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Summary. :
An inflatable lifting system basically consists of a flexible membrane attached to the periphery of a base
containing an orifice. A load is suspended from the inner surface of the membrane and the base rests in contact
with the ground; on inflating the device the load is raised and with suitable design and a continuous pressure
supply the structure can lose ground contact and hover. An equilibrium configuration is said to have been
reached when air is about 1o escape from the base orifice and ground contact is lost.

A model of a system is considered in which the load is carried in a set of cords attached to the periphery
of an annular base. These cords.are shorter than the length of fabric gore which lies between them and bows
outwards under the excess pressure. The statics of the structure are analysed and it is shown that for practical
design purposes the base orifice area should be less than half the projected area of the canopy below theload
suspension points. Possible equilibrium configurations are investigated and a method for calculating the fabric
gore shape is given. Formulae for designing an actual system are included.
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1. Introduction.

The general concept of an inflatable lifting system can be understood by considering a-flexible
imporous membrane which is attached to the periphery of a base; this base, which may be regarded
as rigid, is in the form of a disc with either a single orifice or an array of several orifices. For a
completely collapsible structure the base is assumed to obtain its rigidity by means of, for example,
inflated fabric ribs. A load mass is attached to points on the inner surface of the membrane by a
series of cords. A mechanical unit is provided to inflate the system and when the pressure difference
between the region interior to the membrane and the atmosphere is sufficient the load is lifted
from the plane and supported by tensions in the fabric structure. On further increasing the pressure
the system takes up some characteristic shape and a stage is reached where air commences to
escape from the base orifice(s); by using a continuous air supply the whole structure can be made
to leave the plane and hover. The position in which air is about to escape from the base orifice is
regarded in this report as the equilibrium position. Whilst the load is being raised to this so-called
equilibrium position and the base is still in contact with the plane there must be a ground reaction
on the base; once the system loses physical contact with the plane this reaction is zero.

This report is concerned with the equilibrium configuration of the structure when air is about
to escape from the base orifice and the system loses contact with the plane; its object is to determine
the shape taken up by the membrane and, if possible, to specify the optimum position for the
cords supporting the load. The attraction of devices of this nature rests in their ability to raise a
load of, say, 10,000 Ib with a pressure difference of the order of 0-1 atmospheres or less. The
system does not always work as intended: sometimes air escape occurs before the load has even
been raised, or the base buckles and adequate pressurisation is impossible. In consequénce, it is
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desirable to provide some theoretical guide to design procedure for the basic structuré: as a tentative
approach to the problem a particular model is considered, based on the theoretical model for the
parachute with cords over the canopy?!, which, although possibly unrepresentative of devices which
have been constructed, is amenable to an approximate theoretical analysis and may assist in. the
formulation of a more generally applicable theory.

Some brief observations are made in Appendices on the events occurring from the start of
inflation to the attainment of the equilibrium configuration and on a higher approximation to
the theory. : ‘

It should be remarked that the report is not"concerned with the dynamical problems involved
once ground contact is lost and air escape occurs.

2. The Model.

The base for the structure is assumed to be a circular annular hoop of outer radius R, and inner
radius b; this does not imply that the analysis only applies to a structure with a single circular base
orifice, it is valid for any arrangement of orifices having an area equivalent to that of the circle of
radius b, i.e. wb* However, where several orifices are employed they must be suitably arranged to
maintain stability and symmetry and allow for control of the device when hovering. Attached at
each of z points at equal intervals around the outer circumference of the base is a cord of length L,
where L is greater than Ry; these cords are referred to as generator cords and their ends are joined
together to form an apex at O. At a distance s; from O along each of the generator cords, is attached
another cord of length /, referred to as a load cord, and these cords are attached to the load mass .
The surface regions between the generator cords and the outer circumference of the base are
spanned by imporous fabric, the load cords passing through seals in the fabric, so that when the
base is resting on a plane and the generator cords are fully extended, as if the system were suspended
from the apex O, the configuration resembles a conical shell. For the present it is assumed that the
shape of the fabric lying between adjacent generator cords, i.e. the gore shape, is undefined but
there is a certain fullness in this fabric and it is gathered along the generator cords and can billow
between them. The fabric, generator and load cords are all assumed to be inextensible and to
have no flexural rigidity.

When a positive pressure difference occurs between the inner region of the fabric shell and the
atmosphere the generator cords take up a characteristic shape and the gore fabric bulges outwards
between them. With a sufficiently high pressure differential and suitable geometry the load is raised
from the plane and the final configuration may resemble that shown in Fig. 1(i). A sectionalised
three-dimensional view is shown in Fig. 1(ii).

It is assumed that the whole of the load is carried by the tensions in the generator cords and that
the fullness of the gore fabric is such that only circumferential tension, which is assumed constant
over the length of a gore, exists in it. Physically there must be some generator tension in the fabric
gores, but gathering along the generator cords relieves this and it is to be expected that the generator
tension can be made very small in comparison with the circumferential tension.

The masses of the canopy, load cords and base are assumed negligible in comparison with the
mass of the load; but, if a heavy base is used, account should be taken of this and the basic equations
suitably modified. '

The fabric region above the points of suspension of the load cords is called the upper canopy
and the region between these points and the base is the lower canopy. The pressure difference
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- across the whole of the canopy’s surfaces and the base is assumed constant and equal to p; this
assumption is reasonable before air escape occurs but may not be adequate once the structure leaves
the ground, discussion of this situation is outside the scope of the present report.

In Fig. 1 a point load is shown suspended by the cords attached to the suspension points, this
involves some bracing of the structure. The same configuration could theoretically be attained by
distributing the load uniformly around the suspension-point interface in the form of a ring of
radius #;, or as point loads Mg/n acting at each of the suspension points; in the latter case it would
be necessary to connect radially opposite suspension points by cords in order to brace the structure.

3. Theory of the System.

Let the tension in the upper-canopy generator cords be 7;; in the lower-canopy cords T5; and
in éach load cord F. The lower-canopy generator cords leave the base at an angle 3 with the plane,

“as shown in Fig. 1, and in consequence there is a radial tension T in the base to balance the

horizontal component of the generator-cord tension. Vertical distance x is measured downwards
from O or O’ and the radial co-ordinate from this vertical axis is 7. The maximum distance of the
upper-canopy cords from the axis is @ and of the lower-canopy cords is R; the radius of the
suspension-point interface is #,. The total arc length from a suspension point A to O, the apex,
is s, and from A to C a point on the base, is 5,. The tangent to the upper-canopy cords makes an
angle s with Or and the tangent to the lower cords an angle @. At A the upper-canopy cord makes
an angle « with the horizontal and the lower-canopy cord an angle §; the load cord for a point
load is inclined at y to the horizontal. Fig. 1(i) as drawn shows the angle 8 measured counterclockwise
and positive; this is for convenience in the analysis. In practice a positive f is undesirable since the
tension in the lower canopy is then tending to pull the load down rather than raise it. It is normally
expected that B will be negative for an efficient system and to this extent Fig. 1(i) represents an
impractical design.

For the arc length from O to C:

s;+ 85y = L. (1
For the upper canopy, neglecting the additional projected area due to bowing out of the gore:
pra® = nTy. (2)

For the suspension-point interface:
nTysina —nTysinfB = nFsiny = Mg. (3)
For the whole system:- ) '
pmb® = Mg. 4
For the lower canopy, again neglecting the added area due to bowing out of the gore, and using
equation (4):

paR: — Mg = nT, = pa(R*—b%). (5)

For the base: .
pr(R2—0%) = nT,sin 8. (6)
Ty = T,cos6. (7)

These equations only apply when air is about to escape and the ground reaction- is zero:
Appendix ITI deals with the situation occurring before full inflation and Appendix IV gives the
theory including the effect of additional projected area due to bowing out of the gore fabric.
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3.1. The Upper Canopy.

The equilibrium of the fabric between two planes corresponding to » = x and & = x + Sx is
considered. For an element of generator cord 8s the outward pressure forces must balance the
tension. The tension in the fabric where it meets the generator cord is everywhere at right angles
to the cord and so the tension in the cord is constant over its length.

Referring to Fig. 2, which represents a section of the upper canopy:

Ty sin & = p@a

or, in the limit:
T3 = p 22 b, ®)
Also ' '

8r = 8scos . N
Now

dy  &pds  2mr 1
P T PR o )

and using (2):

cos - d‘ﬁ _ (10)

The integration of (10) gives

. 7277
[SIn ¢]1p13 = [a§:| >

70
but
w
7y = a when Py = 3 and
therefore
. 72
sin ¢ = e (1)

which gives the equation of the upper-canopy generator cords. This equation (11) represents the
well-known Taylor shape.
At the suspension points A:
=1 and f=m—a,
hence
r? = a?sin «. (12)

3.2 The Lower Canopy.

Similarly for the lower-canopy generator cords

TySp = p ‘Z"Z“r 8 e (13)
8r = 8s cos (14)
and using (5):
dop 2y

COS(pW = m.




