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Summary.--Calculations of the pressure on a flat elliptic cone and on a flat elliptic hyper-cone at supersonic speeds 
and zero incidence are made for the case when the cones lie inside the Mach cone of the apex. The results are combined 
to give the pressure distribution and drag of a wing-like surface at zero incidence in a supersonic stream (see Fig. 6). 
I t  is found that the pressure is constant along straight lines on this surface which are normal to the wind direction 
(see Fig. 7). The drag results (Fig. 8) show the effect of sweepback on drag at supersonic speeds. 

1. Introductory A ccount.--The lift and drag of a pointed triangular plate or ' de l t a  w i n g '  
at supersonic speeds is calculated in Ref. 1. For the derivation a special system of curvilinear 
co-ordinates is introduced, which are closely linked with the" plate and with the Mach cone from 
its apex. The differential equation of linearised supersonic flow is then solved in this special 
set of co-ordinates b y  standard methods, and it  is found that  one of the simplest colutions 
corresponds to the flat delta wing at incidence. No discussion was given in Ref. 1 of the signifi- 
cance of the other simple solutions of the equation in the special hyperboloido-conal co-ordinates. 
However, it became apparent that  other interesting cases could be solved in this way, and the 
present report gives an example of the procedure. 

We first determine the pressure distribution for the thin elliptic cone with the equation 
_z = (x  ~ - y ~ c o t 2 , )  1/~ 

2t0 c a 
where x is measured down stream along the wind direction from the apex, 

y is measured to starboard, 
z is measured upward, 
c is the chord in the vertical plane of symmetry, 

is the apex semi-angle in the horizontal plane of symmetry, 
and to is a constant determining the thickness. 

The notation and shape are shown in Figs. 1 and  2. 
The cone is set symmetrically to the Wind direction so tha t  the pressure on it is symmetrical 

with respect to y and z. 

The solution is only valid if the cone lies wholly within the Mach cone of the apex, so that  the 
Mach angle ~ = sin -1 (I/M)' is greater than the apex semi-angle ~,. 

I t  is shown that  the pressure is constant over the cone, and that  the pressure coefficient Cp 
is given by 

C t,.V'(M 2 -  1) = -  -(4t°)fl  ( t a n  
\ 

*R.A.E. Report Aero 2184--received 27th May, 1947, and its Corrigendum (Appendix II) received 18th August, 1949 
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where f l  is a funct ion which is given in Table 1 and Fig .  4. Values  of C~ are. shown plotf'ed against  
M in Fig. 5 for r = t5 deg, 30 deg and  45 deg. " " . . . . .  

W e  next  determine the  pressure distributioff<for the  surface wi th  the equat ion 

z x { x ' - - y 2 c o t 2 ) , ' x i / 2  :: 

2t0 c c ~ 
. . . . .  " . . . . .  " - : , '  . ' . " : ,  . . . . .  . " 2 " . - i  

The shape of this  surface is shown in Fig. 3 .  I t  will be referred to as an ' elliptic hyper-cone ' 
as it has some resemblance to an elliptic cone. This hyper-cone is also set along tile wind and 
again  the solution is only valid if the surface lies wholly wi thin  the Mach cone of the  apex. I t  is 
found tha t  the pressure coefficient on this  surface is given by  

Cp V ( M  2 i) /4to x , ,  ( t a n  7"~ 

where f2 is given in Table 1 and Fig. 4. 

F ina l ly  the solutions are combined to give the surface 

Z 1 / 2  

2t0 --  ( l - - X )  ( x  2 - y 2 c  2c° t  2 7 )  , 

wi th  the pressure dis tr ibut ion (}0) c ,  V ( M  2 - -  1) = (A- 
• where f l  and f~ are the  functions defined above. The surface is shown in Fig. 6 and is wing-like 

in shape. I t  has a s t ra ight  sharp trai l ing edge on the line x = c, z = O, and leading 
edges x = i Y cot 7, z = 0 which are swept-back and are rounded except at the apex. The wing 
section in the  plane of s y m m e t r y  y = 0 is bicon-¢ex, wi th  the equation 

2to - -  - ~  c 

The m a x i m u m  value of z is to~2 at  x = c/2, and the thickness/chord ratio of the centre section is 
therefore to/C. 

