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Summary.

This report considers the turbulent boundary layer with distributed suction or injection applied normally
through the surface. A bilogarithmic law of the wall is established analogous to the logarithmic law for
impervious surfaces. Coles' wake hypothesis is extended to the transpiration layer and verified experimentally.
The wall boundary condition is discussed briefly and possible effects of surface irregularity are examined.
Finally the overall picture of the turbulent transpiration layer is discussed. It is considered that this report
provides an acceptable framework for the evolution of a complete theory.
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1. Introduction.

Since Prandtl's original work in 1904, a large amount of investigation has been conducted

concerning the problem of the boundary layer. Most of this work has been devoted to the case of
flow over a solid surface. More recently, interest has been shown in the application of suction or

injection through the surface, the former to maintain laminar flow or to prevent separation, the

latter to provide surface cooling on the wings of high-speed aircraft or on turbine blades. The sucked
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laminar layer in particular has been thoroughly investigated both theoretically and experimentally.

The turbulent layer with transpiration, however, is much less amenable to mathematical treatment
and little progress appears to have been made towards its solution. Moreover there is a lack of
systematic experimental data which would permit the extension of existing semi-empirical theories

to include the effect of transpiration.
Recently a thorough investigation of the turbulent boundary layer with transpiration has been

undertaken by the Engineering Department of Cambridge University. Some results have been
published by Kay! and Dutton", both of whom have demonstrated the existence of an 'asymptotic
layer' (of constant thickness) with uniformly distributed suction. Kay has put forward a tentative
analysis for the asymptotic layer, but this could not readily be extended to the general sucked layer,
whilst it is open to theoretical objections (Section 2.1.1).

Elsewhere an attempt to provide a theory for the turbulent layer with transpiration has been
made by Clarke et al", but the neglect of an important relationship between certain parameters in
this analysis resulted in a high degree of disagreement between the predicted and actual velocity
profiles. Rubesirr' has developed a theory for compressible layers with injection, but has not
considered the velocity distribution in detail nor has he considered the special case of incompressible
flow. Mickley and Davis" derived an incompressible form of Rubesin's analysis for comparison with
their experimental velocity profiles, but did not develop the theory in detail, so that to date there is a
lack of a complete theoretical framework into which the observed behaviour of turbulent transpiration

layers may be fitted.
The purpose of this report is to present such a framework for incompressible layers at least in zero

pressure gradient. Accordingly the report deals with the following:

(1) the existence of a law of the wall,

(2) the velocity distribution in the outer turbulent region,

(3) the conditions between the largely viscous sublayer and the fully turbulent region,

(4) the effects of different types of surface,

(5) the growth of the whole boundary layer with transpiration.

The law of the wall analogous to the logarithmic law for solid (impervious) surfaces is found to
contain a squared-logarithmic term and this prediction is borne out well by the measured velocity
profiles considered. In the outer region a velocity distribution corresponding to Coles." wake law is
observed. The situation is less satisfactory regarding the behaviour of the flow very near the wall.
No reliable experimental data are available as measurements in this region are made extremely
difficult by the small thickness of the sublayer. Consequently the theoretical predictions for the flow
in this region can only be tested indirectly, via the values of certain parameters in the law of the
wall (corresponding to the constant term in the logarithmic solid-surface law). This is particularly
true of the wall region in the boundary layer on a non-homogeneous permeable wall, since the flow
in it exhibits not only turbulence (time-variation) but also spatial fluctuations which cannot be
measured directly by any method available at present, due to the small length-scale of the
fluctuations. Similarly the ideas presented on the growth and development of the turbulent layer
with transpiration are based more on intuitive reasoning than on the scanty experimental evidence.

The report is the result of many discussions between the authors, who have been investigating
different aspects of the sucked turbulent layer and who had found the absence of a theoretical
foundation a serious obstacle in their work.
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2. The Turbulent Wall Region.

2.1. Examination of Existing Theories.

2.1.1. Examination of Kay's theory.-Kayl analyses only the asymptotic layer (i.e. one in

which the flow quantities do not vary with x). He assumes a mixing length proportional to distance

from the wall
L = KY, (2.1.1)

and combines this with (i) the vorticity transfer theory (of G. 1. Taylor) and (ii) the momentum

transfer theory (of Prandtl) obtaining in the two cases:

(i)

(ii)

The equation of motion,

2 2 du d2u

K y---
dy dy 2 '

(2.1.2)

(2.1.3)

(2.1.4)

(2.1.5)

u ~~ + v.~ = : G; -~~) ,
reduces, for the asymptotic layer, to

du 1 d-r
v o----- = - ---- ,

dy p dy

since dpldx = (iulax = 2vl2y = 0, so that v = vo, the normal velocity at the wall. (vo is negative
since suction is being applied.) Hence by substituting either equation (2.1.2) or (2.1.3) in (2.1.5)

and assuming

or

(i)

(ii)

du
that -- -> 0 as y -7 00 ,

dy

du
that u -> U1 as --- -7 0

dy ,

u

Kay obtains the following results:

(i)

(ii)

1 v (Y)'1 - - --() In -
UI K 2 VI 8'

;;~ = 1 + 4b ~I In
2 (~) .

(2.1.6)

(2.1.7)

Of these formulae equation (2.1.7) is shown to disagree with experimental results, whilst (2.1.6)

shows satisfactory agreement with Kay's results, which give a reasonably linear plot in the graph of

(1- u1U1 ) against In (yI8). Sarnecki's measurements in a layer which is very close to asymptotic
conditions do not confirm this linear-logarithmic formula. It must be pointed out that Kay's

assumption duldy-+ 0 as y -r 00 (used to eliminate one of the constants of integration) is unsound

when applied to his formula, since he considers a boundary condition well outside the range of

application of his theory, for, as y -r 00, equation (2.1.6) gives u -700 and the value of its derivative
at that limit is insignificant.

Also, in the derivation of equation (2.1.7) Kay assumes that the relationship L = KY, (2.1.1),

holds throughout the thickness of the boundary layer which makes an unnecessarily restrictive
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hypothesis as will be shown below. It will also be shown that Kay's analysis is restricted to the
special case of asymptotic conditions which, as has been demonstrated by Dutton", is not as readily
attainable in turbulent as in laminar boundary layers with suction. The formulae (2.1.6) and (2.1.7)

cannot hold for non-asymptotic conditions, in particular at low values of suction, since as - V o ---+ 0
they both yield u]U1 = const., whatever the behaviour of b. {The mixing-length coefficient K cannot

vanish, as can be seen from equations (2.1.2), (2.1.3).}

2.1.2. Examination of the theory of Clarke, Menkes and Libby.-Clarke, Menkes and Libby"

consider the general turbulent boundary layer with constant pressure on a permeable wall and point

out that in the neighbourhood of the wall the term Vo dU/dy is very much larger than UdU/OX {or
(v-vo) dU/dy} and so the boundary-layer equation (2.1.4) reduces to a form identical with (2.1.5)

ou 1 07'
Vo - =- -. (2.1.8)

oy P oy

They use the assumption of the momentum transfer theory, (2.1.3) and obtain (with slightly
different notation)

Vo OU = K 2~ [y2 (~U)2J .
oy oy oy

Integration of equation (2.1.9) yields the result

U _ A B I (. UTY) 1 Vo I 2 (UTy)-- + n -- +~-n --
U r V 4K 2 U r ,v .

(2.1.9)

(2.1.10)

Clarke et al use the equation (2.1.10) in that form, i.e. with two arbitrary constants {as demanded by
(2.1.9) which is of second order}. They point out that for Vo -> 0 the equation (2.1.10) reduces to
the form

-. = A + Bin (UrY)
TT 'U r V

(2.1.11)

(2.1.12)

the accepted logarithmic law for solid flat plates. In the absence of experimental data for the boundary
layer with suction or blowing they accept the solid plate values for A, Band K in their analysis of
experimental profiles with injection and obtain poor agreement. Although Clarke et al recognise that

A, Band K should in general depend on volUc , they apparently overlook the relationship between
them which is implicit in the theory, as shown below.

2.1.3. Examination of Rubesin's theory and Mickley and Davis' analysis,-Rubesin4 deals
with compressible flow and obtains the velocity distributions in the sublayer and in the turbulent
region near the wall. His basic assumptions are, once again, the predominance of the V o au/oy term
in equation (2.1.4) and the momentum transfer theory with linear mixing length, (2.1.1), (2.1.3).
The two laws (sublayer and turbulent) are accepted as holding on either side of a transition point
(y = Ya), at which the velocities and shear stresses {fL ou/oy and pI(2y2 (ou/oy)2 in the two cases}
are matched. These assumptions lead to the following (u, y) relationships:

fu udu
Sublayer (0 < y < Ya) :y = ,

o PoVoU + TO

fu Kp'l2du
Turbulent region (y > Ya):y = Ya exp V '

U a Povou + TO

with Ya to be determined empirically.

5
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The integrations are carried out by Mickley and Davis" for the incompressible layer, (i.e. with

Po = P, f.L = vp, constants, and writing TO = pU,2). They obtain the following formulae:

U y U y U [( v u) 1/2 ( V U )1/2JTurbulent region: In .-", - In r :r a = 2K r 1 +?2, - 1 +~~' .
V V V o , C, U, '

(2.1.14)

(2.1.15)

(2.2.1)

Mickley and Davis use this form of the equation in their comparison of theory with experiment,

plotting y logarithmically against (1 +VOU/U,2)lh and obtaining fairly good agreement with straight

lines of the predicted slope 2KfI,/vu for the turbulent region with U, obtained from momentum

considerations.
This treatment is unduly restrictive, for whereas a linear graph may in general be used to determine

two unknown quantities (via the slope and intercept), here only the inner boundary condition (y(( or

equivalently u(() can be deduced from the experimental line, since the slope is predetermined.

Admittedly any variations in slope can be interpreted as variations in the mixing coefficient K, but

there are good grounds for assuming K to be a universal constant in two-dimensional flows, even

though some disagreement may exist as to its actual value. (See Appendix 1.)

The method developed in this paper is also based on a mixing-length analysis, but leads to a

different linear plot of velocity distributions which allows both the inner boundary condition and the

local skin friction to be determined from the velocity profile.

2.2. Mixing-Length Theories with Linearly Varying Mixing Length Applied to Constant-Pressure

Boundary Layers on Continuously Permeable Walls.

2.2.1. Equation (:f Motion: velocity-shear relationship.--The boundary layer under
consideration is taken to be incompressible, two-dimensional and obeying Prandtl's equation:

u au + v ru = 1 (aT _dP)
ox oy p ry dx,'

and the continuity equation:

with the shear

ou ov
·+--=0
ox 3y

(2.2.2)

u = 0, v = V n at y = G.
The condition at the boundary is

T

p
au / ,» ')v,," - \U V .
oy

(2.2.3)

(2.2.4)

(2.2.5)

Vn is greater than zero in the case of injection, less than zero for suction.

Sufficiently close to the wall ru/oy i8 large compared with u, ou/rx and (v - vn) [ = - f~ (iu/ax dyJ'
so that the momentum transport u ru/rx + v ru/(iy is very nearly equal to V n (lu/(:y, and in the
absence of a pressure gradient the equation of motion (2.2.1) takes the form

au 1 aT
'Vo _.- = - -;;..,,--- .

oy p oy
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This equation is the exact analogue of the wall region assumption

o _! (17
-pay' (2.2.5a)

for layers on impervious walls.

Equation (2.2.5) becomes accurate in a larger portion of the boundary layer as Iou/exl/I ou/oYI
decreases, and becom.es exact throughout the asymptotic layer. Moreover in all cases it is most

accurate in the immediate vicinity of the wall, where Iou/oy I is largest and lui, lou/oxl and Iv - vol
are smallest. In particular it holds well in the laminar sublayer.

Integration of equation (2.2.5) yields the velocity-shear relationship for the vicinity of the wall

On substituting

equation (2.2.6) becomes

T - TO
voU = '--.

p

TO

p

U 2
T

r + VOU = -.
p

(2.2.6)

(2.2.7)

(2.2.8)

This equation holds both in the laminar and in the turbulent portions of the wall region and

provides the justification for the simultaneous matching of u and Tat Y = Ya in Rubesin's analysis.
The direct integration of equations (2.2.1), (2.2.2) through the boundary layer leads to the

momentum integral equation for layers with transpiration:

d (TT 20) dU 1 U <;O'il' TO U-d- u1 + ~d- 1° = --- + V o l'
X X P

(2.2.9)

This equation holds generally for all two-dimensional layers without slip at the boundary. For layers
with constant pressure (dU 1/dx = 0), the equation takes the simple form

U 2 dO _ U 2 U
1 dx - T + V o l' (2.2.9a)

2.2.2. Vorticity transfer theory with L = Ky.-The assumption of the vorticity transfer
theory is that

(2.2.10)

Equation (2.2.10) can be substituted in (2.2.5), yielding a second-order differential equation:

i.e.
02U V o
oy2 = K2y2'

7

(2.2.11)



Integrating (2.2.11) twice:
V ou = a + by - -2 In y .
K

Defining 8 as the value of y at which equation (2.2.12) gives u = U1 ,

U1 = a + ss - ~~ In 8,
K

so that

Vo Y
u - U1 = b(y - 8) - ;;2 InS'

u = U1 + b(y - 8) - ~~ In ~.

(2.2.12)

(2.2.13)

In equation (2.2.13) band 8 are the constants of integration. One of them may be eliminated by
applying a suitable boundary condition in the region where (2.2.13) applies. Thus if the law is

assumed to hold throughout the layer, i.e. even at y = 8, the requisite condition may be taken as

au
-- = 0 at y = 8.ay

Then

Vo V o- ;;28 + b = 0, b = ~28' and so

u = U1 - ;~ (In ~ + 1 - ~) . (2.2.14)

However even this condition cannot be applied with confidence in view of the common occurrence,

in the outer part of the turbulent boundary layer, of a 'tail' which departs from any law holding in

the inner region. Equation (2.2.14) can therefore only be applied to a layer without such a tail.

When comparing the predictions of vorticity transfer theory with experimental results, the

general form (2.2.13) must be used. It should however be noted that (2.2.13) can be written in the

form

(2.2.13a)

and for impervious walls (v o = 0) this reduces to u = const. + by, i.e. a linear velocity profile,
which would contradict the well established logarithmic law, so that equation (2.2.13) cannot be

accepted for the whole range of v o, though it might give good results for some special cases such as

the asymptotic layer. Thus vorticity transfer theory with linearly varying mixing length is inadequate

for the description of a general boundary layer with suction or injection.

2.2.3. Momentum transfer theory with L = Ky: bilogarithmic law.-The assumption of the

momentum transfer theory is that

T

p
2 2 (aU)2Ky -

Oy,

8
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(2.2.16)

(2.2.17)

(2.2.18)

This can be substituted directly into (2.2.8) yielding a first-order differential equation:

(
OU) 2 = (_K)' 2 (O[Ur

2+ VOU])2,U 2 + VOU = K2y2 -
r oy V o alny .

which integrates to V(Ur2 + VOU) = (VO/2K) In (y/d) with d as the one constant of integration,
i.e.

