^{2}-b^{2}\right) & =n T_{2} \sin \delta .  \tag{6}\\
T_{3} & =T_{2} \cos \delta . \tag{7}
\end{align*}
$$

These equations only apply when air is about to escape and the ground reaction is zero: Appendix III deals with the situation occurring before full inflation and Appendix IV gives the theory including the effect of additional projected area due to bowing out of the gore fabric.

### 3.1. The Upper Canopy.

The equilibrium of the fabric between two planes corresponding to $x=x$ and $x=x+\delta x$ is considered. For an element of generator cord $\delta s$ the outward pressure forces must balance the tension. The tension in the fabric where it meets the generator cord is everywhere at right angles to the cord and so the tension in the cord is constant over its length.

Referring to Fig. 2, which represents a section of the upper canopy:

$$
T_{1} \sin \delta \psi \doteqdot p \frac{2 \pi r}{n} \delta s
$$

or, in the limit:

$$
\begin{equation*}
T_{1} \delta \psi=p \frac{2 \pi r}{n} \delta s \tag{8}
\end{equation*}
$$

Also

$$
\begin{equation*}
\delta \vartheta=\delta s \cos \psi . \tag{9}
\end{equation*}
$$

Now

$$
\frac{d \psi}{d r}=\frac{\delta \psi}{\delta s} \frac{\delta s}{\delta r}=p \frac{2 \pi r}{n T_{1}} \frac{1}{\cos \psi}
$$

and using (2):

$$
\begin{equation*}
\cos \psi \frac{d \psi}{d r}=\frac{2 r}{a^{2}} . \tag{10}
\end{equation*}
$$

The integration of (10) gives

$$
[\sin \psi]_{v_{0}}^{p}=\left[\frac{\gamma^{2}}{a^{2}}\right]_{r_{0}}^{r} ;
$$

but

$$
r_{0}=a \quad \text { when } \quad \psi_{0}=\frac{\pi}{2} \quad \text { and }
$$

therefore

$$
\begin{equation*}
\sin \psi=\frac{r^{2}}{a^{2}} \tag{11}
\end{equation*}
$$

which gives the equation of the upper-canopy generator cords. This equation (11) represents the well-known Taylor shape.

At the suspension points $A$ :

$$
r=r_{1} \quad \text { and } \quad \psi=\pi-\alpha,
$$

hence

$$
\begin{equation*}
r_{1}{ }^{2}=a^{2} \sin \alpha \tag{12}
\end{equation*}
$$

### 3.2 The Lower Canopy.

Similarly for the lower-canopy generator cords

$$
\begin{align*}
T_{2} \delta \varphi & =p \frac{2 \pi r}{n} \delta s  \tag{13}\\
\delta r & =\delta s \cos \varphi \tag{14}
\end{align*}
$$

and using (5):

$$
\cos \varphi \frac{d \varphi}{d r}=\frac{2 r}{R^{2}-b^{2}} .
$$

Intregrating this

$$
[\sin \varphi]_{\varphi_{0}^{p}}^{p}=\left[\frac{r^{2}}{R^{2}-b^{2}}\right]_{r_{0}}^{r} .
$$

When

$$
\varphi_{0}=\beta, \quad r_{0}=\gamma_{1}=+\left(a^{2} \sin \alpha\right)^{1 / 2} ;
$$

therefore

$$
\begin{equation*}
\sin \varphi-\sin \beta=\frac{r^{2}-a^{2} \sin \alpha}{R^{2}-b^{2}} \tag{15}
\end{equation*}
$$

When

$$
\varphi=\frac{\pi}{2}, \quad r=R ;
$$

therefore

$$
\begin{equation*}
\left(R^{2}-b^{2}\right) \sin \beta=a^{2} \sin \alpha-b^{2} . \tag{16}
\end{equation*}
$$

Thus, from (15) and (16),

$$
\begin{equation*}
\sin \varphi=\left(\frac{r^{2}-b^{2}}{R^{2}-b^{2}}\right) \tag{17}
\end{equation*}
$$

which gives the equation of the lower-canopy generator cords.

## 4. Geometric Parameters for the System.

The equations of the upper- and lower-canopy generator cords enable the arc lengths and vertical co-ordinates of the system to be calculated. For the upper canopy:

$$
\frac{r^{2}}{a^{2}}=\sin \psi \quad \text { and } \quad d s=\frac{d r}{\cos \psi}
$$

whence

$$
\begin{equation*}
s=\frac{a}{2} \int_{0}^{\psi} \frac{d \psi}{\sqrt{ } \sin \psi} \tag{18}
\end{equation*}
$$

and the total arc length $s_{1}$ from O to A is given by

$$
\begin{equation*}
\frac{s_{1}}{a}=\frac{1}{2} \int_{0}^{\pi-\alpha} \frac{d \psi}{\sqrt{\sin \psi}} \tag{19}
\end{equation*}
$$

For the vertical co-ordinate $x$, measured from O :
and hence

$$
d x=\tan \psi d r
$$

$$
\begin{equation*}
x=\frac{a}{2} \int_{0}^{\Downarrow} \sqrt{ } \sin \psi d \psi \tag{20}
\end{equation*}
$$

and the height of the upper canopy alone is given by

$$
\begin{equation*}
\frac{x_{1}}{a}=\frac{1}{2} \int_{0}^{\pi-\alpha} \sqrt{ } \sin \psi d \psi \tag{21}
\end{equation*}
$$

Similarly for the lower canopy where

$$
\begin{align*}
\sin \varphi & =\frac{r^{2}-b^{2}}{R^{2}-b^{2}} \\
s & =\int_{\beta}^{\varphi} \frac{\left(R^{2}-b^{2}\right) d \varphi}{2 \sqrt{ }\left\{\left(R^{2}-b^{2}\right) \sin \varphi+b^{2}\right\}} . \tag{22}
\end{align*}
$$

Setting

$$
\begin{equation*}
b=\mu R \quad \text { where } \quad 0<\mu \leqslant 1 \tag{23}
\end{equation*}
$$

the total arc length $s_{2}$ from A to C is given by

$$
\begin{equation*}
\frac{s_{2}}{R}=\frac{1}{2} \int_{\beta}^{\pi-\delta} \frac{\left(1-\mu^{2}\right) d \varphi}{\sqrt{ }\left(\left(1-\mu^{2}\right) \sin \varphi+\mu^{2}\right\}} . \tag{24}
\end{equation*}
$$

For the vertical co-ordinate $x$, measured from $\mathrm{O}^{\prime}$ :

$$
\begin{equation*}
\frac{x}{R}=\frac{1}{2} \int_{\beta}^{\varphi} \frac{\left(1-\mu^{2}\right) \sin \varphi d \varphi}{\sqrt{ }\left\{\left(1-\mu^{2}\right) \sin \varphi+\mu^{2}\right\}} \tag{25}
\end{equation*}
$$

and the height of the lower canopy is

$$
\begin{equation*}
\frac{x_{2}}{R}=\frac{1}{2} \int_{\beta}^{\pi-\delta} \frac{\left(1-\mu^{2}\right) \sin \varphi d \varphi}{\sqrt{ }\left\{\left(1-\mu^{2}\right) \sin \varphi+\mu^{2}\right\}} \tag{26}
\end{equation*}
$$

The integrals involved in (18) to (26) are all elliptic and their reduction to standard forms and evaluation is given in Appendix I.

### 4.1. A Criterion for a Possible Equilibrium Configuration.

Consider the equation for the lower generator cords:

$$
\sin \varphi=\frac{r^{2}-b^{2}}{R^{2}-b^{2}} .
$$

Now $r$ is always real and positive and
hence

$$
|\sin \varphi| \leqslant 1 ;
$$

$$
\left|\frac{r^{2}-b^{2}}{R^{2}-b^{2}}\right| \leqslant 1
$$

or
therefore

$$
\left|1-\frac{R^{2}-r^{2}}{R^{2}-b^{2}}\right| \leqslant 1
$$

$$
0 \leqslant \frac{R^{2}-r^{2}}{R^{2}-b^{2}} \leqslant 2 .
$$

With $b=\mu R$ and $0<\mu \leqslant 1$ this becomes
or

$$
0 \leqslant R^{2}-r^{2} \leqslant 2\left(1-\mu^{2}\right) R^{2}
$$

$$
r^{2} \geqslant\left(2 \mu^{2}-1\right) R^{2}
$$

For it to be possible to make a system consisting of a lower canopy only with a single suspension point at the apex this inequality must be valid for all $r \leqslant R$ and can then only be satisfied if

$$
\begin{equation*}
2 \mu^{2}-1 \leqslant 0 . \tag{27}
\end{equation*}
$$

Hence, in these circumstances, before an equilibrium configuration can exist it is essential that

$$
\begin{equation*}
0<b \leqslant \frac{R}{\sqrt{ } 2} \tag{28}
\end{equation*}
$$

This implies that with a single-point suspension the maximum load which can be lifted is

$$
\begin{equation*}
M g=p \pi b^{2} \leqslant p \frac{\pi R^{2}}{2} \tag{29}
\end{equation*}
$$

but this, as shown in Section 4.3, is practically somewhat lower. Thus, for a given maximum lowercanopy radius $R$ and pressure difference $p$, the maximum load is specified by the limitations on $b$. The effective maximum lifting surface of the system is equal to half the maximum projected area of the lower canopy. For a system to be designed to carry a load from multiple points and also to be usable with single-point suspension the relations (28) and (29) must still be applied.

If a system is only required to carry a load from a number of points and a possible single-point suspension is excluded, the restriction (27) on the value of $\mu$ no longer applies. Instead it is essential to have an upper canopy with the radius at the suspension-point interface satisfying the inequality

$$
\left(\frac{r_{1}}{R}\right)^{2} \geqslant 2 \mu^{2}-1
$$

This situation presents some difficulties for it will be shown that when $\mu$ is larger than say 0.6 to 0.7 the lower canopy becomes very squat and may not be high enough to accommodate the load beneath the suspension points. To overcome this it appears that for large values of $\mu$ the load would have to be cantilevered from the suspension points to get it clear of the ground. It is questionable whether this is of practical value.

In general the ensuing analysis applies only to the cases where $0<\mu \leqslant 1 / \sqrt{ } 2$ and single-point suspension is possible. Appendix $V$ considers the problem with $\mu>1 / \sqrt{ } 2$; separate consideration is necessary since the integrals (24) to (26) for the arc length and height of the lower canopy lead to different results in general, depending whether $\mu$ is greater or less than $1 / \sqrt{ } 2$.

Further limitations on the value of $\mu$ arise in Section 4.3 where the height of the suspension points above the ground is considered, and the more accurate analysis of Appendix IV shows that the restrictions on $\mu$ can be slightly relaxed. The practical limit for $\mu$ however appears to be largely unchanged when the limits of the theory are borne in mind.

### 4.2. Determination of the Configuration of the System with $\mu<1 / \sqrt{ } 2$.

In order for the configuration of the system to be determinate the values of some of the geometric parameters involved must be specified. Suppose, for example, that the given factors are the annular base radii, $R_{1}$ and $b$; the maximum radius of the lower canopy $R$; and the two arc lengths $s_{1}$ and $s_{2}$ : a knowledge of these factors is sufficient to determine the resulting configuration of the whole system. From equations (19) and (24):

$$
\begin{aligned}
& s_{1}=s_{1}(a, \alpha) \\
& s_{2}=s_{2}(R, b, \beta, \delta) ;
\end{aligned}
$$

from equation (16):

$$
\beta=\beta(R, a, b, \alpha) ;
$$

and from equation (17):

$$
\delta=\delta\left(R_{1}, R, b\right)
$$

These four equations involve the four unknowns $\alpha, \beta, \delta$, and $a$ and the problem is determinate. The solution of the equations is a rather cumbersome though straightforward process involving
the use of tabulated values of elliptic integrals. When $\alpha, \beta, \delta$ and $a$ have been determined it is possible to calculate the vertical co-ordinates, $x$, for the system, and the radial co-ordinates $r$, thus enabling the configuration to be plotted graphically. For a given load the required pressure can be obtained from equation (4) and the resulting tensions in the generator cords and base hoop from equations (2) to (7).

To discuss possible equilibrium configurations the results obtained in Appendix I for the geometric parameters of Section 4 are required and a summary and discussion of these results follows.

For the arc length of the upper canopy measured from O to some point on the generator cord with co-ordinate $\psi$ :

$$
\begin{equation*}
\frac{s}{a}=\frac{1}{\sqrt{ } 2} F\left(\frac{\pi}{2}, \frac{1}{\sqrt{ } 2}\right)-\frac{1}{\sqrt{ } 2} F\left(\theta, \frac{1}{\sqrt{ } 2}\right) \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta=\cos ^{-1}(\sqrt{ } \sin \psi) \tag{31}
\end{equation*}
$$

and the total arc length $s_{1}$ is given by putting $\psi=\pi-\alpha$. Now the maximum value for $\psi$ is $\pi-\alpha$ and $\alpha$ can take values such that

$$
0<\alpha<\pi
$$

when $\alpha$ is measured in a clockwise direction as in Fig. 1(i); an increase in $s_{1}$ thus results in a decrease in $\alpha$. The corresponding range for $\theta$ may be taken as

$$
-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2},
$$

where $\theta=-\pi / 2$ corresponds to $\alpha=0$ and $\theta=+\pi / 2$ corresponds to $\alpha=\pi$. Depending on the angle $\alpha$ the upper canopy is either a section of the curve taken by a plane which lies above the plane containing $r=a$, or a section by a plane lying below that containing $r=a$. These two sections are shown in Figs. 3(i) and (ii).

For the vertical co-ordinate of the upper canopy the result obtained is:

$$
\begin{equation*}
\frac{x}{a}=\sqrt{ } 2 E\left(\frac{\pi}{2}, \frac{1}{\sqrt{ } 2}\right)-\sqrt{ } 2 E\left(\theta, \frac{1}{\sqrt{ } 2}\right)-\frac{1}{\sqrt{ } 2} F\left(\frac{\pi}{2}, \frac{1}{\sqrt{ } 2}\right)+\frac{1}{\sqrt{ } 2} F\left(\theta, \frac{1}{\sqrt{ } 2}\right) \tag{32}
\end{equation*}
$$

where the range corresponding to $0<\psi<\pi$ is

$$
-\frac{\pi}{2}<\theta<\frac{\pi}{2}
$$

For the lower canopy $s$ is measured from $A$ to some point on the generator cord with co-ordinate $\varphi$, where $\varphi$ has a maximum value of $\pi-\delta$ and a minimum value of $\beta$, where $\beta$ may be negative. If there is no upper canopy at all the minimum value of $\beta$ occurs when $r=0$ and then

$$
\begin{equation*}
\beta=\sin ^{-1}\left(-\frac{\mu^{2}}{1-\mu^{2}}\right) . \tag{33}
\end{equation*}
$$

Even with an upper canopy $\beta$ is still negative where $r<b$. These cases are illustrated in Figs. 4 and 5.