Fig. 7 gives the example of the  pressure dis t r ibut ion for a Wing of this  form, of apex semi- 
angle 7---- 30 deg and of centre section th ickness /chord  r a t io  to/C = 0.10 at a Mach number  
M -- @2 (~ = 45 deg). . .  

In  calculat ing the wing drag it is necessary to a l low for the  leading-edge force (Appendix II) 
as well as for the  pressure dis tr ibut ion given by  t h e  theory.  ! t  is found tha t  the  drag coefficient 
C~, based on wing area, is given b y  

CD~/ (M 2 -  1) = 2 D w / ( M  2-pV2c2tanTl )  _ 2~3 (~°) 2 r L f ~ t a ~ # )  ~ / t a n , 7 ~  tan. 7 I ! .  tan~ 7")1/~] 
' .tan.#;.. tan2 ~ /  4 ' 

where f, is the  f u n c t i o n  given in Table 1 and Fig. 4. T h e v a l u e s  2of .C~, for a centre=section 
th ickness /cho÷d ratio t,o/C of 10 per Cent are shown plot ted against  M for 7 = 15 deg, :30 deg, 
and  45 deg in Fig. 8(a). This gives an indicat ion of t h e  effect of sweepback on drag. The str ip 
theory  values for the centre-section are also 'shown in  Fig. 8(a); bu t  a direc t strip t h e 0 r ) c o m ,  
par lson is not  possible on account  of the  rouiaded leading edge of the  wing. -" 

There is no basic difficulty in making  similar : ~" '~' : ~<~"~ :- . . • -: : :i. calculations for more complicated wing shapes,'_ 
though  the process would becomes increasingly, complex .  " . ~. 

The effect of incidence is given by  he t h e o r y 6 f R e f .  I. T h i s  will not  b.e .a good_appr_o,imation 
~¢ei~y~i6~e.,. . . . . . . . . . . . . . . .  to the  leading. . . . .  edges but  should be. satisfactory.. , elsewhere., .:..-. :...-.., . - .~ . . . . :  , _- 
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2. Notation. 

P 
V 

M 

# 

A p  

Cp 

CD 

C~: 

c 

to 
), 

x 

Y 

z 

n 

x'  y '  z' 

h , k  

~, tt, v 

6) 

air dens i ty  

f ree-s t ream ve loc i ty  

Mach n u m b e r  

Mach angle 

excess pressure  on the  surface 

pressure  coefficient 2 Ap/p V 2 

drag  coefficient based  on wing area 

,, ,, ,, ,, f ron ta l  area 

cent re  sect ion chord  

m a x i m u m  th ickness  of wing 

apex  semi-angle  of wing 

d is tance  m e a s u r e d  f rom the  apex  in the  d i rec t ion  of the  s t r eam 

dis tance  m e a s u r e d  to s t a rboa rd  f rom the  cent re  sect ion 

d is tance  m e a s u r e d  u p w a r d s  f rom the  hor izonta l  p lane  of s y m m e t r y  

(M s --  1)1/2 

def ined b y  equa t ion  (1) 

. . . . . .  (2) 

. . . . . .  (3) 
i nduced  ve loc i ty  po ten t i a l  

3. Method of Solution.--From this  po in t  it  will be a s sumed  t h a t  the  t h e o r y  deve loped  in Ref.  1 
is famil iar  to the  reader ,  as the  p resen t  inves t iga t ion  is a c o n t i n u a t i o n  of the  earlier one. T h e  
n o t a t i o n  of Ref. 1 will be fol lowed and  the  comple te  set of defini t ions will no t  be r epea t ed  here.  