Intregrating this

. 72 r
et < [

2 o
When
@o=PfB, 7g=1r = +(asin o) ;
* therefore
% . 42
sin ¢ — sin B :f,Rzabelzno‘_ )
When
P = g’ 17" = R;
therefore
(RZ_‘bZ) sin B = a?sin a — 2. 19
Thus, from (15) and (16), ,
. ¥2 — p2 ,
T (Rz——bg) (17)

which gives the equation of the lower-canopy generator cords.

4. Geometric Parameters for the System.
The equatiors of the upper- and lower-canopy generator cords enable the arc lengths and vertical
co-ordinates of the system to be calculated. For the upper canopy:

2
A Y S

a? cos i
whence
a v d&f
=3, vany ()
and the total arc length s, from O to A is given by
s L[ df '
a 2), 4/sing’ (19)
For the vertical co-ordinate x, measured from O:
dx = tan dr
and hence
v ,
x=7 f /sin i (20)
0
and the height of the upper canopy alone is given by
xl _ 1 T—o . '
2=2], A/sin hdfs. (21)
Similarly for the lower canopy where
. 72 — b2
YR
o R2_ B2
) (R —8%)dp -

T ) 2R =Py sin g + b7
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Setting
b=puR where O<pxgl

the total arc length s, from A to C is given by

(1—p?)dyp

For the vertical co-ordinate x, measured from O’:

J‘ (1— [.Lz)Sll’l(pd(p
"2}, V(T sin g + 3

and the height of the lower canopy is

(1- y,z) sin pdep

ZL VA(L—p?) sin @ + p2}”

R =§fﬁ VIA—sing + a8

(23)

(24)

| (25)

(26)

The integrals involved in (18) to (26) are all elliptic and their reduction to standard forms and

evaluation is given in Appendix I.

4.1. A Criterion for a Possible Equilibrium Configuration.
Consider the equation for the lower generator cords:
‘ . r? — b2
Sin @ = Hr—s -

Now 7 is always real and positive and

[sing| < 1
hence
1,2__b2
o S
or
R2__1,-2 ‘
‘I“Rz—_bz <1
therefore
R2__7,-2
0 < —m<2.

With & = pR and 0 < & < 1 this becomes

0< R—7r2<2l—pd)R?
or !
7> (2ur—1)Re.

For it to be possible to make a system consisting of a lower canopy only with a single suspension

point at the apex this inequality must be valid for all » < R and can then only be satisfied if

2u*—1<0.

(27)

Hence, in these circumstances, before an equilibrium configuration can exist it is essential that

R

0_<b<—\7—2.

(28)



This implies that with a single-point suspension the maximum load which can be lifted is

Mg = pmb® <p7TTRz, o (29)
but this, as shown in Section 4.3, is practically somewhat lower. Thus, for a given maximum lower-
canopy radius R and pressure difference p, the maximum load is specified by the limitations on b.
The effective maximum lifting surface of the system is equal to half the maximum projected area
of the lower canopy. For a system to be designed to carry a load from multiple points and also to
be usable with single-point suspension the relations (28) and (29) must still be applied.

If a system is only required to carry a load from a number of points and a possible single-point
suspension is excluded, the restriction (27) on the value of p no longer applies. Instead it is essential
to have an upper canopy with the radius at the suspension-point interface satisfying the inequality

(@)222,&— i,
R

This situation presents some difficulties for it will be shown that when p is larger than say 0-6 to 0-7
the lower canopy becomes very squat and may not be high enough to accommodate the load beneath
the suspension points. To overcome this it appears that for large values of p the load would have to
be cantilevered from the suspension points to get it clear of the ground. It is questionable whether
this is of practical value.

In general the ensuing analysis applies only to the cases where 0 < p < 1/4/2 and single-point
suspension is possible. Appendix V considers the problem with p > 1/4/2; separate consideration
is necessary since the integrals (24) to (26) for the arc length and height of the lower canopy lead to
different results in general, depending whether p is greater or less than 1/4/2.

Further limitations on the value of w arise in Section 4.3 where the height of the suspension
points above the ground is considered, and the more accurate analysis of Appendix IV shows that
the restrictions on u can be slightly relaxed. 'The practical limit for 4 however appears to be largely
unchanged when the limits of the theory are borne in mind.

4.2. Determination of the Configuration of the System with p < 1[+/2.

In order for the configuration of the system to be determinate the values of some of the geometric
parameters involved must be specified. Suppose, for example, that the given factors are the annular
base radii, R, and b; the maximum radius of the lower canopy R; and the two arc lengths s; and s,:
a knowledge of these factors is sufficient to determine the resulting- configuration of the whole

system. From equations (19) and (24):
1= sl(a: O‘)

. $p = SZ(R7 b, )Ba 8);
from equation (16): '
B =B(R a b o);

and from equation (17):
' 3 = 8(Ry, R, b).

These four equations involve the four unknowns o, 8, 8, and @ and the problem is determinate.
The solution of the equations is a rather cumbersome though straightforward process involving
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the use of tabulated values of elliptic integrals. When «, f, § and a have been determined it is possible
to calculate the vertical co-ordinates, &, for the system, and the radial co-ordinates 7, thus enabling
the configuration to be plotted graphically. For a given load the required pressure can be obtained
from equation (4) and the resulting tensions in the generator cords and base hoop from equations (2)
to (7).

To discuss possible equilibrium configurations the results obtained in Appendix I for the
geometric parameters of Section 4 are required and a summary and discussion of these results
follows.

For the arc length of the upper canopy measured from O to some point on the generator cord

with co-ordinate ¢
s 1 m 1 1 1
i~ )7t (0 7) ()
8 = cos™! (4/sin ¢) ’ (31)

and the total arc length s, is given by putting ) = = — «. Now the maximum value for ¢ is 7 — «
and « can take values such that

where

0<0L<7r,

when « is measured in a clockwise direction as in Fig. 1(i); an increase in s, thus results in a decrease
in a. The corresponding range for § may be taken as

<b<

’

ol 3
pol g

where 6 = — 7/2 corresponds to o = 0 and § = + 72 correspondé to « = . Depending on the
angle o the upper canopy is either a section of the curve taken by a plane which lies above the
plane containing 7 = @, or a section by a plane lying below that containing » = a. These two
sections are shown in Figs. 3(i) and (ii).

For the vertical co-ordinate of the upper canopy the result obtained is:

® m 1 1y 1 w1y 1 1
= V2E () V2B (0 ) - P () v F () @
where the range corresponding to 0 < ¢ < = is

ko o
— =< <.
2 2

For the lower canopy s is measured from A to some point on the generator cord with co-ordinate
@, where ¢ has a maximum value of = — § and a minimum value of B, where f may be negative.
If there is no upper canopy at all the minimum value of 8 occurs when » = 0 and then

p - sin (- ). | (33)

Even with an upper canopy B is still negative where # < b. These cases are illustrated in Figs. 4
and 5. -
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The arc length s for the lower canopy is given by

s (1) 1y V(=) 1
r= T (e V{Z(l—pﬂ)}) E (g V{za"—w})’ (34
where
) £, = cos Ty/{(1—p?) sin B + it} - (35)
an
¢ = cos /{1 — ) sin p + . (36)

For — #/2 €< ¢ < w/2, &€ must be taken to lie in the range #/2 > £ > 0 where £ = 0 corresponds
to @ = 7/2 and & = 72 corresponds to ¢ = sin~Yu?/(1—u?)}. When ¢ > 7/2, ¢ lies in the range

0>§¢> —xw/2 where £ =0 corresponds to ¢ = n/2 and ¢ = — #/2 corresponds to
@ = — sinYu?/(1—p2)} + 7. The total arc length s, from A to C is given by equation (34) with
q) = 07 — 8.

