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Summary. 

Linear differential equations whose coefficients are functions of the independent variable are now assuming 

importance in aeronautics in the discussion of the motion following a small disturbance in a specified 
accelerated motion. In such problems the undisturbed state is often a transition motion in a limited time 

interval between two steady motions and we are concerned to see that the disturbed motion does not exceed 
tolerable bounds in a limited time. The extension of classical stability theory to such problems involves some 
logical difficulties and very great mathematical ones, since such equations are seldom soluble algebraically. 

For these reasons an indirect attack oll the problem is made here by seeking to establish upper bounds to 
the solution of second-order equations, which are those most commonly occurring. 

The subject is introduced by a study of the equation 

+ b(t)Se + c(t)x = O. 

The theory is then applied to a simple problem of pitching motion in an airstream of varying velocity. 
Finally a system of two second-order equations involving two variables x and y is discussed from this angle. 

This system is not tractable in its most general form, but the special cases that yield to treatment are those 

which have occurred in some recent problems. 
This analysis should be useful in the examination of any problem to which it can be applied; the exploration 

of its range has hardly begun. I t  is, of course, open to the objection that the gap between the bound and 
the solution can in general only be found by numerical integration. Some surveys by numerical integration to 
compare with the bound analysis will be the quickest way of assessing this method as a tool for general use. 
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1. Introduction. 

With the growth of thrust /weight  ratio, aircraft of all kinds now spend more time than formerly 

in manoeuvres with fairly large accelerations: missiles, for instance, spend their whole life in such 

conditions. Classical stability theory, with its postulate of a steady motion from which disturbances 

are measured, is strictly speaking inapplicable to the study of response to disturbances from a 

specified accelerated motion, though it is quite commonly used in such problems for want of a more 

exact analysis. Whenever  the conventional theory is stretched to cover such cases the underlying 

argument is that in passing through a range of speeds the effect of a disturbance at any one speed 

will be the same as if the aircraft were in equil ibrium at that speed. This  sort of argument runs 

through much current  aerodynamic work as the following examples will show: 

(1) Conventional take-off and landing has always been treated thus, with apparently good 

results. In  recent work on je t -borne aircraft we have had to apply the rough method to the 

much more drastic case of je t -borne acceleration from rest to airborne speed, and vice versa. 

(2) The  trajectory of a rocket propelled model after separation is a curved decelerating path 

under  gravity and drag at zero lift. It  is common practice now to disturb the model at 

several points in this path and analyse its motion on the classical assumptions. 

(3) The  trajectory of a homing missile is a complicated path which may involve very large 

accelerations. There  has recently been a good deal of argument as to whether  it is at all 

valid to apply conventional ideas of stability to such a case. 

It  is clear that the simple theory would not have been overworked to this extent if it had been at 

all easy to extend its datum from a steady motion to an accelerated one. Clearly, too, it is t ime 

now to make what  headway we can against the difficulties of this extension if only to learn more 

precisely how far and in what  ways tile simple theory may be taken out of its strict context. 

Lighthill 1 in 1945 at tempted the direct solution of a particular problem of this kind. Th e  subject 

was resumed in 1953 in connection with Got t ' s  adaptation of the classical theory to the problem of 

the stability of a missile guided by proportional navigation s,~. Notes on various aspects of the 
subject have been contributed by Collar 4, ~, Relf 6 and Grensted 7. 

The  formidable difficulties of the acceleration problem need hardly be laboured. In  general terms 

the components  U, V . . .  of the undis turbed motion and its control C are given functions of the 

t ime t. After a disturbance Uo, v 0 . . . at t ime t o the components  become U + u, V + v, . . . where 

u, v . . . are small quantities of the first order and C is unchanged. Th e  problem is to find u, v . . . 
in terms of  u0, v 0 . . . .  

The  disturbed motion being assumed small, the differential equations will be linear, and usually 

of the second order with two or more variables, but  the coefficients will be now not constants but  

functions of t. The  exponential solution of the classical theory, in which all the variables and their 

t ime derivatives have the same modes, gives place to one in which all these quantities have in general 

different modes. The  solution in general depends on the time of the initial disturbance, and cannot 

be stated in terms of damping and period, which are themselves consequences of the exponential 
solution. 

