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Sgmma~y. 
A simple theoretical analysis is given for the additional shear flexibility of a twisted panel caused by bending 

of the panel under a shear loading. Results of some experiments on initially twisted sandwich panels show 
good agreement with the theory. 

1. Introduction. 

1.1. For the analysis of stressed skin structures, it is customarily assumed that the skin carries 

only a membrane type of stress distribution. In particular, the skin panels are often regarded as 
fulfilling a shear-carrying role, direct stresses being concentrated into effective booms in the 

idealised structure. The loading on such a shear panel is defined by the shear flow in it and its 
flexibility arises solely from the shear strains associated with the membrane shear-stress system in 
the panel. Single curvature of the panel, and also taper lead to no difficulties, since in both cases the 

concept of a membrane stress system remains valid and a suitable average stress flow or resultant 

can be defined to allow adequately for the effects of taper. 
If, however, the panel surface exhibits twist relative to the axes Oxy for which the shear flow q is 

defined, then the membrane stress system gives rise to a resultant loading per unit area 

pq = 2qS2Wo/aX Oy (1.1) 

normal to the local surface where w 0 (x, y) measures the initial displacement of the panel surface from 
the xy plane (Fig. 1). In the absence of an equilibrating pressure, it is clear that the shear flow 
cannot exist alone in the twisted panel and must be accompanied by bending. Because of the 
bending, the stiffness of the panel as a shear-resistant structural element is reduced. The twisted 
panel as an element in a stressed skin structure and the specification of a statically equivalent force 

system acting on it is discussed in Section 9 of Ref. 2. It is the purpose of the present paper to 
investigate the reduction in shear stiffness for the simple case of a rectangular panel, supported on 
all edges and with a constant rate of twist ¢ = 02Wo/OX ay. A simple theoretical analysis is developed 

and experimental results in good agreement with theory are reported. 

1.2. It is first necessary to define the shear loading on a twisted panel. For the panel with all 
edges supported, the simplest loading of this type consists of a shear flow q acting in the mean 
projected plane of the panel. To analyse the stresses in the plate, we may resolve the loading into 
a membrane system, together with its equilibrating pressure, and a plate bending system, associated 
with the negative of this pressure. Provided the twist of the surface is small, its effect on the 

* Replaces A.R.C. 25 795. 



bending deflections of the panel under pressure can be ignored, the analysis of which may therefore 
be based on a flat rectangular plate. However, because of the twist, the bending deflections result 
in a further shear strain, i.e. additional to that caused by the membrane shear stress. In Section 2, 
it is shown that the total shear strain in the plane of the loading is 

Yxy = q/Gt + 4¢~q~ (1.2) 

where ~ is the average deflection of the panel under a unit normal pressure. 

1.3. The main part of the theoretical analysis therefore consists of the determination of the 
average deflection parameter ~ for rectangular plates. This is straightforward by the classical plate 
theory and results are tabulated and shown graphically for the two cases of all edges simply supported 
and all edges clamped. For the clamped edges the method given by Timoshenko in Ref. 1 was used. 

Since, however, the tests reported here were carried out on panels of sandwich construction, it 
was necessary to allow also for the effect of transverse shear flexibility on the plate normal deflections. 
Although a general approach to this by way of the Reissner equations is possible, a different method 
was adopted in order to give convenient correction terms to the results already obtained. An upper 
bound to the average deflection increment due to shear flexibility was calculated by means of the 
Principle of Virtual Forces a (Unit Load Method), assuming the shear-stress distribution given by 
the standard plate theory. To obtain a corresponding lower bound, the Principle of Virtual Displace- 
ments, in conjunction with a kinematic simplification of the shear-strain system, was used. These 
bounds coincide for a panel with simply supported edges and give a range of 3~o total deflection 
for the test panels with clamped edges. 

1.4. An experimental verification of the general result (Section 1.2), for the increase of shear 
flexibility, ]s reported in Section 4. Shear tests were carried out On panels with two different rates 

of twist (0.5 deg/in, and 1.0 deg/in.) in a square, four-hinged shear rig. Although in principle such 

a test rig is simple, the practical production of one which will consistently ensure a uniform shear 
field in the test specimen proves very difficult. Values of shear flexibility measured this way tend 
to be unreliable owing, inter alia, to the uncertainty of the specimen boundary conditions, its fit 
in the rig, the deformations of the rig itself, and the friction at its hinges. Thus, a direct comparison 
of shear stiffness between different speci, mens with differing rates of twist is not satisfactory for the 
measurement of comparatively small differences in their flexibility. 