Ur 2 + VoU = (;; In~r

This is the basic form of the law of the wall with transpiration under the assumptions of momentum
transfer theory with linear variation of mixing length. It will be referred to as the bilogarithmic law.

From equation (2.2.17)
au V 0

2 2 y
Vo ay = 4K2 YIn {j'

au Vo y
oy = 2K2y In {j'

Now ou/oy > 0 throughout the region of validity of equation (2.2.17). Therefore for a sucked
layer, Vo < 0, In (y/d) < 0, y < d and d is of the order of the total boundary-layer thickness. With
injection, Vo > 0, In (y/d) > 0, Y > d and d is of the order of the sub layer thickness. With suction,
the velocity predicted by equation (2.2.17) has a maximum at y = d whilst with injection the graph
of u has a minimum at y = d. In neither case however can the bilogarithmic law hold at the point,
since the basic assumption that the turbulent shear is much larger than the viscous shear breaks
down. For

ou V o Y
T vise = ev -;:;- = pv 2~ In -d'oy Ky

(
OU) 2 V 2 ( Y)2

Tturb = pK
2y2 2y = p 4:2 In d '

:tu':!' = ! vo~ In ~ -?- 0, as y -?- d.
Tvise 2 v d

2.3. Application of the Bilogarithmic Law.

(2.2.19)

(2.2.20)

(2.2.21)

(2.3.1)

2.3.1. Methods ofplotting.-The bilogarithmic law obtained in Section 2.2.3

U r 2 + vou = (~: ln~) 2

can be expected to hold in the inner turbulent region of all boundary layers with continuously
distributed suction or injection, provided that

(i) the flow is nearly two-dimensional

(ii) the pressure gradient normal to the surface is negligible, i.e. Prandtl's equation holds

(iii) the laminar sublayer does not occupy a very large proportion of the boundary-layer thickness,
i.e. the region in which equation (2.2.8) holds is not completely laminar.
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In particular a suitable limiting form of (2.3.1) holds in the case of impervious boundaries, V o = O.
Equation (2.3.1) can be rewritten in any of the following forms

(i)

(ii)

t.e.

u
(2.3.2)

with

(2.3.3)

where

a
It.

b = -,
K

(2.3.4)

(iii)

i.e.

(2.3.5)

Equation (2.3.2) provides a universal method of plotting experimental results for comparison with

theory, for when a layer satisfying the bilogarithmic law is plotted on the basis of ujvo against

logy, the resultant graph must be a parabola of fixed shape (for a given value of K), with its axis

along increasing llj7)o and its apex at y = d, Uj7Jo = - U
T
2j7'o2. Thus a single standard curve would

in theory be sufficient to determine both UT and the value of d for an experimental velocity profile,
by sliding the theoretical curve over the experimental graph until a good fit is obtained. In practice
this method fails because of the large range of values of ujvo encountered and the small curvature

of the standard parabola, leading to a high degree of uncertainty over the exact location of the
all-important apex.

Equations (2.3.3) to (2.3.5) present the form of the bilogarithmic law analogous to the orthodox
logarithmic law for boundary layers on impervious boundaries

with

U = A + B In ~UTY
UT V

1
B = .~.

K

(2.3.3a)

(2.3.4a)

The most convenient method of plotting experimental results is in the form suggested by equation

(2.3.6) since the left-hand side of the equation contains only quantities which are measurable directly

(the value of K is assumed known), and the right-hand side is linear in log (U1yjv). In practice the

best way of using equation (2.3.6) is to use not logy but a suitable multiple of it as the abscissa,

as follows:
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In the case of suction (vo < 0), use the substitution

(2.3.8)

then equation (2.3.6) reduces to

(2.3.9)

with

(2.3.10)

and

With injection (vo > 0) the substitution

~ J(Vo) In V 1Y = y.2K V
1

V . t'

leads to

with

and

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)

The advantage of using Y rather than log (V1y lv) lies in the fact that in the graph of u] V 1 ± Y2
against Y the curves of zero velocity and full free-stream velocity (u = 0, u = Vi) are then fixed
parabolae (u1V1 + Y s2 = Y s2 , 1+ Y s2 for all sucked layers; u1V1 - Y i 2 = - Yi 2 , 1- Yi 2 for all blown
layers) independent of the actual value of vol V 1 , so that direct comparison may be made between
layers with different rates of suction or of injection, and the state of the boundary layer can be
deduced from the geometry of the system of the two parabolae and the experimental straight line.
Thus in the case of suction the straight line will cut, touch or not cut the parabola u] V 1 = 1
according as Ps2 is greater than, equal to, or less than unity; similarly in the case of injection the straight
line will cut, touch or not cut the parabola u] V 1 = 0 according as Pi2 is greater than, equal to, or
less than zero.

The momentum integral equation with transpiration in zero pressure gradient takes the form
(2.2.9a):

V 1
2 dB = T T 2 V

dx G T + V o l'

or

(2.3.16)

11



Thus with suction [from equation (2.3.11)]

(2.3.17)

and the boundary layer is growing if p} > 1 (experimental straight line cuts the parabola u] UI = 1).

Such a layer can be termed undersucked.

Ifp,2 = 1 (line touches parabola), the boundary layer has constant (momentum) thickness and so

has reached the asymptotic condition.

If p,2 < 1 (line does not meet parabola), the momentum thickness is actually decreasing and the

layer will be called oversucked.

With injection (2.3.15)

de v
dxU(Pi2+1). (2.3.18)

I

Thus with injection the boundary layer always grows and, as a rule, dejdx ;0, vojVI' if the assump

tions of the basic theory hold (two-dimensional flow, no slip). The experimental straight line then

cuts the parabola uj U I = O. It is tangential to it when the effective wall shear vanishes (i.e. Pi2 = 0).
This condition need not imply separation and it is shown in Section 5 that both zero and negative

effective wall shear may be encountered in an unseparated layer. In the latter case the straight
line fails to meet the parabola.

Typical profiles plotted as (ujl\ + Y" uj VI - Yi ) against Y" Y i are shown in Fig. la (suction)
and Fig. 1b (injection). Fig. 1c shows profiles, with V o less than, equal to and greater than zero,

plotted on the more familiar basis of ul U; against log VTyjv to show the curvature of the

'bilogarithmic' profiles.

The relationship between the parameter ,\ defined by equation (2.3.5) and the constants

determined from the linear plot is as follows. For suction

For injection

(2.3.19)

(2.3.20)

If U T
2 (and p?) vanish, then the boundary layer cannot be plotted as ujUT against log UTY/v.

If U T
2 (and Pi2

) are negative, then U T is imaginary but finite and the velocity profile can be plotted

in the form uli.U ; against log (iUTyjv), (i = vi -1). Equation (2.3.3) can then be rewritten

with

(2.3.21)

where

It.'
b' =

K
(2.3.22)

(2.3.23)

The physical significance of the imaginary U; (negative wall shear) will be discussed in Section 5.
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2.3.2. The coefficients K and A.-The bilogarithmic law for the turbulent boundary layer,
when expressed in the form analogous to the universal law for solid boundaries, equations (2.3.3 to
2.3.5), contains two dimensionless coefficients, K and A. The only condition imposed on these by the
basic theory is that they should be independent of wall distance y. They can vary with vo, UT and
type of surface employed, but in such a way that, for a smooth surface, when V o = athe coefficients
a {= (UT IVo)(A2- 1)}and b(= AI K) reduce to their universal solid-case values A and B (seeAppendix I).

It can be argued intuitively that the mixing-length coefficient should be independent of the
transpiration velocity vo, provided V o is small by comparison with the longitudinal velocity in the
region where the assumptions of the mixing-length theory hold. For if a slice of a mean-flow
stream-tube is taken as a control volume, the mixing length in it can be described as KY' where K may
depend on the local curvature of the flow, and the effective wall distance y' may not be identical with
y. If however v is small in the control volume, then the inclination of the stream to the wall is
negligibly small, and the curvature even more so. In practice v is rarely greater than 0·01 UI and

u does not fall below 0·25 U1 in the turbulent region so that v [u < O'04 and the inclination

ex < O·04 radians: thus y' (which might be expected to depart from y to the same extent as cos ex

departs from 1) does not differ from y by more than O' 1%. The curvature might be important if the
ratio of wall distance to the radius of curvature became appreciable. However this ratio

~ y(vlu) oex!oy, which is of even smaller order of magnitude than ex, so that for the small values of Vo
applied in practice these considerations suggest that the turbulence in the flow is unaffected by the

crossflow v. Hence there appears no reason why K should change with Vo from its universal solid
wall value, and if the model of a turbulent boundary layer described by mixing-length theory with
L = Ky is acceptable for solid boundaries, the condition of transpiration can be included without
making the model any less accurate and with the value of K unchanged. The solid-plate value of
K = 1/B (see Appendix I) will therefore be used in all calculations.

The profile parameter A, defined by equation (2.3.5) is essentially a constant of integration and
so must be related to a boundary condition. It is in fact determined by the way in which the viscous
law of the sublayer blends with the bilogarithmic law of the fully turbulent region. The laws governing
the flow in this blending region are as yet uncertain. The mere superposition of viscous effects and
the turbulent stresses derived from the momentum transfer theory with L = Ky, fails to predict the
behaviour of the flow when Vo = 0, and as shown by Van Driest? a damping factor has to be
introduced. Van Driest's analysis can be extended to include transpiration but a large amount of
numerical computation is involved and the results are pot yet available, though it is hoped to
publish them later. An approximate method of predicting the variation of Awith suction or injection
is described in Section 4.

2.4. Experimental Verification of Bilogarithmic Law.

2.4.1. Experimental data.-There exists only a limited amount of experimental data on
the velocity distribution in the turbulent boundary layer with suction or injection applied normally
through the surface. Some of the available velocity profiles are based on only a few experimental

points and therefore cannot provide a conclusive test for any theory, but are included in the present
report for completeness.

Twenty-four velocity profiles have been examined, sixteen obtained with suction and eight

with injection. All these measurements were obtained with zero pressure gradient, and cover a wide
range of suction and injection velocity ratios, as shown in Table 2.4.1.
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TABLE 2.4.1

Suction
Suction

, Unpublished Suction
Suction
Suction
Suction
Suction

8 Injection
Injection
Injection

5 Injection
Injection
Injection
Injection
Injection

2
2
2
3
3

4
4
5
5

6
6

7
7
7
8
8

9
9
9

10
10
10
10
10

Figure

A
A
A
B
B

B
B
B
A

C
C

D
D
D
E
E

F
F
F

F
F
F
F
F

Surface
Type

-0'0042
-0,0055
-0,0069
-0·00193
-0·00445

-0'00403
-0·0105
-0,00443
-0·0073

-0,00149
-0,00332

-0·00809
-0·01075
-0,0213
-0,00321
-0,00465

+0·00207
+0·00506
+0·0105

+0·0010
+0·0020
+0·0030
+0·0050
+0·0100

Suction
Suction
Suction
Suction

2

I

R f i e die erence i .on rtion

I 1--------..

I

I Unpublished I' Suction
Suction
Suction

I i Suction
I Suction
i

I

I

Mickley and Davis

Investigator

Black

Mickley, Ross, Squyers, and Stewart

Kay

Dutton

Sarnecki

The types of surface listed in Table 2.4.1 are described below.

TABLE 2.4.2

I
Surface Type I Description

-------~---I---···_--------~-
A . Brass sheet, 0·020 in. thick, with 0·020 in. diameter perforations at 0·020 in. spacings

in triangular pattern. 22·7 %open area.

B Surface A covered with calendered nylon.

C Sintered bronze.

D Aluminium sheet, 0·028 in. thick, drilled with 0·009 in. diameter holes at 0·10 in.
spacings in triangular pattern. 0·64 %open area.

E Surface D covered with one sheet of Ford 428 Mill blotting paper.

F 80-mesh Jellif Lectromesh screen, 0·004 in. thick.
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2.4.2. Analysis of velocity profiles obtained with suction.-In Figs. 2 to 8 inclusive, velocity
profiles obtained with suction are examined in the light of the bilogarithmic law. Fig. a in each case
shows a plot of ujU1 + Ys2 against Ys' and includes the authors' choice of straight line to fit the
bilogarithmic portion of each profile. The slope and intercept of this straight line yields values of
UrjU1 and the profile parameter A [equations (2.3.11), (2.3.19)]. These values enable the profile to be
replotted in the familiar form ul U; against log Uryjv in Fig. b. This plot has been included to show
the curvature of the bilogarithmic portion of each profile, which cannot be satisfactorily accounted
for by a linear logarithmic law, particularly at high suction rates. Included in Fig. bare sublayer

profiles as predicted by equation (4.1.6). Figs. 2 to 8 will now be discussed in detail.
Fig. 2 shows three profiles obtained at different suction rates on a perforated surface (type A)

by Sarnecki. Each of these profiles has a clearly defined linear portion in Fig. 2a, while the

pronounced curvature of this region in Fig. 2b shows that a linear logarithmic law cannot apply.

In Fig. 2a, the chosen straight lines in the case of the lower suction rates do not cut or touch the

parabola ujU1 = 1, indicating that the boundary-layer thickness is decreasing locally. For the highest

rate of suction, however, the boundary layer has already reached its asymptotic state at the station
considered as indicated by the fact that the chosen straight line is tangential to the parabolic curve.
It is of interest to note that the bilogarithmic region in the latter case extends to the edge of the
boundary layer. The absence of an 'outer' or 'wake' region appears to be a characteristic of the

turbulent asymptotic layer.
Fig. 3 shows two profiles obtained by Sarnecki on a porous surface (type B). The bilogarithmic

law provides a good fit to the 'inner' portion of the profiles, although the curvature of this region
in Fig. 3b is not sufficient to argue positively in its favour. For the lower suction rate, the chosen
straight line in Fig. 3a cuts the parabola u] U1 = 1, indicating that the boundary-layer thickness is
increasing, i.e. that the layer is undersucked. The chosen straight line for the higher suction rate is
almost tangential to the curve indicating near-asymptotic conditions (again note the diminutive
size of the 'wake component').

Fig. 4 shows two profiles obtained by Dutton on the same type of surface (type B). Unfortunately
very few experimental points were obtained in each case. However, straight lines can be chosen
to fit the bilogarithmic portion in Fig. 4a, and the law provides a good interpretation of this region
as shown in Fig. 4b. It can be seen from Fig. 4a that the layers are respectively undersucked and
oversucked for the lower and higher suction rates.