In such circumstances the very definition of stability may seem open to debate. Mathematically 

it seems logically sound to take this over f rom the classical theory and to say simply that the datum 

motion is a stable one when u, v . . . .  and their  t ime derivatives all ultimately decay, at whatever 

point of the datum motion the disturbance occurs. There  are, however, definite practical objections 



to this view. In the classical theory the datum motion is invariable with time, and so it is practically 

useful as well as mathematically correct to define stability in relation to the limit t -+ co. But the 

datum accelerated motion which we l~OW want to study will usually be limited to a finite t ime 

interval. In a simple case it may be a controlled motion in which the speed increases linearly f rom 

V o to V 1 . We are quite uninterested in what would happen, after a disturbance, if the datum speed 

were allowed to increase without  limit. The  practical problem is to 'ensure that after every small 

disturbance which may occur between V 0 and V 1 the components  of the disturbed motion remain 

within tolerable limits when the datum speed reaches V 1. This  line of argument would lead us to 

investigate bounds of the variables in finite intervals of time, and to define stability as an affair of 

tolerable bounds. 

In these notes we have chosen this line of investigation because it seems at the moment  the only 

way round the insuperable difficulties of a frontal attack. It  is well known that the equation 

+ b ( t ) ~ + c ( t ) x =  0 (1) 

is only integrable in very special cases, and as far as we know there is no general theorem regarding 

its zeros which leads to a discrimination between its oscillatory and its non-oscillatory solutions. 

Anything in the nature of an exact solution of the systems of equations referred to above, or even of 

a close discrimination between the types of solution that they may yield, seems therefore very remote. 

I t  is possible on the other hand to construct bounds for x and ~ in the above equation, and to 

analyse similarly some cognate systems of equations with two variables, in such a way or to th row 

some limited light on the stability problems which they represent. T h e  germ of the ideas developed 

below appears to be due to Polya s. Some simple examples have been studied by Bain 9. 

P A R T  I 

The General Second-Order Equation 

2. Development of the Analysis of Bounds. 

2.1. Theory for c Positive. 

T h e  object of this discussion is to look for bounds to the solution of equation (1) and to 

determine where possible how the solution behaves as t -+ co. 

Consider the function 

f(t) = px ~ + q22 

where p and q are disposable functions of t, and x satisfies (1). I f p  = qc, then 

where 

H = - d + 2 b .  
C 
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Now suppose that c > 0. I f  we can f i n d p  to satisfy the conditions: 

P > 0  l p < o  

P 

then f is always positive and f is never positive. 

In these conditions it follows that 

P x~ < f < f o  

(2) 

P_~2 < f < f o  
C 

where fo, the value of f when t = 0, is Po (Xo ~ + ~o2/Co) • Thus  if xB 2, ~B 2 are the bounds of x 2, ~z 

respectively we have 

Co/ (3) 

X B  2 = C X B  2 . 

It is clear from (2) that the admissible forms of p depend on H. We shall consider three cases: 

(a) H > 0 always 

(b) H < 0 always 

(c) H changes sign. 

2.1.1. Bounds for  H > 0 . - -The  conditions are satisfied when p is any positive constant, 
which can be taken to be unity without  loss of generality. This case therefore gives 

.2 

f =  x ~ + ~  

f H x2 
c (4) 

X B  2 = XO 2 + 

~3B 2 = £ X B  2 . 

We note that XB 2 is constant and ~B ~ is proportional to c. Thus  x, but not necessarily ~, must 

remain finite. 
We also note that f = x e and f = 0 when 2 = 0. Thus when the solution is oscillatory (see 

Fig. la) the curve o f f  against t, while descending steadily on the whole, flattens out and coincides 

with each peak of x 2. The peaks of x 2, and thus the successive peaks and troughs of x, form a series 

descending to zero. If, however, the time interval between successive zeros of x continually decreases, 

does not necessarily tend to zero with x. This behaviour occurs when c --> oo with t. 

A more direct argument leads to some of these asymptotic conclusions, f must  -> 0 as t ---> oo, for 

otherwise f would ultimately become negative. Then  if c remains finite, x~o = 0 and 2~ = 0. 

I t  then follows from the original equation that xo~ = 0. 

6 



T he  conclusion is that when c and H are both positive, x has a finite bound and ultimately 

decays, while 2 has a bound that is proportional to c and also ultimately decays if c remains finite. 

In  the excepted case, which must be oscillatory in the limit, 2 ~ oo with t. 