We  work  m a i n l y  wi th  the  r, ~, v co-ordinate  s y s t e m  where  
! x = n x ' ,  y = y ' ,  z = z  . . . . . . . . . .  . . .  (1) 

n 2 = M  s -  1 = cot  st~ = k s - h  s, ") 

k2 = cot  2 r ,  h s = cot 2 ~ --  cot  s ~, f . . . . . .  (2) 

x' t~v y, [(#~ -- hS) (v2 -- hs)tl/~ z, I(:,S-- k~) (k2--v2) l l /s  
= r ~ ,  = r hS(k~ _ h s) , = r k~(k ~ _ hS ) (3) 

We assume t h a t  the  surfaces unde r  inves t iga t ion  all lie close to  the  basic p la te  whose  equa t i on  
is t* = k, and  t h a t  t he  i nduced  velocities on these  surfaces are smal l  and  equal  to the  i nduced  
velocit ies on the  plate.  This  leads to a re la t ion  b e t w e e n  the  s h a p e  of the  b o d y  z ---- z(x, y) a n d  
i ts  i n d u c e d  ve loc i ty  po ten t i a l  6) of the  fo rm 

< 1 , 
a x  - + P . . . . . . . . . . . . . .  (4) 

where  V is the  s t r eam velocity.  In  addi t ion ,  for the  l inear ised theory ,  t he  excess pressure  
Af t  and  the  pressure  coefficient Cp are g iven by  

A p  = - - p  \ ~ x / , L ~ '  C p - - :  - -  . . . . . . . . . . . . . . . . . .  p Y ~ V~,~/. =~ . . . .  (5) 

3 



The solutions of problems of the type  under  considerat ion are given by  selection or com- 
b ina t ion  of the  solutions for the  potent ia l  of t he  form 

~ = Cr'~F. "~ 0 ' )  E .  ~ (~) . . . . .  . . . . . . . .  (~) 
where  E,, = (/~) is the  s t andard  Lain6 function,  and  F , "  (~,)" is the second Lam6 funct ion,  which  is 
r e l a t ed  to E , "  (~) by  the  equat ion  

f ~ d t  
F, , "  (~) = E o "  0 , )  . [E~"  (t)] ~ [(~" --  ~ )  (~ - -~)]~/~  . . . . . .  (7) 

T h e  reader  is referred to Appendix  V of Ref. 1, and  to Hobson 's  book = for fur ther  information.  

4. T h e  E l l i p t i c  C o n e  at  Z e r o  I n c i d e n c e . - - W e  first solve the problem of the flow past  a th in  
elliptic cone, set at  zero incidence , whose equat ion  is 

z ( --  y~.cot~r)~/~ 
270 - \ ~  ~ . . . . . . . . . . . . . . .  (8) 

This is ob ta ined  by  tak ing  the  expression (6) for the  induced  potent ial ,  wi th  r e = n =  1, so that*,) - 

E~ ~ (u) = ~, E~ ~ (v) ---- v, -~ 

f ~  ~t ) . . . . . .  (9) F ~  (~ )=~ '  t~ [( t ~ -  a=)(t = -  ,~=)11/~ = ~ ~r(~,), 
p: 

a n d  
~ i  = C~rl~v I ( # )  = C ,  h k x '  I ( # )  . . . . .  

At  the plate  ,u = k we have  
~ 1  0(/'1 • ~ .  , • . . . . . . . . .  

~z ~/~ ~z' 

,since z : z' and  r and  v do not  va ry  along the  normal  at the  plate. 
{22) of Ref. 1 we get 

~ -- C~rvI (~) - -  C~ ~(~  h2)r/~ ~ ~/~ 
~z - -  - -  k ~) 

As # - +  k this becomes 

~)1 ClV 
az  k ( k  ~ - -  v~)~/"~ 

Also on the  plate,  from (3), 

r~ - x"~ - Y ' ~  = ( x~ - n ~ Y ~ ) / n ~ '  "I 

r ~ v z : h 2 x  '~ : h 2 x ~ / n  2 , f ' . . . .  
,and herice 

~ q) ~ h x '  
aZ - -  O~ k [ x , 2 ( k ~  __ ha  ) . k 2 . y , ~ ] l / ~  

h x  
= _  C1 k (k= _ h=)~/~ ( x  ~ - -  k=y~) , /= . . . . .  