Fig. 5 shows the profiles of two asymptotic layers obtained by Dutton on surfaces A and B.
In each case the suction rate was uniform and was adjusted until an asymptotic layer was obtained
over almost the complete test section. Again very few experimental points were recorded, and the
choice of straight lines in Fig. Sa, proved difficult. The selected straight lines are tangential to the
parabola uj U1 = 1 indicating the asymptotic nature of the layers.

Dutton obtained values of Uri U1 from the asymptotic form of the momentum equation

(2.4.1 )

and plotted the profiles as ujUr against log Uryjv. He assumed Kay's linear logarithmic law
[equation (2.1.6)], which has already been criticised on theoretical grounds, and drew straight lines
through the experimental points. It may well be argued on examination of the experimental points
in Fig. Sb that this interpretation provides as good a fit as the bilogarithmic law. However the values
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(2.4.2)

of the mixing-length coefficient given by Kay's analysis are O· 35 and 0·31 for the perforated and

nylon surfaces (types A and B) respectively, and as it has already been argued that K should be

independent of the suction rate (Section 2.3.2), the bilogarithmic law appears more attractive
in this case.

Fig. 6 shows two profiles obtained by Kay on a porous surface (type C). Owing to the relatively low

suction rates, the curvature of the bilogarithmic portion in Fig. 6b is only slight.

The profiles of Fig. 7 were obtained by Black on a drilled surface (type D), with relatively high

suction rates. They exhibit a marked degree of curvature in Fig. 7b, which is satisfactorily accounted

for by the bilogarithmic law.* It is particularly interesting that the law is found to be valid even in

the case of a non-homogeneous surface of extremely small open-area ratio (0· 65%). The complete

absence of a 'wake component' in each case is also worthy of note.

Fig. 8 shows profiles obtained by Black with the drilled sheet covered with a sheet of blotting

paper (surface type E). (The blotting paper was used to obtain a more nearly uniform distribution

of suction.)

The experimental velocity profiles examined above show satisfactory agreement with the proposed

bilogarithmic law, but the boundary-layer growth predicted from the profiles by the present theory

can only be checked in two cases apart from that of the asymptotic layers (for which the straight

lines are tangent to the parabola as required by the theory). This has been done for the measurements

made by Dutton at two suction rates. In each case velocity profiles were measured at close intervals

along the test surface, those in Fig. 4 being typical examples. These profiles have been examined by

the authors, using the bilogarithmic law to obtain values of UTIUi from which the growth of

momentum thickness has been calculated by means of the momentum equation

~~ = (~r + 'J~'
The calculated and experimental growths of e are compared in Fig. 9. The remarkably good

agreement confirms the values of UTI Ui deduced using the bilogarithmic law. [It should be noted that

the two terms on the right-hand side of equation (2.4.2), which are of opposite sign in this case, were

of comparable magnitude, so that the measure of agreement obtained becomes even more satisfactory.]

2.4.3. Analysis of velocity profiles obtained with inJection.-In Figs. 10 and 11, velocity

profiles obtained with injection through a mesh surface by Mickley et al8• 5 are examined.

Mickley" measured velocity profiles at various stations along the test surface under conditions of

suction and injection, with and without heat transfer from the wall.']: It was subsequently discovered

that the heating cloth, initially attached to the back of the test surface for use in the heat transfer

experiments, became detached from it at some stage, permitting longitudinal flow beneath the

surface. It was stated by Mickley that, as a result, the reported skin-friction coefficients were likely
to be 15 to 30(;;) higher than the correct values, and that in general the results should not be used.

Presumably because of the absence of other experimental data, Clarke, Menkes and Libby" used

three of these profiles to compare with their analysis of the turbulent boundary layer with injection.

The agreement they obtained was poor however, particularly in the shape of the profiles, and it was

* The predicted sublayer profiles are included in this figure even though no agreement with the experimental
sublayer profiles can be expected in view of the highly non-homogeneous nature of the surface.

t The profiles included in this report were all obtained without heat transfer.
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therefore considered of interest to analyse these profiles accordingto the present theory. The results
are shown in Fig. 10. Fig. lOa contains a plot of uj U I - Y i 2 against Y i , from which values of

UTI UI and ,\ are obtained as in the case of suction. It will be noted that the chosen straight line for
the highest injection rate is tangential to the parabola u] UI = 0 indicating zero effective wall shear.
This prevents the replotting of this profile in the conventional manner tu]UTagainst UTy/v). The other
two profiles, however, are replotted in Fig. lOb, and the bilogarithmic law is seen to fit the

experimental points quite well.
Mickley-Iater modified his experimental apparatus to eliminate the undesirable effects experienced

in his earlier work, and obtained velocity profiles at various stations for different injection rates.
Typical profiles are examined in Fig. 11. In Fig. l l a the chosen straight lines for the two lower

injection rates cut the parabola u] UI = 0, indicating positive wall shear. For the intermediate
injection rate, (va! UI = 0,003) the straight line is almost tangential to the parabola, indicating
negligible wall shear. For the two higher injection rates, the straight line lies outside the parabola,
indicating negative effective wall shear. The first two profiles are replotted in the form, u] UT

against log UTYlv in Fig. l lb. The curvature of the bilogarithmic region is small in view of the
relatively low injection rates. Again; the profile obtained with vol UI = O·003 cannot be replotted
as UTIUI is negligibly small for this case. For the higher injection rates, UT!UI is imaginary. The
bilogarithmic law for imaginary UTI UI is given in equation (2.3.21) and the profiles may therefore
be replotted in the form ulill; against log iUTy!v, where i = V-I. Fig. l Ic shows the profiles
plotted in this way. It will be seen that the profile for the highest injection rate displays a high
degree of curvature which the bilogarithmic law accounts for very satisfactorily.

Mickley calculated UT! UI from the momentum equation (2.4.2) and obtained negative values of
(UTIUI)2for the two higher injection rates. As this required taking the small difference of two large
quantities, one of which was obtained by differentiation of experimental results, Mickley stated
that these negative values were probably of no significance, adding that the measured velocity
profiles showed no evidence of separation. In Section 5 of this report the case of transpiration through

non-homogeneous surfaces is considered, and the conclusion drawn from this analysis is that negative

values of effective* wall shear may occur at high injection rates on surfaces where the hole dimensions
are appreciable. It is suggested that this provides the explanation of the negative values of wall

shear discussed above. It is important to note that negative effective wall shear in the present case
(i.e. for high injection rates) does not imply negative u near the wall, nor even inflection of the velocity
profile] such as occurs near separation on a solid surface. There is, in fact, no reason at all to suspect
that the injected layer in zero pressure gradient will ever separate in that sense of the word which
implies a general breakdown of the boundary-layer flow with associated 'dead-air' region and
backflow.

In Fig. 12, the growth of momentum thickness calculated for the five injection rates, using
values of UTI UI obtained from the bilogarithmic law, in conjunction with the momentum equation
(2.4.2), is compared with the actual growth of () obtained experimentally by Mickley. The agreement
is quite good. It must be noted, however, that the contribution of the injection term, va!UI , in

* Effective in the sense that these values satisfy the momentum equation (2.4.2) and the bilogarithmic law.

t Although velocity profiles obtained with high injection rates tend to be doubly reflex roughly midway
between the wall and the edge of the layer, this is a characteristic of the blown layer and is not in general
indicative of zero or negative wall shear.
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(3.2.1)

equation (2.4.2) is in each case substantially greater than that of (UTI U1)2 and any errors in the
latter quantity are therefore largely suppressed in Fig. 12. Average values of ( UTI U1)2 are listed
for each case in Fig. 12 to show the relative importance of the two terms.

Discussion of the experimental values of ,\ determined for the profiles considered in this report

will be postponed to Section 4.3.

2.4.4. Summary of experimental results.

(1) The bilogarithmic law adequately predicts the velocity distribution in the wall region outside

the sublayer, for the cases examined. In particular, profiles obtained with high transpiration rates

amply justify the squared-logarithmic term in the law.

(2) The values of [fTIU1 obtained from the bilogarithmic law satisfy the momentum equation

in the few cases where experimental data are available for comparison.

(3) The bilogarithmic law appears to be equally valid in cases of effectively negative wall shear

(imaginary lIT)'

3. Coles' Wake Hypothesis Applied to Turbulent Boundary Layers with Transpiration.

3.1. Introduction.

Having estahlished the existence of the hilogarithmic law in the inner region of the turbulent

boundary layer with transpiration, an attempt can now be made to analyse the outer region of the
layer. Stated briefly, the prohlem is one of determining, if possible, a universal law associated with
the velocity distribution in the outer region. Existing theories developed for the particular case of
zero transpiration are examined first, to determine whether they may be extended to include the
general case of suction or injection. Two approaches which have been made to the problem in the
case of no suction are considered helow.

3.2. Velocity-Defect Law.

It has been found for constant-pressure layers on a solid surface, that the velocity profiles lie

close to a single curve when plotted as (U 1 - u)/UT againstyl8 (see Fig. 3, Ref. 9).
This relationship, expressed in the form

U~~ u = g (~),

is known as the velocity-defect law, and implies downstream similarity of the profile. By assuming

the existence of the defect law and of a law of the wall of the form

_u_ = f (!!TY) ,
UT v

Millikan deduced the logarithmic law

u UTy
= A + BIn ----

[IT v

(3.2.2)

(3.2.3)

as follows:

From (3.2.2)

while from the defect law

Y au = ~UvTf' (_UVTY) ,
U

T
ay

fJ~~;= _~gl(~).
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The concept of overlap is now introduced. This presupposes a finite region in which the defect and
wall laws are simultaneously valid. This requires

y oy

ii, oy

1
K

(3.2.6)

Then K is determined by either of the variables y/8 or yUr/v, and since these two variables are
formally independent of each other, K must be a constant.

On integrating (3.2.6) in the overlap region, the logarithmic law

= A + B log Ur y.
v

(3.2.7)

is obtained.
The above result states that the existence of a logarithmic law in the inner region is an essential

condition for the validity of the defect law with overlap.
Examination of experimental velocity profiles obtained in pressure gradients has shown that the

function g(y/8) in equation (3.2.1) is not a universal function (see Fig. 18, Ref. 6). To include the
effects of pressure gradient, the velocity-defect law must be expressed in the more general forrr

U1 - u (y )U;- = g 8' IT(x) , (3.2.8)

where the profile parameter IT in general depends on the pressure gradient.
An equilibrium layer has been defined as one for which IT is constant, the constant-pressure

layer being a particular example. Clauser? has succeeded in obtaining equilibrium layers in pressure
gradients of a special form.

When consideration is given to the general case of layers with transpiration, it is obvious from
Millikan's analysis that a velocity-defect law (U1-u)/Ur = g(y/8, vo/Ur) cannot overlap the
bilogarithmic law. The assumption of a defect law of this form would therefore require that the
overlap region be replaced by a blending region between the inner and outer portions of the layer.
Such a requirement would complicate the physical picture unnecessarily and would not provide a
sound basis on which to construct a calculation method for the development of sucked or injected
layers. The fact that the defect law is not universal for arbitrary pressure gradients provides further
ground for its rejection.

Consideration is now given to a more recent approach to the problem.
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3.3. Cules' Wake Hyputhesis.

On examination of a considerable number of experimental velocity profiles obtained on solid

surfaces with and without pressure gradients, Coles" found that the velocity profile could be written

in the form

u 1[ UTy·· (Y)JU
T

= f1 + K In v - + lI(x)w ;3 , (3.3.1)

where w(y/8) is a function which he assumed common to all two-dimensional incompressible

turhulent houndary layers on solid surfaces, and Tl(x) is a profile parameter chosen so that w(1) = 2.
It is ohvious that w(y/8) as defined in equation (3.3.1), cannot be a truly universal function, as the

condition of zero velocity gradient at the edge of the boundary layer requires from equation (3.3.1)

that
1

11 (x) . (3.3.2)

The departure from universality is, however, confined to the edge of the layer and appears to be

unimportant. With this restriction, w(yj8) can be accepted as a universal function.

In general Il (x) depends on the pressure gradient, but for equilibrium layers IT is constant.

In particular for constant pressure layers Il is found experimentally to have the value O·55.
It should be noted that equation (3.3.1) is equivalent to the general form of the velocity-defect

law (3.2.8), since

U1 - u 1 [Y - Jti, = - ~ In 8 + lI[w - w(1)] . (3.3.3)

The advantage of Coles' analysis lies in the fact that the function w remains a universal function of

y /8 in non-equilibrium layers whereas (U1 - u)j U T does not. Coles adopted the term 'wake function'

in view of the close resemblance between the experimentally determined w(yj8) and measurements

made in a plane half-wake or half-jet by Liepmann and Laufer!'. Coles therefore interprets the

boundary-layer flow as the summation of two flows; one a wake-type flow, which he tentatively

views as a large-scale mixing process constrained by inertia, and the other a constraint-type flow

imposed by the condition of zero velocity at the wall, which he regards as a small-scale mixing

process constrained by viscosity. It should be observed that in the inner one-fifth or so of the

boundary layer, the wake contribution is negligible and the flow is adequately described by the

logarithmic law alone. The summation concept is not therefore at variance with established

experimental findings.

Denoting the constraint and wake velocity components by u" and u.; respectively, equation (3.3.1)

may be split into two equations

and

Uw 1 (Y)U
T

= K n(x)w-8 .

These will be referred to as the constraint and wake equations.
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The simplest extension of Coles' hypothesis to layers with suction or injection suggests the
general form of the constraint and wake equations to be

and

u; 1 ) (y)- = - II(x w - ,
ti, K 0

(3.3.6)

(3.3.7)

where the bilogarithmic law replaces the solid-surface logarithmic law, and the wake equation

remains unaltered except in so far as II(x) may now be a function of the transpiration rate as well as
pressure gradient. The validity of equation (3.3.7) can easily be checked experimentally.

It appears unrealistic, however, that the magnitude of the wake component Uw at every point in
the layer, should be determined by the friction velocity U; which represents an influence acting at

the wall (i.e. wall shear). On the other hand very convincing experimental evidence is presented

in Coles' report in favour of the wake law as stated in equation (3.3.5). This suggests the possibility
of replacing U; in equation (3.3.7) by a representative velocity which may in general be a function

of x and y, but which is a constant multiple of U; in the particular case of zero transpiration.
One such velocity is the local constraint shear velocity u*e defined by

or from equation (3.3.6)

OUe
u*e = Y -oy

= -~ v(u,2 + VOU e),
K

(see Section 6.1)

(3.3.8)

U*c obviously satisfies the two requirements mentioned above; firstly it is a truly local property of
the layer, i.e. a function of x and y, and secondly, for zero transpiration ("'0 = 0, A = 1) it is a constant
multiple of Ur •

On replacing U; by u*e equation (3.3.7) becomes

U
u
' = II(x)w (2')

u*e 0
(3.3.9)

which reduces to equation (3.3.5) for Vo = O.
u*e increases with y for injection and decreases for suction, but the total variation in u*c across

the layer only becomes appreciable at relatively high transpiration rates. It remains, now, to test the

validity of equations (3.3.7) and (3.3.9) for the experimental profiles available.