2.1.2. Bounds for H < 0 . - - T h e  conditions are satisfied by putt ing 

P H = e  
P 

where e is any function of t that  is always negative. 

This  gives 

p=exp(ffo(H+e)dt ) 
and so 

f =  exp (ft ° (H+e)dt)(x2+ ~) 

= exp ( 

~,B 2 = C X B  2 . 

The  narrowest bounds are clearly given by G = 0 in which case we have 

f = exp (ffoHdt) (x~+ 

f= Hexp(foHdt) 

XB~=exp(-ftoHdt) (Xo ~ 

~ B  2 ~ C X B  g . 

Co / 

(5) 

I t  follows f rom (5) that if the solution is oscillatory the curve o f f  has the same sort of staircase 

descent as in case (a) but  it flattens out at the zeros of x and has no such simple relation to the 

the curve of 2 as it has to the curve of x in case (a) (see Fig. lb). 
In this case the conclusions are much less definite than for H > 0. Th e  x ~ and ~2 bounds vary 

respectivelyasexp (-ftoHdt) andcexp(-f toHdt) 'I f f f  Hdtisfiniteandequalt°-K'the 
asymptotic values of the bounds are respectively (x02 + Xo2/Co) exp K and c~o(Xo 2 + Xo2/Co) exp K;  and 

both are finite if c~o is finite. In  this case the form o f f  shows that x® is zero, and 200 will also be 

zero. If, on the other hand, Hdt is infinite and c~o finite, both bounds rise to infinity, and 
0 

nothing can be concluded from the form off a s t o  the actual values of xo~ and 2oo. 
I f  we are interested in the behaviour of the system over a finite interval of t ime only then in most 

cases Halt'will be finite and a finite bound can be found for x. Whether  the system is acceptable 

or not will depend on a physical assessment of the magnitude of this bound. 



It  may be said in general that the response to a disturbance x0, 2 o will be greater when  H < 0 

( ; )  than when H > 0 since the x bound, instead of being constant, now rises as exp - Hdt and 
o 

if c is the same in both cases the ~ bound will have a correspondingly greater variatioD. 

2.1.3. Bounds when H changes sign.---In this case the conditions are satisfied by p = exp 

( f  Cdt) , where ¢ is any function forwhich 6 <<. O,c} << Halways .  Thus  we may put  ~ = 0 i n a n y  

interval in which H is positive, and ¢ = H in any interval in which H is negative. Suppose for 

instance that H changes sign from positive to negative at t = tl .  The  results are then: 

O < t < t ~  

2 2  
f = x 2 + - 

£ 

f = Hx~ 
C 

C O 

X/3 2 = £XI~ 2 

t >  t 1 

Hence 

from the first interval. 

Thus  

and 

f=  H e x p  (~t  Hdtlx'. 
\ U / 1  / 

x2 < exp (-f;1 Hdt) @12+ / 
<exp(- f:lHdt) (x° + dlco / 

~ B  2 = CXB 2 . 

When H changes sign f rom nega t ive to  positive at t = t 1 the results are, by a similar argument:  

0 < t < t  1 

f =  exp (foHdt)(x2+ ~) 

f =  Hexp(SoHdt) x~ 

xB2=  exp ( -  fl ° Hdt)(xo2+ x°21 
Co / 

~ B  2 = CXB 2 , 



t> t 1 
f =  exp (f:l H d t ) ( x 2 +  ~) 

2B 2 = £XB 2 . 

At t = tl, f is continuous, with f = 0, and the bounds also have continuity of slope. The  remarks 

of section (a) apply in general to an interval in which H is positive, and those of section (b) to an 

interval in which H is negative. 

Any number  of imervals may be treated in the same way with results as sketched in Fig. 2. 

T he  curve of f descends continuously, flattening out when H = 0. The  curve of x B rises 

discontinuously, with flats when H > 0 and continuity of slope at H = 0. In two successive flats 

the value of xB is multiplied by exp ( -  f H /2d t )  , the integral being taken over the interval (for 

which H is negative) which separates them. T h e  curve of 2 B depends on the ffinction c. I t  is 

continuous in slope, but  not in curvature, at H = 0. 