F r o m  (4) and  (12) the  equat ion  of the body  inducing  the  potent ia l  #~ is 
Oz C~ h x  

a x  v k ( k "  - -  h~) ~/~ ( x "  - -  k ' y ~ ) i / ~  

w h i c h  in tegra tes  to 
C~h  "x ~ - -  k ~ y  ~" 1/2 

if  the  cons tant  of in tegra t ion  vanishes.  

. . . . . .  (10) 

. . . . . .  (11) 

From (10) and  (11) and  from 

- - ]  I-~(~~-- h~) ( ~ -  k ~ ) ~ / ~ ( k ~ - - ~ ) ~ / ~ ]  
k ( k 2  - -  h ~ ) l / ~ r ( ~  - -  v~) 

. . . .  (12) 

. . . .  ( l a )  

Since k = cot 7 and  k" h ~ = n ~ this is ident ical  wi th  
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(8), p r o v i d e d  t h a t  we p u t  

C 1  ~ - - "  - -  v ( ~ )  k ( k s -  h h ~ ) ' s  = - 
( 2 t o  '~ k n  v C-d,,,W 

The  long i tud ina l  i n d u c e d  ve loc i ty  on the  p la te  is 

~ 1 a ~ i  _ C1 h k  I ( k )  
a x  - -  n a x '  n ' " " 

2# 
since i t  m a y  be  verif ied t t h a t  ax ~ vanishes  on the  plate .  Hence ,  f rom (14) a n d  (15), 

ax 

Now,  f rom (9), 

f ® d t  

k~S(k) = k ~ t s ( t~  - -  h 2 ) l l  ~ (t ~ - -  k ~ ) l l  ~ 

f l  ~ sin s 0 dO 
= (1 - -  h" s in  s O/k*)1is' 

on p u t t i n g  t =- k cosec 0, a n d  hence  

k 3 I ( k )  = D -  = - ~ k ~  ' 

where  K a n d  E are  t he  s t a n d a r d  comple t e  el l ipt ic in tegra ls ,  so t h a t  

a 4 1 = _  V 
ax k 

Values  of the  func t ion  D are g iven  in Ref.  3. 

(14), 

(15), 

The  excess pressure  o n  the  cone is 

~ "  v* (2to') D(hlk) 
• ~ P = - - P V ~ x  - - P  ", c ;  k 

a n d  hence  

since (M ~ -  1) = n s = (k ~ - -  h ~) • W e  wr i te  this  as 

' Cp ~ / ( M  s 1) 4to t a n  7"], 

(tan r~ (1 h',~')' D h ,  
where  .fl k t an  •/ = - -  kS/ (7~) 

and' . . h s. tan s ~ .. 
k2 - -  1 tan~ #.  

S 

1 
i 

. °. ° • ° 

. .  (16) 

. .  (17) 



The funct ion f l  is given in Table  1 and Fig. 4. The values of C~/(4to/C) are p lo t ted  in .F ig .  5 
agains t  M for y ----- 15 deg, 30 deg, and 45 deg. I t  should be no ted  tha t  (4to/C) is equal  to the  to ta l  
angle  be tween  the  upper  and  lower generators  of the  cone in the  ver t ical  plane of s y m m e t r y  
y = 0. For  the  infinite wedge of to ta l  angle 4to/C set symmetr ica l ly  to the  wind  the  value  of 
C~/(4to/C)is equal  to (M ~ --  1 ) 1/s and this quan t i t y  is also p lo t ted  in Fig. 5 to show the  reduct ion  in 
pressure on the  cones in comparison wi th  this wedge. 