The arc length $s$ for the lower canopy is given by

$$
\begin{equation*}
\frac{s}{R}=\frac{\sqrt{ }\left(1-\mu^{2}\right)}{\sqrt{ } 2} F\left(\xi_{1}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)-\frac{\sqrt{ }\left(1-\mu^{2}\right)}{\sqrt{ } 2} F\left(\xi, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right), \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{1}=\cos ^{1} \sqrt{ }\left\{\left(1-\mu^{2}\right) \sin \beta+\mu^{2}\right\} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi=\cos ^{-1} \sqrt{ }\left\{\left(1-\mu^{2}\right) \sin \varphi+\mu^{2}\right\} . \tag{36}
\end{equation*}
$$

For $-\pi / 2 \leqslant \varphi \leqslant \pi / 2, \xi$ must be taken to lie in the range $\pi / 2 \geqslant \xi \geqslant 0$ where $\xi=0$ corresponds to $\varphi=\pi / 2$ and $\xi=\pi / 2$ corresponds to $\varphi=\sin ^{-1}\left\{\mu^{2} /\left(1-\mu^{2}\right)\right\}$. When $\varphi \geqslant \pi / 2$, $\xi$ lies in the range $0 \geqslant \xi \geqslant-\pi / 2$ where $\xi=0$ corresponds to $\varphi=\pi / 2$ and $\xi=-\pi / 2$ corresponds to $\varphi=-\sin ^{-1}\left\{\mu^{2} /\left(1-\mu^{2}\right)\right\}+\pi$. The total arc length $s_{2}$ from A to C is given by equation (34) with $\varphi=\pi-\delta$.

The vertical co-ordinate $x$, measured downwards from A, for the lower canopy, is given by

$$
\begin{align*}
\frac{x}{R}= & \sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}\left[E\left(\xi_{1}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)-E\left(\xi, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)\right]- \\
& -\frac{\sqrt{ }\left(1-\mu^{2}\right)}{\sqrt{ } 2}\left[F\left(\xi_{1}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)-F\left(\xi, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)\right] \tag{37}
\end{align*}
$$

with the corresponding ranges of $\xi$ and $\varphi$ as for the arc length $s$. Now from equation (16)

$$
a^{2} \sin \alpha=b^{2}+\left(R^{2}-b^{2}\right) \sin \beta
$$

and using (23) and (35)

$$
a^{2} \sin \alpha=\mu^{2} R^{2}+\left(1-\mu^{2}\right) R^{2} \sin \beta=R^{2} \cos ^{2} \xi_{1}
$$

therefore

$$
\begin{equation*}
a \sqrt{ } \sin \alpha=R \cos \xi_{1} \tag{38}
\end{equation*}
$$

But

$$
\frac{\sqrt{ } 2 s_{1}}{a}=\frac{\sqrt{ } 2 s_{1} \sqrt{ } \sin \alpha}{a \sqrt{ } \sin \alpha}=\frac{\sqrt{ } 2 s_{1} \cos \theta_{1}}{R \cos \xi_{1}}
$$

where

$$
\begin{equation*}
\cos \theta_{1}=\sqrt{ } \sin \alpha \tag{39}
\end{equation*}
$$

and hence equation (30) can be written in the form

$$
\left(\frac{\sqrt{ } 2 s_{1}}{R \cos \xi_{1}}\right) \cos \theta_{1}=F\left(\frac{\pi}{2}, \frac{1}{\sqrt{ } 2}\right)-F\left(\theta_{1}, \frac{1}{\sqrt{ } 2}\right) .
$$

Let

$$
\begin{equation*}
\lambda=\frac{\sqrt{ } 2 s_{1}}{R \cos \xi_{1}} \tag{40}
\end{equation*}
$$

then

$$
\begin{equation*}
\lambda=\left\{F\left(\frac{\pi}{2}, \frac{1}{\sqrt{ } 2}\right)-F\left(\theta_{1}, \frac{1}{\sqrt{ } 2}\right)\right\} \sec \theta_{1} \tag{41}
\end{equation*}
$$

Values of this function $\lambda$ for $-\pi / 2 \leqslant \theta_{1} \leqslant \pi / 2$ have been calculated and are given in Table 1 with the corresponding values of $\alpha$.

At $\theta_{1}=\pi / 2:$

$$
\lambda\left(\theta_{1}=\frac{\pi}{2}\right)=\operatorname{Lt}_{\theta_{1} \rightarrow \pi / 2}\left\{\frac{F\left(\frac{\pi}{2}, \frac{1}{\sqrt{ } 2}\right)-\dot{F}\left(\theta_{1}, \frac{1}{\sqrt{2}}\right)}{\cos \theta_{1}}\right\}
$$

and at $\theta_{1}=\pi / 2$ this is indeterminate. Applying L'Hôpital's rule:

$$
\begin{aligned}
\lambda\left(\theta_{1}=\frac{\pi}{2}\right) & =\operatorname{Lt}_{0_{1} \rightarrow \pi / 2}\left[\frac{\frac{d}{d \theta_{1}}\left\{-F\left(\theta_{1}, \frac{1}{\sqrt{ } 2}\right)\right\}}{\frac{d}{d \theta_{1}}\left(\cos \theta_{1}\right)}\right] \\
& =\underset{\theta_{1} \rightarrow \pi / 2}{\operatorname{Lt}}\left[\frac{1}{\sin \theta_{1} \sqrt{ }\left(1-\frac{1}{2} \sin ^{2} \theta_{1}\right)}\right]
\end{aligned}
$$

which is determinate at $\theta_{1}=\pi / 2$;
therefore

$$
\lambda \rightarrow \sqrt{ } 2 .
$$

When $\theta_{1}=-\pi / 2, \lambda$ is infinite and hence $\lambda$ is restricted to lie in the range

$$
\begin{equation*}
\infty>\lambda>\sqrt{ } 2 \tag{42}
\end{equation*}
$$

Thus for a possible equilibrium configuration $\lambda$ must be greater than $\sqrt{ } 2$, and from (40) it follows that the inequality

$$
\begin{equation*}
\frac{s_{1}}{R}>\cos \xi_{1} \tag{43}
\end{equation*}
$$

must be satisfied.
But

$$
\frac{s_{1}}{R}+\frac{s_{2}}{R}=\frac{L}{R}
$$

and hence the following inequality must also be satisfied

$$
\begin{equation*}
\frac{s_{2}}{R}+\cos \xi_{1}<\frac{L}{R} \tag{44}
\end{equation*}
$$

It is now a quite simple matter to determine whether a given system can have an equilibrium configuration, and conversely it is possible to predict systems which will have an equilibrium configuration and be capable of supporting a given load under a given pressure.

As an example of the assessment of a system suppose that $R_{1}, R, b, s_{1}$ and $s_{2}$ are given. It is firstly postulated that

$$
0<\mu=\frac{b}{R}<\frac{1}{\sqrt{ } 2}
$$

We calculate $s_{2} / R$ and also

$$
\begin{equation*}
\sin \delta=\frac{R_{1}{ }^{2}-b^{2}}{R^{2}-b^{2}} \tag{45}
\end{equation*}
$$

Now from (34)

$$
\begin{equation*}
\frac{s_{2}}{R}=\frac{\sqrt{ }\left(1-\mu^{2}\right)}{\sqrt{ } 2}\left[F\left(\xi_{1}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)-F\left(\xi_{2}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)\right] \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
\dot{\xi}_{1}=\cos ^{-1} \sqrt{ }\left\{\left(1-\mu^{2}\right) \sin \beta+\mu^{2}\right\} \tag{47}
\end{equation*}
$$

and

$$
0 \leqslant \xi_{1} \leqslant \frac{\pi}{2},
$$

also

$$
\begin{equation*}
\dot{\xi}_{2}=\cos ^{-1} \sqrt{ }\left\{\left(1-\mu^{2}\right) \sin \delta+\mu^{2}\right\} . \tag{48}
\end{equation*}
$$

From equation (45) there are two possible values for $\delta$ :
(i) such that $\delta \geqslant \pi / 2$ when $0 \leqslant \xi_{2} \leqslant \pi / 2$ and
(ii) such that $\delta \leqslant \pi / 2$ when $-\pi / 2 \leqslant \xi_{2} \leqslant 0$.

For $\delta \geqslant \pi / 2, s_{2} / R$ cannot be greater than the maximum possible arc length between the points where

$$
\varphi=\sin ^{-1}\left(-\frac{\mu^{2}}{1-\mu^{2}}\right) \quad \text { and } \quad \varphi=\frac{\pi}{2}:
$$

hence the inequality

$$
\begin{equation*}
\frac{s_{2}}{R}<\frac{\sqrt{ }\left(1-\mu^{2}\right)}{\sqrt{ } 2} F\left(\frac{\pi}{2}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right) \tag{49}
\end{equation*}
$$

must be satisfied.
For $\delta \leqslant \pi / 2, s_{2} / R$ cannot be greater than the maximum arc length between

$$
\varphi=\sin ^{-1}\left(-\frac{\mu^{2}}{1-\mu^{2}}\right) \quad \text { and } \quad \varphi=\pi-\sin ^{-1}\left(-\frac{\mu^{2}}{1-\mu^{2}}\right)
$$

and hence

$$
\begin{equation*}
\frac{s_{2}}{R}<\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\} F\left(\frac{\pi}{2}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right) . \tag{50}
\end{equation*}
$$

It should be noted that the inequalities (49) and (50) merely provide upper bounds and do not tell us whether $\delta \geqslant \pi / 2$ or $\leqslant \pi / 2$, unless the inequality (50) is satisfied and (49) not satisfied; in this case $\delta$ must be $\geqslant \pi / 2$. If the inequality (49) is satisfied $\delta$ may lie in either region.

Let us suppose that the inequality (49) is satisfied without (50) being satisfied, or that both (49) and (50) are satisfied; it should then be possible to find the equilibrium configuration. Suppose it is assumed that $\delta \geqslant \pi / 2$ with $0 \leqslant \xi_{2} \leqslant \pi / 2$.
We form

$$
\frac{s_{2}}{R}+\frac{\sqrt{ }\left(1-\mu^{2}\right)}{\sqrt{ } 2} F\left(\xi_{2}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)
$$

and using a set of tables of elliptic integrals we endeavour to find a value of $\xi_{1}$, such that $0 \leqslant \xi_{1} \leqslant \pi / 2$, which makes this expression equal to

$$
\frac{\sqrt{ }\left(1-\mu^{2}\right)}{\sqrt{ } 2} F\left(\xi_{1}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)
$$

If there is no value of $\dot{\xi}_{1}$ satisfying this then $\delta<\pi / 2$ and $-\pi / 2 \leqslant \xi_{2}<0$. In this manner the value of $\delta$ is found and also the value of $\xi_{1}$. Equation (47) now enables $\beta$ to be found and

$$
\begin{equation*}
\sin \beta=\frac{\cos ^{2} \xi_{1}-\mu^{2}}{1-\mu^{2}} \tag{51}
\end{equation*}
$$

where

$$
\sin ^{-1}\left(-\frac{\mu^{2}}{1-\mu^{2}}\right)<\beta<\frac{\pi}{2}
$$

An equilibrium configuration then exists if

$$
\frac{s_{1}}{R}>\cos \xi_{1}
$$

Since $s_{1}$ is given, $\lambda$ can be calculated and the corresponding value of $\alpha$ found from Table 1. Equations (32) and (37) can then be used to find the vertical co-ordinates $x$ for the system and the configuration can be plotted graphically.

As another example of the assessment of a system suppose that the total generator-cord length $L$, the base radii $R_{1}$ and $b$, and the maximum lower-canopy radius $R$ are given. Again, for equilibrium, it is postulated that

$$
0<\frac{b}{R}<\frac{1}{\sqrt{ } 2} .
$$

We calculate $L / R$ and if this is such that

$$
\frac{L}{R}>\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\} F\left(\frac{\pi}{2}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)
$$

then an equilibrium configuration exists provided that

$$
\frac{s_{2}}{R}<\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\} F\left(\frac{\pi}{2}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right) .
$$

If

$$
\frac{L}{R}<\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\} F\left(\frac{\pi}{2}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)
$$

then $s_{2} / R$ must be chosen so that

$$
\frac{s_{2}}{R}+\cos \xi_{1}<\frac{L}{R}
$$

and since $0 \leqslant \xi_{1} \leqslant \pi / 2$ this can be done with the aid of a set of tables. Having chosen $s_{1}$ and $s_{2}$ to satisfy the equilibrium conditions we may proceed as before and determine the complete configuration of the system.

### 4.3. Some Practical Considerations.

It is necessary to remark that, although the analysis of Section 4.2 may indicate that the system has an equilibrium configuration, it does not follow that this configuration is of any practical use: it is essential for the suspension points to lie above the plane surface at the base level otherwise the load can never be raised, and these points must also be high enough to accommodate the load and still allow it to be raised above the level of the base. This statement may seem trivial and obvious but it imposes limits on the values which can be taken for $\mu$ which are more stringent. than that of $0<\mu<1 / \sqrt{ } 2$.

In Fig. 10 are plotted some members of the family of curves for the lower canopy where

$$
\sin \varphi=\frac{r^{2}-b^{2}}{R^{2}-b^{2}}=\frac{\left(\frac{r}{R}\right)^{2}-\mu^{2}}{1-\mu^{2}}
$$

and reference to these curves readily reveals some interesting features. The maximum height of the suspension points for the load above the plane surface where $\varphi=\pi, \delta=0$ and $r / R=\mu$ occurs when they are situated at the upper points given by $\varphi=0, r / R=\mu$. If full advantage has to be taken of the maximum height of the lower canopy then the base angle $\delta$ must be zero; if $\delta=\pi / 2$ then only half of this maximum height is available. The maximum height $H$ can be obtained using equation (37) with $\beta=0$ and $\varphi=\pi$ and is given by

$$
\frac{H}{R}=2 \sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\} E\left[\cos ^{-1} \mu, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right]-2 \sqrt{\left(\frac{1-\mu^{2}}{2}\right)} F\left[\cos ^{-1} \mu, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right]
$$

with

$$
0<\cos ^{-1} \mu<\frac{\pi}{2}
$$

Values of $H / R$ have been calculated for $\mu$ up to 0.7 and are given approximately in the Table below.

## TABLE

Values of $H / R$ for $0 \cdot 1 \leqslant \mu \leqslant 0 \cdot 7$

| $\mu=\frac{b}{R}$ | $\approx \frac{H}{R}(\delta=0)$ |
| :---: | :---: |
| 0.1 | $1 \cdot 19$ |
| 0.2 | $1 \cdot 14$ |
| 0.3 | 1.05 |
| 0.4 | 0.96 |
| 0.5 | 0.83 |
| 0.6 | 0.70 |
| 0.7 | 0.54 |

[The values given are only approximate: the reason for this is that the elliptic-functions tables of $E(\theta, k)$ and $F(\theta, k)$ are usually given with $\sin ^{-1} k$ at intervals of $1^{\circ}$ and $\theta$ at intervals of $5^{\circ}$. In order to obtain accurate values at intermediate points extensive interpolation is necessary, and in the circumstances not worthwhile, for the figures given should be accurate to about $\pm 2 \%$ which for all practical purposes is adequate.]