To overcome these difficulties, the range of tests on each specimen was extended to include the 
simultaneous application of a normal pressure p, proportional to the shear flow q, which also gives 
rise to shear deformation in the mean plane of the panel. The measurement of shear strain under 
this combined loading thus gave a wider confirmation of the theoretical analysis and largely 
eliminated the random and unpredictable differences between specimens. 

Besides the overall panel shear strain, normal deflections and the bending strains were also 
measured. These results, shown in Section 4, also agree satisfactorily with the theoretical analysis. 

2. Shear of a Twisted Panel. 

Consider the twisted rectangular panel shown in Fig. 1. Its middle surface is defined by the 
equation 

Wo = exy (2.1) 
where 

¢ = a=w/a, ay (2.2) 



is the constant rate of twist of the surface relative to the axes shown. The panel is supported at the 
edges and is subjected to a loading defined by a constant shear flow q, acting in the twisted middle 

surface, together with a normal pressure p. Since the shear flow equilibrates a normal pressure, 

Pa = - 2~bq (2.3) 

we can separate the stress systems in the panel into the two components shown in Fig. 2. The first 
of these (a) consists of the membrane shear system together with its equilibrating pressure Pa, 

while in the second (b) there is a total uniform pressure 

Pb = P + 24q (2.4) 

which must be carried by bending of the panel. The distribution of the transverse edge reactions 

in system (b) follows from analysis of the plate bending and depends on the proportions of the 

plate and on the support  conditions along the panel edges. 
In the case of zero applied pressure, p, bending arises only from the shear flow pressure, 2~q. 

The related support reactions, together with the shear flow, q, then yield a boundary force pattern 
defining the shear-carrying function of the twisted panel as a structural element. For a square 
panel, the resultants on the four sides are easily seen to be statically equivalent to a shear flow q 
acting on the projected panel in the xy-plane. If the panel is rectangular, then the resultant on each 
edge does not lie in the xy-plane since the transverse component is, in general, no longer propor- 
tional to the length of the edge. Nevertheless, the panel loading may still be uniqueiy defined by 
the magnitude of the shear flow q, in this plane. This system does satisfy all conditions of equilib- 
rium, so that any further boundary loads can only consist of a self-equilibrating set of transverse 

support reactions. Corresponding to this specification of the loading, the shear strain of the twisted 
panel, supported on all its edges is the projected shear strain in the xy-plane. Such a shear strain 

arises, not only through the membrane strains q/Gt, but also due to the bending of the panel. If 
the edge supports deflect under load, then the self-equilibrating support reactions will also do work 

and the physical interpretation of the generalised strain, corresponding to the load system specified 

by q, is not so simple. However, for the representation of the twisted panel as a structural element, 

it is sufficient to consider such additional work as arising from an increased flexibility of the system, 
under the shear flow q, and due to the support deflections. In the present paper, we restrict ourselves 

to the case when the edge supports are rigid, so that the flexibility increase comes from the bending 

of the panel alone. 
To estimate the shear strain of the twisted panel, we apply the Principle of Virtual Forces 3 and 

consider the general case when the panel is subject to a pressure load p as well as the shear flow q. 
By definition, the virtual complementary work due to the virtual force system 3q is 

3We = aby3q. (2.5) 

The associated virtual complementary energy from the membrane system (a) is 

(3U,*L = abq3q/Gt (2.6) 

while that of the bending stress system (b) is conveniently expressed in the form 

( ~ u ~ o ) b  = f f w(x, y)~p~ dx dy. (2.7) 

.(91173) A2 



In equation (2.7) w(x, y )  is the deflection of the panel under the pressure load p~ and Spb is the 
virtual pressure resulting from 3q. Equating SUz e and 8 W ,  and substituting for 8Pb, we find 

q 2 ffw(x,y)dxdy. (2.8) 

The same result may also be obtained by direct kinematic consideration. Following Ref. 1, we 
may easily show that the shear strain in the twisted surface, due to displacements u, v, w, is 

q au 3v 3 %  3w ~w o Ow 
Gt  - ay + -3x + Ox Oy + Oy ax " (2.9) 

The first two terms on the right-hand side of equation (2.9) give the shear strain in the xy-plane. 