. 5. T h e  E l l i p t i c  H y p e r - c o n e  at Zero  I n c i d e n c e . - - W e  next  solve the  problem of the  flow pas t  
a th in  ell iptic hyper-cone,  at  zero incidence,  whose equat ion  is 

__ ( )~/2 z = - x  x s - y s c o t  s~, . (x > 0) (18) 
2t0 c c s " . . . .  ," "- " " 

This is ob ta ined  s by  combining the  two solutions for n = 2 of type  K,  which are given b y  

Es~(#) = /,s _ a,~, (m = 1, 2) . . . .  

where  al and  as are constants.  Subs t i tu t ing  this in L a m E s  equat ion  1,2 wi th  n = 2 we get  
(~s _ a~)E6~s _ p (h s + kS)] _ 2~s(2~s _ h s _ kS ) _ 2(~s _ h2 ) ( ~  _ k~ ) ___ 0. 

E q u a t i n g  the coefficients of the  powers of ~ to zero and  e l iminat ing the constan t p we obtain  
3 a m 2 - - 2 a , ~  ( hs -F k s) + h S k  ~ : 0 .  " ,.-: . . :  . . . . . .  (19) 

The roots of this equat ion  are al and as and  hence 

3(al + as) : 2(h s + k S ) , 3 a l a s :  hSk ~. ' . .  ~ . .  . . . .  (20) 

The  second solut ion of L a m E s  equat ion,  cor responding  to E;"(#) ,  is 
^ 

o 0  : ' " " • " " : , - . : . 

- 
Fj~  (#) = (~s __ am) (t s --  a,,) s (t s (t! : 

W e  wri te  this in the  form ~ 

Fs = _ 

which  defines the  quan t i t y  J~(t*). . . . . . .  

Consider the  potent ia l  , 

c .  r s• Fs (.) 
= C2 rS(~ ~ --  am) (v s --  a~) J , (~ ) ,  . .  ;:~ ~ . ,  ~:~ : .  , , .  : . : .  . . . . .  (21) 

whe re  C~ is a constant .  The  shape o~ the  body  producing this in-d/iced veloci ty  potent ia l  is given 
b y  (4). As before, at  the pla te  t~ = k,  w e h ~ v e  ' : :  . . . . . . . . .  

~¢,. a¢~ ~ 
~z ~# ~z' 

" - ' b . - -  / " 

Different ia t ing (21) wi th  respect  to # a n d s u b s t i t u t i n g  from (22):of Ref. 1 for' ~z' we get  

~¢" - - a z  C2 rS(v ' -  a,,,)[2/~ J.(,u i -:()~s :~~a~,,)' i/~ ~ ---lhS~ Is (I ~s : ±  k') i/-~l " " 

X 1~2 . 2 . .  ~ ' s ~1~ ~. , , ," 

L 
As ~ tends  to k this becomes . . . . . . .  - . '" ~:~' 

", 2 ~¢~ , ,  Cs  r(v~-.-- a~) 
- -  ~ ,  2 , 

aZ (kfl - -  am) (k ~ - - v ~ )  I1'' . . . .  ' . . . . . .  ~ ' - "  : : : ' "  
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We now construct  the  potent ia l  #2 by  combining ¢1 and ¢s such tha t  

1 

Then from (22) and (23) 

0#2 
8z 

F rom (20) we get  

so tha t  

2" 
a s  

Cs r (as - a l )  [vS(k s - -  a~ - -  a~) + a~as ]  
~1 as (k s - ~1) (k  s - ~s)  (k  s - v ' )  "~ 

v s ( k  s - -  a l  - -  as )  + a l  a2 = ½ [vs (k  ~ - -  2h s) + h s k 2 ] ,  

(ks  _ a l )  (ks _ as )  = ~ k2 (ks  _ hs ) ,  

O # s  r [ v~ (k  s - -  2 h S ) +  h S k  s] 
- - .  C S  ! 