3.4. Experimental Verification of Coles' Wake Hypothesis for Transpiration Layers.

Only six of the profiles obtained with suction together with the eight obtained with injection,
possessed wake components of sufficient magnitude to permit analysis. In each case the wake
component velocity Uw was obtained by subtracting the constraint velocity Ue (as determined from the
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bilogarithmic law) from the total velocity u. Equations (3.3.6) and (3.3.8) were then applied to

obtain n n W T (yjo) and n,X<, w* (yjo) respectively'[. °being determined by the maximum value of
uu.( U T or u",jtt'X<,.. W T and W* were then obtained by satisfying Coles' normalising condition w(l) = 2,

while II followed from the equations

and

liT (3.4.1)

(3.4.2)

W
T

and W* are plotted for each of the profiles considered in sub-figures a and b of Figs. 14 to 18.
Included in each figure is the wake function as tabulated by Coles.

Fig. 14 shows the functions W
T

and w* obtained from two of the velocity profiles of Fig. 2.

The agreement between W
T

and Coles' Wake Function is poor. The agreement for w*, although

considerably better, is still not of the standard obtained by Coles for the solid-surface data. The

profiles in question, however, were obtained in oversucked layers. In such layers the value of

u*, decreases rapidly with increasing y to approximately zero at the edge of the boundary layer, and

accurate determination of °and w(yjo) becomes exceedingly difficult.

The functions W
T

and w~, for the suction profiles shown in Fig. 3 are plotted in Fig. 15. Agreement

with the Wake Function is fair for W T but good for w* within the experimental scatter.]

zc, and w* for the profiles of Fig. 8 are plotted in Fig. 16. Again the agreement, whilst only fair

for W n is good for w*.

In Figs. 17 and 18, W T and W * are plotted for the injection profiles of Figs. 9 and 10. Here again

the experimental evidence appears to be slightly in favour of 'w'X< which agrees well with the Wake

Function.

In each of Figs. 14 to 18, values of rr T and TI* are included. Both n T and IT * tend to decrease with
increasing suction, and increase with increasing injection, although this trend is not well defined.
I n particular, imaginary values of n T are obtained for two of the injection cases in Fig. 18. These

values occur as a direct consequence of the non-homogeneity of the surface, which results in

negative effective wall shear (imaginary UT)' (See Section 5.) It is unlikely, however, that the flow

in the outer region should be directly affected by non-homogeneity of the surface, and it appears
unrealistic, therefore, that the wake parameter should be so intimately associated with the surface

condition. This adds emphasis to the argument previously advanced in favour of using u*c as the
representative velocity in the wake.

No conclusions can safely be drawn from the values of IT regarding the equilibrium of constant

pressure transpiration layers, for it must be remembered that u*,., while being perhaps the most

obvious, is not the only representative velocity satisfying the requirements discussed earlier, and

that the choice of some suitable alternative would in general result in different experimental values

of n.

t IT T' n*' W T ' W* are used to distinguish between experimental profiles plotted according to equations
(3.3.7) and (3.3.9).

t It should he noted that experimental errors in the original velocity distribution are considerably magnified
in the plot of w(y j0).
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3.5. Summary.

(i) The possibility of describing the flow in the outer region of turbulent boundary layers with
transpiration in terms of the velocity-defect law has been rejected, principally because of
incompatibility with the bilogarithmic law when overlap is assumed.

(ii) From a study of the limited experimental evidence available, it is concluded that the wake
hypothesis developed by Coles for layers on solid surfaces remains valid in layers with transpiration.

(iii) In extending Coles' hypothesis to include transpiration the question arises concerning the
correct representative velocity with which to describe the wake flow. It is suggested that the use
of u*c is more consistent with the physical picture of the basic flow mechanism provided by the
hypothesis. In the particular case of zero transpiration, u*c = (lIK)Ur and the wake equation
reduces to the form given by Coles for layers on solid surfaces. The experimental evidence, although
not conclusive, appears to favour the use of u*c'

4. The Wall Boundary Condition in Two-dimensional Flow.

4.1. The Sublayer and Blending Region.

In a two-dimensional turbulent boundary layer on a solid surface at very small distance from the
surface the turbulent shear <- u'v') is small compared with the viscous shear v dulay, so that the
flow behaves as though it were laminar.

If the surface is smooth, the flow in the sub layer is two-dimensional and described adequately
by equation (2.2.5a) in which

7" QU
v ;:;- ,

p oy
so that

ou

(v ~~L=o =
U2v- = const. (4.1.1)

oy
r ,

and so
Ur2y U Ury

(4.1.2)u =--, or- = -_..
v U, v.

If the surface is permeable, but nevertheless smooth and homogeneous, the basic relationships
are unchanged, but the transpiration velocity must be taken into account, so that equation (2.2.5a)
has to be replaced by the more general form of equation (2.2.5), which leads to the velocity-shear
relationship, (2.2.8)

Hence

or

[J 2 7" OU v a (U 2 )
- r + VoU = - = ~'-;:;- = - - r +VoU .

p uy Vo oy

Ur2 + VoU = Ur2 et'oY!v,

(4.1.3)

(4.1.4)

or

u U2
-;- (e"oYV - 1),
Vo

(4.1.5)

or

u U= -2 (e"oyl" - 1),
ti, Vo

23

(4.1.6)

(4.1.7)



Between the sublayer and the fully turbulent regime there is a blending region in which the viscous
and turbulent stresses are of comparable magnitude. This region has been largely neglected in the
past, since any theory describing it must rely mainly on empirical data, whilst the effect of the flow
in this region on the rest of the layer is confined to the value of the constant A in the turbulent

wall law, (2.3.3a). This constant can be determined empirically more easily than the flow in the
narrow blending region. For the purposes of evaluating such flow quantities as displacement or

momentum thickness sufficient accuracy is obtained by assuming the laws of the sublayer and of the

turbulent regime to hold on either side of a 'transition point', y = y" at which the velocities given

by the two laws are equal.

A theory for the flow in the blending region of a solid boundary layer has been put forward by

Van Driest", and it is hoped to extend this to layers with transpiration in a future paper. For the

present the 'transition point' approach will be used.

The predicted sublayer profiles are plotted in each of the figures showing the experimental

velocity distributions. It is seen that agreement is generally poor, but this can be ascribed to

(i) the inevitably large percentage error in the measurement of small wall distances,

(ii) the unreliability of pitot-tube readings in the immediate vicinity of the wall (no corrections

have been applied),

(iii) non-homogeneity effects (see Section 5).

4.2. The Transition Point.

The 'transition point' y = y" is given by the sublayer and bilogarithmic laws, equations (4.1.4),
(2.2.17):

so that

('V y)2o I" [T" "0'/ Ivn - -- =! ... e . w2K d . T ,

(
1 Vo y,,)2

. 2~ V·ln d
T .

(4.2.1)

It has been shown [cf. (2.2.18)] that V o In yjd > () throughout the bilogarithmic region, so that

(4.2.2)

This is the equation relating y" and d for given vo, UT and K. It can be rewritten as

, . 1 V ( U V U d)e'!""()!III'v =. .... 0 In La _ In . T

2K U T • V V •

in view of (2.3.5). The velocity u., at Y = Ya is

U2
Uu. = T (e"01Ja'V-l),

Vo
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whilst the velocity gradients at Y = Ya given by the two laws are

and

U2
_1 eVoJJajv

v
(sublayer)

U
= _!.- e1

/2vOYa/v (bilogarithmic),
KYa

(4.2.5)

(4.2.6)

in view of (4.2.2).

In the case of solid boundaries the relationship between u/UT and UTy/v in the wall region is
unique; in particular both the sublayer and turbulent laws are of the form u/UT = f( UTy/v), hence

at their intersection the values of (u/UT), (UTy/v), 2(u/UT)/2(UTy/v) and higher derivatives are all
uniquely defined, viz. if N is given by

then

1
N = A + -In N,

K
(4.2.7)

=N~Ya U
T

(4.2.8)

(4.2.9)

2(;J/2 (U;Y)

2(;J/2 (U;Y)

( ~U )1 at Yrt; (J

, y, a

= ~katYa; (~~L

U2
T

v

U2
T

KNv

(sublayer)

(turbulent) .

(4.2.10)

(4.2.11)

4.3. Transition Criteria.

The transition point determines a number of dimensionless quantities, each of them in effect a

'critical Reynolds number'. It is therefore of interest to use this superficial analogy with the

conventional transition from laminar to turbulent flow in a boundary layer or a channel in order to

develop a theory for the variation of the distance Yrt (and hence the parameter It in the bilogarithmic
law) with changing suction or injection velocity. Thus the hypothesis is made that there exists a
single criterion which determines the transition point at all values of V o, provided the surface is

smooth and homogeneous so that no disturbances are introduced by the transpiration (ef. Section 5).
This criterion will involve the achievement of a critical value by some dimensionless parameter, this

critical value being independent of V o .

Almost any combination of (u/U T), (UTy/v) and their mutual derivatives can provide a possible
criterion, since they all have unique values at Y = Ya in the case of solid boundaries, though these
values may (a priori) vary with V o, so that the choice of the right parameter must be determined
experimentally, by comparing the observed values of It with those predicted by each particular
criterion.

The simplest quantities which might be combined to provide the required parameters are (UTy/v),
(u/UT) and 2(u/UT)/o(UTy/v): (vo , whilst entering implicitly through the sublayer and bilogarithmic
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laws may be assumed not to enter explicitly as it vanishes in the solid case). Their most obvious

combinations (and corresponding critical values for V o = 0) are shown in Table 4.3.1.*

TABLE 4.3.1

Possible Transition Criteria

Quantity
Behaviour with

increasing Y
for Vo = 0

Value at Y= Yft
for Vo = 0

Ury · . N (i)mcreasmg
v

u
increasing

U
N (ii)

r

uy
(~J (~:-~) · . N2 (iii)mcreasmg

v

y 20U
(0'r~) 2 . O(u![j,.) . {

· . N2 in the sublayer law (iv)mcreasmg

v ?y . v ?(Ury/v) · . N/K in the turbulent law (v)mcreasmg

Y ?u (-[!;Y) ?(u/Ur) {
· . N in the sublayer law (vi)mcreasmg

[J; 2y ----.---,.------_ ... -

?( Ury/v) constant 1/ K in the turbulent law (vii)

u (u/Ur)

( 1 in the sublayer law (viii)
?u

(~:~) ?~~jr~;1)
constant

· . KN in the turbulent law (ix)Y;;;-- mcreasmg
oy

U/ 1

( 1 in the sublayer law (x)
?u ?(u/Ur)

constant
. .

KN in the turbulent law (xi)v· .
?( Ury/v)

mcreasmg
oy

u2 (u/Ur)

I (

increasing N2 in the sublayer law (xii)
au o(u/Ur) · . KN3 in the turbulent law (xiii)v -;:., -

o(Ury/v)
mcreasmg

oy

Each of the above parameters (except those which are constant for Vo = 0) will now be treated as a

possible 'transition criterion' and the corresponding variation of ,\ examined.

* It must be stressed that the supposed existence of a transition criterion is a hypothesis deduced by analogy
from the observed behaviour of turbulent boundary layers on solid walls and is not a basic physical truth;
consequently no physical argument can determine which particular criterion will give the best agreement with
experimental results. This could only be achieved by a theory describing in detail the flow in the blending
region. As it is, only approximate agreement between predicted and actual variation of ,\ can be expected, so
that simplicity of the criterion and its application is desirable. Thus, although the total number of possible
criteria is infinite, only those listed above need be examined.
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For each of the criteria listed in Table 4.3.1 the value of Ya in terms of U
T

, vo, etc., is determined
through equations (4.2.4) to (4.2.6). ,\ is then obtained from (4.2.3).

To simplify the calculations, vOIUT is replaced by the quantity (N/2)(vo/UT) and (l/N)(UTYa/v)
is used as a non-dimensional form of the 'sublayer thickness' Ya' The following notation will
be used:

1 UTYa
~. _.- = n.
N v

when Vo = 0, m = 0, n = 1.
In some cases it is convenient to use B instead of 1IK (cf. Appendix II).

Thus

! VoYa = mn,
2 v

1 vo B
-- =-m,
2K U T N

and equations (4.2.4) to (4.2.6) become
N

U = U - (e 2mn _ 1)
a T 2m '

(au) U 2
= _T e2mn in the sublayer law,

ay a V

(
3U) U 2 1= ....':.. -- em n in the turbulent law,
3y a V KNn

whilst
V

Ya = U N n .
T

Finally equation (4.2.3) becomes

(4.3.1)

(4.3.2)

(4.3.3)

(4.3.4)

(4.3.5)

(4.3.6)

(4.3.7)

(4.3.8)

(4.3.9)
B

,\ = em n - m N log Nn .

The details of the calculations can be found in Appendix III. The results are summarised in
Table 4.3.2.
The quantities marked (vii), (viii) and (x) in Table 4.3.1 are constant throughout the layer when

vo = °and therefore cannot serve as transition criteria.
All the above functions ,\ have been computed for a wide range of values of Vol UT' with particular

emphasis on negative values (suction) for which more experimental data are available. The constants

used were (see Appendix I)

N=11·2, A=5·4, B lO = 5 ·5, Be = 2·39, K=0·419.

The numerical values of ,\ are shown in Table III.1 and plotted in Fig. 13a. The curve of ,\

against vOIUT predicted by criterion (ii), ualUT = N is replotted in Fig. 13b together with
experimental results. This particular criterion was chosen as it appears to predict most accurately
the actual variation of ,\ for layers on smooth, nearly homogeneous walls. Also this criterion predicts
a maximum suction rate above which the basic assumptions regarding the transition-point break
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TABLE 4.3.2

Variation of ,\ with ~'oi C
T

as predicted by Various Transition Criteria

Criterion Variation of ,\ with vol UT Remarks

(i) UTy = ~N
jJ

,\ = e'" - m ~ log N
PI[

)'2?U N
(v)-;:;-- = - in the turbulent law as in (iv)

jJ cy K

y 2 2u
(iv) -;:;-- = N2 in the turbulent law

jJ cy

1
2

sinh 1> = m

[

m > 1 -0.184

d. (iV~ 2p -

[
m < : = O' 368

d. (iv)

m>,\ = ,(I +2m) - m B log f~n (1-+- 2mn_m B log N
N \ 2m J N

B x(m) B
,\ = e.l'(III) - m -- log - ~~ - m - log N

N m N

. m B.
,\ = e1f0i

/ (2 111 ) + KN y (2m) - m N log tv

m B.
,\ = eY(III) + -Ty(m) - m - log Iv

dv N

o B sinh 1> B
,\ = e, + m - log -- - m - log N

N 1> N

,\ = e-Y(-III) + _""_ y( - m) - m B log N
KN N

KN in the turbulent law

KN in the turbulent law

u
t"" = N

T

11

" =eu
yay
U

T
2

eu
v--

2y

u2

-"- = N2 in the sublaver law as in (ix)cu .
v-cy

(ii)

. y cu .
(VI) - ;:;-- = N m the sublayer law

U
T

cy

(xi)

(ix)

(iii)

(xii)

N
00

(xiii)
u2

au
v-

2y

KN3 in the turbulent law
B z(m) B

,\ = eO(III) - m - log -- - m - log N
N m N [

Z(t) defined by
zeZ sinh- z = t 3



down, as must be the case when a turbulent layer reverts to laminar flow under the influence of

strong suction. The critical value of - volU7 = O·089 appears realistic in view of Dutton's results,

viz. a turbulent asymptotic layer [for which -vOIU7 = V( -vOIU1) ] was obtained by him on a
smooth nylon surface with -vOIU1 = 0·00443, i.e. -vOIU7 = 0-067 whereas at -vOIU1 = 0·0125
( - Vol U7 = 0·112) an initially turbulent layer reverted to a laminar state, quickly reaching asymptotic
conditions. Other possible transition criteria [(iv) and (vi)] also predict a critical suction rate, but the

predicted variations of It are not borne out by experiment and the critical rates appear too low.