If the system is to be efficient in the sense that the heaviest possible load can be lifted with the minimum pressure difference then $\mu$ should be fairly large, say 0.6 to 0.7 . A disadvantage occurring here is that when $\mu$ is of this magnitude then $H / R$ is rather small (about $0 \cdot 6$ ) and the lower canopy is rather squat; a large upper canopy may thus be required to accommodate the load. If the load is rather bulky and a tall lower canopy is required then the efficiency must be reduced and a higher pressure difference applied to raise the load. The upper canopy must in any case be such that the
load suspension points lie above the base level $\delta=0, \varphi=\pi$ and in Fig. 10 the curve for $\mu=0.6960$ immediately shows that the radius of the circle at the suspension-point interface, $r_{1}$, must be such that $r_{1} / R$ is greater than approximately $0 \cdot 1$; there is thus a minimum size for the interface radius $r_{1}$ whenever $\mu$ exceeds a certain value: this value can be determined by considering the case where there is no upper canopy. The first acceptable configuration (which is practically useless) is that where the single suspension point is on the same level as the base $\delta=0, \varphi=\pi$. By plotting the difference between the maximum height ratio $H / R$ and the distance between the suspension point where

$$
\varphi=\sin ^{-1}\left(-\frac{\mu^{2}}{1-\mu^{2}}\right)
$$

and its image point where

$$
\varphi=\pi-\sin ^{-1}\left(-\frac{\mu^{2}}{1-\mu^{2}}\right)
$$

(again as a ratio of distance $/ R$ ), against $\mu$, the value of $\mu$ for which this difference is unity can be obtained and gives the critical value for $\mu$ as being approximately 0.665 . Hence, whenever $\mu$ exceeds 0.665 there must be an upper canopy and by plotting the curve for the required value of $\mu$ the minimum value for $r_{1}$ can be determined. Also, in order to make a system without an upper canopy and with a single suspension point it is essential that $\mu$ should be less than 0.665 .

These criteria for $\mu$ have been referred to the case where $\delta=0$ and if the system is designed with $\delta$ other than zero, say lying between 0 and $\pi / 2$, the critical value for $\mu$ at which the suspension points are level with the base is further reduced and must be determined for each individual case by reference to the curve of

$$
\sin \varphi=\frac{\left(\frac{\gamma}{R}\right)^{2}-\mu^{2}}{1-\mu^{2}}
$$

for the appropriate value of $\mu$. For $\delta=\pi / 2$ the critical value is approximately $\mu=0 \cdot 6$.
Practically, in order to keep the weight of the system and the amount of material used to a minimum it should be designed with the annular base of the same outer radius as the maximum radius of the lower canopy. The angle $\delta$ is then $\pi / 2$ and there is no radial tension in the base hoop. However, if a wire grommet or tension cord is used for the base, $R_{1}=b$, and then $\delta=0$. A certain amount of extra fabric is required below the point B and the base cord may have to be substantial to withstand the radial tension loads. A possible shape is shown in Fig. 5.

If, on the other hand, $\delta$ is larger than $\pi / 2$, the lower canopy does not attain the maximum radius $R$ and there is a radial compression on the base. With the system envisaged the whole device is intended to be collapsible and the rigidity of the base obtained by means of inflated ribs; these may be satisfactory under tension but are liable to buckle under fairly low compression and it would appear undesirable to have a system designed with $\delta>\pi / 2$.
In general, the most efficient and economical structure should be that designed with $\delta=\pi / 2$ so that the radial stress in the base is zero. In this case the height of the system can be kept to a minimum, the centre of gravity as low as possible, and the base area to a maximum. These factors should all be instrumental in promoting the static and dynamic stability of the device. With a small - base area and $\delta<\pi / 2$ the system might easily be unstable when subjected to small disturbances.

It may be desirable for the generator cords in both the upper and lower canopies to be equally stressed. In this case

$$
\begin{equation*}
T_{1}=T_{2} \tag{52}
\end{equation*}
$$

and from equations (2) and (5)

$$
\begin{equation*}
a^{2}=R^{2}-b^{2}, \tag{53}
\end{equation*}
$$

also from equations (3) and (4)

$$
\begin{equation*}
\sin \alpha-\sin \beta=\frac{b^{2}}{a^{2}} \tag{54}
\end{equation*}
$$

These equations may be used for rapid calculation of $a$ and $\alpha$ when $\beta$ is known.
This section has been concerned with determining the configuration taken up by the generator cords of a system with specified geometric parameters, alternatively the equations derived enable one to design a system. Having determined the configuration of the generator cords it is necessary to consider a possible shape for the fabric gore lying between them, and to calculate the stress in this fabric.

## 5. The Calculation of the Gore Shape.

In choosing gore shapes for the canopies it is essential that these should be such that the initial assumption of zero generator stress in the fabric is satisfied as far as possible. Without crinkling the gore surface is not plane and as it is usual to cut the gore from a plane sheet of fabric and not to mould it, the true gore shape cannot be represented in two-dimensional co-ordinates. In order to avoid this difficulty and arrive at a gore shape which can be represented two-dimensionally and thus cut from a plane sheet, the method used is to specify a means of generating the true gore surface without crinkling, calculate the true gore length as measured along the mid-gore line and then to assume that the width of the gore to be cut from plane fabric is equal to the length of the arc of the gore generating curve lying between two adjacent generator cords. $I_{t}$ is then demonstrated that the plane gore so derived must be gathered along the generator cords in order to make it fit and in consequence the fabric should make no appreciable contribution to the tension already existing in the generator cords. It should be emphasised that the plane gore shape derived in this report is merely a particular case and there are many possible alternatives depending on the shape of the gore generating curve.

Consider the plane MPQ $\left(\pi_{1}\right)$ containing the normals to a pair of adjacent generator cords at corresponding points P and Q situated at equidistant intervals from the vertex O of the upper canopy. It is supposed that the surface of the gore of both the upper and lower canopies is generated by a circle of constant radius $h$, lying in the plane $\pi_{1}$, and passing through $P$ and $Q$, sweeping down the generator cords from O to the base of the upper canopy and from there to the base hoop.

Let OD and OE be adjacent generator cords; P and Q corresponding points on these cords at distance $r$ from the axis $\mathrm{O} x$; and M a point on $\mathrm{O} x$ such that MP and MQ are the normals to OD and OE at P and Q respectively, as in Fig. 6. PHQ is an arc of the generating circle lying in the plane IMPQ $\left(\pi_{1}\right)$, this circle is centred at I and has a constant radius $h ; \mathrm{H}$ is the mid-point of the $\operatorname{arc} \mathrm{PQ}$. Another circle, centred at M , and of radius

$$
\mathrm{PM}=r \operatorname{cosec} \psi
$$

lying in the plane $\pi_{1}$. cuts the line MIH at $G$ and the $\operatorname{arc} P G(=G Q)$ subtends an angle $\varepsilon$ at $M$ as shown in Fig. 7. The arc HQ subtends an angle $\eta$ at I . Now the straight line $\mathrm{PQ}=2 r \sin \pi / n$ and hence

From $\triangle I Q M$ :

$$
\begin{equation*}
\epsilon=\sin ^{-1}\left(\sin \frac{\pi}{n} \sin \psi\right) \tag{55}
\end{equation*}
$$

$$
\frac{h}{\sin \frac{\pi}{n} \sin \psi}=\frac{r \operatorname{cosec} \psi}{\sin (\pi-\eta)}=\frac{r \operatorname{cosec} \psi}{\sin \eta}
$$

therefore

$$
\begin{equation*}
\sin \eta=\frac{r}{\breve{h}} \sin \frac{\pi}{n} . \tag{56}
\end{equation*}
$$

Let $\operatorname{arc} \mathrm{HQ}=w=h \eta$ then

$$
\begin{equation*}
w=h \sin ^{-1}\left(\frac{r}{h} \sin \frac{\pi}{n}\right) \tag{57}
\end{equation*}
$$

and this equation gives a measure of the half-gore width.
To obtain the length of the gore consider Fig. 8. Let

$$
\begin{align*}
\mathrm{PP}^{\prime} & =\mathrm{QQ}^{\prime}=\delta s  \tag{58}\\
\mathrm{HH}^{\prime} & =d S \tag{59}
\end{align*}
$$

where $s$ is arc length measured along the generator cord and $S$ arc length measured along the mid-gore line.
Now

$$
\begin{aligned}
d s & \doteqdot \mathrm{M}_{1} \mathrm{G} \delta \psi \\
\mathrm{M}_{1} \mathrm{H} \delta \psi & \doteqdot \mathrm{HH}^{\prime} \\
\mathrm{M}_{1} \mathrm{H} & =\mathrm{M}_{1} \mathrm{G}+\mathrm{GH}
\end{aligned}
$$

therefore

$$
\begin{align*}
\frac{d S}{d s} & =\operatorname{Lt}_{\mathrm{P} \rightarrow \mathrm{P}^{\prime}} \frac{\mathrm{HH}^{\prime}}{\mathrm{PP}^{\prime}}=\mathrm{Lt}\left(\frac{\mathrm{M}_{1} \mathrm{G}+\mathrm{GH}}{\mathrm{M}_{\mathrm{I}} \mathrm{G}}\right) \\
& \doteqdot 1+\mathrm{GH} \frac{d \psi}{d s}  \tag{60}\\
\mathrm{GH} & =\mathrm{MI}+\mathrm{IH}-\mathrm{MG} \\
& =\mathrm{MI}+h-r \operatorname{cosec} \psi .
\end{align*}
$$

But, from $\triangle I Q M$,

$$
\frac{\mathrm{MI}}{\sin \mathrm{IQM}}=\frac{\gamma \operatorname{cosec} \psi}{\sin \eta}
$$

and

$$
\mathrm{IQM}=\eta-\sin ^{-1}\left(\sin \frac{\pi}{n} \sin \psi\right)
$$

therefore

$$
\mathrm{GH}=r \operatorname{cosec} \psi \sqrt{\left(1-\sin ^{2} \frac{\pi}{n} \sin ^{2} \psi\right)-r \sin \frac{\pi}{n} \cot \eta+h-r \operatorname{cosec} \psi}
$$

and using (56)

$$
\mathrm{GH}=r \operatorname{cosec} \psi \sqrt{\left(1-\sin ^{2} \frac{\pi}{n} \sin ^{2} \psi\right)-h \sqrt{\left(1-\frac{r^{2}}{h^{2}} \sin ^{2} \frac{\pi}{n}\right)+h-r \operatorname{cosec} \psi .} . . . . .}
$$

Hence, to first-order terms:

$$
\begin{equation*}
\mathrm{GH}=\frac{1}{2} r \sin ^{2} \frac{\pi}{n}\left[\frac{r}{h}-\sin \psi\right] . \tag{61}
\end{equation*}
$$

From (60) and (61):

$$
\begin{equation*}
\frac{d S}{d s}=1+\frac{1}{2} r \sin ^{2} \frac{\pi}{n}\left[\frac{r}{h}-\sin \psi\right] \frac{d \psi}{d s} . \tag{62}
\end{equation*}
$$

[This form, and the preceding analysis of the gore shape, is almost identical with that used in the calculation of the gore shape for a parachute with cords over the canopy (see Ref. 1), but in the present case $n$ is not assumed to be large and the exact value for the angle $\epsilon$ is used, as opposed to an approximate value.]

### 5.1. The Upper-Canopy Gore.

For the upper canopy:

$$
\sin \psi=\frac{r^{2}}{a^{2}} \quad \text { and } \quad \frac{d \psi}{d s}=\frac{2 r}{a^{2}} .
$$

Substituting in equation (62)

$$
\begin{equation*}
\frac{S-s}{a}=\sin ^{2} \frac{\pi}{n} \int_{0}^{r / a}\left\{\frac{a}{h}\left(\frac{r}{a}\right)^{3}-\left(\frac{r}{a}\right)^{4}\right\} \frac{d\left(\frac{r}{a}\right)}{\sqrt{\left\{1-\left(\frac{r}{a}\right)^{4}\right\}}} \tag{63}
\end{equation*}
$$

Performing the integration:

$$
\begin{align*}
\frac{S-s}{a}= & \sin ^{2} \frac{\pi}{n}\left[\frac{a}{2 h}\left\{1-\left(1-\frac{2 r h}{3 a^{2}}\right) \sqrt{ }\left(1-\left(\frac{r}{a}\right)^{4}\right)\right\}\right]+ \\
& +\frac{1}{3 \sqrt{ } 2} \sin ^{2} \frac{\pi}{n}\left[F\left(\cos ^{-1} \frac{r}{a}, \frac{1}{\sqrt{ } 2}\right)-F\left(\frac{\pi}{2}, \frac{1}{\sqrt{ } 2}\right)\right] \tag{64}
\end{align*}
$$

and also from (30)

$$
\begin{equation*}
\frac{s}{a}=\frac{1}{\sqrt{ } 2}\left\{F\left(\frac{\pi}{2}, \frac{1}{\sqrt{ } 2}\right)-F\left(\cos ^{-1} \frac{r}{a}, \frac{1}{\sqrt{ } 2}\right) .\right. \tag{65}
\end{equation*}
$$

Hence, given the values for $n$ and $h$, equations (57), (64) and (65) can be used to determine the gore shape for the upper canopy.

### 5.2. The Lower-Canopy Gore.

For the lower canopy:

$$
\sin \varphi=\frac{r^{2}-b^{2}}{R^{2}-b^{2}} \quad \text { and } \quad \frac{d \varphi}{d s}=\frac{2 r}{R^{2}-b^{2}} .
$$

Putting $b=\mu R$ and substituting in (62)

$$
\begin{equation*}
\frac{S-s}{R}=\frac{\sin ^{2} \frac{\pi}{n}}{\left(1-\mu^{2}\right)} \int_{r_{1} / R}^{r / R} \frac{\left\{\mu^{2}+\frac{R}{h}\left(1-\mu^{2}\right) \frac{r}{R}-\left(\frac{r}{R}\right)^{2}\right\}\left(\frac{r}{R}\right)^{2}}{\sqrt{\left[\left\{1-\left(\frac{r}{R}\right)^{2}\right\}\left\{\left(1-2 \mu^{2}\right)+\left(\frac{r}{R}\right)^{2}\right\}\right]}} d\left(\frac{r}{R}\right) . \tag{66}
\end{equation*}
$$

The evaluation of this integral is described in Appendix I and the result is:

$$
\begin{align*}
\frac{S-s}{R}= & \sin ^{2} \frac{\pi}{n}\left[\frac{\sqrt{ } 2 \mu^{2}}{3 \sqrt{ }\left(1-\mu^{2}\right)} E\left(\cos ^{-1} \frac{r}{R}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)+\right. \\
& +\frac{\sqrt{ } 2\left(1-2 \mu^{2}\right)}{6 \sqrt{ }\left(1-\mu^{2}\right)} F\left(\cos ^{-1} \frac{r}{R}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)+ \\
& +\left(\frac{1}{3\left(1-\mu^{2}\right)} \dddot{R}-\frac{R}{2 h}\right) \sqrt{ }\left[\left\{1-\left(\frac{r}{R}\right)^{2}\right\}\left\{\left(1-2 \mu^{2}\right)+\left(\frac{r}{R}\right)^{2}\right\}\right]- \\
& -\frac{\mu^{2} R}{h} \sin ^{-1} \sqrt{\left.\frac{1-\left(\frac{r}{R}\right)^{2}}{2\left(1-\mu^{2}\right)}\right]_{r_{1}: R}^{r: R}} \tag{67}
\end{align*}
$$

also from equation (34)

$$
\begin{equation*}
\frac{s}{R}=\frac{\sqrt{ }\left(1-\mu^{2}\right)}{\sqrt{ } 2}\left[F\left(\cos ^{-1} \frac{r_{1}}{R}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)-F\left(\cos ^{-1} \frac{r}{R}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)\right] . \tag{68}
\end{equation*}
$$

Equations (67) and (68), in conjunction with equation (57), enable the gore shape for the lower canopy to be determined and hence the shape of the gore for the whole canopy is known.