Hence, substituting for w 0 and integrating over the panel, we find for the average shear strain 

Y - Gt  ab Y 3x 

Upon integration by parts, and with w = 0 
reduces to the same form as in equation (2.8). 

+ x dx dy .  (2.10) 

at the boundary, the integral in equation (2.10) 

Provided the deflections w are small, they will be proportional to Pb and hence may be expressed 
a s  

w = pboa (2.11) 

where w(x, y) is the deflection function for the panel under unit pressure. If also the initial twist 
is small, it can be ignored in the determination of co, which becomes then the deflection function 
for a flat rectangular panel under unit pressure. Hence, using equations (2.11), (2.4) in (2.8), we 
finally obtain 

y = q / a t  + 2~(p + 2~q)~ (2.12) 
where 

1 
~ = ~  

is the average deflection of the rectangular (flat) panel under a unit uniform pressure. The shear 
flexibilityfq of the twisted panel, relating overall shear strain to shear flow, is from equation (2.12): 

fq = fo + f~ (2.14) 
where 

fo = 1~at ,  f~ = 4~ 2~. (2.15) 

Equation (2.12) also indicates a cross-flexibility between pressure p and shear q on the twisted 
panel, which is consistent with the more obvious reciprocal relation 

= (p + 2q~q)~. (2.16) 

In the tests described in Section 4, a pressure loading p was applied proportional to q. For this 
case the influence of the pressure may be represented as an apparent change in the rate of twist 4. 
Thus, if we introduce the proportionality factor c, such that 

p = 24cq,  (2.17) 

the shear strain of the twisted panel under the combined loading will be the same as for one with 
a rate of twist q~, under q alone, where 

Ce = ¢~/(1 +c) .  (2.18) 
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3. Deflections of Rectangular Panel. 

(a) Standard Plate Theory. 

The analysis of the previous chapter shows that the overall shear strain of the twisted panel, due 
to its bending, depends only on the average normal deflection, ~, under a uniform, unit pressure. 
With all four edges of the plate simply supported, standard plate theory 1 gives for the deflection 
function of the plate 

4a 4 ( -  1)(m-l)/e 
co(x, y) - IraD ~ m 5 Ym c o s - -  (3.1) 

m odd 

where 
m~y Y,~ = 1 % ~ t h % , + 2 c h ~ _ _ +  

2 ch %n 

c% = mTrb/2a and D is the plate ftexural stiffness, th( 
From equations (3.1) and (3.2) 

which is shown plotted against the ratio a/b in Fig. 3. 

t n T r x  

a 

1 retry sh ,tory 
2 ch ~,~ b b 

) = tanh( ),ch( ) = cosh( 

(3.2) 

), etc. 

th e %~} (3.3) 

where 

Using the results given in Ref. 1, Section 4.4, for the corresponding deflected shapes, the average 
deflections COl, m e, due to these bending-moment distributions are: 

~raDa2 od Eml  ~ th]~m ~1) 
~1  - ~aD m~la ~ 1 %~ th 2 % 

(3.s) 
b e F,~[ th/3,~ 1 ~2 = ~,Z a 1 the tim 

fi~ = m~ra/2b. 

The Fourier coefficients E,~, F,~, are determined from the conditions of zero slope normal to 
the plate edges. For the i 'th Fourier component of the slope Ow/~y at the edge y = + b/2, the 
typical equation may be written 

1 ~i  t h a i  + + t h c q  + G - -  = 0 (3 .6)  
i 4 ch X cq . 7 c ~ - ~  ~ b  m oaa ma (aS/b2 + ie/m2) 2 

Similarly, the condition for the i component of 3w/Ox at the edge x = + a/2, after a little 
manipulation, becomes 

be Iff~ i th]~il + ~  [--~-~- 

where 
e i = _ , l r a E i / 4 a  2 , 

8bi ~l  % 1 
+thf i i  +rra--m am~(b2/a2+i2/m2) e = 0 (3.7) 

.f,~ = - r r a F J 4 a  ~ (3.8) 

(Mv)Y=±~/2 = mGo~la ( - l) ('-1)I2 E,~ cos mTrXa } 

m~ry (M..~)x=~a/2 = ~ ( __ ])('m-I)/2 Fm cos ~ - -  
m o d d  

edges of the plate (Ref. 1): 

(3.4) 

For the case of all edges of the plate built-in, we may obtain a solution by superimposing on the 
pressure loading the following two sets of symmetrical bending-moment distributions along the 



The slight asymmetry between the two equations (3.6) and (3.7) results from the same factor, 
a 2, in the denominators of the expression chosen for e~, f~ in equation (3.8). 