2.2. Possibility of Closer Bounds for 2. 

In  this analysis we have considered an equation for x 

+ b2 + cx = 0 (1)  

and deduced bounds for both x and 2. An alternative approach to a bound for 2 would be to 

differentiate this equation and hence obtain a second-order equation in 2. We can then treat this 

in the same way as the original equation provided the coefficient of 2 in the new equation is positive. 

We obtain on differentiation 

ii + b -  (t + c + b -  u = 0  

where u = 2. I f  c + b - bg/c > 0 we can obtain bounds for u as we did for x. For example,  if H from 

the new equation is always positive we have 

2B = uB = u°~ + Co] = ~°~ + Co] 
where 

We may, using the original equation (1), express the bound in terms of the initial values of 

x and 2 

(b#0+c0x0) / 
= , 

and hence, 

213 
= + eoXoD 202 -~ CoXo ~ } " 



Thus  for this case/~ is not a function of time but  is dependent  on the initial conditions. I f  H is 

not always posit ive/z will depend on the initial conditions in the same way but  will be a function 

of time too. 

In  this way we may or may not obtain closer bounds for ~ than from our first equation. We shall 

never obtain decreasing bounds so that if the bounds derived from the original equation decrease 

the bounds obtained by this method will be worse. 

Examples of the use of this method are given in Sections 4.1 and 4.2. 

2.3. The Case of c Negative. 

In this case putt ing p = 1 we have 

f = x ~ q - - -  
C 

H 
c 

so that f ~< x 2 and f / >  or ~< 0 according as H > or < 0. This  case, therefore, yields a lower bound 
f o r  X. 

I f  H > 0, f is an increasing function which is less than x 2 except at 2 = 0, where it is tangential 

to z 2. It  follows that x ~ cannot have a maximum and so not more than one minimum. Therefore  

x ~ cannot be oscillatory and must ultimately increase without  limit. 

I f  H < 0, f is a decreasing function which is less than x 2 except at 2 = 0 where it is tangential. 

I t  follows again that  x e cannot have a maximum and so not more than one minimum. Therefore  

x e cannot be oscillatory but  need not ultimately increase without  limit. (See Fig. 3.) 

Thus  if c is positive we may, for H < O, prove the decay of x but  if H < 0 x may increase. If  

c is negative and H > 0 we may prove the divergence of x but  if H < 0 x may decrease. 

2.4. Summary, with Dynamical Interpretation of Results. 

2.4.1. General formulae.--In summarising these results it is useful to introduce the 

integral symbol to indicate that the integral is to be taken only for negative values of the integrand. 

I t  appears then that, in general, if c > 0 

where 

N/ (x0~+2o21  = e X P c 0 /  - ½  o Hdt  

~ , / ( ~ o )  ( f ~ ) tz =- ~/(yeo ~+coxo~, ) = exp - ½  o Hdt  

H =  g - + 2 b .  
c 

(6) 

(7) 

(8) 

10 



At a given time H will be positive, i.e. H~ ,  or negative, i.e. H _ .  In the formula for f only the 

appropriate one of these values is to be taken. 

I t  follows from the expressions for )t and/~ that x B cannot exceed ~/(x02+ ~o2/Co) and xB cannot 

exceed %/(~o2+ cox02) if H > 0 and c < c o. 

2.4.2. Dynamica l  in terpre ta t ion . - -We can now consider the dynamical interpretation of 

these results. I f  the equation discussed above represents the motion of a system with displacement 

X~ then b and c are respectively the resistance coefficient and the stiffness coefficient per unit mass 

(or moment  of inertia), these being Variable with time. 

The  energy E of the system (per unit  mass or moment  of inertia) is given by 

• E = ½ ( ~  + cx 2) 

and the energy E o of the disturbance Xo, xo is 

Eo = ½ (~o ~ + COX'). 

Equation (6) may therefore be writ ten 

and so 

In particular, 

at t ime t 

f = T -  exp H d t  
0 

- < - - e x p  - H d t  . 
C C0 0 

E E 0 

C - C O 

- < - -  exp - Halt 
C C O 0 

when H is always positive 

when H is always negative. 

It  is to be noted that these relations yield bounds, not to the energy itself, but  to energy/stiffness 

coefficient. When, however, b, c are constant, so that H = 2b, c = c o, we have bounds to the 

energy itself: 
E <  

E <  

Further,  equations (7) and (8) 

where 

Eo, b > 0  

Eo exp ( - 2 b t ) ,  b < 0. 

may now be writ ten 

= 

x• N \  Co / 

~ = ~ / (2Eo)  

~ = exp (-½ f~ Hdt) 

C t# 

, = J( o)exp (- f0 ",/,). 
I !  