In (iv) (-vOIU7 )crit = 0·0657, in (vi) (-vOIU7 )crit = 0,0329, both lower than Dutton's observed
O· 067 in a fully turbulent asymptotic layer.

Not too much stress should however be laid on the correspondence between critical values of

'/-'o1U7 in the transition-point analysis and the reversion to laminar flow, as the transition approach
is mainly empirical in concept and can only obscure the physical mechanism of the flow which is
likely to govern the process of laminar reversion. The absence of a critical suction rate is not
therefore a sufficient reason for the rejection of a possible criterion, though its low value for (iv)
and (vi) provides a strong argument against their acceptability. The others [except possibly (xi)
which predicts a very low critical blowing rate] must all remain as 'possibles' until more experimental
data on the variation of It with Vol U7 are available. For the present it can only be said that (ii) appears
to give the best agreement with experimental results obtained on smooth, nearly homogeneous
surfaces.

The values of It obtained on non-homogeneous (drilled or perforated) surfaces are seen from
Fig. 13b to be higher than those on smooth surfaces at the same suction rate (-vOIU7 ) . Since the
value of It at Vo = 0 must be unity, the effect of non-homogeneity is to reduce the value of
dA/d(voI U7 ) and hence the value of the constant A in the solid-plate logarithmic law, equation
(2.3.3a). This is in keeping with the analogy between non-homogeneity and roughness, since the
effect of roughness on solid surfaces is to decrease the constant A in the logarithmic law.

5. Effects of Roughness and Non-Homogeneity of the Wall Surface.

In the theoretical analysis given earlier, the usual assumption of boundary-layer theory has been
made, that the variation of all flow quantities parallel to the boundary y = 0 are small compared

with the variation normal to the boundary, i.e, for all quantities q

I~~ I ' I~; I ~ I~; I·
This condition holds for what may be termed a homogeneous boundary layer, i.e. a layer on a

smooth surface with no discrete orifices. When transpiration is applied, however, the surface is
never homogeneous since the in- or out-flow takes place through discrete holes or pores and the
theoretical boundary y = 0 consists of both solid area (where locally uo = Vo = 0) and open area
where Vo =1= 0 and probably uo =1= O. In this section the equations of motion are considered for the
case where, in addition to the gradual overall variation of flow quantities along the boundary, there
is a fairly large spatial fluctuation about the overall mean values due to the presence of a discontinuous
boundary.

The spatial fluctuations are confined to a region near the boundary: the thickness of their region
of influence must depend primarily on the size and spacing of the orifices, when the mean flow
velocities and open-area ratio are kept constant. In particular the fluctuation region must become
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thinner when the hole size is decreased. Thus on a coarse perforated plate this region will be thicker
than on a fine gauze with the same open area. Using a sufficiently fine surface the fluctuation region
may be made to occupy only a small proportion of the boundary-layer thickness. When the spatial

fluctuations are confined to the sublayer it can be expected that their presence will not affect the

flow at larger distances from the surface. Thus the surface will be effectively homogeneous, just as

a solid surface is aerodynamically smooth if the roughness elements are all embedded in the sublayer.

The two cases are not entirely analogous, however, since the thickness of the fluctuation region in a

transpiration layer depends not only on U7 and v but also on 'l'u'

It must be the aim of any boundary-layer theory to provide a basis for the prediction of boundary

layer growth in the conditions considered. In the case of the turbulent layer with transpiration the

first step is the theory of the velocity profile, such as that considered in this report. The next step

must be to find the way in which a boundary layer grows at different rates of suction and injection

on an effectively homogeneous surface, since the development of the layer on a non-homogeneous

surface must depend also on the extent of non-homogeneity. (Thus, starting from the same initial

conditions, asymptotic boundary layers of the same thickness are obtained at different rates of suction

on different types of surfaces (Dutton"). It is also necessary to find a criterion for homogeneity of
surface, so that a development theory may be compared with experimental results obtained in
conditions which are effectively homogeneous. Experimentation to this end is needed before such

a criterion can be found.
The N avier-Stokes equation considers the momentum balance in a control volume

(5.1)

In a uniform incompressible fluid p, fL are constants and the continuity equation takes the form

~~ = O.oXj

When mean values are taken in any way whatever (i.e. with respect to time or space), so that

q = <q) (mean) + q' (fluctuating value)

then

(5.2)

(5.3)

(5.4)
since

<q') = O.

The mean value expressions for (5.1) and (5.2) can therefore be written

0'0!j) = 0 and also ~u/ = O. (5.6)
o~ a~
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If the flow is steady-turbulent and also the x- and a-wise variation can be resolved into a slow
overall variation and a rapid local fluctuation (cf. Fig. 5.1) with zero mean value, then any q can be
subdivided as follows:

q = (q) + q' = {q} + qX = {(q)} + {q'} + (qX) + q'X,

where () is time mean, {} is space mean.

(5.7)

Variable>

~~----
Actual value>~ ~ \

~ Ove r ctl variation

...--:/
~ ---- Spaco co-ordinat~:..---- ..

FIG. 5.1. Illustrating the two modes of spatial variation.

Under the conditions of the problem (ojot)(q) = 0, but (ojoxi){q} need not vanish even for Xi = X
or z. Taking the double mean of (5.1) and noting that

(5.10)

i.e,

{(qlq2)} = {(ql)}{(q2)} + ({ql'}{q2'}) + {<qlX) <q2X)} + {<ql'Xq2'X)}, (5.8)

P: {<Ui)}{<UJ)} = - ~ {<p)} +: [!1- (: {(ui)} +: {<UJ)}) - p<{u/}{u/}) -
uXJ ox, uXJ uXJ uXi

- P{<UiX)<U/)} - p{(U/XU/X)}] , (5.9)

a a 0
p ox {<Ui)}{<Uj)} = - ox {<p)} + ox Gij'

j i j

with

--------- ~------
(Reynolds stress) (spatial fluctuation stress).

(viscous stress)

Gij = !1- [: {<Ui)} + -l- {<Uj)}] + [- P({u/}{u/})] + [- p{<ui'xu/X)}] + [- p{(u/)<u/)}]uXj OXi - -y-------(effective
shear stress)

(5.11)
If the overall flow is two-dimensional, (2joz){<q)} = 0, then

p:'1:{(U2)}+P:
yf(u)}{<v)} = - :X{(P)} + [:xGxx+ :y GXY] ,}

a a 2 _ 0 '[0 0]P ox {(u)}{<v)} + P oy {(v)} - - 3y {(P)} + oX GXY + oy Gy y ,

o{(u)} + o{<v)} = O.
ox oy
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Now the x-variation of the double mean is slight, Ir'/?x{(q)}1<12/2y{(q)1! so that the Prandtl
approximation can be applied as to a two-dimensional boundary layer.

o£~p>} = 0,
oy

';I r It" ) 'iI/ '1 1 d 1 'i
(I,}fl,i)) J/"I('t\U)J_ r I (,l,U) +t\V);-~- -- ·····t(p)j+ -, a,

fy p dx p 0Y

(5.14)

(5.15)

(5.16)
2

a = It;) {(u)} - p«u'Hv'}) - p{(u'XV'X)} - p{(UX) (V,F,>}.(y

Equation (5.15) can be integrated between y = 0 and y = 8 (edge of the boundary layer) using

U1 dU1/dx = - l/pd/dx{(p)} and writing

fa(Ul-{(u)})dy = UI8*, fa {(u)}(U1-l(u)})dy = 1I12 f) .
o 0

Then

f
aaI (u \} dU fa. fa o{(u) I

U1 t / dy + 1 { (u)} dy - 2 {(u)}___ I dy
o dx 0 0 dx

VI fa ?i{ (u)} dy + ~_U.I fa {(u)} dy - fa {(u)} ~{5~!.J dy + l-{ (u)H (v) }J'(l) -
o dx 0 0 dx

fa o{(u)}
- {(v)}------·dy

o oy

[fao{(u)} J dV fa
VI ",,' dy + {(Va)} - {(Uo)H(vo)} +-d 1 {(u)}dy-

o ox x 0

-f~ ({(U)} o{(u)} + {(v)} o{~~)}) dy

1I1 {<va)} - {(uo)H<vo)} + ~VI f8 {(u)} dy - f8 (U1d~1 + 1 oC:) dv
dx 0 0 dx p oy, -

i.e.

(5.17)

where V" is the effective wall shear velocity, analogous to V
T

in the homogeneous case.

Now near the boundary y = 0 it is generally assumed that u' and 7/ are zero, and the region where

this condition holds is termed the laminar sublayer. Actually, hot-wire measurements indicate that

even in the sublayer time fluctuations are present but they are uncorrelated, i.e. (U'7/) = 0, so that

the shear stress is purely viscous and the mean flow behaves as though it were laminar. All the

experimental evidence for the statement (u'v')o = 0 has however been obtained for 7'0 = 0, and

though the statement can reasonably be expected to be true if the boundary is uniformly porous
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(with no discrete orifices and no space fluctuation), it may be false if discrete holes exist in the
surface (and the flow is space-fluctuating as assumed in this section). Thus for homogeneous
surfaces every quantity q = {q} and qX == 0 and since <u'v')o = 0,

U o = f.L (O~u») == 'To'
. Y 0

For non-homogeneous surfaces, however,

(5.18)

(5.19)

and even if the Reynolds stress, - p<u'v') should vanish, there remains the space-fluctuation stress,
- p{<U X

) <v X
) } which cannot be expected to vanish, so that the apparent wall shear cannot be

identified with viscous shear (skin friction) as was the case for a homogeneous turbulent layer.
Provided the slip velocity {<uo)} is small (or even varying very slowly with x), the wall-region

approximation

{<u)} o{<u)} + {<v)} o{<u)} = {<vo)} o{<u)}
. ox oy dy (5.20)

(5.21 )

can be applied to a fluctuating as to a conventional layer. If the pressure-gradient term

(-l/pd{<p)}/dx = U1dUl/dx) is also neglected, equation (5.15) reduces to

{<vo)} o{<u)} = ! ou.
oy p oy

This can be integrated directly between 0 and y, giving

:!. - {<vo)}{<u)} = constant (w.r.t.y) = Uo - {<vo)}{<uo)} = U(J"2,
P P

(5.22)

as in (5.17). If the fluctuations are confined within the wall region, then in the outer (homogeneous)
portion of the wall region (5.22) still holds, whilst {<u)} now reduces to <u), a to f.LCiJ<u)/oy) 
<u'v') = 'T, so that

(5.23)

(5.24)

The mixing-length theory can be applied to this equation, yielding a bilogarithmic law for the
velocity profile, just as in Section 2, with {<vo)} replacing vo, and U(J" in the place of UT' K can be
expected to be the same for homogeneous and fluctuating layers, just as it is the same for smooth and
rough surfaces, but the constant of integration must depend on the fluctuations just as A is a function
of roughness when V o = O.

It should be noted that although the quantity uo/p - {<uo)}{<vo)} has been denoted by U(J"2 as
analogous to UT 2, there is no need for it to be greater than zero in the case of injection ({<v)} > 0). For

U(J"2 = :0 - {<vo)}{<uo)} = v C{~;)}t -{<u)<v)}o;

and at high rates of injection v(o{<u)}/oY)o becomes very small, whilst (uv)o is essentially positive,
so that its mean value may be larger than that of the viscous shear, yielding a negative apparent
shear at the wall, U(J"2 < O.
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6. General Discussion of the Turbulent Boundary Layer with Transpiration.

The purpose of this section is to present a physical picture of the turbulent boundary layer with
transpiration, especially in the idealised case of a smooth homogeneous boundary. This picture is

based mainly on a tentative interpretation of the meagre experimental data in existence.

6.1. The Basic Mechanisms: Inner and Outer Regions.

The turbulent boundary layer on a solid surface exhibits two distinct mechanisms. Thus in the

region near the wall the flow is governed by the local conditions only and all the historical effects
(the influence of the flow in the outer region) are confined to a single physical parameter which can
be identified with the wall shear TO or the wall shear velocity UT •

In the absence of a pressure gradient then, the velocity u depends only on y, v and U
T

, and
dimensional analysis indicates that u]UT must be a function of UTyjv only:

..zt..... = f (UTY) , 'law of the wall' (withfa unique function).
UT v

(6.1.1)

Pressure gradient introduces an additional variable, (vjUT3)(1jp)dpjdx, but it is found that a mild
pressure gradient has negligible influence on the velocity distribution in the wall region (Fig. 14),
so that equation (6.1.1) can be assumed to hold generally on a smooth solid surface.

The equation (6.1.1) is also modified when the flow in the immediate vicinity of the wall is not
two-dimensional, e.g. due to roughness. In that case, if the effects of roughness can be described

by a length scale k,

or equally well

!!- = f (UT.J!.., UTk),
UT v V

(6.1.2)

(6.1.3)

Transpiration introduces another physical quantity which must be included under the heading of

'local conditions', viz. the suction or injection velocity vo, and so for smooth homogeneous walls and

in zero pressure gradient the law of the wall must take the form

(6.1.4)

Obviously this can be rewritten as

(6.1.5)

and in a variety of other ways.
The effects of a mild pressure gradient may again be expected to be negligible, whilst roughness

or non-homogeneity of surface extend (6.1.4) to a form such as

~. _ f (UTY V o UTk)
U

T
-. v' U/ v .