Equation (3.5) indicates that, in order to calculate accurate estimates of the average deflection, it 
is only necessary to know the first few Fourier coefficients E .... F,~. Moreover, the smallness of the 
coupling coefficients between the E's and F's in equations (3.6) and (3.7) suggest that these may 
be determined with sufficient precision by restricting the, strictly infinite, sets of equations to a 
finite number. Trial calculations, for b/a = 5, with up to twenty equations, showed that an average 
total deflection with an error less than 0 .1% could be obtained with the first six equations of each 
set. Values of e,,, f,~, for m = 1 to 11, and 1 < b/a ~< 5, which were computed in this way, are 
given in Table 1. Using these and equations (3.3), (3.5), the total average deflection parameter for 
the plate with built-in edges was calculated and appears, plotted against the ratio, a/b, in Fig. 3. 

The limiting case, a/b = O, is, of course, elementary, giving 

(~D/a4),/b=o = 1/720. (3.9) 

During the tests on twisted panels under shear and pressure loads, measurements were made of 

the central transverse deflections for comparison with theory. From the above, the central deflection 
under uniform, unit ;pressure of a rectangular panel with simply supported edges is, according to 

classical plate theory: 

w~D 5 4 ( -- 1) (m-1)t~ a mth a m + 2 
- ( 3 . 1 0 )  

a 4 384 ~5 E m5 2ch%,~ 
m o d d  

The additional central deflections caused by the edge moment distributions of equation (3.4), 

required to represent built-in boundary conditions, are 2 ) a4 -- 7/-5 Z ( -- 1 )(m--1)[2 em Or'm, th  ~,,~ 
m o d d  ~,~2 ch %z 

ws~D 2 
a 4 - ~5  X ( I ) ( m _ l ) 1 2 f ,  n [Jm th]3 m 

m ~ ch 3,, m o d d  

(3.11) 

(b) Influence of Transverse Shear Strain. 

Although adequate for the estimation of the small deflections of a thin solid plate under lateral 
pressure, the classical plate theory employed in 3(a) ignores the effect of transverse shear strains 
and is therefore not sufficiently accurate for sandwich panels, the shear flexibility of whose cores 
may be quite large. The effect is particularly marked when the panel edges are built-in since (as 
shown in Fig. 3) the deflections due to the in-plane strains alone are considerably reduced by the 
action of the edge moments. 

Strictly, the inclusion of transverse shear flexibility requires a reformulation of the plate equations 
and a more detailed specification of the boundary conditions 5. It is, however, fairly straightforward 
to calculate upper and lower bounds for the effect of shear strains as a correction to the standard 
results. In the present problem, this approach provides limits which, although rather wide as a 
fraction of the shear correction itself, are sufficiently close in comparison with the total deflections. 

Lower L imi t . - - I f  w s is the additional deflection due to transverse shear, we assume that the 
relevant shear strains arise only from the slopes Ows/ax , Ùws/Oy , i.e. we write 

3w~ _ ~S~ 3ws - ~S'v (3.12) 
ax G~h ' 8y Glh 



where 1 Sx, S v are the transverse shear forces per unit length, G~ is the transverse shear modulus, 

h the total panel thickness, and a a factor which takes account of the shear-stress distribution across 
the plate thickness. For a solid plate, a = 6/5 and for a sandwich, a = 1. A symmetrical displace- 

ment function for Ws, satisfying the condition of zero w s at the boundary is: 

mTrx nTry 
w, = X X pa,,~ c o s - -  cos = poJ,. (3.13) 

m o d d  n o d d  a T 

Application of the Principle of Virtual Displacements determines the coefficients a~,~ for a unit 
pressure: 

16a ( - 1)( ~+~-mm 
amn - ~ r , G t h  rnn(m2/a ~ + n~/b2). (3.14) 

From this result, the average deflection parameter due to transverse shear strain is 

~Gth 64 1 

aa2 ~r~ modaE ~Eoaa m~n~( m2 + n2a2/b~) 
(3.1s) 

which is shown graphically in Fig. 4. 
At the centre of the panel 

~%c Gth 16 
@d/2 ~.4 

( -  1)(m+n-2)l~ 

Z E mn(m 2+n2a~/b 2) m o d d  n o d d  
(3.16) 

which, for a square plate, reduces to 

( °JScGh] = 0.0736. ( 3 . 1 7 )  
O~a!2 ] a = b  

These results hold for both simply supported and built-in edges. Equation (3.15) is an under- 

estimate in virtue of the limited mode of deformation permitted by theassumption of equation (3.12). 