These expressions show that the functions )t,/x determine the shapes of the bounds xB, 2e,  while 

their amplitudes are determined by the energy imparted to the system by the disturbance and the 

stiffness coefficient at that instant. 

When c o is small the energy imparted to the system by the disturbance is almost wholly kinetic 

and so 

Xo 

xB = ~ o  '~ c o small. 

2 B = ~0/~ 

When c o is large the energy of the disturbance is almost wholly potential, and so 

XB = XO~ I * 
c o large. 

~B = C(Co)X# 

One further point of general interest may be mentioned here. It often happens that the functions 

b, c occur in the form 

b(t) = b*B(t) 

c(t) = c*C(t) 

where the constants b*, c* respectively represent the general levels of the resistance coefficient 

and the stiffness coefficient. 

It  follows from the form of H that A,/~ are independent of c*, while the amplitude factors are 

of course independent of b*. 

2.4.3. Formulae for ~, i~ in terms of b, c . - - I t  may be useful to express A, / ,  in terms of 

b and c, as follows. Suppose that the time intervals in which H is negative are 

tit2, t a t 4 ,  • • • , t2u-1 t2u, • • • 

so that the nth positive interval is t2~_ 2 '~,,-1 and the nth negative interval is '2n-1 tan. 
Now 

and so 

where 

Thus  

f 1 - z dt = l o g ~ - ~ -  B 

B = fbdt 
- d t  = log  \ c~-2~ ! - B,~ 

B** = [ t 2 ~  b d t  . 
,J l2n_ 1 

(i ") ~2~ I/%~-1\ exp - dt = . / / - - - - j e x p  ( -  B , )  for the interval 
/2~--1 N \ ct~ / 

12 
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It  follows that in the nth positive interval t~_z t2,~_:, A is constant and given by 

A =  exp { - ( f [ i +  ft  + + ~'t2n--3"f 12n-2) 

= /(ctlcta'''ct2"-__a]exp(_~lBr) 

andv/z is varying and given by 

/ z =  

where c goes from ct2~_ 2 to ct2n_: . 

In the nth negative interval t2n_ 1 t2~ , h and/~ are both varying: 

h =  /(ct1%...ct~_3] exp ( -  ~ Br) /(%,~-1] exp ( -  f l  bdt) 

" n -- 1 
• / (  c-tlct3-[" "-ct~'--~-~ l exp ( -  ~ B~.)exp ( - f t  bdt) 

I~ /V \Co % % • ct2~-2/ t~_l 

where c goes from ct2~_ 1 to ct2 n . 
These formulae apply when H is positive in the first interval 0t 1 . Corresponding formulae when 

H is negative in the first interval can easily be constructed. 

3. Application to Equations with Coefficients Varying Linearly with Time. 
Some simple examples of this analysis will now be given. 

3.1. Constant Coefficients. 
The trivial case when b, c are constants is of interest because, of course, the exacff solution is 

known. 
Then  H = 2b, and so 

) t = / x =  1 

= /x = exp ( - b t )  

These may be writ ten in full 

when b > 0 

when b < O. 

~B "C(~o ~ + CXo 2) 

x~ = N/(Xo~ + ~ )  exp (-bt) ) 

2B ~/(~eo 2 + cxo ~) exp ( - b t )  

13 
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3.1.1. Periodic so lu t ion . - -The  exact solution of 2 + b2 + c = 0, if it is oscillatory with 
exponential roots ~ + i[3, is 

- Xo2 o. exp (c~t) sin (fit + 6'1) 

= 1 + ~ (20 ~ + CXo ~ -  2aXo2o) exp (at) sin (fit + e~) 

where a = - b/2, ~ + t~ 2 = c, and q ,  e 2 are constants. If, therefore, xE, xE are the enveloping 
values of this oscillation we have 

X E = % / { ( I + ; )  ( X 0 ~ + ~ )  2a b t )  - ~- x0x0} exp ( -  ~ 

b t) ~ E =  / { ( l  + ; ) ( ~ o 2 + C X o 2 - 2 ~ X o ~ o ) } e x p ( - ~  . 