(6.1.6)

At large distances from the wall the flow does not respond immediately to a sudden change of
conditions at the wall, and a wide variety of velocity distributions in the outer region could be
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(6.1.7)

ed by suitable perturbations upstream. Various laws have however been found to hold in the
:gion of the solid boundary layer with fairly good accuracy. ROSSI2 shows that Darcy's law for
tre of a pipe

u (Y)31
21 - U

I
= D 1 - "8 ' with D constant,

es well the velocity profile near the edge of the layer. If the layer is allowed to settle in zero
e gradient, Clauser" (Figs. 30, 31) demonstrates that the eddy viscosity e{= rj(2uj2y)} is
t across the outer region. It has also been found (see Coles") that the plot of the velocity
:UI - u) against the wall distance, y, obeys a single-parameter law of the form

UI - U (Y )U
r

= g 3' TI(x) , (6.1.8)

he parameter TI varies with x in general, but is constant in zero pressure gradient and in the
fum layers of Clauser!",

; there exists a law determining the velocity distribution in the outer region, to which various

mations have been found.
variation of velocity from the wall to the outer edge of the layer could, in general, take one of

-rms:

A sudden changeover from the wall law to that holding in the outer region (with a
discontinuity of some derivatives of velocity),

An additional 'blending law' merging with those of the two basic regions, and

Overlap of the two laws.

(i) is physically unacceptable, whilst (ii) and (iii) can both arise, depending on the
mation used in handling the problem. Thus overlap is impossible between the wall law
md the Darcy law (6.1.7) or the law obtained on the assumption of constant eddy viscosity
ris would relate terms involving dUrjdx with those supposedly dependent only on Uryjv).
) is far too general to produce useful results, as the 'blending law' would contain as many
dent and dependent variables as the law for the boundary layer as a whole, so that the
tion of the inner and outer laws would not reduce the complexity of the problem. It is
e of great practical interest that, for the solid boundary, the law of the wall (6.1.2) is found to
the velocity-defect law (6.1.8). By an argument similar to Millikan's'? (cf. Section 3.2) it can
-n that if the ratio (Uryjv)j(yjo) can vary independently of Uik]» and II(x) (which is true
ice), a logarithmic law for the velocity distribution in the overlap region is a condition of
ncy. The observed logarithmic profile is therefore compatible with the velocity-defect law
condition of overlap, but this does not imply that it is a consequence of the others. Indeed the
mic law of the wall has been found by Klebanoff and Diehl-" to hold even where the velocity
rw does not, e.g. behind a tripping device.
the velocity-defect law in the form of (6.1.8) is a useful approximation in the solid case,
t can be overlapped with the law of the wall, thus producing a complete description of the
profile in the turbulent portion of the boundary layer. It cannot be a useful approximation
some generalised form of equation (6.1.8) were found to hold] in a layer whose law of the
not logarithmic, in particular it has been abandoned for the case of the layer with
rtion. Instead an alternative argument has been used by the authors to derive a law for the
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(6.1.9)

(6.1.10)

(6.1.14)

velocity distribution (see Section 2). This is consistent with the logarithmic law of the wall and the

velocity-defect law in the solid case, but is capable of describing accurately the profiles obtained with

transpiration. It is based on the assumptions of momentum transfer theory with linear mixing length,

summarised in the statement that, near a solid boundary {where u(ou/2x) + v(2u/oy) ~ O},

~ = (KY ~;r
This velocity/shear relationship is equally acceptable when the boundary is permeable and

transpiration takes place. The logarithmic law holding on a solid surface can then be shown

(Section 2) to be a particular case (with V o = 0) of the bilogarithmic law obtained on substituting

(6.1. 9) in the linearised equation of motion

1 07 OU
-. - = V o --,
p oy oy

i.e.
1
-- (7-70) = vo(u-uo)' (6.1.11)
p

which holds in the vicinity of the boundary.

The bilogarithmic law has been demonstrated to hold both in the sucked and in the blown layers

(Figs. 2 to 11), but it is realised that serious objections can be raised against the two basic premises,

(6.1.9) and (6.1.10). Thus the argument of momentum transfer theory leading up to (6.1.9) associates

the length scale Ky (mixing length) with eddy diameter, but the large value of K(=0'4) observed

in the (solid boundary) logarithmic law appears inconsistent with its physical meaning, as pointed

out by Batchelor-". Furthermore the logarithmic law is found to hold well outside the region in

which the quantities u(2u/2x) + v(2u/oy) and (7 - 70) are negligible, so that the combination of

(6.1.9) and (6.1.11) (with V o = 0),

(KY ~~r =; =U T 2 , (6.1.12)

holds even where neither of (6.1.9) and (6.1.11) does! It appears therefore that for solid boundaries

(6.1.12) describes an empirical fact for which no completely satisfactory explanation is as yet

available.

The equation (6.1.12) describes the relationship between the local velocity gradient and the

overall drag experienced by the flow, with the wall distance y as a connecting link between the

'local' and the 'overall' quantities. The analogous form in the presence of transpiration can be

deduced by considering the von Karman momentum equation. Thus in a constant-pressure layer

:x (U128) = Ur2 + V OU1, (6.1.13)

so that for the layer as a whole the quantity which is analogous to U
T

2 in the solid case is U
T2

+ VOU1.
But near the wall the quantity U1 has been found to have no effect [as in equation (6.1.6)], whilst

at the wall itself Ur 2 represents the true shear whether transpiration is applied or not. The analogue

of Ur 2 for the sucked (or blown) layer can therefore be expected to be the quantity (U r 2 + vou),
and so the basic equation for the transpiration layer becomes

(Ky~~r = Ur2+VoU=:x(U128)-vO(U1-U).
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This equation is identical with equation (2.2.16) and therefore leads directly to the bilogarithmic
law (2.2.17).

The ultimate proof of equations (6.1.12) and (6.1.14) must await the solution of the full transient
equations of turbulent flow, but this does not appear to be imminent. In the meantime they are
justified by the good agreement between the velocity profiles observed in practice and those predicted
by them.

The same criterion must be applied to the law describing the velocity distribution in the outer
region: so far the most fruitful analysis of the outer region in a solid boundary layer has been that of
Coles", His wake law, whilst based on a tenuous analogy with free turbulent shear flow, describes
actual boundary-layer velocity profiles with great accuracy and is therefore extended by the present
authors to the case of transpiration (see Section 3).

Coles' wake hypothesis states in effect that in a layer which is not undergoing violent changes
the velocity can be subdivided into two additive components. One of these is associated with the
constraint imposed by the wall and obeys the law of the wall. The other, bound intimately with large
scale mixing, is termed the 'wake component' by Coles in view of the similarity of its profile with
that observed in a half-wake (also called the 'free-jet-boundary'-see Schlichting!", p. 486).

~ = f (!!rY, Urk)
Ur v v

Uw = ~r II(x)w (~) ,

(6.1.15)

(6.1.16)

(6.1.17)

with w(y/o) a unique function, of negligible magnitude near the wall (Coles' wake function) and
II(x) a variable parameter (constant in zero pressure gradient).

It is clear that the mechanism producing the wake component cannot be destroyed by mild suction
or injection at the wall, so that the velocity in a transpiration layer can again be expected to consist
of two components, Ue obeying the law of the wall (6.1.4), and Uw taking the form

(6.1.18)

Several forms of the wake law (6.1.18) are possible for the transpiration layer, depending on how
the analogy of u* with Ur/K is taken. The simplest form is obtained if u* is taken to be constant
(with respect to y) and equal to (l/K)Un

Uw = ~r II(x)w (~) . (6.1.19)

An alternative form is obtained if u* is identified with the quantity y(oue/oy) which is equal to
Ur/ K when V o = 0 and appears to be of greater significance away from the wall than V( T O/ p).
Writing

OUe yUr20 f (UrY vo)
Y oY = vo(Ury/v) -v-,' Ur u*e,

Uw = u*eII*(x)w(y/o).

(6.1.20)

(6.1.21)

Other forms are obtained if different analogues of Ur/K are substituted for u"f." but it should be
noted that those in which u* is independent of yare experimentally indistinguishable from (6.1.19).
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Thus if u* is taken equal to (1!K)v'(UT2+ voU1) , which quantity appears to be more relevant
outer region than UT!K itself, the wake law can be written as

_ y/(UT 2+VOU1) I-I (') (~)
Uw - .1 X W " •

K 0

The shape of the velocity profile is identical with that given by equation (6.1.19), only the v
TI is affected.

Experimental evidence favours the choice of equation (6.1.21) rather than equations (6.1

(6.1.22).
To sum up briefly then, the turbulent portion of the transpiration layer consists of two (

regions-the wall region and the wake (outer) region, which show a marked similarity of bel

with the corresponding regions in a solid boundary layer.

6.2. Types of Flow.

The mutual influence of the outer and wall regions appears to be expressible as a single p

quantity which can in general be identified with UT' The balance between the two tu
regimes is therefore reflected in the relationship between U T and the other flow qua
particularly U1 and V o' Three types of flow can then be distinguished:

(i) A conventional boundary layer is one in which the shear pUT 2 is sufficiently large to ov

the distorting effect of suction or injection on the turbulence in the layer so that the behaviou.
layer does not differ essentially from that in the case of solid boundaries. For this to be ti

following relationships must hold:
U

T
2 > 0,

U T 2 + V OU1 > 0.

This class includes therefore all boundary layers on solid surfaces (except near separatioi

undersucked layers (vo < 0, U T 2 < -VOU1) and presumably all layers with injection thn
homogeneous surface (in which the wall shear cannot be negative though it might be zero).
laws governing undersucked layers can be expected to have analogous forms applicable
conventional layer with suction or injection. The bilogarithmic law (based on the linear v.
of mixing length) and Coles' wake hypothesis are two of the laws which have been applied

report to boundary layers with Vo 7'= 0.

(ii) A critical boundary layer is one in which one or other of the inequalities (6.2.1), (6.2
ceases to be true. The constant pressure layer on a solid surface reaches this state asymptoti
infinite downstream distance. Although it is impossible to obtain such a layer in practi
tendencies observed in actual flows enable the properties of this layer to be determined. Tl
rate of growth of the layer becomes zero (though its thickness is infinite), since the wall shear vr.
Also the logarithmic law accounts for the entire velocity profile, since the maximum contr
of the wake law to the value of u equation (3.3.5) is ZTI UT!K, which vanishes when UT = (

TI remains finite in constant-pressure layers).
The layer with injection has been observed to reach the condition UT = °at finite distal

with finite thickness but it appears that this was due to the non-homogeneity of surface (ef., Se
which is unavoidable in practice. Experimental evidence concerning the development of the
layer with zero wall shear on a homogeneous surface is lacking and perhaps unobtainable,
complete the argument it is surmised that in such a layer the streamwise velocity u we
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negligible throughout the sublayer and part of the turbulent region so that the constraint velocity Uc

would be effectively zero everywhere and the law of the wake would describe the entire layer which
would behave like a free jet boundary.

In the case of injection equation (6.2.1) ceases to hold before equation (6.2.2) does, whilst for solid
boundaries Vo = 0 and the two equations are equivalent. When suction is applied, however, the
critical condition is given by equation (6.2.2) which ceases to hold while UT

2 is still positive. It is seen
from the momentum equation (2.2.9a) that the condition UT2 + VOUI = 0 implies (for constant
pressure layers) that the momentum thickness of the layer is constant, dB/dx = O. It has in fact
been found that such a layer quickly settles to the asymptotic state in which there is no variation of
any of the flow quantities with x and that in fact the 'wake component' (i.e. departure from
bilogarithmic velocity profiles) disappears completely. This state of affairs is consistent with the
acceptance of (UT 2 + VoUI ) as the quantity describing the influence of the wall region on the outer
portion of the layer and its use in conjunction with Coles' wake function as in equation (6.1.22)
and also with the approach used to obtain equation (6.1.21). If equation (6.1.19) is accepted, then
the value of lIT for asymptotic layers is zero.

(iii) The supercritical or degenerate form of the boundary layer does not occur in the presence of
solid boundaries. With suction and injection, however, such a state is possible and is defined by

U/ + VOU1 < 0 for suction (oversucked)

UT 2 < 0 for injection (negative effective shear).

(6.2.3)

(6.2.4)

The oversucked layer differs essentially from other turbulent layers in that its thickness is
decreasing, whereas all others grow (this may not be true of layers in very strong favourable pressure
gradients). The bilogarithmic law of the wall cannot hold throughout the oversucked layer, as the
maximum velocity predicted by it (= UT

2/ - vo) is less than the free-stream velocity UI , so that the
strength of the wake component {defined as (UT/K)IlTw(l) in equation (6.1.19) or a corresponding
expression in equations (6.1.21), (6.1.22)} must at least equal (UI - UT 2/ - vo). Experimental evidence
does in fact suggest that the wake component of velocity in an oversucked layer has a profile different

from that of Coles' wake function, whether plotted on the basis of uw/UT or uw/u*c' This behaviour
lends further weight to the argument in favour of calling an oversucked layer 'degenerate' and even
though there are insufficient data for conclusive deductions to be made, an important change in the
behaviour of the outer region as the layer becomes oversucked is to be expected, in view of the
total disappearance of the wake component in the turbulent asymptotic layer.

The blown layer with negative effective wall shear could not be obtained on a homogeneous surface
as it would necessarily have backflow near the surface. In spite of this, certain hypothetical predictions
could be made regarding its behaviour. Such a layer would be growing with dB/dx less than VO/UI,
and the bilogarithmic law would not extrapolate to zero velocity at any value of wall distance y.
It is clear that no statements can be made about the sublayer in such a case. A non-homogeneous
boundary does make such a layer possible through the introduction of spatial-fluctuation shear
(see Section 4) and layers showing this type of behaviour have in fact been obtained by Mickley and
Davis". The bilogarithmic and wake regions appear well behaved but the law of the wall cannot be
extrapolated through the region of spatial fluctuations to the wall itself.

The picture which emerges from consideration of the three types of flow is that the effect of the
outer region on the law of the wall is described entirely by the value of UT

2 and that when U
T

2 = 0,
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u = 0 in the wall region, whilst for V r 2 < 0 the flow near the wall departs from its normal behaviour.

The effects of the wall conditions (constraint and transpiration) on the outer region are essentially

described by the quantity (V r 2 + vOV1) , which vanishes simultaneously with the disappearance

of the wake component in the asymptotic layer, whilst the outer region behaves abnormally when

V r 2 + vOVI < 0, (Fig. 14).

6.3. Development of the Layer.

Despite the scanty experimental evidence it is possible to predict qualitatively the development

of a turbulent boundary layer with transpiration. Consider a"'layer with given initial conditions

developing along a porous wall in zero pressure gradient and with constant Vo . After a short settling

length in which the effects of discontinuity at the point where transpiration starts disappear, the

behaviour of the layer will depend on the value of vol VI'

At high injection rates the layer will grow rapidly, the rate of growth will decrease slowly to a

constant value de/dx = vol VI if the surface is homogeneous, and the layer will tend to assume a

velocity profile like that at a free jet houndary. If the surface is non-homogeneous the rate of growth

may decrease below that limiting value, yielding a layer with effective negative wall shear.