Though the shear strains are inevitably compatible, the shear forces which they define are not 

necessarily in detailed equilibrium with the bending and twisting moments in the panel. Some 

qualification of the description 'simply supported edge' is also necessary, in that the above solution 

does not permit any shear strain in the plane of the edge. It is not therefore possible to make the 
twisting moments, Mxv, zero at the edges, which condition should also hold at a truly simply 
supported edge of a plate when transverse shear flexibility is admitted. The limited simple support 
which applies here gives only zero bending moment at the edges. For this case, however, the above 
result is exact, as shown by its concurrence with the calculated upper bound. 

Upper Limit to Ns.--To bound the average total deflection from above, we assume that the 
distribution of shear forces Sx, Sy throughout the plate is given by the solution according to 
classical plate theory, and apply the Unit Load Method. All stresses are now in equilibrium, but 
the strains are not necessarily compatible. 

If Sx, Su, sx, su are the shear forces due to a unit pressure over the plate and to the unit 
load system respectively, then the Unit Load Method gives directly 

r m {Sxs~ + Sysy}dx dy. (3.16) 
~)s = Gt h J-ale J-bt2 



The appropriate unit load system for the average deflection consists of a pressare Pl = 1/ab and 
hence 

sz = S J a b ,  s u = S J a b .  (3.17) 

However, it is convenient not to utilise this relation just yet. Instead we substitute for S~,  S v in 
terms of the displacement o~ which satisfies the standard plate equation and integrate by parts. 
Noting also that 

as~ as u 
cq~- + ~y + Pl = 0 (3.18) 

we find 

Do~ 3-0/2 ~ 0Y z J -./2 -a/Z O--~ -0/2 

- Pl .J-~l~, ,J-b/~ [ Ox2 + OyZ j dx dy .  (3.19) 

When the edges are simply supported, the first two integrals (along the boundary) vanish because 
of the boundary conditions fulfilled by oJ. By expressing co in the familiar Navier form (as a double 

Fourier series) the remaining integral is easily found to reduce to equation (3.15), confirming the 
concurrence of upper and lower bounds alleged earlier. 

On the other hand, the third integral in equation (3.19) vanishes when the edges are built-in, 
while the first two do not. They do however simplify. Substituting for Sx, sy in terms of co, noting 
the boundary conditions for ~o, and taking advantage of the symmetry of the panel, leads to the 
result: 

t } °~a2 -- aab t J  -b/~ [ ~-x~ Ox2 Jx=al~ dy + -al~ [ 0 9  ~Y~ J v=o/~ dx . (3.20) 

The second-order derivatives O2oJ/Ox z, azco/dyZ at the boundary are given directly from the 
bending moments there {equations (3.4)}. The third-order derivatives derive from equation (3.1) 
together with the corresponding deflection functions associated with the edge bending moments of 
equation (3.4). The final expression may be written in the form: 

aa ~ ~r 5 Z ~ f ,~A(fi , , )  + -b 
m o d d  

64 1 8a 
Y, m{f,,pB(fi,,~) + e ,pB(%, ) }  (3.21) 

7r 7 ~Xoaa e,,J,,~ m(1 + b~/a ~) + ~-b ~ oaa 

where the functions A(/~), fi(/,) are 

A(/x) = /~ sechZ/~ + tanh/ ,  

BOx ) = / z  sechZ/z + 3 tanh/~ 

and %,  fm are the coefficients of Table 1. Fig. 4 shows the results for the upper-bound shear-strain 
correction, plotted along with the lower bound against the ratio a/b. Both bounds coincide for the 
obvious limiting case, a/b = O, when 



The statements on upper and lower bounds as yielded by the two methods are, of course, only 
applicable to the average deflection results. Equations (3.16), (3.17) for the central deflection can 
therefore only be regarded as an approximation for the effect of shear strain, and not as a lower limit. 