Suppose that the gore for the upper canopy is cut to the shape $\mathrm{OP}_{1} \mathrm{H}_{1} \mathrm{Q}_{1}$ and that for the lower canopy to the shape $P_{1} \mathrm{P}_{2} \mathrm{H}_{2} \mathrm{Q}_{2} \mathrm{Q}_{1}$ as shown in Fig. 9. For the upper canopy $S$ is measured downwards from O as far as $\mathrm{H}_{1}$ and for the lower canopy it is measured from $\mathrm{H}_{1}$ down to $\mathrm{H}_{2}$ with $w$ as the semi-gore width. The points $\mathrm{P}_{1}$ and $\mathrm{Q}_{1}$ are made to correspond to two adjacent suspension points on the generator cords and $P_{2}$ and $Q_{2}$ to two adjacent points on the base hoop.
Now

$$
\mathrm{OP}_{1}>\mathrm{OH}_{1}>s_{1},
$$

where $s_{1}$ is the total length of the upper-canopy generator cord, and hence when the fabric $\mathrm{OP}_{1}$ is ranged along this generator cord it must be slack in comparison with the cord itself. Similarly for the lower-canopy gore

$$
\mathrm{P}_{1} \mathrm{P}_{2}>\mathrm{H}_{1} \mathrm{H}_{2}>s_{2}
$$

and the fabric $P_{1} P_{2}$ when ranged along the generator cord is slack compared with the cord itself.
The particular type of gore generated by the circle of radius $h$ thus satisfies the assumption made in Section 2 that the gore fabric should have a minimum of tension in the direction of the generator cord.

### 5.3. Stresses in the Fabric Gore.

If the extension of the fabric used for the gore is neglected the approximate circumferential tension can be calculated using membrane theory. It has been assumed that the generator tension in the gore fabric is negligibly small in comparison with the circumferential tension in this fabric; this implies that the radius of curvature of the gore fabric in the generator direction is very large
in comparison with that in the circumferential direction. In these circumstances the radius of curvature in the circumferential direction is approximately equal to the radius of the gore generating circle $h$ and approximately

$$
\begin{equation*}
p=\frac{T_{c}}{h} \tag{69}
\end{equation*}
$$

where $T_{c}$ is the circumferential tension in the fabric. Using equation (7):

$$
\begin{equation*}
T_{c}=\frac{M g h}{\pi b^{2}} . \tag{70}
\end{equation*}
$$

If the yield strength of the fabric is $T_{c \text { max }}$ then the maximum load which the system might be expected to support is given by

$$
\begin{equation*}
(M g)_{\max }=\frac{\pi b^{2}}{h} T_{c \max } \tag{71}
\end{equation*}
$$

which can be written

$$
\begin{equation*}
(M g)_{\max }=\frac{\pi}{2} \frac{a}{h} \frac{b}{a} 2 b T_{c \max } . \tag{72}
\end{equation*}
$$

Thus, the greater the value of $a / h$ or $b / a$ the greater is the maximum load the system can support without the fabric breaking down.

The values of $a / h$ (or $R / h$ ) determine the fullness of the gores and the larger these ratios the less the tension in the fabric for a given load, which enables a low-tensile-strength fabric to be used. The actual bulk of the fabric system is directly proportional to the area of a gore and the fabric thickness-the gore area increases with $1 / h$ and the fabric stresses are reduced-so that the optimum value for $h$ should occur when the product of the gore area and $1 / h$ is a minimum. This minimum is of particular interest if the bulk of the system is of major importance: in parachute theory, which corresponds to the upper canopy only, it is usual to take a value for $a / h$ of two (2) as this gives an approximate minimum, this is probably a reasonable value to take for the present system.

It must be stressed that the theory involved in the calculation of the gore shape is at best a very crude approximation. It may be better to design the gore so that the value of ' $h$ ' for the upper canopy is different to that for the lower canopy, e.g. for the upper canopy so that $a / h=2$ and for the lower canopy so that $R / h=2$, and it is then necessary to match the fabric shape at the suspensionpoint interface. It may be desirable to have very little fabric billowing between the generator cords, in this case a stronger fabric with a larger value for $h$ may be required. These factors must be determined in relation to the requirements for a particular system and experiment will finally decide whether a system is satisfactory.

## 6. Conclusions.

The analysis shows that an equilibrium configuration can only exist for the model system allowing for single-point suspension if the base orifice area is less than half the total projected area of the lower canopy and that further restrictions of a geometric nature then determine whether an equilibrium configuration is possible; these latter restrictions can only affect such factors as the total height of the system and the position of the points of attachment of the load cords. All the necessary formulae for the design of the system are given, including the calculation of a particular
type of gore shape, and an estimate is also made of the maximum load which could be carried with a given fabric and system geometry. The tensions in the generator cords can be-determined easily and an approximation is given for the tension in the gore fabric.

The advantage of the structure considered, apart from the fact that it lends itself to approximate analysis and provides a theoretical design basis which could readily be applied using nothing more than a set of tables and a hand calculating machine, is that it makes the most economical use of fabric, the approximate stress distribution is known, and full account can be taken of design requirements such as maximum permissible height or headroom, position of load and the total bulk of the structure. Practically there seems to be no serious difficulty involved in constructing a system of this type; care is needed in choosing fabrics and, although inextensibility is desirable to accord with the theory, as long as the extensibility of the generator cords is less than that of the fabric gore the theory should give a reasonable approximation.

## LIST OF SYMBOLS

$E(\varphi, k) \quad$ Legendre's incomplete elliptic integral of the second kind
$F(\varphi, k)=u$, incomplete elliptic integral of the first kind
$F \quad$ Tension in a load cord
$H \quad$ Maximum height of the lower canopy
$L \quad$ Total generator-cord length from the apex to the base of the system
$M \quad$ The load mass
$R \quad$ Maximum radius of the lower canopy
$R_{1} \quad$ Outer radius of the annular base hoop
$S \quad$ The arc length for the fabric measured along the mid-gore line
$T_{1} \quad$ Tension in the upper-canopy generator cord
$T_{2} \quad$ Tension in the lower-canopy generator cord
$T_{3} \quad$ Radial tension in a base hoop rib
$T_{c} \quad$ Tension in the circumferential direction in the gore fabric
a Maximum radius of the upper canopy
$b \quad$ Radius of the orifice in the base hoop ( $a, b$ and $c$ are also used in the Appendix in a different context in giving standard forms for elliptic integrals)
$h \quad$ Radius of the gore-fabric generating circle
$k \quad$ Modulus of the elliptic integrals
$k^{\prime}=\sqrt{ }\left(1-k^{2}\right)$, the complementary modulus
$l \quad$ The length of a load cord
$n \quad$ Number of generator and load cords
$p \quad$ Pressure difference across the fabric
$r$ Radial distance
$r_{1} \quad$ Radius at the canopy suspension-point interface
$s \quad$ Arc length measured from various origins as stated in the text
$s_{1} \quad$ Total arc length measured along a generator cord from the apex of the upper canopy to the suspension-point interface
$s_{2} \quad$ Arc length measured along a generator cord of the lower canopy from the suspension-point interface to the base hoop
w
Semi-gore width of the fabric

## LIST OF SYMBOLS—continued

$x \quad$ Vertical distance measured from various origins as stated in the text
$x_{1} \quad$ Height of the upper canopy from apex to suspension-point interface
$x_{2} \quad$ Height of the lower canopy from the suspension-point interface to the base hoop
$\alpha \quad$ Angle made by the upper-canopy generator cord with the horizontal at the suspension-point interface
$\beta \quad$ Angle made by the lower-canopy generator cord with the horizontal at the suspension-point interface

Angle made by a load cord with the horizontal
$\delta \quad$ Angle made by a lower-canopy generator cord at the point of contact of the base hoop with a plane surface. (These angles $\alpha, \beta, \gamma, \delta$ are measured in the directions shown in the figures)
$\epsilon \quad$ Angle defined in Section 5, equation (55)
$\eta \quad$ Angle defined in Section 5
$\theta \quad$ Defined by equation (31) $=\cos ^{-1}(\sqrt{ } \sin \psi)$
$\lambda \quad$ Defined by equation (40) $=\frac{\sqrt{ } 2 s_{1}}{R \cos \xi_{1}}$
$\mu \quad$ Parameter defined as $=\begin{gathered}b \\ R\end{gathered}$
$\xi, \xi_{1} \quad$ Defined in equations (35) and (36)
$\varphi \quad$ Angle made by the tangent to the lower-canopy generator cords measured from the horizontal position $r=b$
$\psi \quad$ Angle made by the tangent to the upper-canopy generator cords measured from the horizontal position at the apex $r=0$

## REFERENCES

No.
1 G. W. H. Stevens and T. F. Johns .

Title, etc.
The theory of parachutes with cords over the canopy. A.R.C. R. \& M. 2320. July, 1942.

2 Jahnke-Einde-Lösch .. .. .. Tables of higher functions. 6th edition, McGraw Hill Book Co. 1960.
3 P. F. Byrd and M. D. Friedman .. Handbook of elliptic integrals for engineers and physicists. Springer-Verlag, Berlin. 1954.

TABLE 1
Values of $\lambda$ and $\alpha$ for $-\pi / 2 \leqslant \theta_{1} \leqslant \pi / 2$

| $\lambda=\frac{\sqrt{ } 2 s_{1}}{R \cos \check{\xi}}$ | $\theta_{1}{ }^{\circ}$ | $\alpha^{\circ}$ | $\lambda=\frac{\sqrt{ } 2 s_{1}}{R \cos \xi}$ | $\theta_{1}{ }^{\circ}$ | $\alpha^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\infty$ | -90 | 0 | 1.8541 | 0 | $90^{\circ}$ |
| 104.8 | -88 | $0^{\circ} 4^{\prime}$ | 1.8203 | 2 | $92^{\circ} 48^{\prime}$ |
| 51.76 | -86 | $0^{\circ} 17^{\prime}$ | 1.7885 | 4 | $95^{\circ} 36^{\prime}$ |
| 34.07 | -84 | $0^{\circ} 37^{\prime}$ | 1.7589 | 6 | $98^{\circ} 30^{\prime}$ |
| 25.23 | -82 | $1^{\circ} 7^{\prime}$ | 1.7311 | 8 | $101^{\circ} 17^{\prime}$ |
| $19 \cdot 941$ | -80 | $1^{\circ} 43^{\prime}$ | 1.7051 | 10 | $104^{\circ} 11^{\prime}$ |
| $16 \cdot 421$ | -78 | $2^{\circ} 28^{\prime}$ | 1.6805 | 12 | $106^{\circ} 55^{\prime}$ |
| $13 \cdot 913$ | -76 | $3^{\circ} 21^{\prime}$ | 1.6577 | 14 | $109^{\circ} 42^{\prime}$ |
| $12 \cdot 038$ | -74 | $4^{\circ} 21^{\prime}$ | 1.6364 | 16 | $112^{\circ} 27^{\prime}$ |
| $10 \cdot 585$ | -72 | $5^{\circ} 29^{\prime}$ | $1 \cdot 6166$ | 18 | $115^{\circ} 14^{\prime}$ |
| 9.426 | -70 | $6^{\circ} 43^{\prime}$ | 1.5979 | 20 | $117^{\circ} 59^{\prime}$ |
| 8.482 | -68 | $8^{\circ} 4^{\prime}$ | 1.5804 | 22 | $120^{\circ} 43^{\prime}$ |
| $7 \cdot 699$ | -66 | $9^{\circ} 31^{\prime}$ | 1.5643 | 24 | $123^{\circ} 26^{\prime}$ |
| $7 \cdot 040$ | -64 | $11^{\circ} 5^{\prime}$ | 1.5493 | 26 | $126^{\circ} 8^{\prime}$ |
| $6 \cdot 477$ | -62 | $12^{\circ} 44^{\prime}$ | 1.5354 | 28 | $128^{\circ} 47^{\prime}$ |
| $5 \cdot 993$ | -60 | $14^{\circ} 29^{\prime}$ | 1.5225 | 30 | $131^{\circ} 25^{\prime}$ |
| $5 \cdot 5719$ | -58 | $16^{\circ} 18^{\prime}$ | 1.5105 | 32 | $134^{\circ} 1^{\prime}$ |
| $5 \cdot 2027$ | -56 | $18^{\circ} 13^{\prime}$ | 1.4995 | 34 | $136^{\circ} 36^{\prime}$ |
| $4 \cdot 8768$ | -54 | $20^{\circ} 13^{\prime}$ | 1.4895 | 36 | $139^{\circ} 7^{\prime}$ |
| $4 \cdot 5873$ | -52 | $22^{\circ} 17^{\prime}$, | 1.4802 | 38 | $141^{\circ} 37^{\prime}$ |
| $4 \cdot 3286$ | -50 | $24^{\circ} 24^{\prime}$ | 1.4717 | 40 | $144^{\circ} 4^{\prime}$ |
| $4 \cdot 0966$ | -48 | $26^{\circ} 36^{\prime}$ | 1.4640 | 42 | $146^{\circ} 29^{\prime}$ |
| 3.8874 | -46 | $28^{\circ} 51^{\prime}$ | 1.4572 | 44 | $148^{\circ} 50^{\prime}$ |
| $3 \cdot 6980$ | -44 | $31^{\circ} 10^{\prime}$ | $1 \cdot 4509$ | 46 | $151^{\circ} 9^{\prime}$ |
| $3 \cdot 5257$ | -42 | $33^{\circ} 31^{\prime}$ | 1.4453 | 48 | $153^{\circ} 24^{\prime}$ |
| $3 \cdot 3690$ | -40 | $35^{\circ} 56^{\prime}$ | 1.4403 | 50 | $155^{\circ} 36^{\prime}$ |
| $3 \cdot 2255$ | -38 | $38^{\circ} 23^{\prime}$ | 1.4359 | 52 | $157^{\circ} 43^{\prime}$ |
| $3 \cdot 0942$ | -36 | $40^{\circ} 53^{\prime}$ | 1.4319 | 54 | $159^{\circ} 47^{\prime}$ |
| $2 \cdot 9733$ | -34 | $43^{\circ} 24^{\prime}$ | 1.4287 | 56 | $161^{\circ} 47^{\prime}$ |
| $2 \cdot 8621$ | -32 | $45^{\circ} 59^{\prime}$ | 1.4259 | 58 | $163^{\circ} 42^{\prime}$ |
| 2.7594 | -30 | $48^{\circ} 35^{\prime}$ | 1.4234 | 60 | $165^{\circ} 31^{\prime}$ |
| - 2.6646 | -28 | $51^{\circ} 13^{\prime}$ | 1.4214 | 62 | $167^{\circ} 16^{\prime}$ |
| 2.5764 | -26 | $53^{\circ} 52^{\prime}$ | 1.4196 | 64 | $168^{\circ} 55^{\prime}$ |
| $2 \cdot 4947$ | -24 | $56^{\circ} 34^{\prime}$ | 1.4181 | 66 | $170^{\circ} 29^{\prime}$ |
| $2 \cdot 4189$ | -22 | $59^{\circ} 17^{\prime}$ | $1 \cdot 4172$ | 68 | $171^{\circ} 56^{\prime}$ |
| $2 \cdot 3484$ | -20 | $62^{\circ} 1^{\prime}$ | 1.4163 | 70 | $173^{\circ} 17^{\prime}$ |
| $2 \cdot 2826$ | -18 | $64^{\circ} 46^{\prime}$ | $1 \cdot 4155$ | 72 | $174^{\circ} 31^{\prime}$ |
| $2 \cdot 2212$ | -16 | $67^{\circ} 33^{\prime}$ | $1 \cdot 4152$ | 74 | $175^{\circ} 39^{\prime}$ |
| $2 \cdot 1640$ | -14 | $70^{\circ} 18^{\prime}$ | 1.4149 | 76 | $176^{\circ} 39^{\prime}$ |
| $2 \cdot 1103$ | -12 | $73^{\circ} 5^{\prime}$ | 1.4147 | 78 | $177^{\circ} 32^{\prime}$ |
| $2 \cdot 0603$ | -10 | $75^{\circ} 49^{\prime}$ | 1.4146 | 80 | $178^{\circ} 17^{\prime}$ |
| $2 \cdot 0135$ | -8 | $78^{\circ} 43^{\prime}$ | $1 \cdot 4145$ | 82 | $178^{\circ} 53^{\prime}$ |
| 1.9697 | - 6 | $81^{\circ} 30^{\prime}$ | $1 \cdot 4144$ | 84 | $179^{\circ} 23^{\prime}$ |
| 1.9286 | - 4 | $84^{\circ} 24^{\prime}$ | 1.4143 | 86 | $179^{\circ} 43^{\prime}$ |
| 1.8901 | -- 2 | $87^{\circ} 12^{\prime}$ | $1 \cdot 4142$ | 88 | $179^{\circ} 56^{\prime}$ |
| $1 \cdot 8541$ | 0 | $90^{\circ}$ | 1-4142 | 90 | $180^{\circ}$ |