As the injection rate decreases so does the tendency of the layer to assume the form of the linearly

growing half-jet, and the strength of the wake component decreases both with downstream distance

for a given V o and with decreasing Vo at a given station.

On a solid surface the thickness of the layer increases at a less than linear rate (Ro ex Rx 415 approx.),

the rate of growth tending to zero but reaching it only at infinite distance and thickness. The profile

parameter n is constant at a value of 0·55.
With a slight amount of suction the layer grows less rapidly and when some optimum rate of

suction is applied the layer quickly reaches the asymptotic conditions of no streamwise variation and

no wake component of velocity. Since the rate of growth tends to zero far downstream on a solid

surface and quickly reaches zero at the optimum rate of suction, it is clear that the rate of growth

will also tend to zero for growing sucked layers, but it has not yet been definitely established whether

such layers grow indefinitely (at a decreasing rate) or their thickness tends to a finite value

corresponding to the suction rate. Four distinct possibilities exist:

(i) For every suction rate ~ vol VI there is an asymptotic value of momentum-thickness Reynolds

number Ro = v1elv (or equivalently - voelv) and conversely every value of asymptotic Ro is

obtainable by applying the corresponding suction.* When the asymptotic Ro is very close to the

value of Ro at the beginning of suction the asymptotic conditions are reached very rapidly. If the

two momentum thicknesses differ by much the asymptotic conditions are achieved at a large distance

along the porous plate.

High suction rates correspond to thin asymptotic layers and vice versa.

(ii) There is a unique asymptotic suction rate which, when applied to a turbulent boundary layer,

maintains it at its initial momentum thickness. At lower rates of suction the layer grows indefinitely

whilst at higher suction rates it decreases in thickness and eventually reverts to the laminar state.

* At rates of suction higher than (- volUr)cl'it the turbulent layer will revert to laminar flow and reach the
asymptotic conditions with (-voelv) = l. There may be a discontinuity between this and the asymptotic
turbulent value of ( - voeIv) for (- Vol U1) ::;; (- Vol U1)crit.
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(iii) There is a unique asymptotic suction rate which, when applied to a layer, tends to increase

or reduce it to a unique asymptotic thickness. The layer grows indefinitely with less suction and

reverts to laminar flow with more.

(iv) There is a unique asymptotic suction rate which when applied .to a layer of unique initial
thickness, produces an asymptotic layer. In all other cases the layer either grows indefinitely or

reverts to laminar flow.

The comparative ease with which asymptotic layers were obtained by Kay and by Dutton

eliminates (iv). The assumption of the bilogarithmic law of the wall and the dependence of A on

Vol UT makes (ii) also unacceptable, as, at the unique asymptotic suction rate, Vol UT would be fixed

and hence the corresponding value of Uul]», which in turn would yield a maximum value of UTBlv*
and so of U1BIv from which asymptotic conditions could be reached.

Dutton favours the third assumption but the coincidence that the unique asymptotic thickness

was exactly the thickness of his boundary layer at the beginning of suction with his original entry

conditions would be remarkable if it were correct, for whereas with the entry conditions altered
Dutton found that the layer did not settle down to a constant state so readily, he did not attempt to

obtain asymptotic conditions by adjusting the suction, i.e. he did not test the validity of (i) which
appears the most acceptable to the present authors and has been neither confirmed nor disproved

as yet.
1\t suction rates higher than the optimum (i.e. either the unique asymptotic or that producing an

asymptotic layer of the same thickness as at entry) the layer at first decreases in thickness along the
plate without reverting to laminar flow. If hypothesis (i) is true the reversion occurs when the

suction rate exceeds a critical value, whilst according to (iii) it takes place when the Reynolds
number Re has decreased sufficiently.

At very high suction rates the layer quickly reverts and reaches laminar asymptotic conditions

with (-voBlv) = !t.
6.4. Effects of Roughness and Non-Homogeneity of Surface.

Discrete holes or pores through which suction or injection takes place cause the flow to be

three-dimensional near the surface. These spatial fluctuations are smoothed out at large distances

from the wall, so that the net effect of non-homogeneity is similar to that of roughness. Thus if the

hole size and suction velocity are sufficiently small and the boundary layer sufficiently thick, the

surface is aerodynamically smooth and homogeneous and the flow conforms to the idealised model.

As the size of the discrete orifices (or the suction velocity) increases, or as the layer becomes

thinner, the spatial fluctuations cease to be negligible in an ever increasing proportion of the boundary

layer. Outside the fluctuation region the flow mechanisms are unaffected: in particular the
bilogarithmic constraint law and the wake law hold, but the inner boundary condition is changed,
so that the values of the constant Ain the 'non-homogeneous' layer differ from those obtained in the

ideal conditions with the same V o and effective wall shear expressed as Ua (Ua 2 is defined as

'TolP - (uovo), where the mean is taken with respect to space as well as time. In the ideal case U()" == UT)'

* (UTB) UT Jd [(VO I Y)2 2J [ (vo Y)2 2J/ 2d---;- max = ---:; 0 2K n d - UT VOUl - 2K In d + UT (VOUl ) Y'

t Dutton and Kay obtained asymptotic layers at the following suction rates: Dutton, smooth nylon surface
-volUl = 0·00443; perforated surface: -volUl = 0·0073; Kay, sintered bronze -volUl = 0·00332.
Dutton observed reversion at -volUl = O·0125.
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No attempt has been made as yet to obtain experimental results concerning the effective rou]
of a non-homogeneous surface, but the basic mathematical treatment of spatial fluctuati

included in Section 5.
When the size of the fluctuations is comparable with the boundary-layer thickness the wl

the wall region may be disturbed and no evidence exists regarding the flow in such a layer, 1
the whole it appears that the analogy between non-homogeneous transpiration and rough!
fairly close, with one basic exception in that the boundary condition U o = 0 is not observe,

at the 'effective mean surface'. In particular the value of the quantity <uovo>IV1<vo>n
appreciable, so that at high injection rates (for which TO is small) the value of <uovo>may be E
than that of Tolp, resulting in negative effective wall shear V0-2, an impossible condition

homogeneous surface, even with roughness.

As regards the development of the boundary-layer non-homogeneity tends to increase tl

of growth of the layer with suction, so that a higher suction rate is required to maintain ;

at a given thickness. 0)('

At zero transpiration only the roughness of the wall produces any fluctuations, so that l

drilled sheet (surface Type D, Table 2.4.2), whilst behaving as a rough surface at high suctior

developed a well-behaved smooth-plate layer in the absence of suction.

With blowing the effect of non-homogeneity is to make the layer grow more slowly than

be the case on an ideal surface with the same injection rate and initial thickness, so that ef

wall shear decreases below the limiting value of zero for the homogeneous wall.

In all cases then, the primary effect of non-homogeneity is to decrease the effectiven

transpiration (provided Ivol <{ VI everywhere).
The non-homogeneous surface may also be aerodynamically rough when no transpiratior.

place, but little distinction can be made between roughness and non-homogeneity effects
V o =I- O. It would, however, be of great interest to obtain experimental data concerning the fluet
effects on surfaces of different geometry (hole size and spacing) and at different Reynolds nu
(various Vo and 8).

7. Conclusions.

The turbulent boundary layer with moderate suction or injection does not behave in an esse
different manner from one developing on a solid wall. The laws holding on impervious surfac

generally be extended by simple analogy to a form applicable to transpiration layers.
The most important of these is the bilogarithmic law of the wall in which the squared-Iogari

term vanishes in the case of V o = O. A method of plotting is available which determines th

shear (and hence the growth of momentum thickness) from the local velocity distribution

provided the local suction or injection velocity is known.

No reliable data are available on the velocity distribution within the sublayer, the lack of "

however, is relatively unimportant as the effects of the sublayer on the velocity distribution

fully turbulent region are confined to a single parameter (,\). The value of ,\ depends on tho

Vol U
T

and, to a certain extent on the type of surface used.

The velocity distribution in the outer part of the transpiration layer conforms to the wak

discovered by Coles and adapted to allow for the influence of suction or injection at the wall
-~----------~~~~~ -----~-_._--~~~~~~-~~~~~~~~-

* As shown by Dutton's asymptotic layers.
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If sufficient suction is applied, the boundary layer can be maintained at constant thickness, or
even thinned by the removal of more decelerated fluid than is entrained from the free stream.

In the case of an oversucked layer, the Coles' wake law does not appear to describe the outer velocity
profile with sufficient accuracy, but the law of the wall remains valid and the shear deduced from

it agrees well with the von Karman momentum equation.
Non-homogeneity of surface introduces spatial fluctuations near the wall. Their influence reduces

the effectiveness of transpiration so that at the same transpiration rate, the effective wall shear
(and so the growth of the layer) is higher for suction and lower for injection than through a
homogeneous surface. In particular at high injection rates the effective wall shear can be negative.

There remains a great need for systematic data on the variation of the parameter A, the correct
reference velocity for the wake law and the effects of surface geometry and for the extension of
both the theoretical analysis and the experiments to include the effects of pressure gradient.

The authors wish to express their gratitude to Dr. M. R. Head and Dr. B. G. Newman whose
valued criticism helped our ideas to crystallise and for their unfailing support in the shaping of this
paper. Our thanks also go to Professor W. A. Mair for many useful suggestions for the final
presentation.
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NOTATION

Constants in bilogarithmic law, equation (2.3.3)

Constants in bilogarithmic law when U r 2 < 0 equation (2.3.22)

Solid plate (vo = 0) values of a, b, equation (2.3.3a)

Values of B used in conjunction with In and loglo equation (1.1)

Value of y at which u is a maximum (or a minimum) in the bilogarithmic law

equation (2.3.1)

Denote functional dependence

V-I

Mixing length

Dimensionless transpiration rate and sublayer thickness, equations (4.3.1),
(4.3.2)

Value of ul U; and Ury/v at transition point in the solid case equation (4.2.7)

Experimental parameters defined by equations (2.3.10), (2.3.14) for suction
and injection respectively

Experimental parameters defined by equations (2.3.11), (2.3.15) for suction
and injection respectively

Static pressure

An arbitrary constant used in Section 5

Momentum thickness Reynolds number, U18/v

Velocities in x, y, z directions

Free-stream velocity

Effective wall shear velocity for non-homogeneous surfaces, equation (5.17)

Wall shear velocity for homogeneous surfaces, equation (2.2.7)

Local shear velocity, equation (6.1.18)

Coles' wake function, equation (5.3.1)

Experimental wake functions defined in Section 3.4

Space co-ordinates along, normal to, and across the plate

Functions used and defined in Table 4.3.2 and Appendix III
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w
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NOTATION-continued

Effective wall distance discussed in Section 2.3.2

Co-ordinates used in plotting experimental results with suction and injection
respectively, equations (2.3.8), (2.3.12)

Boundary-layer thickness

Boundary-layer displacement thickness

Mixing-length coefficient defined by equation (2.1.1) and assumed to be a
universal constant

Profile parameter defined by equation (2.3.5)

Profile parameter defined by equation (2.3.23), used when UT
2 < 0

Dynamic and kinematic viscosity (fL = vp)

Profile parameter defined by equation (3.3.1), used m conjunction with
Coles' wake function

Values of II obtained under different suppositions (see Section 3.4)

Density of working fluid

Effective shear stress (and its full tensorial components) in space-fluctuating
flow (see Section 5).

Shear stress in two-dimensional flow (= T vise +Tturb)

Viscous shear stress (= fLoU/OY)

Reynolds stress (= - p<UIV' »)

Momentum thickness

Function used and defined in Table 4.3.2 and Appendix III

Conditions at the wall (y = 0)

Conditions at the transition point (edge of sublayer)

Conditions at the edge of the boundary layer (y = 8)

Quantities obtained from the bilogarithmic ('Constraint') law

Quantities obtained from the wake law

Running co-ordinates in tensorial analysis of Section S
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NOTATION-continued

Superscripts

Denotes time fluctuations where applicable (see also a', b', A', y')

x Denotes spatial fluctuations

< > Denotes the time-mean

{} Denotes the space-mean

I I Placed round a quantity denotes the absolute value (modulus)

In Denotes loge

log Denotes logarithm irrespective of base.

Special Terms

Solid The word is used in its sense as an antonym to 'porous' to describe surfaces
through which no transpiration takes place.

Spatial Fluctuation The variation of a flow quantity about a mean in the x, z directions (due to
discrete holes or roughness elements in the surface).

Non-homogeneous Describes a surface and the boundary layer on it when spatial fluctuations are

present.

Homogeneous Surface and boundary layer with negligible spatial fluctuations.
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APPENDIX I

Values of the Constants in the Logarithmic Law with Zero Transpiration

The velocity distribution in the turbulent wall region of a boundary layer on a solid wall is
known to be described by the logarithmic law

u A B 1 UTY A 1 UTY-U- = + 10 og10 _.- = + Be n --. (Ll)
T v v

The coefficients A and B are accepted by all investigators as being constant for all layers on smooth
flat surfaces, but there is a considerable amount of disagreement regarding their actual values, as
can be seen from Table 1.1 (cf. Table 3.1, ROSSI2).

TABLE Ll

Constants A and B in the Flat-Plate Logarithmic Law

Investigator A BlO
Method of determining Max value

A+2BlOwall shear of UTY/v
-----

Schultz-Grunow'" 4·07 5·93 Floating element 500 15·9
Ludwieg and Tillmann-s I 6·0 5·2 Heat transfer 500 16·4
Klebanoff and Diehl-" 4·8 5·4 Momentum integral equation 500 15·6
Clauser-" 4·9 5·6

I

16·1
Coles1 7 5·1 5·75 Floating element I 16·6
Dutton2* 5·8 5·5 Preston tube 200 I 16·8I'6·1 5·4 ! 16·9
Sarnecki (unpublished)'] 5·5 5·1

!
Momentum integral equation 250

I
16·7

* Dutton used Nikuradse's values (4·8,4' 5)as a basis for comparison of his experimental profiles with theory.
The agreement was good, but his experimental points lie consistently above the line and a better fit is obtained
by using (5'1, 4·4).

t Unpublished results obtained in conditions similar to those of the suction experiments shown in Figs. 2, 3,
but with the perforated surface covered with (impervious) tracing linen. Spanwise variation of velocity in the
boundary layer at a given height from the surface did not exceed 1%of U1 • Scatter of experimental points
about the line A = 5·5, B = 5·1 not more than 1%of U1 • Values of Ro between 1000 and 3500.

The above values of A and B predict velocities in the boundary layer differing by as much as 10%
of u and two alternatives appear. Either A and B are not universal constants for smooth flat plates, or
the discrepancies are due to different interpretations of experimental data. If the former is to be
discounted, a way must be sought to adjust the results of the various investigators, so that they
all conform to a universal law.