The vertical co-ordinate x, measured downwards from A, for the lower canopy, is given by

x 1

%= V=1 [ (60 o) = £ (6 )] -

vV (1-p?) [ ( 1 ) ( L ]
- N F s | — F §,———) 37
v RV ) VT 7
with the corresponding ranges of ¢ and ¢ as for the arc length s. Now from equation (16)
a?sina = b2 + (R2—8%)sin B
and using (23) and (35)
a?sin o = p?R? + (1—p?)R%sin B = R?cos? §;
therefore
ay/sin o = R cos £ . ‘ (38)
But
V2s  A/2sp/sina /25 cos by
a ay/sina  Rcos§
where
cos f; = 4/sin o (39)
- and hence equation (30) can be written in the form
A25, T 1y 1
(Reost) =7 (372) =7 (0 32)
Let
_ V25
" Recos & (40)
then
r=r (7, LY 2 r (e, L 8 M
[P Bva) - () e 4

Values of this function A for — #/2 < 0, < #[2 have been calculated and are given in Table 1 with

the corresponding values of «.
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At 0, = m/2:

1 » 1
1(o=3) - { G 7) (o 72)}

and at 0; = «/2 this is indeterminate. Applying L’Hopital’s rule:

)= Lt _diol{_F(gl’«/iZ)]

d
01—>n/2
L 0, (cos 8,)

= Lt | !
w2 L8in 034/(1— % sin® 91)}

>
—

=

Il
ol 3

which is determinate at ¢, = 7/2;

therefore
A= 4/2.
When 0, = — #/2, Ais infinite and hence A is restricted to lie in the range
00 > A>4/2. (42)

Thus for a possible equilibrium configuration A must be greater than 4/2, and from (40) it follows
that the inequality

s :

T; > ¢os & (43)
must be satisfied.
But

S, % _L

RTR™R
. and hence the following inequality must also be satisfied

$a

R

)

cos &, <
+o§1R

(44)
It is now a quite simple matter to determine whether a given system can have an equilibrium
configuration, and conversely it is possible to predict systems which will have an equilibrium
configuration and be capable of supporting a given load under a given pressure.
As an example of the assessment of a system suppose that Ry, R, b, s; and s, are given. It is firstly
postulated that

O<p= b < !
b=RSVE
We calculate s,/ R and also
2 _ B2
,siné = RRilz — bbz . (45)
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Now from (34)
i ) vil] @

R V2 VA2(1—p?)} V{2(1—p?)}
where
&1 = cos™t /{(1—p?) sin B + p?} (47)
and
0<b<3,
also

£, = cos™t 4/{(1—p?) sin § + p?}. : (48)
From equation (45) there are two possible values for §:
(i) such that 8 > #/2 when 0 < €, < #/2 and

(ii) such that 8 < /2 when — #/2 < £, < 0.

For 8 > /2, 5,/ R cannot be greater than the maximum possible arc length between the points where

2

: . 1 : ™
¢=s1n1(—1_M2) and P=3:

hence the inequality
s _ V(1-p5 (77' 1 )
5 < et B 5 s : 49
RS vz "\ypa-m o ®

must be satisfied.
For 8 < /2, s,/ R cannot be greater than the maximum arc length between

. . M2 . . "L2
= -1 —_— — d = —_ 1 —
p = sin ( T #2) an @ = 7 — sin ( T Mz)

and hence

Sy T 1
=< 21—2F(—,—). 50

R VA2(1—p2)} 2’ V2(1— )} (50)
It should be noted that the inequalities (49) and (50) merely provide upper bounds and do not tell
us whether 8 > #/2 or < 7/2, unless the inequality (50) is satisfied and (49) not satisfied; in this
case 6 must be > 7/2. If the inequality (49) is satisfied 8 may lie in either region.

Let us suppose that the inequality (49) is satisfied without (50) being satisfied, or that both (49)
and (50) are satisfied; it should then be possible to find the equilibrium configuration. Suppose
it is assumed that 8 > #/2 with 0 < &, < #/2.

We form
s V(=) ( L)
-+~ P&
R 2 U\ iy

and using a set of tables of elliptic integrals we endeavour to find a value of ¢, such that
0 < & < 7/2, which makes this expression equal to

V(1 —g?) i
2 (e «/{za—w)})'
13




If there is no value of ¢, satisfying this then 8§ < #/2 and — 7/2 € &; < 0. In this manner the value
of § is found and also the value of £;. Equation (47) now enables 8 to be found and

cos? £; — u?

s (51)

. 7 T
sml(—1 2)<B<§.

—

An equilibrium configuration then exists if

sin 8 =

where

$1
— > COS8 .
R &

Since s; is given, A can be calculated and the corresponding value of o found from Table 1.
Equations (32) and (37) can then be used to find the vertical co-ordinates x for the system and the
configuration can be plotted graphically.

As another example of the assessment of a system suppose that the total generator-cord length L,
the base radii R, and b, and the maximum lower-canopy radius R are given. Again, for equilibrium,

it is postulated that
b 1

| R-V2
We calculate L/ R and if this is such that
1
> V(- ( )
V21— p2} 2 Vi21T=p2)}
then an equilibrium configuration exists provided that

5 1
B< VeI E (3, v m})'

0<

If
7= VOO (3 o)

then s,/ R must be chosen so that

Sy L

— -+ cos & < —

R & R

and since 0 < & < 7/2 this can be done with the aid of a set of tables. Having chosen s; and s, to
satisfy the equilibrium conditions we may proceed as before and determine the complete
configuration of the system.

4.3. Some Practical Considerations.

It is necessary to remark that, although the analysis of Section 4.2 may indicate that the system
has an equilibrium configuration, it does not follow that this configuration is of any practical use:
it is essential for the suspension points to lie above the plane surface at the base level otherwise
the load can never be raised, and these points must also be high enough to accommodate the load
and still allow it to be raised above the level of the base. This statement may seem trivial and

obvious but it imposes limits on the values which can be taken for p which are more stringent
than that of 0 < pu < 1/4/2.
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~In Fig. 10 are plotted some members of the family of curves for the lower canopy where

, o
72— b2 (E) —

SinQ = s = e

and reference to these curves readily reveals some interesting features. The maximum height of
the suspension points for the load above the plane surface where ¢ = 7, § = 0 and #/R = p occurs
- when they are situated at the upper points given by ¢ = 0, 7/R = p. If full advantage has to be
taken of the maximum height of the lower canopy then the base angle § must be zero; if § = /2
then only half of this maximum height is available. The maximum height H can be obtained using
equation (37) with 8 = 0 and ¢ = = and is given by

%I = 2v/{2(1-p2)} E [COS‘I 2 mll_—p,a)}] -2 »\/ (1—2&2) d [cos_l o 7{2(11——,;,2)}:I
with
t | 0<costu< 7—2T

Values of 7/ R have been calculated for p up to 0-7 and are given approximately in the Table below.

TABLE

Values of H|R for 0-1 < < 0-7

b H
0-1 1-19
0-2 1-14
0-3 1-05
0-4 0-96
0-5 0-83
0-6 0-70
0-7 0-54

[The values given are only approximate: the reason for this is that the elliptic-functions tables of
E(0, k) and F(0, k) are usually given with sin—? % at intervals of 1° and 8 at intervals of 5°. In order
to obtain accurate values at intermediate points extensive interpolation is necessary, and in the
circumstances not worthwhile, for the figures given should be accurate to about + 29, which for
all practical purposes is adequate.] ‘ :

If the system is to be efficient in the sense that the heaviest possible load can be lifted with the
minimum pressure difference then p should be fairly large, say 0-6 to 0-7. A disadvantage occurring
here is that when y is of this magnitude then H/R is rather small (about 0-6) and the lower canopy
is rather squat; a large upper canopy may thus be required to accommodate the load. If the load is
rather bulky and a tall lower canopy is required then the efficiency must be reduced and a higher
pressure difference applied to raise the load. The upper canopy must in any case be such that the
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load suspension points lie above the base level § = 0, ¢ = = and in Fig. 10 the curve for p = 0-6960
immediately shows that the radius of the circle at the suspension-point interface, 7;, must be such
that r,/R is greater than approximately 0-1; there is thus a minimum size for the interface radius 7,
whenever p exceeds a certain value: this value can be determined by considering the case where
there is no upper canopy. The first acceptable configuration (which is practically useless) is that
where the single suspension point is on the same level as the base 6 = 0, ¢ = m. By plottmg the
difference between the maximum height ratio H/R and the distance between the suspension point

2
@ = sin™! (— —M—o—z)
Iy

. B2
(p=7r—51n“1<—-" )
1—p?

where

and its image point where

(again as a ratio of distance/R), against y, the value of p for which this difference is unity can be
obtained and gives the critical value for p as being approximately 0-665. Hence, whenever p exceeds
0-665 there must be an upper canopy and by plotting the curve for the required value of p the
minimum value for 7, can be determined. Also, in order to make a system without an upper canopy .
and with a single suspension point it is essential that u should be less than 0-665.

These criteria for p have been referred to the case where 8 = 0 and if the system is designed
with & other than zero, say lying between 0 and /2, the critical value for y at which the suspension
points are level with the base is further reduced and must be determined for each individual case
by reference to the curve of

singp = m—
for the appropriate value of u. For 8 = =/2 the critical value is approximately p = 0-6.

Practically, in order to keep the weight of the system and the amount of material used to a
minimum it should be designed with the annular base of the same outer radius as the maximum
radius of the lower canopy. The angle 8 is then 7/2 and there is no radial tension in the base hoop.
However, if a wire grommet or tension cord is used for the base, R, = &, and then & = 0. A certain
amount of extra fabric is required below the point B and the base cord may have to be substantial
to withstand the radial tension loads. A possible shape is shown in Fig. 5.

If, on the other hand, & is larger than 7/2, the lower canopy does not attain the maximum radius R
and there is a radial compression on the base. With the system envisaged the whole device is
intended to be collapsible and the rigidity of the base obtained by means of inflated ribs; these may
be satisfactory under tension but are liable to buckle under fairly low compression and it would
appear undesirable to have a system designed with & > /2. ’

In general, the most efficient and economical structure should be that designed with & = 7/2
so that the radial stress in the base is zero. In this case the height of the system can be kept to a
minimum, the centre of gravity as low as possible, and the base area to a maximum. These factors
should all be instrumental in promoting the static and dynamic stability of the device. With a small
" base area and 8 < 7|2 the system might easily be unstable when subjected to small disturbances.
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It may be desirable for the generator cords in both the upper and lower canopies to be equally

stressed. In this case

Ty =T, (52)
and from equations (2) and (5)
| at = R — b2, (53)
also from equations (3) and (4)
‘ b2 .
sina —sinf = 7 , (59

These equations may be used for rapid calculation of @ and « when 8 is known.