## APPENDIX I

## Evaluation of the Elliptic Integrals

The integrals of Section 4 are of the type:

$$
\begin{array}{ll}
I_{1}=\frac{1}{2} \int \frac{d \psi}{\sqrt{ } \sin \psi} ; & I_{2}=\frac{1}{2} \int \sqrt{ } \sin \psi d \psi ; \\
I_{3}=\frac{1}{2} \int \frac{\left(1-\mu^{2}\right) d \psi}{\sqrt{ }\left\{\left(1-\mu^{2}\right) \sin \psi+\mu^{2}\right\}} ; & I_{4}=\frac{1}{2} \int \frac{\left(1-\mu^{2}\right) \sin \psi d \psi}{\sqrt{ }\left\{\left(1-\mu^{2}\right) \sin \psi+\mu^{2}\right\}} ;
\end{array}
$$

where $2 \mu^{2}-1 \leqslant 0$, and the integrals are taken between the appropriate limits. In $I_{1}$ and $I_{2}$ set $\sin \psi=t^{2}$ and in $I_{3}$ and $I_{4}$ set $\left(1-\mu^{2}\right) \sin \psi+\mu^{2}=t^{2}$, whence on re-arranging in the appropriate form:

$$
\begin{aligned}
& I_{1}=\int \frac{d t}{\sqrt{ }\left\{\left(1-t^{2}\right)\left(1+t^{2}\right)\right\}} \\
& I_{2}=\int \frac{t^{2} d t}{\sqrt{ }\left\{\left(1-t^{2}\right)\left(1+t^{2}\right)\right\}}=\int \sqrt{ }\left(\frac{1+t^{2}}{1-t^{2}}\right) d t-I_{1} \\
& I_{3}=\int \frac{\left(1-\mu^{2}\right) d t}{\sqrt{ }\left\{\left(1-t^{2}\right)\left(1-2 \mu^{2}+t^{2}\right)\right\}}
\end{aligned}
$$

and

$$
I_{4}=\int \frac{\left(t^{2}-\mu^{2}\right) d t}{\sqrt{ }\left\{\left(1-t^{2}\right)\left(1-2 \mu^{2}+t^{2}\right)\right\}}=\int \sqrt{ }\left(\frac{1-2 \mu^{2}+t^{2}}{1-t^{2}}\right) d t-I_{3}
$$

taken between the appropriate limits. These integrals, in terms of $t$, may now be evaluated by making use of the following standard forms-(see, e.g. Ref. 2): with

$$
a^{2}+b^{2}=c^{2}, k=\frac{a}{c}
$$

and

$$
\Delta(\varphi, k)=\sqrt{ }\left\{1-k^{2} \sin ^{2} \varphi\right\},
$$

$$
\begin{equation*}
\int_{x}^{a} \frac{d t}{\sqrt{\left\{\left(a^{2}-t^{2}\right)\left(b^{2}+t^{2}\right)\right\}}}=\frac{1}{c} F(p, k) \tag{i}
\end{equation*}
$$

where $\cos \varphi=x / a$;

$$
\begin{equation*}
\int_{x}^{a} \sqrt{\left(\frac{b^{2}+t^{2}}{a^{2}-t^{2}}\right)} d t=c E(\varphi, k) \tag{ii}
\end{equation*}
$$

where $\cos \varphi=x / a$;
(iii)

$$
\int_{x}^{c} \frac{d t}{\sqrt{ }\left\{\left(c^{2}-t^{2}\right)\left(t^{2}-b^{2}\right)\right\}}=\frac{1}{c} F(\varphi, k)
$$

where $\Delta(\varphi, k)=x / c$;
(iv)

$$
\int_{x}^{c} \frac{t^{2} d t}{\sqrt{ }\left\{\left(c^{2}-t^{2}\right)\left(t^{2}-b^{2}\right)\right\}}=c E(\varphi, k)
$$

where $\Delta(\varphi, k)=x / c$.
$F(\varphi, k)$ is the Legendre normal integral of the first kind

$$
F(\varphi, k)=\int_{0}^{p} \frac{d \psi}{\sqrt{ }\left(1-k^{2} \sin ^{2} \psi\right)}
$$

and $E(\varphi, k)$ is the normal integral of the second kind

$$
E(\varphi, k)=\int_{0}^{\varphi} \sqrt{ }\left(1-k^{2} \sin ^{2} \psi\right) d \psi
$$

$E$ and $F$ are tabulated in most sets of tables of higher functions, usually in terms of $\varphi$ and $\alpha$ where

$$
\begin{aligned}
& E(\varphi, k)=E(\varphi, \sin \alpha) \\
& F(\varphi, k)=F(\varphi, \sin \alpha)
\end{aligned}
$$

such that

$$
0 \leqslant \varphi \leqslant \frac{\pi}{2}, 0 \leqslant \alpha \leqslant \frac{\pi}{2} .
$$

To extend the range of these tables one can make use of the following relations:

$$
\begin{aligned}
E(-\varphi, k) & =-E(\varphi, k) \\
F(-\varphi, k) & =-F(\varphi, k) \\
E(m \pi \pm \varphi, k) & =2 m E\left(\frac{\pi}{2}, k\right) \pm E(\varphi, k) \\
F(m \pi \pm \varphi, k) & =2 m F\left(\frac{\pi}{2}, k\right) \pm F(\varphi, k)
\end{aligned}
$$

On evaluation the results obtained are:

$$
I_{1}=\frac{s}{a}=\frac{1}{2} \int_{0}^{\psi} \frac{d \psi}{\sqrt{ } \sin \psi}=\frac{1}{\sqrt{ } 2} F\left(\frac{\pi}{2}, \frac{1}{\sqrt{ } 2}\right)-\frac{1}{\sqrt{ } 2} F\left(\theta, \frac{1}{\sqrt{ } 2}\right)
$$

where

$$
\begin{aligned}
\theta & =\cos ^{-1}(\sqrt{ } \sin \psi) \\
I_{2} & =\frac{x}{a}=\frac{1}{2} \int_{0}^{\psi} \sqrt{ } \sin \psi d \psi=\sqrt{ } 2 E\left(\frac{\pi}{2}, \frac{1}{\sqrt{ } 2}\right)-\sqrt{ } 2 E\left(\theta, \frac{1}{\sqrt{ } 2}\right)-I_{1},
\end{aligned}
$$

and the corresponding ranges for $\psi$ and $\theta$ are discussed in the main text;

$$
\begin{aligned}
I_{3} & =\frac{s}{R}=\frac{1}{2} \int_{\beta}^{\varphi} \frac{\left(1-\mu^{2}\right) d \psi}{\sqrt{ }\left\{\left(1-\mu^{2}\right) \sin \psi+\mu^{2}\right\}} \\
& =\frac{\sqrt{ }\left(1-\mu^{2}\right)}{\sqrt{ } 2}\left[F\left(\xi_{1}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)-F\left(\xi, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)\right]
\end{aligned}
$$

where

$$
\xi_{1}=\cos ^{-1} \sqrt{ }\left\{\left(1-\mu^{2}\right) \sin \beta+\mu^{2}\right\}
$$

and

$$
\begin{aligned}
\xi & =\cos ^{-1} \sqrt{ }\left\{\left(1-\mu^{2}\right) \sin \varphi+\mu^{2}\right\} \\
I_{4} & =\frac{x}{R}=\frac{1}{2} \int_{\beta}^{\varphi} \frac{\left(1-\mu^{2}\right) \sin \psi d \psi}{\sqrt{ }\left\{\left(1-\mu^{2}\right) \sin \psi+\mu^{2}\right\}} \\
& =\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}\left[E\left(\xi_{1}, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)-E\left(\xi, \frac{1}{\sqrt{ }\left\{2\left(1-\mu^{2}\right)\right\}}\right)\right]-I_{3},
\end{aligned}
$$

the corresponding ranges for $\xi$ and $\varphi$ being discussed in the main text.

The integral (63) of Section 5.1 can be evaluated partly in terms of elementary functions and completed using the standard form (i). The integral (66) of Section 5.2 is slightly more complicated and can be written in the form

$$
\begin{aligned}
\frac{S-s}{R}= & \frac{\mu^{2} \sin ^{2} \frac{\pi}{n}}{\sqrt{ } 2\left(1-\mu^{2}\right)^{3 / 2}} \int_{t_{0}}^{t_{1}} \frac{t^{2} d t}{\sqrt{ }\left\{\left(1-t^{2}\right)\left(k^{2}+k^{2} t^{2}\right)\right\}}+ \\
& +\frac{R \sin ^{2} \frac{\pi}{n}}{\sqrt{ } 2\left(1-\mu^{2}\right)^{1 / 2} h} \int_{t_{0}}^{t_{1}} \frac{t^{3} d t}{\sqrt{ }\left\{\left(1-t^{2}\right)\left(k^{\prime 2}+k^{2} t^{2}\right)\right\}}- \\
& -\frac{\sin ^{2} \frac{\pi}{n}}{\sqrt{ } 2\left(1-\mu^{2}\right)^{3 / 2}} \int_{t_{0}}^{t_{1}} \frac{t^{4} d t}{\sqrt{ }\left\{\left(1-t^{2}\right)\left(k^{\prime 2}+k^{2} t^{2}\right)\right\}}
\end{aligned}
$$

where

$$
k^{2}=1-k^{\prime 2}=\frac{1}{2\left(1-\mu^{2}\right)} ; t=\frac{r}{R} .
$$

These three integrals can be evaluated using the following standard results: (see Ref. 3)

$$
\begin{aligned}
C_{n t} & =-\int \frac{t^{m} d t}{\sqrt{ }\left\{\left(1-t^{2}\right)\left(k^{\prime 2}+k^{2} t^{2}\right)\right\}}=\int \frac{\cos ^{m} \varphi d \varphi}{\sqrt{ }\left(1-k^{2} \sin ^{2} \varphi\right)} \\
& =\int \operatorname{cn}^{m} u d u
\end{aligned}
$$

where

$$
\begin{aligned}
t & =\cos \varphi=\operatorname{cn} u . \\
C_{0} & =\int d u=u=F(\varphi, k)(\varphi=\operatorname{am} u) \\
C_{1} & =\int \operatorname{cn} u d u=\frac{\cos ^{-1}(\mathrm{dn} u)}{k}=\frac{\sin ^{-1}(k \operatorname{sn} u)}{k} \\
C_{2} & =\int \operatorname{cn}^{2} u d u=\frac{1}{k^{2}}\left[E(\varphi, k)-k^{\prime 2} u\right] \\
C_{3} & =\int \operatorname{cn}^{3} u d u=\frac{1}{2 k^{3}}\left[\left(2 k^{2}-1\right) \sin ^{-1}(k \operatorname{sn} u)+k \operatorname{sn} u \operatorname{dn} u\right] \\
C_{4} & =\int \operatorname{cn}^{4} u d u \\
& =\frac{1}{3 k^{4}}\left[\left(2-3 k^{2}\right) k^{\prime 2} u+2\left(2 k^{2}-1\right) E(\varphi, k)+k^{2} \operatorname{sn} u \mathrm{cn} u \mathrm{dn} u\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\operatorname{sn}(u, k) & =\sin \varphi \\
\operatorname{cn}(u, k) & =\cos \varphi \\
\operatorname{dn}(u, k) & =\sqrt{ }\left[1-k^{2} \sin ^{2}\{\operatorname{am}(u, k)\}\right] \\
\varphi & =\operatorname{am}(u, k) ; u=F(\varphi, k) ;
\end{aligned}
$$

and the relations

$$
\begin{aligned}
\operatorname{sn}^{2} u+\mathrm{cn}^{2} u & =1 \\
\mathrm{dn}^{2} u & =1-k^{2} \operatorname{sn}^{2} u \\
& =k^{\prime 2}+k^{2} \mathrm{cn}^{2} u \\
& =\mathrm{cn}^{2} u+k^{\prime 2} \operatorname{sn}^{2} u
\end{aligned}
$$

enable the integrals to be reduced to more convenient forms.
The result of the integration is given as equation (67).

## APPENDIX II

## Tabulated Co-ordinates for the Canopy and Gore Shapes

The values of $x / R$ and $r / R$ are given in Table 1 for the following values of $\mu: 0 \cdot 1833,0 \cdot 2555$, $0.3074,0.3845,0.5050,0.5773,0.6585$ and 0.6960 . Using this table the lower-canopy shapes given by

$$
\sin \varphi=\frac{\left(\frac{r}{R}\right)^{2}-\mu^{2}}{1-\mu^{2}}
$$

can be plotted graphically: this is done in Fig. 10.
The co-ordinates in Table 2 for the upper-canopy shape are calculated using

$$
\sin \psi=\frac{r^{2}}{a^{2}}
$$

and give the Taylor shape.
Table 3 gives the gore co-ordinates for the upper canopy. This table is calculated with $a / h=2 \cdot 0$; $n=8,12$ and 16. The semi-gore shape for $n=8$ is plotted in Fig. 11 up to $r / a=1 \cdot 0$. From the table it can be seen that the differences between the gore lengths for $n=8,12$ and 16 are only a few per cent and in practice these differences may be of little significance.