There are two sources of error in the experimental determination of A and B. One is the problem
of finding the true value of skin friction and so the correct scale of u/U

T
and Ui y]», Five distinct

methods have been used by various investigators for the flat-plate layer. These are:

(i) the momentum integral equation (differentiation of the experimental values of 0)

(ii) the floating element (direct measurement of force on a movable plate)

(iii) the Preston tube (round pitot tube on the surface of the plate; calibrated in a pipe)

(iv) the Stanton tube

(v) heat transfer (direct relationship between skin-friction and heat loss).
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These methods do not give very good agreement with one another and none appears to be basically

more sound that the others, although (i) is perhaps the least reliable.

Now the flat-plate log-law can be written

u (A ) BUTy~- = --- - log B + log ~-
BUT B V

(1.2)

so that in any experiment (Aj B -log B) and (B UT) are obtainable directly from the velocity distri

bution, and any adjustment of UTwill be reflected in an adjustment of A and B, with (AjB -log B)
invariant; thus two different sets of A and B may be consistent, subject to the adjustment of UT ,

provided AjB - log B is the same in both cases.

A second source of error lies in the choice of the 'best' straight line through a set of experimental

points. It has in fact been observed that the graph of u against log Y is not perfectly straight, but

slightly concave upwards (near the edge of the sublayer some points appear to lie above the line

of the log-law, (ef. Coles10 Figs. 1 to 17) so that different values of slope (over a small range) can be

obtained from the same set of points, though each reasonable curve must pass close to the experimental

points near Ui y]» = 100. For comparison therefore, the values of A and B have been adjusted for

each of the eight formulae of Table 1.1, keeping (Aj B -log B) constant in each case, so as to give

lines intersecting at UTyjv = 100, ul U'; = 16·4. (The value 16·4 is the average of the eight values

of A + 2B in Table 1.1) Table 1.2 shows these adjusted values of A and B (together with other

possible values satisfying A + 2B = 16·4).

TABLE 1.2

Adjustment of UT to Gioe Lines Intersecting at UTyjv = 100

-2·5%

+2,2%

-4,3%
-1·6%
+1,1%

5·38
5·4
5·5
5·6
5·64
5·69
5·69
5·7
5·8
5·9
6·0
6·08

5·64
5·6
5·4
5·2
5·12
5·02
5·01
5·0
4·8
4·6
4·4
4·24

0313
0·304
0·242
0·181
0·147
0·127
0·126
0·122
0·064

+0·009
-0·044
-0·086

5 5

5·93

5·4
5·6
5·75

4·07

4·8
4·9
5·1

5 8

Klebanoff and Diehl
Clauser
Coles

Schultz-Grunow

Dutton (Nikuradse)

Original Necessary
Investigator AlB - log B A B adjustment----------.. _._-----~-

in U
T

A B
---~__=------i

-- - 0·581 6·4 5·0 -

- -
,

- 0·508 6·2 5·1 -
Ludwieg and Tillmann 6·0 5·2 0·438 6·0 5·2 Nil
Dutton 6·1 5·4 0·398 5·88 5·26 +2,7%
Sarnccki 5·5 5·1 0·370 5·8 5·3 -3,8%

" 0
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Table 1.3 shows the degree of adjustment necessary for U; obtained by different methods.

TABLE 1.3

Adjustment to U; obtained by Different Methods

Method

Preston tube

Heat transfer
Floating element

(Not stated)
Momentum integral equation

Investigator

Dutton

Ludwieg and Tillmann
Coles
Schultz-Grunow
Clauser
Sarnecki
Klebanoff and Diehl

Adjustment

+2,7%
+2·2%

Nil
+1,1%
-2·5%
-1·1%
-3·8%
-4·3%

Fig. 19 shows the graphs of ull); against Uryjv obtained with the extreme values of A and B from
Table 1.2 (Le. Ludwieg and Tillmann's and Schultz-Grunow's). It is seen that the disparity is
not great and that a line with B = 5·5 provides a good mean with departures from it not greater
than 2% of u. The value B = 5·5 and the corresponding A = 5·4 have therefore been accepted
for the analysis of experimental results.
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APPENDIX II

Note on the Use of Logarithms in Calculations Involving the Bilogarithmic Law

The functions logloq and In q both appear in the present paper, as In is the natural choice for

theoretical work and IOglO is more convenient in calculations. No confusion need arise provided it is

realised that the coefficient B has different values when multiplying a natural or a decimal logarithm.

The two values are denoted by Be and B10 where necessary. Thus 11K = Be whereas B IO is the slope
of the straight line in Fig. 19.

TABLE ILl

Accepted Values of Constants appearing in Calculations

Constant Value Logarithm (lOglO)
--------

A 5·4 0·732394
B lO 5·5 0·740363

Be 2·39 0·378147
K 0·419 1·621853
N 11·2 1·047771
1jN 0·0896 1·952229
2jN 0·179 1·253259

BlOjN 0·493 1·692592

BelN 0·214 1·330376
AjN 0·484 1·684623
1- AjN 0·516 1·712858

Note. N is the value of ul U; and UTy jv at the intersection of the linear (sublayer) and logarithmic (turbulent)
wall laws, equations (4.1.2) and (2.3.3a).
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APPENDIX III

Detailed Analysis of Possible Criteria for Transition from Sublayer to Fully Turbulent Wall Law

Table 4-.3.1 lists the 13 simplest parameters and their values at the transition point (i.e. edge of the

sublayer) in the case of solid boundaries. Each of these {except (vii), (viii) and (x) which do not vary

in the solid case} is acceptable as a possible transition criterion in the general case of transpiration.

The assumption of anyone of them yields a relationship between the sublayer thickness y" and the

transpiration and shear velocities '<-'0 and UT, or in dimensionless terms between m I> (NIZ)(vol UT)]
and n [= (1IN)(UTYalv)]' Since ,\ is given in terms of m and n by equation (4-.3.9) each criterion

leads to an expression for ,\ in terms of m (i.e. of volUT) only, as follows:

(i)

(ii)

UTYa -- N, N NI.e. n = ,
v

n = 1,

B
,\ = em - m ]Vlog N.

0: = N, i.e. ~ (e2mn_ 1) = N, e2mn = 1 + Zm,

1
n = Zm In (l +Zm) .

B [In(l+Zm)] B,\ = v(l +Zm) - m --log ----- - m -;;:-logN.
N Zm 1'1

(III.1)

(III.Z)

(111.3)

(lIlA)

. . . in(l +Zm)
This g1ves a real result only if Zm > 0, i.e. if

m> -i.

Unless m > -! the value of u = NUT is never attained by the sublayer law.

(IlLS)

(iii)

hence

uaYa _ N2- ,
V

. U N (2mn 1) Nn N2I.e. T 2m e - U
T

= ,

n
- (e2mn- l) = 1,
Zm

mnemn sinh (mn) = m 2
,

1
n = - x(m) ,

m

where x(t) is defined by

xeX sinh x = t2 •

B x(m) B
,\ = ex(m) - m N log ----:m- - m ]V log N.

53

(111.6)

(III. 7)

(111.8)



(iv)

hence

Yn
2
(o~) = N2 in the sublayer law, i.e. ;2 (Nn)2 U 7

2
e2rnn = N2,

V oy" U 7 V

mnerv: = m,

1
n = y(m) ,

m
(III.9)

where yet) is defined by

ye" = t, (II I.1 0)

and, for real y, t ;,
1

e

(III.11 )

provided that
1

m > - - = - 0·368.
e

(III.12)

For greater negative values of m the value of (y2jv)2ujoy in the sublayer law is always less than N2.

(v)

(vi)

Yn2 ('au) N.. v 2 U 7 2 1 N
~-- = m the turbulent law, l.e.c;-2 (Nn) -- -r-c-c-' eu m = --,

v cy" J( U 7 v KNn K

nemn = 1, result identical with (iv).

JI'r'- (~~)' = N in the sublayer law, i.e. -/-2 Nn U 7
2

e2mn = N,
L 7 ()y a v- V

ne2mn = 1, 2mne2111 n = 2m,

1
n = 2-m y (2m) , (III.13)

with yet) defined by (III.10).

m B
,\ = e'!"1J(2m) + 7.cN y (2m) - m N log N (III.14)

provided

(ix)

2m>

1 e2mn - 1
2m ernn

1
- ,m > - O·184 .
e

N
U 7 ---- (e2rnn - 1)

2m
KN in the turbulent law, i.e. --------------------

v U 2 1,,_ Nn 7 em"
U 7 v KNn

1, sin h mn = m ,
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Putting
m = sinh rP, (III. 16)

rP rP
n=-=--.

m sinh rP

B sinh rP B
It = e9 + m N log ~rP-- - m N log N.

(III.17)

(III.1S)

(xi)
U 2

r

v (~~)
oy a

KN in the turbulent law, i.e. ~!'!!! = KN,
emn

ne-mn = 1, - mne-mn = - m,

1
n = - -y( -m),

m
(III. 19)

defining y(t) as in (III.10).

m B
It = ry(-m) + ~Ny(-m) - m N log N ,

provided m < ~ = O·368, a critical injection rate
e

(III.20)

(III.21 )

(xii)

N2
U 2 (e2I11 n _ l )2

ua
2 N2' h bl I . r (2m)2-- ~u = 10 t e su ayer aw, r.e, -

(

u ) U~e2l11n

v ay. a

= N2,

1 e2mn - 1
--- = 1, as in (ix).

2m emn
N2

U 2 ~_ (e2mn_ 1)2
r (2m)2

= KN3.KN3 in the turbulent law, i.e. -------:----------(xiii)

n2e,nn sinh- (mn) = 1, mne?" sinh- (mn) = m3 ,
m

1
n = - z(m) ,

m
(III.22)

where z(t) is given by

zeZ sinh" z = t3 •

It = ez(m) - m ~ log ::<;::) - m ~ log N.

(III.23)

(III.24)

Note that the term - m(BjN) log N which occurs in all the expressions for It can also be written as
m(A/N -1), since B log N = N - A. The values of ,\ for different VO/U r have been computed from
each of the equations (III.2), (JIIA), (JILl1), (JILl8), (IJI.20) and (III.24). They are tabulated
in Table JILl and plotted in Fig. 13a.
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TABLE IIL1

Computed Values of ,\ for different Transition Criteria

Criterion (i) Criterion (ii)

VO/VT
,\ VO/VT

,\
-----------_._...

-0·179 0·884 -0,0896 + 00

-0·143 0·862 -0·0895 0·496
-0·107 0·859 -0·0890 0·508
-0·072 0·878 -0·0878 0·540
-0·036 0·922 -0·0860 0·572

0 1·000 -0,0842 0·598
+0·036 1·118 -0·0824 0·620

0·072 1· 285 -0·0806 0·639
0·107 1·512 -0·0717 0·714
0·143 1·813 -0·0627 0·769
0·179 2·202 -0·0538 0·815
0·215 2·701 -0·0448 0·854
0·251 3·332 -0·0358 0·888
0·287 4·127 -0·0269 0·920
o· 323 5·110 -0·0179 0·948
0·358 6· 358 -0·0090 0·975
0·394 7·889 0 1·000
0·430 9·784 +0·018 1·046
0·466 12·121 0·036 1·087
0·502 14·999 0·054 1·126
0·538 18·537 O'072 1·162

0·090 1·195
0·107 1·227
0·125 1·258
0·143 1·288
0·161 1· 316
0·179 1·344
0·215 1·397
0·251 1·448
0·287 1·498
0·323 1·546
0·358 1·593
0·394 1·640
0·430 1·685
0·466 1·730
0·502 1·775
0·538 1·820
0·896 2·263
1·792 3·448
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TABLE III.1-continued

Criterion (iii) Criterion (iv) or (v)

_. -- ._...__._-_.......__._",---

VO/UT A VO/UT
I A
I1------0,118 0·766 -0·0001 0·001

-0·101 0·783 -0·0060 0·060
-0·082 0·812 -0·0485 0·391
-0·059 0·855 -0·0579 0·479
-0·033 0·916 -0·0619 0·528

0 1·000 -0·0648 0·581
+0·040 1·112 -0·0656 0·608

0·089 1·259 -0·0659 0·637
0·149 1·450 -0·0656 0·666
0·225 1·698 -0·0644 0·696
0·320 2·018 -0·0590 0·761
0·439 2·429 -0·0480 0·832
0·661 2·916 -0·0293 0·910
0·777 3·639 0 1·000
1·014 4·515 +0·044 1·106
1·312 5·642 0·107 1·216
1·685 7·093 0·196 1·398
2·155 8·962 0·319 1·610
2·743 11·355 0·487 1·897
3·480 14·467 0·714 2·287
4·402 18·457 1·017 2·825

1·420 3·575
1·951 4·622
2·648 7·085
3·557 8·122
4·731 10·340
6·272 14·938
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Criterion (vi)

TABLE III.l-- continued

Criterion (ix) or (xii)

VO/UT

----------~. -------- ._--_._------

·~o·oooo 0·000 - 0·211 0·934
- 0·0000 0·007 - 0 ·159 0·888
- O· 0066 0·186 -0'114 0·869
-0·0117 0·280 -0,074 0·880
-0·0195 0·413 -0·036 0·922
-0·0242 0·496 0 1·0
- 0·0289 0·588 +0·036 1·118
-0·0324 0·689 0·074 1· 282
-0·0322 0·794 0·114 1·502
-0·0240 0·899 0·159 1·787

0 1·000 0·211 2·152
+0·053 1·093 0·270 2·615

0·159 1·185 O· 341 3·197
0·357 1·305 0·426 3·928
0·710 1· 537 0·527 4·840
1·324 2·081 0·650 5·979
2· 370 3·316 0·799 7·397
4·125 5·964 0·979 9·164
7·033 11·567 1·199 11· 363

11·803 20·79 1·468 14·097
1·795 17·498

--------,.----'-'. - - .'--,'-'---'---_ ..._-

Criterion (xi) Criterion (xiii)

~!O/UT .\ VO/UT .\
----_._--~--------_.

-0·487 1·190 -0·143 0·818
-0·319 1·064 -0'118 0·816
-0·196 0·973 -0·092 0·830
-0·107 0·946 -0·064 0'8~3

-0·044 0·934 -0·034 0·918
0 1·000 0 1·000

+0·0293 1·130 +0·038 1·114
0·0480 1·330 0·083 1·267
0·0590 1·610 0·137 1·468
0·0644 1·978 0·201 1·728
()'()656 2·200 0·278 2·063
(Hl659 2·450 0·374 2·490
0·0656 2·729 0·491 3·033
0·0648 3·041 0·636 3·726
0·0619 3·774 0·815 4·606
0·0579 4·676 1·038 5·717
0·0485 7·133 1· 314 7·128
0·0060 148·4 1· 657 8·918
0·000081 22027 2·082 11·203

2·610 14·065
3·264 17·713
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