4. Experimental Work. 

Measurements of overall shear strain and central deflection of square, twisted sandwich panels, 
under shear and normal pressure were made in the rig shown in Figs. 5 and 6. It consists of the 
usual square frame, made up from four massive edge members hinged together at the corners, in 

which a pair of panels was mounted back-to-back. Shear load was produced by a tension or com- 
pression across the frame, applied to a diagonally opposite pair of hinge pins. The back-to-back 
mounting of two panels, as well as eliminating out-of-plane loads and consequent distortion of the 

frame, allowed a normal pressure to be applied by sealing and evacuating the space between 

them. 
In order to define precisely the edges of the panel experiencing shear strain, these were cast with 

Araldite into slots in four solid-steel edge pieces which in turn fit and are bolted into the main 

channel-section edge members. The hinge pins are positioned at the corners of the square formed 

by the panel edges so as to give compatibility of shear strain in the panel and frame. 
Shear-strain measurements were based on the diagonal extension and compression of the frame. 

Simple extensometers, consisting of dial gauges reading to 10 -a in., with extended probes, were 

attached on both sides of the frame to the hinge pins (Fig. 6). Dial gauges were also used to measure 
normal deflections at the centre of the panels. These were mounted from the back of the main 

f rame members. Strictly, both these measurements are susceptible to error from any rig deformations, 
but independent tests showed any such effect to be negligible. In particular, the diagonal strains 
agreed very well (within 1%) with those recorded by strain gauges and an extensometer mounted 

directly on a flat panel tested in shear. Such direct measurement of the overall shear strain was not, 

of course, possible with twisted panels. 
All panels tested were of honeycomb sandwich construction with 30 S.W.G. (0' 0125 in.) faces of 

aluminium alloy, the thickness of the faces being limited by the strength of the Araldite edge 

attachment. The panels were Redux bonded, using the blanket and vacuum method, on a jig with 

the appropriate twist. To ensure an accurate fit in the test rig, this latter was used as an assembly jig, 
the edge pieces being bolted tightly in place and the Araldite joints cast one at a time (after 

degreasing and etching with phosphoric acid) while the frame was clamped accurately square. The 
absence of serious building-in stresses was indicated by the ease with which the hinge pins could 

be rotated or withdrawn. 
As an initial check on the design of the rig and the methods of measurement employed, first tests 

were carried out on flat panels. The degree of uniformity of shear strain achieved may be assessed 

from the direct strain distributions along the diagonals, shown in Fig. 7. Each point plotted there 
is the average of 16 individual strain-gauge measurements, i.e. four gauges measured with tension 
and compression applied in turn along each frame diagonal. Individual results in each set differed 
from the average by no more than about 21%, which is hardly more than the errors likely in the 
strain-gauge readings. The distribution along the loaded diagonal shows a greater variation from 
uniformity than that along the unloaded diagonal, presumably owing to slight rig deformation near 
the loaded corners. Nevertheless, these results suggest that, for the most part, the shear stress in 

the panel should be within about _+ 5% of the average value. - 
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As already mentioned, the overall shear strain deduced from the diagonal extension and contraction 
of the frame agreed closely with the average strain-gauge result and also with other methods. 

Moreover, individual panels gave repeatable results within the same limits of accuracy. In spite of 
this however, the shear modulus values calculated for the flat panels were disappointingly inaccurate. 

Tensile tests on sandwich specimens, in which E and u were determined, gave a shear modulus of 

3.86 x 106 lb/in ~, while the shear rig yielded values between 4-0 and 4.35 x 106 lb/in ~. Thus, 

not only did the shear rig overestimate the shear modulus, but also showed considerable scatter 
between nominally identical panels. 

Both these effects are, at least qualitatively, explicable by the action of friction on the hinge pins, 

principally the loaded ones, of the shear frame. Ideally, the hinges to which no external load is 

applied, i.e. those on the horizont'al diagonal in Fig. 6, should be completely unloaded. However, 

the presence of friction on the loaded pins, even if a state of pure shear in the panel is assumed, 

requires a tension across the 'unloaded' p!ns in order to cause the slight rotation of the edge members 
associated with shear strain. This tension reduces the shear load carried by the panel and hence its 

shear strain. That some such force did arise was indicated by the 'unloaded' pins tightening up 
progressively as the rig was loaded. 