The gore co-ordinates for the lower canopy are given in Table 4. This table has been calculated for $R / h=2 \cdot 0 ; n=8,12$ and 16 ; and for the same range of values of $\mu$ as in Table 1. The semi-gore shapes for $R / h=2 \cdot 0 ; n=8 ; \mu=0 \cdot 5050,0 \cdot 6585$ and 0.6960 are shown plotted in Fig. 12. For values of $\mu$ below 0.5773 the gore shape is practically unchanged as is evident by referring to Table 4; only for higher values of $\mu$ do appreciable changes occur.

TABLE 1
The Lower-Canopy Co-ordinates
Values of $\frac{x}{R}$

| $\frac{r}{R}$ | $\begin{gathered} \mu= \\ 0 \cdot 1833 \end{gathered}$ | $\begin{gathered} \mu= \\ 0 \cdot 2555 \end{gathered}$ | $\begin{gathered} \mu= \\ 0 \cdot 3074 \end{gathered}$ | $\begin{gathered} \mu= \\ 0 \cdot 3845 \end{gathered}$ | $\begin{gathered} \mu= \\ 0 \cdot 5050 \end{gathered}$ | $\begin{gathered} \mu= \\ 0 \cdot 5773 \end{gathered}$ | $\begin{gathered} \mu= \\ 0 \cdot 6585 \end{gathered}$ | $\begin{gathered} \mu= \\ 0 \cdot 6960 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 \cdot 000$ | $0 \cdot 000$ | $0 \cdot 000$ | $0 \cdot 000$ | 0.000 | $0 \cdot 000$ | $0 \cdot 000$ | $0 \cdot 000$ | 0.000 |
| 0.087 | $-0.003$ | $-0.006$ | $-0.009$ | $-0.015$ | $-0.031$ | $-0.050$ | $-0.102$ | $-0.230$ |
| $0 \cdot 174$ | $-0.004$ | $-0.010$ | $-0.016$ | $-0.028$ | $-0.060$ | -0.096 | $-0.196$ | -0.416 |
| $0 \cdot 259$ | $-0.003$ | -0.012 | $-0.021$ | -0.039 | $-0.085$ | $-0.137$ | $-0.276$ | -0.553 |
| $0 \cdot 342$ | +0.002 | $-0.010$ | $-0.021$ | -0.044 | -0.104 | $-0.169$ | $-0.339$ | $-0.652$ |
| 0.423 | $0 \cdot 012$ | $-0.003$ | $-0.017$ | -0.044 | $-0 \cdot 116$ | $-0.193$ | -0.387 | $-0.722$ |
| $0 \cdot 500$ | $0 \cdot 026$ | $+0.010$ | $-0.006$ | -0.038 | $-0 \cdot 120$ | $-0.207$ | $-0.420$ | -0.770 |
| $0 \cdot 574$ | 0.046 | $0 \cdot 028$ | $+0.010$ | -0.026 | -0.117 | $-0.212$ | -0.439 | -0.801 |
| 0.643 | $0 \cdot 072$ | $0 \cdot 052$ | 0.032 | $-0.007$ | $-0 \cdot 106$ | -0.208 | -0.447 | $-0.817$ |
| 0.707 | $0 \cdot 103$ | $0 \cdot 082$ | $0 \cdot 060$ | $+0.018$ | -0.088 | -0.196 | $-0.445$ | $-0.820$ |
| 0.766 | $0 \cdot 140$ | $0 \cdot 117$ | $0 \cdot 094$ | $0 \cdot 049$ | $-0.063$ | $-0.176$ | $-0.433$ | -0.813 |
| 0.819 | $0 \cdot 182$ | $0 \cdot 157$ | $0 \cdot 133$ | 0.085 | -0.032 | -0.150 | $-0.414$ | -0.798 |
| $0 \cdot 866$ | $0 \cdot 228$ | $0 \cdot 202$ | $0 \cdot 176$ | $0 \cdot 126$ | $+0.004$ | -0.118 | $-0.387$ | $-0.775$ |
| 0.906 | $0 \cdot 278$ | $0 \cdot 251$ | $0 \cdot 224$ | $0 \cdot 172$ | $0 \cdot 045$ | $-0.080$ | $-0.355$ | $-0.746$ |
| 0.940 | $0 \cdot 331$ | $0 \cdot 303$ | $0 \cdot 275$ | $0 \cdot 221$ | $0 \cdot 090$ | $-0.039$ | -0.318 | $-0.712$ |
| 0.966 | $0 \cdot 387$ | $0 \cdot 358$ | $0 \cdot 329$ | $0 \cdot 273$ | $0 \cdot 139$ | $+0.007$ | -0.278 | $-0.673$ |
| 0.985 | $0 \cdot 446$ | $0 \cdot 415$ | $0 \cdot 386$ | $0 \cdot 328$ | $0 \cdot 189$ | 0.054 | -0.234 | -0.632 |
| 0.996 | $0 \cdot 506$ | 0.474 | $0 \cdot 444$ | $0 \cdot 384$ | $0 \cdot 242$ | $0 \cdot 104$ | -0.189 | -0.589 |
| 1.000 | $0 \cdot 566$ | 0.534 | $0 \cdot 502$ | $0 \cdot 441$ | $0 \cdot 295$ | $0 \cdot 154$ | $-0.143$ | -0.545 |
| 0.996 | $0 \cdot 627$ | $0 \cdot 593$ | $0 \cdot 561$ | $0 \cdot 498$ | $0 \cdot 348$ | $0 \cdot 204$ | $-0.096$ | $-0.501$ |
| 0.985 | 0.687 | $0 \cdot 652$ | $0 \cdot 619$ | $0 \cdot 554$ | $0 \cdot 400$ | 0.254 | -0.051 | $-0.458$ |
| 0.966 | $0 \cdot 745$ | $0 \cdot 710$ | $0 \cdot 675$ | $0 \cdot 608$ | $0 \cdot 451$ | $0 \cdot 301$ | $-0.007$ | $-0.416$ |
| 0.940 | $0 \cdot 801$ | 0.765 | 0.729 | $0 \cdot 660$ | $0 \cdot 499$ | $0 \cdot 346$ | $+0.033$ | -0.378 |
| 0.906 | $0 \cdot 855$ | $0 \cdot 817$ | $0 \cdot 781$ | $0 \cdot 710$ | $0 \cdot 544$ | $0 \cdot 388$ | $0 \cdot 070$ | -0.344 |
| 0.866 | $0 \cdot 905$ | 0.866 | 0.828 | 0.755 | $0 \cdot 585$ | 0.425 | $0 \cdot 102$ | -0.315 |
| 0.819 | $0 \cdot 951$ | 0.911 | $0 \cdot 872$ | $0 \cdot 797$ | $0 \cdot 622$ | 0.458 | $0 \cdot 129$ | -0.292 |
| 0.766 | 0.993 | 0.951 | 0.911 | $0 \cdot 833$ | $0 \cdot 652$ | 0.484 | $0 \cdot 148$ | -0.276 |
| 0.707 | 1.029 | 0.986 | 0.944 | $0 \cdot 864$ | $0 \cdot 677$ | $0 \cdot 504$ | $0 \cdot 160$ | $-0.270$ |
| 0.643 | $1 \cdot 060$ | 1.016 | 0.972 | $0 \cdot 889$ | $0 \cdot 695$ | $0 \cdot 516$ | $0 \cdot 162$ | $-0.273$ |
| 0.574 | $1 \cdot 086$ | 1.040 | 0.995 | $0 \cdot 908$ | $0 \cdot 706$ | $0 \cdot 520$ | $0 \cdot 154$ | -0.289 |
| $0 \cdot 500$ | $1 \cdot 106$ | 1.058 | $1 \cdot 011$ | $0 \cdot 920$ | $0 \cdot 709$ | $0 \cdot 515$ | $0 \cdot 135$ | -0.319 |
| 0.423 | $1 \cdot 121$ | $1 \cdot 070$ | $1 \cdot 021$ | 0.926 | $0 \cdot 705$ | $0 \cdot 501$ | $0 \cdot 102$ | -0.368 |
| $0 \cdot 342$ | $1 \cdot 131$ | 1.077 | $1 \cdot 026$ | 0.926 | $0 \cdot 693$ | 0.477 | +0.054 | -0.438 |
| $0 \cdot 259$ | $1 \cdot 135$ | $1 \cdot 080$ | $1 \cdot 025$ | $0 \cdot 920$ | $0 \cdot 674$ | 0.444 | $-0.003$ | -0.537 |
| $0 \cdot 176$ | $1 \cdot 137$ | 1.078 | $1 \cdot 021$ | $0 \cdot 910$ | $0 \cdot 650$ | 0.404 | -0.089 | -0.674 |
| $0 \cdot 087$ | $1 \cdot 135$ | $1 \cdot 074$ | $1 \cdot 014$ | $0 \cdot 897$ | $0 \cdot 621$ | $0 \cdot 358$ | -0.183 | -0.860 |
| $0 \cdot 000$ | $1 \cdot 132$ | $1 \cdot 068$ | $1 \cdot 004$ | $0 \cdot 881$ | $0 \cdot 589$ | $0 \cdot 308$ | $-0.285$ | -1.090 |

TABLE 2
The Upper-Canopy Co-ordinates

| $r$ |  |
| :---: | :---: |
| $a$ | $\frac{x}{a}$ |
| 0.000 | 0.000 |
| 0.087 | 0.000 |
| 0.174 | 0.000 |
| 0.259 | 0.006 |
| 0.342 | 0.013 |
| 0.423 | 0.025 |
| 0.500 | 0.042 |
| 0.574 | 0.064 |
| 0.643 | 0.092 |
| 0.707 | 0.125 |
| 0.766 | 0.163 |
| 0.819 | 0.206 |
| 0.866 | 0.254 |
| 0.906 | 0.305 |
| 0.940 | 0.360 |
| 0.966 | 0.417 |
| 0.985 | 0.476 |
| 0.996 | 0.537 |
| 1.000 | 0.598 |
|  |  |

TABLE 3
Gore Co-ordinates for the Upper Canopy

| $\frac{r}{a}$ | $\frac{S}{a}$ |  |  | $\frac{w}{a}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $n=8$ | $n=12$ | $n=16$ | $n=8$ | $n=12$ | $n=16$ |
| $0 \cdot 000$ |
| $0 \cdot 174$ | $0 \cdot 174$ | $0 \cdot 174$ | $0 \cdot 174$ | 0.066 | $0 \cdot 044$ | 0.034 |
| $0 \cdot 342$ | $0 \cdot 343$ | $0 \cdot 343$ | $0 \cdot 343$ | $0 \cdot 133$ | 0.089 | 0.067 |
| $0 \cdot 500$ | $0 \cdot 507$ | $0 \cdot 505$ | $0 \cdot 504$ | $0 \cdot 196$ | $0 \cdot 131$ | $0 \cdot 098$ |
| $0 \cdot 643$ | $0 \cdot 664$ | 0.659 | $0 \cdot 657$ | $0 \cdot 257$ | $0 \cdot 170$ | $0 \cdot 127$ |
| 0.766 | $0 \cdot 816$ | $0 \cdot 806$ | $0 \cdot 802$ | $0 \cdot 313$ | 0.204 | $0 \cdot 152$ |
| $0 \cdot 866$ | $0 \cdot 964$ | 0.947 | 0.941 | $0 \cdot 362$ | $0 \cdot 232$ | 0.172 |
| $0 \cdot 940$ | 1-109 | $1 \cdot 084$ | $1 \cdot 074$ | $0 \cdot 402$ | $0 \cdot 254$ | 0.188 |
| 0.985 | $1 \cdot 252$ | $1 \cdot 217$ | $1 \cdot 204$ | 0.427 | $0 \cdot 267$ | $0 \cdot 197$ |
| $1 \cdot 000$ | $1 \cdot 394$ | $1 \cdot 349$ | $1 \cdot 332$ | 0.436 | $0 \cdot 272$ | $0 \cdot 200$ |

TABLE 4
Gore Co-ordinates for the Lower Canopy

| $\stackrel{r}{R}$ | $\frac{w}{\bar{R}}$ |  |  | $\mu=\begin{aligned} & \frac{S}{R} \\ & 0 \cdot 1833 \end{aligned}$ |  |  | $\begin{gathered} \frac{S}{R} \\ \mu=0 \cdot 2555 \end{gathered}$ |  |  | $\mu=\begin{gathered} \frac{S}{R} \\ 0 \cdot 3074 \end{gathered}$ |  |  | $\mu=\begin{gathered} \frac{S}{R} \\ 0 \cdot 3845 \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $n=8$ | $n=12$ | $n=16$ |
| 0.000 | $0 \cdot 000$ | $0 \cdot 000$ | $0 \cdot 000$ | $0 \cdot 000$ | 0.000 | 0.000 | $0 \cdot 000$ | 0.000 | $0 \cdot 000$ | $0 \cdot 000$ |
| $0 \cdot 174$ | $0 \cdot 066$ | $0 \cdot 044$ | $0 \cdot 034$ | $0 \cdot 176$ | $0 \cdot 175$ | 0.174 | $0 \cdot 174$ | $0 \cdot 176$ | $0 \cdot 176$ | $0 \cdot 176$ |
| $0 \cdot 342$ | $0 \cdot 133$ | $0 \cdot 089$ | 0.067 | $0 \cdot 343$ | $0 \cdot 343$ | $0 \cdot 342$ | $0 \cdot 344$ | $0 \cdot 343$ | $0 \cdot 343$ | $0 \cdot 344$ | $0 \cdot 344$ | $0 \cdot 343$ | $0 \cdot 346$ | $0 \cdot 346$ | $0 \cdot 345$ |
| $0 \cdot 500$ | $0 \cdot 196$ | $0 \cdot 131$ | 0.098 | $0 \cdot 506$ | $0 \cdot 504$ | 0.503 | $0 \cdot 506$ | $0 \cdot 504$ | $0 \cdot 503$ | $0 \cdot 506$ | $0 \cdot 504$ | $0 \cdot 503$ | $0 \cdot 509$ | 0.506 | 0.505 |
| $0 \cdot 643$ | $0 \cdot 257$ | $0 \cdot 170$ | $0 \cdot 127$ | 0.663 | 0.657 | 0.655 | $0 \cdot 622$ | $0 \cdot 656$ | $0 \cdot 654$ | 0.661 | $0 \cdot 655$ | $0 \cdot 653$ | 0.663 | $0 \cdot 656$ | $0 \cdot 653$ |
| 0.766 | $0 \cdot 313$ | 0.204 | $0 \cdot 152$ | 0.814 | 0.803 | 0.799 | 0.812 | $0 \cdot 800$ | $0 \cdot 796$ | $0 \cdot 810$ | 0.798 | 0.794 | 0.810 | $0 \cdot 797$ | 0.792 |
| 0.866 | $0 \cdot 362$ | 0.232 | $0 \cdot 172$ | $0 \cdot 960$ | 0.942 | 0.935 | 0.957 | 0.938 | 0.931 | 0.954 | 0.934 | 0.927 | 0.952 | 0.930 | 0.922 |
| 0.940 | $0 \cdot 402$ | $0 \cdot 254$. | 0.188 | 1-103 | 1.077 | 1.067 | 1.090 | 1.071 | $1 \cdot 061$ | 1.094 | $1 \cdot 066$ | $1 \cdot 055$ | 1.090 | 1.059 | $1 \cdot 048$ |
| 0.985 | 0.427 | $0 \cdot 267$ | $0 \cdot 197$ | $1 \cdot 244$ | $1 \cdot 208$ | $1 \cdot 195$ | 1.238 | 1.201 | $1 \cdot 187$ | $1 \cdot 232$ | $1 \cdot 194$ | $1 \cdot 180$ | 1.225 | $1 \cdot 183$ | 1-168 |
| 1.000 | 0.436 | 0.272 | $0 \cdot 200$ | $1 \cdot 384$ | $1 \cdot 338$ | $1 \cdot 321$ | $1 \cdot 376$ | $1 \cdot 329$ | $1 \cdot 311$ | $1 \cdot 369$ | $1 \cdot 320$ | $1 \cdot 302$ | 1.358 | 1.307 | 1.288 |