This section has been concerned with determining the configuration taken up by the generator
cords of a system with specified geometric parameters, alternatively the equations derived enable
one to design a system. Having determined the configuration of the generator cords it is necessary
to consider a possible shape for the fabric gore lying between them, and to calculate the stress in

this fabric.

5. The Calculation of the Gove Shape.

In choosing gore shapes for the canopies it is essential that these should be such that the initial
assumption of zero generator stress in the fabric is satisfied as far as possible. Without crinkling
the gore surface is not plane and as it is usual to cut the gore from a plane sheet of fabric and not
to mould it, the true gore shape cannot be represented in two-dimensional co-ordinates. In order
to avoid this difficulty and arrive at a gore shape which can be represented two-dimensionally and
thus_cut from a plane sheet, the method used is to specify a means of generating the true gore
surface without crinkling, calculate the true gore length as measured along the mid-gore line and
then to assume that the width of the gore to be cut from plane fabric is equal to the length of the
arc of the gore generating curve lying between two adjacent generator cords. It is then demonstrated
that the plane gore so derived must be gathered along the generator cords in order to make it fit
and in consequence the fabric should make no appreciable contribution to the tension already
existing in the generator cords. It should be emphasised that the plane gore shape derived in this
report is merely a particular case and there are many possible alternatives depending on the shape
of the gore generating curve.

_Consider the plane MPQ (my) contamlng the normals to a pair of adjacent generator cords at
corresponding points P and Q situated at equidistant intervals from the vertex O of the upper
canopy. It is supposed that the surface of the gore of both the upper and lower canopies is generated
by a circle of constant radius %, lying in the plane my, and passing through P and Q, sweeping down
the generator cords from O to the base of the upper canopy and from there to the base hoop.

Let OD and OE be adjacent generator cords; P and Q corresponding points on these cords at
distance 7 from the axis Ox; and M a point on Ox such that MP and MQ are the normals to OD
and OE at P and Q respectively, as in Fig. 6. PHQ is an arc of the generating circle lying in the
plane MPQ (), this circle is centred at I and has a constant radius %; H is the mid-point of the
arc PQ. Another circle, centred at M, and of radius

PM = 7 cosec ¥,
17
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lying in the plane ;. cuts the line MIH at G and the arc PG (= GQ) subtends an angle ¢ at M

as shown in Fig. 7. The arc HQ subtends an angle n at I. Now the straight line PQ = 27 sin «/n
and hence

€ = sin™! (sin g sin ¢:) . : ' (55)
From AIQM:
h _ rcosecih 7 cosec
sin _ sin 1l sin (7 =) sin 7
therefore !
sin % == 2 sin%. (56)
Let arc HQ = w = Ay
then
w=hﬁm¢€ﬁn3 57)

and this equation gives a measure of the half-gore width.
To obtain the length of the gore consider Fig. 8. Let

PP’ = QQ’ = & ' (58)
HH' = dS (59)

where s is arc length measured along the generator cord and S arc length measured along the
mid-gore line.

. Now
ds = M, G&f
M, Hé&) = HH’
M;H = M,G + GH
therefore
as HH’ M,G + GH
@ =k~ (M)
. dip
=14+ GH & (60)

GH = MI + IH — MG
= MI + % — 7 cosec 4.
But, from AIQM,
MI  7cosecd
sin IQM ~ sin g

and

IQM

7 — sin~1 (sin % sin 1/1)
therefore

GH = rcosecglr\/(l — sinzgsingzﬁr) —rsin%cotn + & — 7 cosec ¢
and using (56)

. ST . oo
GH=rcosec¢/\/(1—s1n27;sm2¢r)—hJ(l—}?s1n2Z)+k—rcosem/;.
18



Hence, to first-order terms:

-1 w7 )
L K
GH = 5 7 sin®— I:h sin J . (61)
From (60) and (61):
as 1 . =w[r difs ;
— = — 2 |~
A 1+ 57 sin? - [h sin jl F (62)

[This form, and the preceding analysis of the gore shape, is almost identical with that used in the
calculation of the gore shape for a parachute with cords over the canopy (see Ref. 1), but in the
present case 7 is not assumed to be large and the exact value for the angle ¢ is used, as opposed to

an approximate value.]

5.1. The Upper-Canopy Gore.
For the upper canopy:
, 7 ap 2
sin ¢ = g and PR T

Substituting in equation (62)

s G

1 77 r 1 a1
= sin2” L~V _F(Z,
+ 37y sin n[F (cos . 2) F.(z,vz)] (64)
and also from (30)

: - Vlz {F(” 12) F(c v2) (65)

Hence, given the values for # and 4, equations (57), (64) and (65) can be used to determine the
gore shape for the upper canopy.

5.2, The Lower-Canopy Gore.
For the lower canopy:

_ r2— b2 do 2
SIH(p = m and g*s— = m.

Putting & = pR and substituting in (62)
e pedong (G
“R— (1- MZ)LI/R /\/ ( ) (I_ZMQ) +<%)2Hd(_) (66)

=)
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The evaluation of this integral is described in Appendix I and the result is:

— . 2
ii:sinzﬂ[ V2 E(cos—l%, 1 )+

R n L3v/(1—p) V(1=
V22
oV - [ & vaa=m) *

o=l 3 o2 ) -
7\ 2q1R
- ’f? sin~t /\/ %L’R (67)

also from equation (34)

Equations (67) and (68), in conjunction with equation (57), enable the gore shape for the lower
canopy to be determined and hence the shape of the gore for the whole canopy is known.
Suppose that the gore for the upper canopy is cut to the shape OP; H; Q, and that for the lower
canopy to the shape PP, H,Q,Q, as shown in Fig. 9. For the upper canopy S is measured
downwards from O as far as H, and for the lower canopy it is measured from H; down to H, with
w as the semi-gore width. The points P, and Q, are made to correspond to two a‘djacent suspension
points on the generator cords and P, and Q, to two adjacent points on the base hoop.
. Now :
OP, > OH, > s,

where s, is the total length of the upper-canopy generator cord, and hence when the fabric OP;
is ranged along this generator cord it must be slack in comparison with the cord itself. Similarly
for the lower-canopy gore

PP, > HH, > s,

and the fabric P, P, when ranged along the generator cord is slack compared with the cord itself.
The particular type of gore generated by the circle of radius % thus satisfies the assumption

made in Section 2 that the gore fabric should have a minimum of tension in the direction of the

generator cord. »

5.3. Stresses in the Fabric Gore.

If the extension of the fabric used for the gore is neglected the approximate circumferential -
tension can be calculated using membrane theory. It has been assumed that the generator tension
in the gore fabric is negligibly small in comparison with the circumferential tension in this fabric;
this implies that the radius of curvature of the gore fabric in the generator direction is very large
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in comparison with that in the circumferential direction. In these circumstances the radius of
curvature in the circumferential direction is approximately equal to the radius of the gore generating
circle 2 and approximately

T, : '
p=7 (69)
where T, is the circumferential tension in the fabric. Using equation (7):

_ Mgh

Towh?

T, | (70)

If the yield strength of the fabric is 7'

emax then the maximum load which the system might be

expected to support is given by

wh? '
(Mg)ma.x = 7 Tc’ma,x l (71)
which can be written
Tab '
(Mg,)max =57-2b Tc max * (72)
2ha

Thus, the greater the value of a/k or bfa the greater is the maximum load the system can support
without the fabric breaking down.

The values of a/k (or R/h) determine the fullness of the gores and the larger these ratios the less
the tension in the fabric for a given load, which enables a low-tensile-strength fabric to be used.
The actual bulk of the fabric system is directly proportional to the area of a gore and the fabric
thickness—the gore area increases with 1/k and the fabric stresses are reduced—so that the optimum
value for 4 should occur when the product of the gore area and 1/# is a minimum. This minimum is
of particular interest if the bulk of the system is of major importance: in parachute theory, which
corresponds to the upper canopy only, it is usual to take a value for a/k of two (2) as this gives an
approximate minimum, this is probably a reasonable value to take for the present system.