These errors did not, however, affect the tests of twisted panels since the loading of these with 

different combinations of shear and pressure provided a range of tests on the same panel without 

the necessity of removing it from the rig. Fig. 8 shows the results of shear-flexibility measurements 

on two pairs of twisted panels, having actual rates of twist of 0.5 and 1.0 deg/in, respectively. 
The results, plotted against equivalent rate of twist ~ {equation (2.18)}, on a background of the 

theoretical estimates from Sections 2 and 3, are given relative to the shear flexibility of an effectively 
flat panel in each case, i.e. one with a combination of q and p such that 

p~ = p + 2¢q = 0. (4.1) 

The elastic constants used in the calculation derive from tensile tests on sandwich specimens for 
the face properties: E = 10.28 x 106 lb/in z, G = 3.86 x 106 Ib/in 2, v = 0.330. For the honey- 

comb core, a theoretical estimate of the shear modulus based on Ref. 4, was used, giving 
G~ = 3"99 x 10 ~ lb/in ~. 

Measured effective shear moduli are given in Table 2 and again show a consistent error between 
the two pairs of panels and also with the flat ones tested earlier. 

As described earlier, the pressure load on the panels was produced by sealing the volume between 

the panels and exhausting it with a vacuum pump, the pressure reduction being measured ~xith a 

simple manometer. In the loading, pressure increments were always applied before the corresponding 

shear increments in order to give a uniform effect of friction. 

In Fig. 9 the shear-strain measurements of a twisted panel under pressure alone are shown 

together with the corresponding theoretical curves. This result is of iriterest in displaying the small 

displacements which must be measured in this type of shear test. 

Two further sets of results give the central deflections of a number of panels under different 
combined loadings in Fig. 10 and Fig. 11 the bending-strain distributions along the diagonals of a 

twisted panel under shear. The theoretical deflections shown in Fig. 10 use equation (3.17) to give 
an approximate correction for the effects of transverse shear strain. They are plotted as central 
deflections for unit diagonal load on the rig against the twist parameter 

¢(1+c) = ¢ +p/2q.  

10 



5. Conclusions. 

A simple theoretical analysis has been developed for the decrease in effective shear stiffness of a 
rectangular panel which arises from the bending of the panel when it has a twisted surface. The 
main parameter in determining the loss of stiffness is the average normal deflection of the panel 

under a unit, uniform pressure. 
Though classical plate theory is adequate for the determination of the average deflection parameter 

in solid panels, the additional influence of transverse shear flexibility is important in sandwich panels 
with shear-flexible cores. Upper and lower bounds for this effect have been evaluated by energy 

methods. 
The predictions of the theory have been substantiated by the results of shear tests carried out on 

initially twisted sandwich panels. 

11 



Oxyz 

~l, V,  W 

W o 

E,G,  Gt 

P 

D 

h 

t 

a, b 

~,(x, y) 

q 

M~,my, Sx, G 

Ei, Fi 

P 

N O T A T I O N  

Cartesian axes, Oz along mean normal to panel 

Displacements at panel middle surface along Ox, Oy, Oz 

Initial displacement of middle surface 

Young's  modulus, shear modulus, transverse shear modulus (for sand- 

wich panel) 

Poisson's ratio 

Flexural stiffness of panel 

Depth  of panel 

Membrane  thickness of panel 

Dimensions of rectangular panel 

Rate of twist of panel middle surface 

Deflection of flat panel under unit normal pressure 

Shear flow 

Bending moments  and shear forces per unit length 

Fourier  coefficients for edge bending-moment  distributions 

Normal  pressure 

No. Author(s) 

1 S. Timoshenko .. 

2 J .H.  Argyris and S. Kelsey.. 

3 J .H .  Argyris . . . . . .  

S. Kelsey, R. A. Gellatly and 
B. W. Clark. 

5 E. Reissner . . . . . .  

R E F E R E N C E S  

Title, etc. 

Theory of plates and shells. 
McGraw Hill. 1940. 

Modern fuselage analysis and the elastic aircraft. 
Butterworths. 1963. 

Energy theorems and structural analysis. 
Butterworths. 1960. 

The shear modulus of foil honeycomb cores. 
Aircraft Engineering, Vol. 30, p. 294. 1958. 

The effect of transverse shear deformation on the bending of elastic 
plates. 