| $\frac{r}{R}$ | $\begin{gathered} \frac{S}{R} \\ \mu=0 \cdot 5050 \end{gathered}$ |  |  | $\mu=\begin{gathered} \frac{S}{R} \\ \mu \cdot 5773 \end{gathered}$ |  |  | $\mu=\begin{gathered} \frac{S}{R} \\ 0 \cdot 6585 \end{gathered}$ |  |  | $\mu=\begin{gathered} \frac{S}{R} \\ 0.6960 \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000 | $0 \cdot 000$ | $0 \cdot 000$ | 0.000 | $0 \cdot 000$ | $0 \cdot 000$ | 0.000 | $0 \cdot 000$ |
| $0 \cdot 174$ | $0 \cdot 184$ | $0 \cdot 184$ | $0 \cdot 184$ | $0 \cdot 199$ | $0 \cdot 199$ | $0 \cdot 199$ | $0 \cdot 263$ | 0.263 | $0 \cdot 262$ | 0.452 | 0.452 | $0 \cdot 451$ |
| $0 \cdot 342$ | $0 \cdot 360$ | 0.359 | $0 \cdot 359$ | $0 \cdot 385$ | $0 \cdot 384$ | $0 \cdot 383$ | $0 \cdot 489$ | 0.486 | $0 \cdot 485$ | 0.751 | 0.746 | $0 \cdot 744$ |
| $0 \cdot 500$ | 0.524 | $0 \cdot 520$ | $0 \cdot 519$ | 0.555 | $0 \cdot 550$ | 0.548 | $0 \cdot 678$ | 0.669 | 0.666 | 0.963 | 0.951 | 0.946 |
| 0.643 | 0.678 | $0 \cdot 669$ | $0 \cdot 665$ | 0.710 | 0.698 | 0.694 | $0 \cdot 840$ | 0.822 | $0 \cdot 816$ | 1-134 | $1 \cdot 111$ | 1-102 |
| 0.766 | $0 \cdot 823$ | 0.806 | $0 \cdot 800$ | $0 \cdot 854$ | 0.833 | 0.826 | 0.985 | 0.956 | 0.946 | 1.282 | 1.246 | 1. 232 |
| 0.866 | 0.961 | 0.935 | 0.925 | 0.990 | 0.959 | 0.947 | $1 \cdot 119$ | 1.077 | $1 \cdot 062$ | 1.416 | $1 \cdot 365$ | $1 \cdot 347$ |
| 0.940 | 1.094 | $1 \cdot 057$ | $1 \cdot 044$ | $1 \cdot 119$ | 1.077 | 1.061 | $1 \cdot 244$ | 1-190 | $1 \cdot 170$ | $1 \cdot 540$ | 1.475 | $1 \cdot 541$ |
| 0.985 | 1.223 | $1 \cdot 175$ | 1-158 | $1 \cdot 244$ | $1 \cdot 190$ | $1 \cdot 170$ | $1 \cdot 364$ | 1.297 | $1 \cdot 272$ | $1 \cdot 657$ | 1.578 | $1 \cdot 550$ |
| $1 \cdot 000$ | $1 \cdot 351$ | $1 \cdot 292$ | $1 \cdot 270$ | $1 \cdot 368$ | $1 \cdot 301$ | $1 \cdot 277$ | $1 \cdot 482$ | 1.401 | $1 \cdot 371$ | 1.772 | 1.679 | $1 \cdot 645$ |

## APPENDIX III

## The Configuration of the System before the Equilibrium Position is Attained

Consider a lifting structure designed in accordance with the theory of the main text and only partially pressurised. The load is assumed to be clear of the ground but the extent of the pressurisation is such that the equilibrium configuration still has to be attained. During the inflation process the only constant factors are the arc lengths of the generator cords and the inner and outer radii of the base; before the design equilibrium configuration is taken up it is to be expected that at any instant of time the maximum radius $R^{\prime}$ of the lower canopy is somewhat larger than the design radius $R$, similarly the angle $\delta^{\prime}$ differs from $\delta$ and so-on. Whilst the base is still in contact with the ground there must be a ground reaction, $N$ say, acting upon it, and to analyse the series of configurations taken up by the structure before the equilibrium configuration is reached it is necessary to modify equations (4), (5) and (6) to take account of this ground reaction; hence, denoting by dashes the conditions at some time before reaching equilibrium:

$$
\begin{align*}
p^{\prime} \pi b^{2}+N & =M g  \tag{74}\\
p^{\prime} \pi\left(R^{\prime 2}-b^{2}\right) & =n T_{2}^{\prime}+N  \tag{75}\\
p^{\prime} \pi\left(R_{1}^{2}-b^{2}\right) & =n T_{2}^{\prime} \sin \delta^{\prime}+N . \tag{76}
\end{align*}
$$

Setting

$$
\begin{equation*}
M g=p^{\prime} \pi C^{2} \tag{77}
\end{equation*}
$$

and proceeding as in Section 3.2 the equation of the lower-canopy generator cords is found to be

$$
\begin{equation*}
\sin \varphi^{\prime}=\frac{\gamma^{\prime 2}-C^{2}}{R^{\prime 2}-C^{2}} \tag{78}
\end{equation*}
$$

or, with

$$
\begin{align*}
C & =\mu^{\prime} R^{\prime}  \tag{79}\\
\sin \varphi & =\left\{\frac{\left(\frac{r^{\prime}}{R^{\prime}}\right)^{2}-\mu^{\prime 2}}{1-\mu^{\prime 2}}\right\} . \tag{80}
\end{align*}
$$

In equation (80) $\left|\sin \varphi^{\prime}\right| \leqslant 1$ and as in Section 4.1 the condition that

$$
\begin{equation*}
0 \leqslant \frac{1-\left(\frac{r^{\prime}}{R^{\prime}}\right)^{2}}{1-\mu^{\prime 2}} \leqslant 2 \tag{81}
\end{equation*}
$$

can be obtained. It follows from this that
and also

$$
0<\mu^{\prime}<1
$$

Hence

$$
\begin{equation*}
2 \mu^{\prime 2}-1 \leqslant 0 . \tag{82}
\end{equation*}
$$

$$
\begin{equation*}
0<C \leqslant \frac{R^{\prime}}{\sqrt{ } 2} . \tag{83}
\end{equation*}
$$

When the pressure $p^{\prime}$ is increased there is a resulting decrease in $C$ from (77), since $M g$ is constant, and there is also a decrease in $R^{\prime}$. The canopies continue to change shape during inflation until
$b=C$ and $R=R^{\prime}$, at which stage the ground reaction is zero and the structure is about to leave the ground. Clearly, with a low pressure $p^{\prime}$ the value of $C$ must be large, as must that for $\mu^{\prime}$, and it is possible by assuming a constant generator-cord length to plot the changes in the canopy configuration with the variation of $\mu^{\prime}$ from a high value at the start of inflation to the stage where the equilibrium configuration is reached and $\mu^{\prime}=\mu$.

## APPENDIX IV

## A Higher Approximation to the Theory

Because of the particular type of construction, in which the fabric bows out between the canopy generator cords, the projected areas on which the pressure acts in equations (2) and (5) are underestimated and allowance should be made to account for this if a more accurate theory is required. Before it is possible to determine the true projected area the shape of the gore generating curve must be specified; in the particular case considered in this report it is assumed that, as in Section 5, the gore is generated by a circle of radius $h$.

For the upper canopy, referring to Fig. 7, the true maximum projected area can be obtained by putting

$$
\psi=\frac{\pi}{2} ; \mathrm{PM}=\mathrm{QM}=a=r \quad \text { and } \quad \epsilon=\frac{\pi}{n}:
$$

it is $n \eta h^{2}+2 n \times$ area $\triangle I Q M$ and this is

$$
\left.n h^{2} \sin ^{-1}\left(\frac{a}{h} \sin \frac{\pi}{n}\right)+n a h \sin \left[\sin ^{-1}\left(\frac{a}{h} \sin \frac{\pi}{n}\right)-\frac{\pi}{n}\right)\right] .
$$

It should be noted that when $n$ is large this area is approximately

$$
n h^{2} \frac{a}{h} \frac{\pi}{n}+n a h\left[\frac{a}{h} \frac{\pi}{n}-\frac{\pi}{n}\right]=\pi a^{2}
$$

and the projected area $\pi a^{2}$ used in equation (2) is an adequate approximation. However, for a relatively small number of cords, such as might be used in a lifting structure, the approximation is not really accurate enough and it may be desirable to use the true projected area.

Hence, instead of equation (2), we may write
where

$$
\begin{equation*}
p \pi a_{1}^{2}=n T_{1} \tag{84}
\end{equation*}
$$

$$
\begin{equation*}
\left.\pi a_{1}{ }^{2}=n h^{2} \sin ^{-1}\left(\frac{a}{h} \sin \frac{\pi}{n}\right)+n a h \sin \left[\sin ^{-1}\left(\frac{a}{h} \sin \frac{\pi}{n}\right)-\frac{\pi}{n}\right)\right] . \tag{85}
\end{equation*}
$$

Proceeding as in Section 3.1 the equation of the upper-canopy generator cords is found to be

$$
[\sin \psi]_{\psi_{0}}^{\psi}=\left[\frac{r^{2}}{a_{1}^{2}}\right]_{r_{0}}^{r} .
$$

Now when $\psi=\pi / 2, r=a$ and hence the cord equation is

$$
\begin{equation*}
\sin \psi=\frac{r^{2}+a_{1}{ }^{2}-a^{2}}{a_{1}{ }^{2}} \tag{86}
\end{equation*}
$$

At the canopy apex $r=0$, but $\psi$ cannot be zero unless $a=a_{1}$, consequently in general the canopy is not flat but slightly conical and

$$
\begin{equation*}
\sin \psi_{0}=1-\frac{a^{2}}{a_{1}{ }^{2}} \tag{87}
\end{equation*}
$$

At the actual apex there is a discontinuity in the slope of the cords; for example with $a / h=2$ and $n=8$ the angle $\psi_{0}$ is approximately $7^{\circ}$, and with $n=12$ it is approximately $3^{\circ}$.

The vertical co-ordinate of the upper-canopy cords, measured downwards from the apex O , is given by

$$
x=\int_{\sin ^{-1}\left(1-a^{2} / a_{1}{ }^{2}\right)}^{\psi \sqrt{2}\left\{a_{1}{ }^{2} \sin \psi-\left(a_{1}{ }^{2}-a^{2}\right)\right\}},
$$

which on integration leads to

$$
\begin{align*}
\frac{x}{a}= & \sqrt{ } 2 \frac{a_{1}}{a}\left[E\left(\frac{\pi}{2}, \frac{1}{\sqrt{ } 2} \frac{a}{a_{1}}\right)-E\left(\cos ^{-1} \frac{r}{a}, \frac{1}{\sqrt{ } 2} \frac{a}{a_{1}}\right)\right]- \\
& -\frac{1}{\sqrt{ } 2} \frac{a_{1}}{a}\left[F\left(\frac{\pi}{2}, \frac{1}{\sqrt{ } 2} \frac{a}{a_{1}}\right)-F\left(\cos ^{-1} \frac{r}{a}, \frac{1}{\sqrt{ } 2} \frac{a}{a_{1}}\right)\right] . \tag{88}
\end{align*}
$$

Similarly for the lower canopy the true projected area is

$$
\begin{align*}
& n h^{2} \sin ^{-1}\left(\frac{R}{h} \sin \frac{\pi}{n}\right)+n R h \sin \left[\sin ^{-1}\left(\frac{R}{h} \sin \frac{\pi}{n}\right)-\frac{\pi}{n}\right] \\
= & \pi R^{\prime 2} \text { say } \tag{89}
\end{align*}
$$

and equation (5) is replaced by

$$
\begin{equation*}
p \pi\left(R^{\prime 2}-b^{2}\right)=n T_{2} . \tag{90}
\end{equation*}
$$

Proceeding as in Section 3.2

$$
[\sin \varphi]_{\varphi_{0}}^{\varphi}=\left[\frac{r^{2}}{R^{\prime 2}-b^{2}}\right]_{r_{0}}^{r} ;
$$

when

$$
\varphi_{0}=\beta ; \quad r_{0}^{2}=r_{1}^{2}=a_{1}^{2} \sin \alpha-\left(a_{1}^{2}-a^{2}\right)
$$

and when

$$
\varphi=\frac{\pi}{2} ; \quad r=R,
$$

hence the equation of the lower-canopy generator cords is

$$
\begin{equation*}
\sin \varphi=\frac{r^{2}-\left(b^{2}+R^{2}-R^{\prime 2}\right)}{R^{\prime 2}-b^{2}} . \tag{91}
\end{equation*}
$$