It must be stressed that the theory involved in the calculation of the gore shape is at best a very
crude approximation. It may be better to design the gore so that the value of ‘%’ for the upper
canopy is different to that for the lower canopy, e.g. for the upper canopy so that a/k = 2 and for
the lower canopy so that R/2 = 2, and it is then necessary to match the fabric shape at the suspension-
point interface. It may be desirable to have very little fabric billowing between the generator cords,
in this case a stronger fabric with a larger value for 2 may be required. These factors must be
determined in relation to the requirements for a ‘particular system and experiment will finally
decide whether a system is satisfactory. ' ‘

6. Conclusions.

The analysis shows that an equilibrium configuration can only exist for the model system allowing
for single-point suspension if the base orifice area is less than half the total projected area of the
lower canopy and that further restrictions of a geometric nature then determine whether an
equilibrium configuration is possible; these latter restrictions can only affect such factors as the
total height of the system and the position of the points of attachment of the load cords. All the
necessary formulae for the design of the system are given, including the calculation of a particular
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type of gore shape, and an estimate is also made of the maximum load which could be carried with
a given fabric and system geometry. The tensions in the generator cords can be-determined easily
and an approximation is given for the tension in the gore fabric.

The advantage of the structure considered, apart from the fact that it lends itself to approximate
analysis and provides a theoretical design basis which could readily be applied using nothing more
than a set of tables and a hand calculating machine, is that it makes the most economical use of
fabric, the approximate stress distribution is known, and full account can be taken of design
requirements such as maximum permissible height or headroom, position of load and the total
bulk of the structure. Practically there seems to be no serious difficulty involved in constructing
a system of this type; care is needed in choosing fabrics and, although inextensibility is desirable
to accord with the theory, as long as the extensibility of the generator cords is less than that of the
fabric gore the theory should give a reasonable approximation.
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E(g, k)
F(e, k)
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LIST OF SYMBOLS

Legendre’s incomplete elliptic integral of the second kind

u, incomplete elliptic integral of the first kind

Tension in a load cord

Maximum height of the lower canopy

Total generator-cord length from the apex to the base of the system
The load mass

Maximum radius of the lower canopy

Outer radius of the annu‘lar base hoop

The arc length for the fabric measured along the mid-gore line
Tension in the upper-canopy generator cord

Tension in the lower-canopy generator cord

Radial tension in a base hoop rib

Tension in the circumferential direction in the gore fabric

Maximum radius of the upper canopy

Radius of the orifice in the base hoop (&, & and ¢ are also used in the Appendix
in a different context in giving standard forms for elliptic integrals)

Radius of the gore-fabric generating circle

Modulus of the elliptic integrals

4/(1 —k?), the complementary modulus

The length of a load cord

Number of generator and load cords

Pressure difference across the fabric

Radial distance

Radius at the canopy suspension-point interface

Arc length measured from various origins as stated in the text

Total arc length measured along a generator cord from the apex of the upper
canopy to the suspension-point interface

Arc length measured along a generatof cord of the lower canopy from the
suspension-point interface to the base hoop

Semi-gore width of the fabric
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LIST OF SYMBOLS—continued

Vertical distance measured from various origins as stated in the text
Height of the upper canopy from apex to suspension-point interface
Height of the lower canopy from the suspension-point interface to the base hoop

Angle made by the upper-canopy generator cord with the horizontal at the
suspension-point interface

Angle made by the lower-canopy generator cord with the horizontal at the
suspension-point interface

y Angle made by a load cord with the horizontal
Angle made by a lower-canopy generator cord at the point of contact of the base
hoop with a plane surface. (These angles «, B, v, 6 are measured in the
directions shown in the figures)
€ Angle defined in Section 5, equation (55)
7 Angle defined in Section 5
Defined by equation (31) = cos™(4/sin )
2
A Defined by equation (40) = R‘éos‘“gl
b
73 Parameter defined as = R
£ & Defined in equations (35) and (36)
P Angle made by the tangent to the lower-canopy generator cords measured from
the horizontal position 7 = b
s Angle made by the tangent to the upper-canopy generator cords measured from
the horizontal position at the apex# = 0
REFERENCES
No. Author(s) Title, ete.
1 G.W. H. Stevens and T. F. Johns .. The theory of parachutes with cords over the canopy. .
AR.C. R. & M. 2320. July, 1942.
2 Jahnke-Emde-Losch .. .. .. Tables of higher functions.
6th edition, McGraw Hill Book Co. 1960.
3 P.F. Byrd and M. D. Friedman .. Handbook of elliptic integrals for engineers and physicists.

Springer-Verlag, Berlin. 1954.
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TABLE 1

Values of A and o for — w|2 < 8, < w)2

V28 _ o o 28 o - o

" Recos £ 6, « A‘_RCOSE 0, *

co —90 0 1-8541 0 90°
104-8 — 88 0° 4 1-8203 2 02° 48’
51-76 —86 0° 17 1-7885 4 95° 36’
34.07 -84 0° 37 1-7589 6 98° 30’
25.23 —82 1° 7 1-7311 3 101° 17
19-941 —80 1° 43/ 1-7051 10 ‘ 104° 117
16-421 —78 2° 28’ 1-6805 12 106° 55’
13-913 : —76 3° 21 1-6577 14 109° 42/
12-038 —74 4° 21’ 1-6364 16 112° 27"
10-585 72 5° 29’ 1-6166 18 115° 14/
9-426 70 6° 43’ 1-5979 20 117° 59",
8-482 —68 .84 1-5804 22 ' 120° 43’
7-699 —66 9° 31’ 1-5643 24 123° 26°
7040 — 64 11° 5 1-5493 26 126° &
6-477 —62 12° 44/ 1-5354 - 28 128° 47
5-993 —60 14° 29’ 1-5225 30 131° 25’
5:5719 —58 16° 18’ 1-5105 32 134° 1
5-2027 . —56 18° 13’ 1-4995 34 136° 36’
4-8768 —54 20° 13’ 1-4895 36 139° 7
4-5873 —52 22° 17" - 1-4802 38 141° 37°
4-3286 - —50 24° 24/ 1-4717 40 144° 4
4-0966 —48 26° 36/ 1-4640 42 146° 29
3-8874 —46 . 28° 51° 1-4572 44 148° 50
3-6980 —44 31°10° 1-4509 46 151° ¢
3-5257 —42 33° 31’ 1-4453 48 153° 24
3-3690 —40 35° 56 1-4403 50 155° 36’
3-2255 —38 38° 23/ 1-4359 52 157° 43’
3-0942 —36 40° 53’ 1-4319 54 159° 47
2-9733 —34 43° 24 1-4287 56 161° 47
2-8621 —-32 '45° 59’ 1-4259 58 163° 42’
2-7594 —30 48° 35’ 1-4234 60 165° 31’
 2-6646 —28 51° 13’ 1-4214 62 167° 16’
2-5764 —26 53° 527 1-4196 64 168° 55’
2-4947 —24 56° 34' 1-4181 66 170° 29’
2-4189 —22 59° 17 1-4172 68 171° 56
2:3484 —20 62° 1/ 1-4163 70 173° 17
2-2826 —18 64° 46’ 1-4155 72 174° 317
2-2212 —-16 67° 33’ 1-4152 74 175° 39’
2-1640 —14 70° 18’ 1-4149 76 176° 39’
2-1103 —12 73° 5 1-4147 78 177° 32/
2-0603 —10 75° 49’ 1-4146 80 178° 17
2-0135 — 38 78° 43’ 1-4145 82 178° 53’
1-9697 — 6 81° 30" 1-4144 84 179° 23’
1-9286 — 4 84° 24/ 1:4143 86 179° 43’
1-8901 =2 87° 12 1-4142 88 179° 56/

1-8541 0 90° . . 1-4142 90 180°
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APPENDIX I

Evaluation of the Elliptic Integrals

'The integrals of Section 4 are of the type:

1r & YV

Il=§ W’ Iz—zf\/smél’d‘/‘,
f (]— p)dif o] (1-p?)singdp
VIA=pBsing + 0% T2 ) VT sin g + @2}

where 2u? — 1 < 0, and the integrals are taken between the appropriate limits. In I; and I, set

sin = 2 and in I3 and 7, set (1 p?) sin ¢ + u? = #2, whence on re-arranging in the appropriate
form:

L
L :f VA= (1+8)

Iz:f«/{(l—t;ftawzn f«/(ti) ~h

_f (1~ p2)ds
I VA-A(T-22+ )}

w2\t 1_zp +z2
f«/{(l—ﬂ)(l 2T} f\/ “rla )bl

taken between the appropriate limits. These integrals, in terms of ¢, may now be evaluated by
making use of the following standard forms—(see, e.g. Ref. 2):

and

with
a? + b? = cz,kzil
4
and
Alps k) = /{1 — k*sin? 9},
. dt 1
® N@—mEEmy = ek

where cos ¢ = xfa;

(ii) f J (bz i i:) dt = cE(e, k)

where cos ¢ = x/a;

¢ dt 1

(i) v e R
where A(p, k) = x/c;

. ¢ 2dt

() [ = mE=mm = Fen

where Ao, k) = x/c.
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F(p, k) is the Legendre normal integral of the first kind

g, k) = f vﬁz—m

and E(g, k) is the normal integral of the second kind
P
Bp, 1) = [ v/(1-Rsin? $)dp.
0