8z  h s (k  ~ - -  v S ) ' / s  ' . . . . . .  

where C ' --  3Cs (a,. --  a,) 
k 4 ( k  s _ h s) 

From (12) and (24) it follows tha t  

b # s  x S ( k  s - -  2h ~) + k S ( x  2 - -  n 2 y  s) 
- -  C 9/ 

8z n [ k ~ ( x  s - -  n 2 y  ~) - -  hSxS]  1Is 

= C '  (2x2- -  k ' Y 2 )  k s h s. 
s ( x  ~ _ k 2 y 2 ) i / 2  , since n ~ = - -  

Therefore, from (4), the shape of body  giving rise to #s is given by  

8z Cs' (21 s -  k 2 y  2) 

~ x  V ( x  2 - -  k S y s )  ~ /2"  

In tegra t ing  we obtain 

C s '  
z - -  V X (X ~ - -  kSy2 )  l / s ,  

if the constant  of integrat ion is zero. This is equivalent  to (18), since k = cot r ,  if 

C2' = V--2t° 
G~ , 

so tha t  C~---- --  V .  2t0 k 2 (k ~ -  h ~) 
3c 2" ( a 2 - -  al) . . . . . . . . . .  

A t  the  plate/~ = k we have from (21) 

¢, .  = C2 r 2 (k  ~ - -  a,.) (v ~ - -  a,.) J , . ( k )  

c 2  (k 2 - ~) 
. .  = n s  I x  s (h  s -  a,,) + n s a , , f  ] J , , ( k ) . .  

Hence  the  longi tudinal  induced velocity is 

a¢ , .  _ 2 C s  x .  (hs  - -  a . )  (k"  - -  a,.)  . J . . ( k )  . 

:7 

O I 

(23) 

(24) 

(25) 



For the potential  #s we get, from (23), 

8.#. . . . . . .  a ~  . _  a s .  
(26) 

The integrals J1 and J ,  are evaluated by W. Mangler in the Appendix and substituting from 
the last equation of the Appendix in (26) we obtain 

~ C~ x F (k s -  al) K - -  k"E  (k" --  as) K -  k"E7 
~X k n ~ a l  s a~ ' L J 

C. .x  1 1 [k.( K 1 K]  

Substituting for C~ from (25) and for al, and a2 from (20) we get 

v .  2fox (kS_ hS)k V2(h' + k') K1 
ax n~c" h 2 L h" ( K --  E) --  _j . 

N O W  n ~ = k "  - -  

- -  , .  ( 2 7 )  

h 2, and also by the standard definitions of the complete elliptic integrals 8 we have 

K(h/k)- E(h/k) (~) 
(h/k)' = D , 

K(hlk)  = 2 D ( h / k ) -  (h/k)" C(h/k). and 

Hence (27) may be written 

2to x [2D(hlk) + C(hlk)] 8X -- ~ 

l 

The excess pressure on the surface is therefore 

~x --  p V s  kc s L ..i' 
and hence 

where 

" C .  ~ / ( M "  - -  l) - -  
/ 

4t0 x ( tan  ,'~ 
c ~ f ~ k t a n ~ / '  

° , - . • ° ° (28) 

tan. = ( I  -- h"~ I," [2D(h/k) + C(h/k)] , . } :, -, i.(t n .) .j • . . . . .  

h" tan" ~, 
k" -- 1 tans 

The function f ,  is given in Table 1 and Fig. 4. 

6. Flow Over a Wing-like Sur face . - -We  can combine the  results for the cone and the hyper- 
,cone to give the flow over the surface whose equation is obtained as the difference between (8) 
and  (18) and is therefore 

2to c .  . . . . . . . . . . . .  (30) 

The pressure distribution for this surface is obtained from (16)and (28) to be' : . . . .  

Cp%/(M" I )(4-tc-° ) V • r a n t  cX (lan'~lktan#/3 . . . . .  (31) _ = /. 



The surface is wing-like in shape and its geometrical characteristics are given in Fig. 6. As an 
example the pressure distribution for such a wing of apex semi-angle v = 30 deg at a Mach number 
"of V/2 (v = 45 deg) and of centre section thickness-chord ratio 10 per cent (to/C = 0.10) is shown 
in Fig. 7. 