The vertical co-ordinate for the lower cords, measured downwards from the suspension-point interface is given by

$$
x=\int_{\beta}^{\varphi} \frac{\left(R^{\prime 2}-b^{2}\right) \sin \varphi d \varphi}{2 \sqrt{\left\{\left(R^{\prime 2}-b^{2}\right) \sin \varphi+\left(b^{2}+R^{2}-R^{\prime 2}\right)\right\}}, ~}
$$

which gives on integration, with $b=\mu R$,

$$
\begin{align*}
\frac{x}{R}= & \frac{R^{\prime}}{R} \sqrt{ }\left[2\left\{1-\left(\frac{R}{R^{\prime}} \mu\right)^{2}\right\}\right]\left[E\left(\xi, \frac{1}{\left.\sqrt{2}\left\{1-\left(\frac{R}{R^{\prime}} \mu\right)^{2}\right\}\right]} \frac{R}{R^{\prime}}\right)-\right. \\
& -E\left(\xi_{1}, \frac{1}{\left.\left.\sqrt{\left[2\left\{1-\left(\frac{R}{R^{\prime}} \mu\right)^{2}\right\}\right.} \frac{R}{R^{\prime}}\right)\right]-}\right. \\
& -\frac{R^{\prime}}{R} \sqrt{\left\{\frac{1-\left(\frac{R}{R^{\prime}} \mu\right)^{2}}{2}\right\}\left[F\left(\xi_{5} \frac{1}{\left.\sqrt{2}\left[1-\left(\frac{R}{R^{\prime}} \mu\right)^{2}\right\}\right]} R^{\prime}\right)-\right.} \\
& -F\left(\xi_{1}, \frac{R}{\left.\left.\sqrt{\left[2\left\{1-\left(\frac{R}{R^{\prime}} \mu\right)^{2}\right\}\right]} \frac{R}{R^{\prime}}\right)\right]}\right. \tag{92}
\end{align*}
$$

where

$$
\xi_{1}=\cos ^{-1} \sqrt{\left[\left\{1-\left(\frac{R}{R^{\prime}} \mu\right)^{2}\right\} \sin \beta+\frac{b^{2}+R^{2}-R^{\prime 2}}{R^{\prime 2}}\right]}
$$

and

$$
\xi=\cos ^{-1} \sqrt{\left[\left\{1-\left(\frac{R}{R^{\prime}} \mu\right)^{2}\right\} \sin \varphi+\frac{b^{2}+R^{2}-R^{\prime 2}}{R^{\prime 2}}\right] . . . . . . . .}
$$

For a possible equilibrium configuration

$$
|\sin \varphi| \leqslant 1
$$

and using equation (91):

$$
0<\frac{R^{2}-r^{2}}{R^{\prime 2}-b^{2}} \leqslant 2
$$

or

$$
r^{2} \geqslant\left\{2 \mu^{2}+1-2\left(\frac{R^{\prime}}{R}\right)^{2}\right\} R^{2}
$$

for all $r \leqslant R$ allowing for single-point suspension. This inequality can only be satisfied if

$$
2 \mu^{2}+1-2\left(\frac{R^{\prime}}{R}\right)^{2} \leqslant 0
$$

or

$$
\begin{equation*}
0<b \leqslant R \sqrt{\int}\left\{\frac{2\left(\frac{R^{\prime}}{R}\right)^{2}-1}{2}\right\} . \tag{93}
\end{equation*}
$$

Since $R^{\prime} / R \geqslant 1, \mu$ can take somewhat larger values than the limiting value of $1 / \sqrt{ } 2$ given in the main text; for example with $a / h=2$ and $n=8, R^{\prime} \mid R \doteqdot 1 \cdot 075$ and for an equilibrium configuration

$$
0<\mu \leqslant 0 \cdot 81 ;
$$

with $n=12, R^{\prime} \mid R \doteqdot 1 \cdot 031$ and for equilibrium $0<\mu \leqslant 0.75$.
Thus, for each particular case, given the values of $n$ and $a / h$, it is possible to determine more exact equilibrium configurations than those given by the theory of the main text. However, it is difficult to assess the practical importance of the higher approximation to the theory: it is impossible to either cut or sew a fabric to the exact shape specified, the elasticity of the fabric has been neglected and the assumptions made initially are of a tentative nature; in consequence the first-order theory, which is simpler, should be acceptable and satisfactory for use in most cases. Should it prove necessary this more accurate theory can be developed on exactly the same lines as that given in the main text and calculations of the gore shape for a given system can be made.

In order to show the effect of having only a small number of cords, the co-ordinates of the upper canopy for the cases $n=8$ and $n=12$ with $a / h=2 \cdot 0$ are given approximately in Table 1 and plotted in Fig. 13, together with the standard Taylor shape resulting from the first-order approximation, whose co-ordinates are given in Table 2 of Appendix II. It can be seen that with a small number of cords the upper canopy is not so flat as the Taylor shape and it is appreciably deeper. The upper canopy alone corresponds to the parachute with cords over the canopy, and it has been found in practice that parachutes designed according to the first approximation do take up a shape less flat and deeper than that predicted by the theory. There may thus be some justification for making use of the higher approximation when the number of cords is small.

TABLE 1
Higher-Approximation Co-ordinates for the Upper Canopy

|  |  | $x$ <br> $a$ <br> $a$ |
| :---: | :---: | :---: |
|  | $n=8$ | $\frac{x}{a}$ |
| 0.000 | $n=12$ |  |
| 0.174 | 0.000 | 0.026 |
| 0.342 | 0.060 | 0.014 |
| 0.500 | 0.108 | 0.036 |
| 0.643 | 0.174 | 0.074 |
| 0.766 | 0.259 | 0.132 |
| 0.866 | 0.361 | 0.309 |
| 0.940 | 0.476 | 0.304 |
| 0.985 | 0.602 | 0.514 |
| 1.000 | 0.733 | 0.660 |
|  |  |  |

## APPENDIX V

## The Configuration of the System with $\mu>1 / \sqrt{ } 2$

It has been shown in Section 4.1 that single-point suspension is impossible unless $\mu<1 / \sqrt{ } 2$ and that when $\mu>1 / \sqrt{ } 2$ an upper canopy is necessary and the radius of the suspension-point interface must satisfy the inequality

$$
\begin{equation*}
\left(\frac{r_{1}}{R}\right)^{2} \geqslant 2 \mu^{2}-1 \tag{94}
\end{equation*}
$$

(This is a necessary but not sufficient condition.)
The integrals (24) and (25) of Section 4 for the arc length $s$ and vertical co-ordinate $x$ lead to different general results according to whether

$$
2 \mu^{2}-1 \lessgtr 0:
$$

for the case where this expression is positive the integrals can be evaluated using the standard forms (iii) and (iv) of Appendix I to give

$$
\begin{equation*}
\frac{s}{R}=\left(1-\mu^{2}\right)\left[F\left\{\zeta_{1}, \sqrt{ }\left[2\left(1-\mu^{2}\right)\right]\right\}-F\left\{\zeta, \sqrt{ }\left[2\left(1-\mu^{2}\right]\right\}\right]\right. \tag{95}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{x}{R}= & E\left\{\zeta_{1}, \sqrt{ }\left[2\left(1-\mu^{2}\right)\right]\right\}-E\left\{\zeta, \sqrt{ }\left[2\left(1-\mu^{2}\right)\right]\right\}- \\
& -\mu^{2}\left[F\left\{\zeta_{1}, \sqrt{ }\left[2\left(1-\mu^{2}\right)\right]\right\}-F\left\{\zeta, \sqrt{ }\left[2\left(1-\mu^{2}\right)\right]\right\}\right] \tag{96}
\end{align*}
$$

where

$$
\begin{align*}
\zeta_{1} & =\cos ^{-1} \sqrt{\frac{1+\sin \beta}{2}}  \tag{97}\\
\zeta & =\cos ^{-1} \sqrt{\frac{1+\sin \varphi}{2}} \tag{98}
\end{align*}
$$

For $-\pi / 2 \leqslant \varphi \leqslant \pi / 2: \pi / 2 \geqslant \zeta \geqslant 0$ where $\zeta=0$ corresponds to $\varphi=\pi / 2$ and $\zeta=\pi / 2$ corresponds to $\varphi=-\pi / 2$; for $\varphi \geqslant \pi / 2: 0 \geqslant \zeta \geqslant-\pi / 2$ where $\zeta=0$ corresponds to $\varphi=\pi / 2$ and $\zeta=-\pi / 2$ corresponds to $\varphi=3 \pi / 2$.

It should be noted that when $\mu=1 / \sqrt{ } 2$ the equations (95) and (96) are identical with (34) and (37) respectively of Section 4.2 , as is to be expected.

Using (96) in conjunction with the equation

$$
\begin{equation*}
\sin \varphi=\frac{\left(\frac{r}{\bar{R}}\right)^{2}-\mu^{2}}{1-\mu^{2}} \tag{99}
\end{equation*}
$$

it is possible to plot the lower-canopy generator-cord shape for cases where $\mu>1 / \sqrt{ } 2$. As an example the case $\mu=0.7906$ ( $\mu^{2}=0.625$ ) has been plotted in Fig. 14, the origin has been arbitrarily placed on the $x / R$ axis so that $x / R=0$ coincides with $\varphi=-\pi / 2$ for the starting point of the curve; this origin is not the same as that used in Fig. 10. It is seen that the curve only exists when

$$
\frac{r}{R} \geqslant \sqrt{ }\left(2 \mu^{2}-1\right)=0.5
$$

and that for any practical purpose the interface radius $r_{1}$ would have to be larger than the lower limit of $0.5 R$ and probably have a value near to $\mu R$, i.e. approximately $0.8 R$. The maximum height the lower canopy could have in this case is about $0 \cdot 3 R$, which leaves little room to accommodate a load unless it is mounted on a platform or cantilevered into the upper canopy. The maximum total height for the whole structure is given with an upper-canopy radius $a=r_{1}=\mu R$ which again limits the size of permissible load.

The maximum height of the lower canopy $H / R$ for different values of $\mu>1 / \sqrt{ } 2$ is shown approximately in the table below.

## TABLE

Values of $H / R$ for $\mu>1 / \sqrt{ } 2$

| $\mu=\frac{b}{R}$ | $\sim \frac{H}{R}(\delta=0)$ |
| :---: | :---: |
| 0.7071 | 0.533 |
| 0.7473 | 0.467 |
| 0.8406 | 0.304 |
| 0.9354 | 0.127 |
| 0.9924 | 0.015 |

It should be remarked that from a practical point of view the part of the curve lying between $r / R=\mu$ and $r / R=1$ can be regarded as an arc of a circle of radius ( $1-\mu$ ), in fact a semicircle centred at $r=\mu R$, for values of $\mu$ larger than $1 / \sqrt{ } 2$.

It is not intended to pursue further in this Appendix the study of configurations with $\mu>1 / \sqrt{ } 2$ : there is some doubt as to whether systems with $\mu>1 / \sqrt{ } 2$ could be sufficiently pressurised to reach the hovering state and the necessity of cantilevering the load, with a large $\mu$, to get it off the ground demands the use of additional members to brace the structure and may invalidate the statical discussion of the present report. Experiment only can decide whether configurations with $\mu>1 / \sqrt{ } 2$ are of practical use.


Frg. 1(i). Diagram of a lifting system showing the notation used.


Fig. 1(ii). Sectionalised view of a lifting structure.


Fig. 2. A section of the upper canopy


Figs. 3(i) and (ii). Sectional forms for the upper canopy.


Fig. 4. Diagram of a lifting system with single-point suspension.


Fig. 5. A lifting system with an upper canopy and negative value of $\beta$.


Fig. 6. Diagram showing the notation used for the gore generation.


FIg. 7. Diagram showing the notation used for the gore generating circle.


Fig. 8. Diagram showing the notation used for determining the gore length.


Fig. 9. The complete gore.

44


Fig. 10. Curves for the lower canopy.


Fig. 11. An example of an upper-canopy semi-gore with $a / h=2 \cdot 0$ and $n=8$.


Fig. 12. Examples of the lower-canopy semi-gores for $R / h=2 \cdot 0 ; n=8 ; \mu=0 \cdot 5050$, 0.6585 and $0 \cdot 6960$.


Frg. 13. Upper-canopy cord configurations for $a / h=2 \cdot 0$ (higher approximation).


Fig. 14. Example of the lower-canopy curve for $\mu=0.7906>1 / \sqrt{ } 2$

## Publications of the

## Aeronautical Research Council

## ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)

1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (post 2s. 9d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (post 2s. 3d.)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (post 2s. 6d.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (post 3s.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (post 3s.)
1945 Vol. I. Aero and Hydrodynamics, Aerofoils. 130s. (post 3s. 6d.)
Vol. II. Aircraft, Airscrews, Controls. 13os. (post 3s. 6d.)
Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion.
Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. 13os. (post 3s. 3d.)
1946 Vol. I. Accidents, Aerodynamics, Aerofoils and Hydrofoils. r68s. (post 35.9 d.)
Vol. II. Airscrews, Cabin Cooling, Chemical Hazards, Controls, Flames, Flutter, Helicopters, Instruments and Instrumentation, Interference, Jets, Miscellaneous, Parachutes. r68s. (post 3 s .3 d.)
Vol. III. Performance, Propulsion, Seaplanes, Stability, Structures, Wind Tunnels. I68s. (post 3s. 6d.)
1947 Vol. I. Aerodynamics, Aerofoils, Aircraft. 168s. (post 3s. 9d.)
Vol. II. Airscrews and Rotors, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Seaplanes, Stability, Structures, Take-off and Landing. $168 s$. (post $3 s .9 \mathrm{~d}$.)
1948 Vol. I. Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments, Propulsion, Seaplane, Stability, Ştructures, Wind Tunnels. 130s. (post 3s. 3 d.)
Vol. II. Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments, Propulsion, Seaplane, Stability, Structures, Wind Tunnels. 1 Ios. (post 3s. 3d.)

## Special Volumes

Vol. I. Aero and Hydrodynamics, Aerofoils, Controls, Flutter, Kites, Parachutes, Performance, Propulsion, Stability. 126s. (post 3s.)
Vol. II. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Stability, Structures. 147s. (post 3s.)
Vol. III. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Kites, Miscellaneous, Parachutes, Propulsion, Seaplanes, Stability, Structures, Test Equipment. I8gs. (post 3s. 9d.)

Reviews of the Aeronautical Research Council
1939-48 3s. (post 6d.) 1949-54 5 s. (post 5 d.)
Index to all Reports and Memoranda published in the Annual Technical Reports
1909-1947 R. \& M. 2600 (out of print)
Indexies to the Reports and Memoranda of the Aeronautical Research Council

Between Nos. $235 \mathrm{I}-2449$
Between Nos. $245 \mathrm{I}-2549$
Between Nos. 255 I-2649
Between Nos. 265I-2749
Between Nos. $275 \mathrm{I}-2849$
Between Nos. 285I-2949
Between Nos. 295I-3049
Between Nos. $305 \mathrm{I}-3149$
R. \& M. No. $245^{\circ}$ 2s. (post 3 d.)
R. 8 M. No. 2550 2s. 6 d. (post 3 d .)
R. \& M. No. 2650 2s. 6 d . (post 3 d .)
R. $\&$ M. No. 2750 2s. $6 d$. (post $3 d$.)
R. $\&$ M. No. 2850 2s. $6 d$. (post 3 d.)
R. \& M. No. 2950 3s. (post 3d.)
R. \& M. No. 3050 3s. 6 d. (post 3 d.)
R. \& M. No. 3150 3s. $6 d$. (post 3d.)

## HER MAJESTY'S STATIONERY OFFICE

## (C) Crozun copyright 1964

Printed and published by Her Majesty's Stationery Office

To be purchased from
York House, Kingsway, London w.c. 2 423 Oxford Street, London W.I ${ }_{13 \text { A }}$ Castle Street, Edinburgh 2 109 St. Mary Street, Cardiff 39 King Street, Manchester 2 50 Fairfax Street, Bristol I
35 Smallbrook, Ringway, Birmingham 5 80 Chichester Street, Belfast I or through any bookseller

Printed in England


[^0]:    * Replaces R.A.E. Tech. Note No. Mech. Eng. 356-A.R.C. 24501.