E and F are tabulated in most sets of tables of higher functions, usually in terms of ¢ and «

where
E(p, k) = E(p, sin &)
F(p, k) = F(p, sin )
such that
ko o
0<(P<2y0<0‘<§~

To extend the range of these tables one can make use of the following relations:
E(_‘P> k) = - E("P’ k)
F(—p, k) = — Fp, k)

E(mr+o, k) = 2mE (=, k) + E(p, k
? 2

Fimr + ¢, k) = 2mF (_g k) + F(o, k)

On evaluation the results obtained are:
v 1 _fm 1y -1 1
b=t =2 v vt (23 -7 (037)
6 = cos™ (4/sin ) ;
1
L="- f \/smz/;dtﬁ—\/ZE(z \/2) \/ZE( «/2) 1,,

and the corresponding ranges for ¢ and 6 are discussed in the main text;

f (1—p)dp
), VA= sin g+ ud)

Yo (60 ) - (6 v

£ = cos™ /(1 — ) sin § + p}

¢ = cos™t/{(1—p?) sin @ + p7};
x 1 ["” (1 = p?) sin b
R 2] ,vV{(1—p?)sing + p%

= vea-w) & (& Team) Pl Ve

the corresponding ranges for £ and ¢ being discussed in the main text.
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I3=—

where

and

I, =



The integral (63) of Section 5.1 can be evaluated partly in terms of elementary functions and
completed using the standard form (i)- The integral (66) of Section 5.2 is slightly more complicated
and can be written in the form

22
S—s w2 sin 4 s
R~ 2=y f o V- DY RETED) T
. 2_72'
R sin’ p 4 S

RV (o BV (T e i

T
S b t4ds
V21— R 1o VI(1=22) (R + R22)}
where ‘
1 7
R R 2 N R L
k 1-k% A=) i %

These three integrals can be evaluated using the following standard results: (see Ref. 3)

C = et _ cos™ pdp
R kv« —AEFTED) | IR sin’ )
= f cn” udu
where ‘
t=cosp =cnu.
Cy = fdu =u = Flp, k) (p = am u)
_cos”'(dnwu) sin~! (ksnu)
C, = f cn uduy = % = Z
1
C, = f en? udu = 5 [E(p, k) — K
Cs = f cn® widy = ZLk'* [(272—1) sin~ (R sn u) + k& sn u dn u]
C, = f cnt udu
324 [(2- 3k2)k’2u + 2(2k*~1)E(p, k) + k2 sn u cn u dn ]
where

sn (u, k) = sin ¢
en(u, &) = cos @
dn (#, k) = +/[1 — * sin® {am (u, k)}]
¢ = am (4, k);u = Flg, k);
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and the relations

sn2uy+cen?2y =1
dn?u =1 — k2sn2u
=k2+ kcen2u ,
=cn?u -+ k2sn%u

enable the integrals to be reduced to more convenient forms.
The result of the integration is given as equation (67).

APPENDIX II
Tabulated Co-ordinates for the Canopy and C’ore Shapes

The values of x/R and 7/R are given in Table 1 for the following values of u: 0-1833, 0-2555,
0-3074, 0-3845, 0-5050, 0-5773, 0-6585 and 0-6960. Using this table the lower-canopy shapes

given by
o,
L LR
sin g = o
can be plotted graphically: this is done in Fig. 10.
The co-ordinates in Table 2 for the upper-canopy shape are calculated using
siny = Z—:
and give the Taylor shape. 7 :
Table 3 gives the gore co-ordinates for the upper canopy. This table is calculated with a/h = 2-0;
n = 8, 12 and 16. The semi-gore shape for # = 8 is plotted in Fig. 11 up to r/a = 1-0. From the
table it can be seen that the differences between the gore lengths for » = 8, 12 and 16 are only a
few per cent and in practice these differences may be of little significance. A
The gore co-ordinates for the lower canopy are given in Table 4. This table has been calculated
for R/h = 2-0; n = 8, 12 and 16; and for the same range of values of u as in Table 1. The
semi-gore shapes for R/h = 2:0; n = 8; p = 0-5050, 0-6585 and 0-6960 are shown plotted in
Fig. 12. For values of p below 0-5773 the gore shape is practically unchanged as is evident by
referring to Table 4; only for higher values of p do appreciable changes occur.
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TABLE 1
The Lower-Canopy Co-ordinates

x
Val f—
alues of -

7 = p= p= = p= = p= p=

R 0-1833 | 0-2555 | 0-3074 | 0-3845 | 0-5050 | 0-5773 | 0-6585 | 0-6960
0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000
0-087 | —0-003 | —0-006 | —0-009 | —0-015 | —0-031 | —0-050 | —0-102 | —0-230
0-174 | —0-004 | —0-010 | —0-016 | —0-028 | —0:060 | —0-09 | —0-196 | —0-416
0-259 | —0-003 | —0-012 | —0-021 | —0-039 | —0-085 | —0-137 | —0-276 | —0-553
10-342 | +0-002 | —0-010 | —0-021 | —0-044 | —0-104 | —0-169 | —0-339 | —0-652
0-423 | 0-012 | —0-003 | —0-017 | —0-044 | —0-116 | —0-193 | —0-387 | —0-722
0-500 | 0-026 | +0-010 | —0-006 | —0-038 | —0-120 | —0-207 | —0-420 | —0-770
0-574 | 0046 | 0-028 | +0-010 | —0-026 | —0-117 | —0-212 | —0-439 | —0-801
0-643 | 0-072 | 0-052 | 0-032 | —0-007 | —0-106 | —0-208 | —0-447 | —0-817
0-707 | 0-103 | 0-082 | 0-060 | +0-018 | —0-088 | —0:196 | —0-445 | —0-820
0-766 | 0-140 | 0-117 | 0-094 | 0-049 | —0-063 | —0-176 | —0-433 | —0-813
0-819 | 0-182 | 0-157 | 0-133 | 0-085 | —0-032 | —0-150 | —0-414 | —0-798
0-866 | 0-228 | 0-202 | 0-176 | 0-126 | +0-004 | —0-118 | —0-387 | —0-775
0-906 | 0-278 | 0-251 | 0-224 | 0-172 | 0-045. | —0-080 | —0-355 | —0-746
0-940 | 0-331 | 0-303 | 0-275 | 0-221 | 0-090 | —0-039 | —0-318 | —0-712
0-966 | 0-387 | 0-358 | 0-329 | 0-273 | 0-139 | +0-007 | —0-278 | —0-673
0-985 | 0-446 | 0-415 | 0-38 | 0-328 | 0-18 | 0-054 | —0-234 | —0-632
0-996 | 0-506 | 0-474 | 0444 | 0-38¢ | 0-242 | 0-104 | —0-189 | —0-589
1-000 | 0-566 | 0-534 | 0-502 | 0-441 | 0:295 | 0-154 | —0-143 | —0-545
0-996 | 0-627 | 0-593 | 0-561 | 0-498 | 0-348 | 0-204 | —0-096 | —0-501
0-985 | 0-687 | 0-652 | 0-619 | 0-554 | 0-400 | 0-254 | —0-051 | —0-458
0-966 | 0-745 | 0-710 | 0-675 | 0-608 | 0-451 | 0-301 | —0-007 | —0-416
0-940 | 0-801 | 0-765 | 0-729 | 0-660 | 0-499 | 0-346 | 4+0-033 | —0-378
0906 | 0-855 | 0-817 | 0-781 | 0-710 | 0-544 | 0.38 | 0-070 | —0-344
0-866 | 0-905 | 0-866 | 0-828 | 0-755 | 0-585 | 0-425 | 0-102 | —0-315
0-819 | 0-951 | 0-911 | 0-872 | 0-797 | 0-622 | 0-458 | 0-129 | —0-292
0-766 ~ 0-993 | 0-951 | 0-911 | 0-833 | 0-652 | 0-484 | 0-148 | —0-276
0-707 | 1-029 | 0-98 | 0-944 | 0-864 | 0-677 | 0-504 |- 0-160 | —0-270
0-643 | 1-060 | 1-016 | 0-972 | 0-889 | 0-695 | 0-516 | 0-162 | —0-273
0-574 | 1-086 | 1-040 | 0-995 | 0-908 | 0-706 | 0-520 | 0-154 | —0-289
0-500 | 1-106 +| 1-058 | 1-011 | 0-920 | 0-709 | 0-515 | 0-135 | —0-319
0-423 | 1121 | 1-070 | 1-021 | ©0-926 | 0-705 | 0-501 | 0-102 | —0-368
0-342 | 1-131 | 1-077 | 1-026 | 0-926 | 0-693 | 0-477 | +0-054 | —0-438
0-259 | 1135 | 1-080 | 1-025 | 0-920 | 0-674 | 0444 | —0-003 | —0-537
0-176 | 1-137 | 1-078 | 1-021 | 0-910 | 0-650 | 0-404 | —0-089 | —0-674
0-087 | 1-135 | 1-074 | 1-014 | 0-897 | 0-621 | 0-358 | —0-183 | —0-860
0-000 | 1-132 | 1-068 | 1-004 | 0-881 | 0-589 | 0-308 | —0-285 | —1-090
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TABLE 2