To calculate the drag of the wing it is necessary to allow both for the effect of the pressure 
distribution given by (31) and for the leading-edge force, as pointed out by R. T. Jones ~ (see 
Appendix II). After some calculation we obtain the formula ; - -  

2~ (~0)s I ( t a n , )  t a n ,  (1 tan2 ; ) -~ /s  1 
CD,v/(M 2 -  1) = - ~  - fs ~ + t an / ,  - - t a n  s " 

for the drag coefficient Cv, based on wing area, where f~ is the function given in Table 1 and 
Fig. 4. In this formula the first term in the square brackets represents the contribution from 
(31) and the second term the contribution from the leading edge force. The drag coefficient 
based on frontal area, Cv r, is given by 

4@2 ( tan  ,~  tan , (1 tan2 -1/2 
CDI ~/(M 2 -  1 ) -  ~ (~0) I f  ~ \ t - ~ n f  ~ t a n ~  tan s ~)  ?" 

As an example the drag coefficients Cv and CDI for a wing of this shape, with centre section 
thickness-chord ratio to/C = 0.10 is plotted against M for 7 = 15 deg, 30 deg and 45 deg, in Fig. 8. 
The s t r ip theory  values for the biconvex centre section are also shown in Fig. 8. 

No. Author 

1 Robinson . . . .  

2 Hobson . . . . . . . . . .  
3 Jahnke  and Ende  . . . . . .  
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A P P E N D I X  I 

Evaluation of a Definite Integral 

I t  is required to calculate the value of the integral 

J (k) = ( t  2 - ( t  2 - h 2 )  ( t"  - ' 

where 3am ~ --  2a.,~(h 2 + k ~) + h a k ~ 0. 

Put t ing ¢ = k cosec O, ~d = a,dk z, and n ~ = h2/k ~ we get 

f 7  ~ sin 4 odo 
L = k~J,~(k) = (1 --  cd sin~ 0) ~ (1 --  ~ sin20) ~/~ ' 

where 3~4 _ 2e~(1 + ~s . )+  ~2 = 0 . . . . . .  . .  

9 

(i) 



~0 

dO ~ 
W i t h  • u = (1 -- k" sn~0) ~ ' s n u  = sin0, _.. 

o 

this becomes L = sn4u du ' 
(1 - ~ sn 5 u) ~ ' 

where the lower l imit  of in tegrat ion is zero and the upper  l imit  i s  K(n), the complete elliptic 
integral  of the  first kind. I t  is convenient  to consider the  indefinite integral  first. 

On account  of the relat ions 

d fk, 1 ) 2o~Ssnu. cnu. dnu  
du 1 - ~5 s n S u  (1 -- ~5 sn ~ u)" . . . . .  

= snSu 3 + ~ssn~'u 
du cn u. dn u dn 5 u + c-n~uJ ' 

I t  follows tha t  

2~L = f sn3u d( 1 )du, 
cnu.  d n u  "du 1 --  e2sn  ~u 

- -  sn~u [ [ 3  ~2sn~u Sn~u] sn2u du 
--  c n u d n u ( 1  --  ~ sn*u) --  j _ - {  d n 2 ~  + cn-~uJ (1 --  ~2sn , .u ) -  

Also, since 
sn"u  1 [ ~1 1 ] 

dn 2u(1 --  ~"sn  ~u) --  ( ~ - -  ~z) 1 --  e~sn "u  dn 2u ' 
and  

s n ' u  1 [ 1 l u j  
, c n ' u ( 1 - ~ s n  ~ u ) - ( ~ -  1) 1 ~ s n  5u  cn  ~ ' 

we get- 

sn ~ u : _~' /'sn 5 u du 2~5L 
c n u d n u ( 1  --  e5 snSu) + (~5 ~5) J t d--~-u 

1 du 
( sn~u (\3 + ~ ~5 + 0 ~  l / d ( 1  0~ ~ sn 5 u) 

+ ( ~ 2 _  l / J  ~ - _ - 
The last t e rm vanishes because of (i). 