J. App. Mech., Vol. 12, p. A69. 1945. 

t2 



T A B L E  1 

Edge Moment Coefficients 

b/a 1. O0 1.05 1.10 1.15 1.20 1.40 1.60 

e 1 

e~ 
e 5 

8 7 

89 

e l l  

A 
f~ 
A 
f7 
f9 
A~ 

+0.372084 +0.380661 +0-387505 +0.392864 +0.396979 +0.405060 +0-406500 
-0.037918 -0.040438 -0"042529 -0.044235 -0.045608 -0.048693 -0-049691 
-0.017560 -0.018001 -0.018351 -0.018627 -0.018843 -0.019335 -0.019596 
-0 .008272 -0.008402 -0.008509 -0.008598 -0-008674 -0.008920 -0.009172 
-0-004376 -0"004434 -0.004487 -0"004536 -0-004584 -0"004788 -0"005037 
-0-002546 -0.002583 -0"002620 -0.002658 -0-002698 -0.002883 -0.003111 

+0-372084 +0-399200 +0.425057 +0.449527 +0.472538 +0.550072 +0'607247 
-0.037918 -0-038683 -0"038877 -0"038498 -0"037559 -0-028772 -0"013777 
-0.017560 -0.018790 -0-019938 -0 .020994 -0.021951 -0.024719 -0.025788 
-0 .008272 -0"008952 -0.009625 -0 .010284 -0.010926 -0.013268 -0"015185 
-0.004376 -0.004755 -0-005140 -0"005527 -0 .005914 -0"007437 -0-008868 
-0.002546 -0"002768 -0-002996 -0-003230 -0.003469 -0.004447 -0"005430 

b/a 1.8 2.0 2.5 3.0 3.5 4 '0  5.0 

e 1 

e 3 

e 5 

e 7 

e 9 

811 

A 
f3 
f5 
f7 
f9 
A1 

+0"406065 +0.405420 +0.404522 +0.403994 +0.403344 +0-402529 +0.400621 
-0.049994 -0-050183 -0.051021 -0"052387 -0"054066 -0-055875 -0.059221 
-0.019863 -0.020208 -0-021397 -0.022858 -0 .024384 -0-025826 -0.028111 
-0"009482 -0.009853 -0"010952 -0-012132 -0.013255 -0 .014244 -0-015704 
-0.005333 -0"005665 -0"006570 -0.007466 -0.008275 -0.008961 -0"009938 
-0 .003372 -0 '003652  -0.004375 -0.005056 -0.005651 -0.006145 -0-006835 

+0.649183 +0.680347 +0.729850 +0.757564 +0.774557 +0.785698 +0"798903 
+0.004968 +0.025467 +0"076083 +0.118580 +0.151277 +0.175789 +0'208117 
-0.025257 -0.023247 -0"012668 -0.003493 -0.021997 -0-040316 -0"071629 
-0.016639 -0.017606 -0-017754 -0 '014640 -0 '008684  -0-000676 +0.018040 
-0.010165 -0.011301 -0"013270 -0-013777 -0"012724 -0"010194 -0 '001669 
-0.006388 -0.007296 -0.009236 -0-010522 -0.011020 '-0"010676 -0"007568 

773 773 

e.~ = 4a 2 Era, f m =  4a 2 F.~ 
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T A B L E  2 

Effective Shear Moduli of Twisted Sandwich Panels 

Effective Shear Modulus G x 10 -G (lb/in 2) 

Effective Rate 
of Twist Theory Experiment 

be (deg/in.) 

Max. Min. 0.5°/in panel l°/in panel 

0 
0-354 
0.500 
0.500 
0.613 
0.707 
0.790 
0.866 
1.000 
1.000 
1.118 
1.225 
1.323 
1-414 
1-581 
1.732 

3"86 
3"78 
3"70 
3"70 
3"63 
3"56 
3-49 
3-42 
3"29 
3"29 
3.18 
3 "07 
2.97 
2"87 
2"70 
2.55 

3 "86 
3"78 
3"69 
3"69 
3.62 
3"54 
3-47 
3-40 
3.26 
3"26 
3"15 
3 '03 
2"93 
2"83 
2'65 
2.50 

3'71 
3 "61 
3"55 
3.55t 
3.48 t 
3.38 t 
3.28t 

4"00 

3.81 

3"64 

3-49 
3-38 
3.48 t 
3.38t 
3.22 t 
3.09 t 
2.98 t 
2.78t 
2.57 t 

t Direction of loading reversed in these tests. 
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Fro. 1. Geometry of twisted panel. 
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Fzc. 2. Stress systems in twisted panel. 
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FIo. 6. Test rig for shear and pressure loading. 
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