The Upper-Canopy Co-ordinates

r x
a a

0-000 0-000
0-087 0-000
0-174 0-000
0-259 0-006
0-342 0-013
0-423 0-025
0-500 0-042
0-574 0-064
0-643 0-092
0-707 0-125
0-766 0-163
0-819 0-206
0-866 0-254
0-906 0-305
0-940 0-360
0-966 0-417
0-985 0-476
© 0-996 0-537
1-000 0-598

TABLE 3

Gore Co-ordinates for the Upper Canopy

S w
7 a a
a

n=2§ n=12 n=16 n=28 n=12 n=16
0-000 0-000 0-000 0-000 0-000 0-000 0-000
0-174 0-174 0-174 0-174 0-066 0-044 0-034
0342 0-343 0-343 0-343 0-133 0-089 0-067
0-500 0-507 0-505 0-504 0-196 0-131 0-098
0-643 0-664 0-659 0:657 0-257 0-170 0-127
0-766 0-816 0-806 0-802 0-313 0-204 0-152
0-866 0-964 0-947 0-941 0-362 0-232 0-172
0-940 1-109 1-084 1-074 0:402 0-254 0-188
0-985 1-252 1-217 1-204 0-427 0-267 0-197
1-000 1-394 1-349 1-332 0-436 0-272 0-200
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TABLE 4

 Gore Co-ordinates for the Lower Canopy

7 w S S § §
R R R R R , R
. w = 0-1833 pu = 0-2555 p = 0-3074 w=0-3845
n=8ln=12n=16|n=8|\n=12n=16|n=8|n=12{n=16|n=8 un=12|n=16| n = n=12\n=16
0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000
0-174 | 0-066 | 0044 | 0-034 | 0-176 | 0-175 | 0-174 | 0-174 | 0-174 ; 0-174 | 0-174 | 0-174 | 0-174 | 0-176 | 0-176 | 0-176
0-342 | 0-133 | 0-089 | 0-067 | 0-343 | 0343 | 0-342 | 0-344 | 0-343 | 0-343 | 0-344 | 0-344 | 0-343 | 0-346 | 0-346 | 0-345
0-500 | 0-196 | 0-131 | 0-098 | 0-506 | 0-504 | 0-503 | 0-506 | 0-504 | 0-503 | 0-506 | 0-504 | 0-503 | 0-509 | 0-506 | 0-505
0-643 | 0-257 | 0-170 | 0-127 | 0-663 | 0-657 | 0-655 | 0-622 | 0-656 | 0-654 { 0-661 | 0-655 | 0-653 | 0-663 | 0-656 | 0-653
0-766 | 0-313 | 0-204 | 0-152 | 0-814 | 0-803 | 0-799 | 0-812 | 0-800 | 0-796 | 0-810 | 0-798 | 0-794 | 0-810 | 0-797 | 0-792
0-866 | 0-362 | 0-232 | 0-172 | 0-960 | 0-942 | 0-935 | 0-957 | 0938 | 0-931 | 0-954 | 0-934 | 0-927 | 0-952 | 0-930 | 0-922
0-940 | 0-402 | 0-254 | 0-188 | 1-103 { 1-077 | 1-067 | 1-090 | 1-071 | 1-061 | 1-094 | 1-066 | 1-055 | 1-090 | 1-059 | 1-048
0-985 | 0-427 | 0267 | 0-197 | 1-244 | 1-208 | 1-195 | 1-238 | 1-201 | 1-187 | 1-232 | 1-194 | 1-180 | 1-225 | 1-183 | 1-168
1-000 | 0-436 | 0-272 | 0-200 | 1-384 | 1-338 | 1-321 | 1-376 | 1-329 | 1-311 | 1-369 | 1-320 | 1-302 | 1-358 | 1-307 | 1-288
: s s s s
R R R R R
= 0-5050 w = 0-5773 © = 0-6585 @ = 0-6960

n=8n=1R2n=16|2=8n=12\n=16|n=8|n=12\n=16|n=8 (n=12|n=16

"0-000 | 0-000 | 0-000 | 0:000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000 | 0-000

0-174 1 0-184 | 0-184 | 0-184 | 0-199 | 0-199 | 0-199 | 0-263 | 0-263 | 0-262 0-452 | 0-452 | 0-451

0-342 | 0-360 | 0-359 | 0-359 | 0-385 | 0-384 | 0-383 | 0489 | 0-486 | 0-485 | 0-751 | 0-746 | 0-744

0-500 | 0-524 1 0-520 | 0-519 | 0-555 | 0-550 | 0-548 | 0-678 | 0-669 | 0-666 | 0-963 | 0-951 | 0-946

0-643 | 0-678 | 0-669 | 0-665 | 0-710 | 0-698 | 0-694 | 0-840 | 0-822 | 0-816 | 1-134 | 1-111 | 1-102

0-766 | 0-823 | 0-806 | 0-800 | 0-854 | 0-833 | 0-826 | 0-985 | 0-956 { 0-946 | 1-282 | 1-246 | 1-232

0:866 | 0-961 | 0-935 | 0-925 | 0-990 | 0-959 | 0-947 | 1-119 | 1-077 | 1-062 | 1-416 | 1-365 | 1-347

0-940 | 1-094 | 1-057 | 1-044 | 1-119 | 1-077 | 1-061 | 1-244 | 1-190 | 1-170 | 1-540 | 1-475 | 1-541

0-985 | 1-223 | 1-175 | 1-158 | 1-244 : 1-190 | 1-170 | 1-364 | 1-297 | 1-272 | 1-657 | 1-578 | 1-550

1-000 | 1-351 | 1-292 | 1-270 | 1-368 | 1-301 | 1-277 | 1-482 | 1-401 | 1-371 | 1-772 | 1-679 | 1-645




APPENDIX III
The Configuration of. the‘System before the Equilibrium Position is Attained

Consider a lifting structure designed in accordance with the theory of the main text and only
partially pressurised. The load is assumed to be clear of the ground but the extent of the pressurisation
is such that the equilibrium configuration still has to be attained. During the inflation process the
only constant factors are the arc lengths of the generator cords and the inner and outer radii of
the base; before the design equilibrium configuration is taken up it is to be expected that at any
instant of time the maximum radius R’ of the lower canopy is somewhat larger than the design
radius R, similarly the angle §’ differs from & and so-on. Whilst the base is still in contact with
the ground there must be a ground reaction, N say, acting upon it, and to analyse the series of
configurations taken up by the structure before the equilibrium configurationis reached it is necessary
to modify equations (4), (5) and (6) to take account of this ground reaction; hence, denoting by
dashes the conditions at some time before reaching equilibrium:

p'mb + N = Mg (74)
p'a(R2—0%) = nTy + N (75)
Pr(RE—B) = nTy sin & + N. (76)
Setting
Mg = p'nC? (77)
and proceeding as in Section 3.2 the equation of the lower-canopy generator cords is found to be
., rE=C? .
SN @ = m (78)
or, with
C=uR (79)
7' \2
— 1 — 2
o [(F) e
sSin @ = TF—‘ . (80)

In equation (80) [sin ¢’| < 1 and as in Section 4.1 the condition that

' \2
e
0< R <2

<< (81)
can be obtained. It follows from this that

O<p <1
and also )

2u?—-1<0. (82)
Hence
RI
0< C< ek (83)

When the pressure p’ is increased there is a resulting decrease in C from (77), since Mg is constant,
and there is also a decrease in R’. The canopies continue to change shape during inflation until
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b = Cand R = R’, at which stage the ground reaction is zero and the structure is about to leave
the ground. Clearly, with a low pressure p’ the value of C must be large, as must that for ', and
it is possible by assuming a constant generator-cord length to plot the changes in the canopy
configuration with the variation of u’ from a high value at the start of inflation to the stage where
the equilibrium configuration is reached and p' = p.

APPENDIX IV
A Higher Approximation to the Theory

Because of the particular type of construction, in which the fabric bows out between the canopy
generator cords, the projected areas on which the pressure acts in equations (2) and (5) are
underestimated and allowance should be made to account for this if a more accurate theory is
required. Before it is possible to determine the true projected area the shape of the gore generating
curve must be specified; in the particular case considered in this report it is assumed that, as in
Section 5, the gore is generated by a circle of radius A.