By  the propert ies of the Jacobian  elliptic funct ions  we can verify tha t  

(sn*u f d (dnu~ s n u d n U _ / d n S u d u  ' 
• c n  

5, ,,fs~'" J[ ~ d ~d~uJ fcn~ Sn~. cn~ 
o - ,, d . , =  - = d n . u  + l" cn"'a' d'u' 

/ o" 

(-" ') f 
_ s n  u .  c n  u .1 1 

d n u  -~ . u +--~ dnSu:du . . . . .  
Subs t i tu t ing  these relations in the above expression for L we obtain,  after  some  redlict ion,  : 

1 [u 1 ~dnSudu] 2~5 L 
( , , 5  _ ~ 5 )  t _  ( 1  - ~ ' )  . ~ . . . .  : : 

o~ ~ s n u .  c n ~ .  d n  

+ ( ~ ' -  ~')(1 --  ~5)(1 --  c~' sn"u)"  
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This  is the value of the  indefinite integral  and, insert ing the l imits of integrat ion,  zero and  K ( z ) ,  
we obtain 

I ~:~ s n ~ u : d u  ' ( 1  ~ )  K ( ~ ) - - E ( ~ )  

Subs t i tu t ing  the values of c¢ and ~ this  becomes 

L ___-k' [(k s =- a~) K ( h / k )  - -  k ~ E(h /k ) ]  

. . . . . . . . . . . .  2 a ~ ( ~  2 - am)(k ~ ---am)= - -  ' . . . . . .  

so tha t  f inally 
(k s - -  a,,) K ( h / k )  - -  k S E ( h / k ) .  

J , . ( k )  . . . .  -~_ 2 a , .  k ( h  s. - -  am). (ks:  - am) 

" APPENDIX II 

• . . . .  T h e  Lead ing -edge  Force  

R. T. j ones  4 has shown  tha t  l inear theory  m a y  lead to incorrect  results if applied to calculate 
"the drag of bodies w i t h  rounded leading edges, unless allowance is made for the  local h ighpres su re  
there.  Jones '  formula fo r t h e  l ead ing-edged  rag will be derived here b y  a me thod  which is dif- 
ferent  from his method.  

Consider the f low past  a parabolic  cyl inder  wi th  its axis parallel  to a s t ream of veloci ty  
:V (Fig. 9). The equat ion  of the  cyl inder  is 

. . . .  r (1 + c o  s 0) = r 0  

or r 1/' cos (0/2) ----- (ro/2) I/2, 

where r0 is the  nose radius. The complex potent ia l  of the  motion is 
~ ......... w = ¢  + i w  = -  V z + 2 V ( r o / 2 )  1/2z 1/', 

so t ha t  ~ ' =  --  2 V r  I/s sin (0/2) [r 1/s cos (0/2) --  (r0/2)~/s], 
which  verifies t ha t  the  cylinder is a streamline. We calculate the  force on the cyl inder  from 
Blasius 's  theorem : . . . . .  

x -  i Y  = ½ i p  ( d ~ h ~  

where X and Y ai:e/the component  forces per uni t  length  along the axes and the in tegra t ion  is 
a long the contour  C (Fig. 9)' Th i s  formula gives immedia te ly  

. . . . . . . . . . . . . . . . . .  x ~ =  - ~ r o  ( ~ p  T ? ' ) ,  . .  . . . . . . . . . . . . .  ( i )  

Y = O ,  , ,  
so t ha t  the resul tant  force on the cyl inder  is a drag force given by  the above expression. 

I t  is necessary to e x t e n d  this  formula to-allow for t he  effect of sweepback and  compressibil i ty.  
This  is done b y  assuming tha t  only the  component  veloci ty  normal  to the  leading edge, V s i n y ,  
(Fig. 2) is effective for swep tback  wings and tha t  compressibi l i ty  can be allowed for by  t h e "  
Prand t l -Glauer t  formula applied to th is  normal  component  M a c h  number  M sin ),. W h e n  
e x t e n d e d i n  this  Way (i) becomes ~ : ~ ~ - 
• , : , , ' . ,  - 

.7-~: sin s ~, 
x = - ~ ~0 ( ½ p v  s) • . . . . .  ,-, 

• " .'" . . . . . .  =". (1 --  M ~ sinSy) 1/s "~: : ~ - ; ~ - : '  ' '~: "':-~ 

1.1 
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