For the upper canopy, referring to Fig. 7, the true maximum projected area can be obtained
by putting

T

= 2.PM = = a= =7,
P 55 OM =a=r7r and €=~

it is nnh? 4 2n x area AIQM and this is

nh? sin—1 4 sin ~ + nah sin | sin—t 4 sin2) -7 .
h n h n n |

It should be noted that when # is large this area is approximately

w2 27 4 pah [gz_qq = ma?
hn hn nl
and the projected area ma? used in equation (2) is an adequate approximation. However, for a
relatively small number of cords, such as might be used in a lifting structure, the approximation
is not really accurate enough and it may be desirable to use the true projected area.
Hence, instead of equation (2), we may write

pral? =nly . (84)
where
. a . @ . . a ., T
ma,? = nh?sin™! (Z sin %) + nah sin {sm—1 (Z sin —) - —)} . (85)

n n
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Proceeding as in Section 3.1 the equation of the upper-canopy generator cords is found to be

. ¢ W rZ‘lr
sin =|—| .
!: :'1/I0 ljalz—- rQ
Now when ¥ = #/2, 7 = a and hence the cord equation is

. 72 + a,® — a? ‘

singg = —————, 86
e (36)
At the canopy apex # = 0, but ¢ cannot be zero unless @ = a;, consequently in general the canopy

is not flat but slightly conical and
2
. (87)

i =1-—.

sin o = |

At the actual apex there is a discontinuity in the slope of the cords; for example with /i = 2 and
n = 8 the angle ¢, is approximately 7°, and with » = 12 it is approximately 3°.

The vertical co-ordinate of the upper-canopy cords, measured downwards from the apex O, is

given by

i 2 g1
N :J‘ a,2 sin s

sin~t A—a?fay® 2¢/{a?sin b — (a2 —a?)}’

which on integration leads to

X _ p@fp(m 1 oa)y LT __1__@]_
=22 [B(Gma) B e

S U R E

Similarly for the lower canopy the true projected area is

R
nh? sin—1 (z sin 7—T> + nRhsin I:sin“1 (E sin 7~T) — T—T}

. # h 7 n
= 7R'? say (89)
and equation (5) is replaced by
pr(R?2—0%) = uT,. (90)
- Proceeding as in Section 3.2
|: . @ ;,2 7
sin q{l = [,4} 5
o RT B,
when
: po = B; ¥P == a’sina—(a°~a%)
and when :
Q= g: v = R,
hence the equation of the lower-canopy generator cords is
. 3 b2+ RZ_ R’2
Sin @ = ! (er — 2 ) (91)
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The vertical co-ordinate for the lower cords, measured downwards from the suspension-point
interface is given by
. J‘ (R'2—b?) sin pdo
= Ry sing + B+ R—R7}

which gives on integration, with & = uR,

G )

g
! R
"\ - T z
where
- [ B 2]
d
an & = cos! \/[{ <__ ) } sing + b + Rz’2 R’Z} .

For a possible equilibrium configuration
[sing| <1
and using equation (91):
R2 _ 42
RT—p <7

R\?
25 l2,2 2 (> 2
7 {,u-i—l (R)}R

for all » < R allowing for single-point suspension. This inequality can only be satisfied if

0<

or

R\?2
202+ 1—-21-—) €0
s (R)

s |
O<b<R%/t£z;:jk | (93)
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Since R'/R > 1, p can take somewhat larger values than the limiting value of 1/4/2 given in the
main text; for example with a/h = 2and» = 8, R'/R =1-075 and for an equilibrium configuration

0<p<0-81;

with # = 12, R’/R =1-031 and for equilibrium 0 < u < 0-75.

Thus, for each particular case, given the values of z and a/h, it is possible to determine more exact
equilibrium configurations than those given by the theory of the main text. However, it is difficult
to assess the practical importance of the higher approximation to the theory: it is impossible to
either cut or sew a fabric to the exact shape specified, the elasticity of the fabric has been neglected
and the assumptions made initially are of a tentative nature; in consequence the first-order theory,
which is simpler, should be acceptable and satisfactory for use in most cases. Should it prove
necessary this more accurate theory can be developed on exactly the same lines as that given in
the main text and calculations of the gore shape for a given system can be made.

In order to show the effect of having only a small number of cords, the co-ordinates of the upper
canopy for the cases n = 8 and n = 12 with afk = 2-0 are given approximately in Table 1 and
plotted in Fig. 13, together with the standard Taylor shape resulting from the first-order
approximation, whose co-ordinates are given in Table 2 of Appendix II. It can be seen that with
a small number of cords the upper canopy is not so flat as the Taylor shape and it is appreciably
deeper. The upper canopy alone corresponds to the parachute with cords over the canopy, and it
has been found in practice that parachutes designed according to the first approximation do take
up a shape less flat and deeper than that predicted by the theory. There may thus be some
justification for making use of the higher approximation when the number of cords is small.

TABLE 1

Higher- Approximation Co-ordinates for the Upper Canopy

X X
7 a a
[74

n=2§ n=12
0-000 0-000 0-000
0-174 0-026 0-014
0-342 0-060 0-036
0-500 0-108 0-074
0-643 0-174 0-132
0-766 0-259 0-209
0-866 0-361 0-304
0-940 0-476 0-414
0-985 0-602 0-534
1-000 0-733 0-660
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APPENDIX V
The Configuration of the System with p > 1[/+4/2

It has been shown in Section 4.1 that single-point suspension is impossible unless p < 1/4/2
and that when p > 1/4/2 an upper canopy is necessary and the radius of the suspension-point
interface must satisfy the inequality

AR . 94
() 22 -1, 94)

(This is a necessary but not sufficient condition.)
The integrals (24) and (25) of Section 4 for the arc length s and vertical co- ordlnate % lead to
different general results according to whether

2u2—-150:
for the case where this expression is positive the integrals can be evaluated using the standard
forms (iii) and (iv) of Appendix I to give ~

\

7= (0= [Pty V20— - FG 20 -1 95)
and
% = E{ly, V21— )]} — E{L, v/ [2(1— )]} -
— p [F{E.u V21 =)} = F{L, /121 —MZ)]}] (96)
where R
£, = cos~t J w 97)
{ = cos J w : (98)
For —7/2 < @ < w/2: w|2 > { > 0 where { = 0 corresponds to ¢ = 7/2 and { = /2 corresponds
to @ = —m/2; for ¢ > 7[2: 0> { > — 7/2 where { = 0 corresponds to ¢ = /2 and { = —7/2

corresponds to ¢ = 3m/2.
It should be noted that when u = 1/4/2 the equations (95) and (96) are 1dent1cal with (34) and

(37) respectively of Section 4.2, as is to be expected.
- Using (96) in conjunction with the equation

7\2
—

() -

1o ®9)
it is possible to plot the lower-canopy generator-cord shape for cases where pu > 1/4/2. As an example
the case u = 0-7906 (u2 = 0-625) has been plotted in Fig. 14, the origin has been arbitrarily
placed on the x/R axis so that x/R = 0 coincidés with ¢ = — /2 for the starting point of the curve;
this origin is not the same as that used in Fig. 10. It is seen that the curve only exists when

sin g =

7
22 — = {)-
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and that for any practical purpose the interface radius 7; would have to be larger than the lower
limit of 0-5R and probably have a value near to wR, i.e. approximately 0-8R. The maximum
height the lower canopy could have in this case is about 0-3R, which leaves little room to
" accommodate a load unless it is mounted on a platform or cantilevered into the upper canopy.
The maximum total height for the whole structure is given with an upper-canopy radiusa = r; = uR
which again limits the size of permissible load.
The maximum height of the lower canopy H|R for different values of u > 1/4/2 is shown
approximately in the table below. '

TABLE

Values of H|R for u > 1/4/2

b H
b=3 =2 (=0
07071 . 0-533
07473 0-467
0- 8406 0-304
0-9354 0-127
0:9924 0-015

It should be remarked that from a practical point of view the part of the curve lying between
7/R = p and 7/R = 1 can be regarded as an arc of a circle of radius (1—p), in fact a semicircle
centred at 7 = wR, for values of p larger than 1/4/2.

It is not intended to pursue further in this Appendix the study of configurations with u > 1/4/2:
there is some doubt as to whether systems with 1 > 1/4/2 could be sufficiently pressurised to reach
the hovering state and the necessity of cantilevering the load, with a large y, to get it off the ground
demands the use of additional members to brace the structure and may invalidate the statical
discussion of the present report. Experiment only can decide whether configurations with u > 1/4/2
are of practical use. . ‘ '
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Fre. 1(i). Diagram of a lifting system showing the notation used.

2

Ny

Fic. 1(ii). Sectionalised view of a lifting structure.
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F1c. 2. A section of the upper canopy
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Fres. 3(i) and (ii). Sectional forms for the upper
canopy.
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F16. 4. Diagram of a lifting system with single-point suspension.

% S

F1c. 5. A lifting system with an upper canopy and negative value of B.
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Fic. 6. Diagram showing the notation
used for the gore generation.

Fic..7. Diagram showing the
notation  used for the gore
generating circle,
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F1G. 8. Diagram showing the notation

used for determining the gore length.

P2

Fic. 9. The complete gore.
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Curves for the lower canopy.
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Fic. 11.

An example of
an upper-canopy semi-gore

with @/h = 2-0 and n = 8.

- F1c. 12.

< 1 -
¢}

Examples of the

lower-canopy semi-gores for

R/E=2-0;n=8; u=0-5050,
. 0-6585 and 0-6960.



Frc. 13. Upper-canopy cord configurations for a/h = 2-0 (higher
approximation).

oS
M= 07206 Vx
: R

F16. 14. Example of the lower-canopy
curve for p = 0-7906 > 1/4/2.
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