It  is interesting to compare the bounds XB, 2• with the actual envelope x z ,  ~ ,  of the motion. 

The above expressions show that in all cases XB/X E and ~B/~E vary as exp (½lb[t). In this particular 

case, therefore, we have an answer to a question which is basic to this analysis: how much too big 
are the bounds ? The uncertainty appears as a factor: the bounds multiply the envelopes by the 
increasing function 

exp (½[bit). 

We still have to account for the differences, as regards xB and xE, or ~B and ~ ,  in the quantities 

under  the radical. This can be seen geometrically in Fig. 4. There ABCDE is a portion of a damped 

oscillation x, the trough CDE being reflected as CD'E. The envelope x E touches the x curve to 

the right of the peaks B,D'. The curve of 5 / f  touches the x curve at the peaks B,D'. Thus xE, ~ / f  

intersect twice between the peaks B,D'. The oscillation can be started by a disturbance x0, 2 0 at 

any point of ABCD. Suppose it starts a t  the point K. Then  the initial value of x~. is OQ and the 

constant value of x B is OP; these are the expressions under the radicals in x ~ , x  B. Also since 

2~ = ~/c x B and ~E = ~/c XE, the constant value of 2 is 5/c.  OP and the initial value of ~N is 
@c. OQ. 

It is dear  from the diagram that XE, @ f t e n d  to coincide as o~/fi, or the damping factor per period, 
becomes small; in an undamped oscillation these curves would be the straight line joining the peaks. 
Thus when o~/fi is small we have simply 

b) 
X E = ~ ( X o 2 + ~ ) e x p ( - - ~  

2~ = ~/(2o ~ +cxo z) exp - - ~ t  . 

The above argument for a decreasing oscillation applies unchanged for an increasing oscillation 
if we simply reverse the sign of t. Thus in all cases we have 

XBIx E = 2~ld: E = exp (alblt) 
for slowly decreasing or increasing oscillations. 
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3.1.2. Aperiodic soh~tion.--If  the solution of 2 + b2 + cx = 0 is aperiodic we can no 

longer define an envelope so that we can no longer obtain a factor of uncertainty in the same sense. 

We can, however, investigate the extreme values of the solution and see how these compare with 

the bounds we have previously deduced. 

• Our original equation can be reduced by the substitution ~ = bt to 

x" + x' + Cx = 0 i f  b > 0  

and by the substitution ~- = - bt to 

x " - x ' +  Cx = 0 i f b  < 0 

where C = c/b 2 and a dash denotes differentiation w.r.t. ~-. 

T he  solution of x" + x' + Cx = 0 'can be evaluated for various initial conditions and in Fig. 5 

the values of x/x  o are plotted against ~- for various values of h = Xo'/X o = d:o/bxo, for C = }. We 

see that if h > 0 the solution increases initially from unity to a maximum value and then decreases 

asymptotically to zero. The  greatest value occurs at the maximum. If  0 > h > 0.5 the solution 

decreases asymptotically to zero and the greatest value is unity occurring initially. For  values of 

h less than - 0.5 the solution decreases and becomes negative and has a minimum. For  values of h 

between - 0 . 5  and about - 2 . 4  the value at the minimum will be less than 1 and the greatest 

value will occur initially. For  large negative values of h the minimum will be the greatest value. 

There  are then three regions of h, in which the greatest deviation occurs at the maximum, the 

initial value and the minimum. T h e  solutions for other values of C are similar. 

When b is positive, the predicted bound is x•/x o = 1/xo~/(xoa+2o2/C)= 1/Xo~/(Xoa+Xo'2/C) 

= ~/(1 + ha/C). We may divide the extreme values of the solution by this and plot them against h 

as in Fig. 6. The  curves of this figure may be calculated, without  computing the complete solution, 
by the method of Appendix I. 

We see that if an initial disturbance occurs in x only (h = 0) the bound is always equal to the 

initial value but  if there is disturbance in 2 as well the bound of x will never be reached. Th e  amount  

of the discrepancy increases as C decreases and when C is very small the bound is a gross over- 

estimate of the extreme value except for disturbances that contain very little velocity. 

T he  corresponding solutions for x/x0 = x'/Xo' are shown in Fig. 7. Here  the solution has a 

maximum when h is small and negative, and a maximum when h is small and positive, while for 

large positive and negative values of h the greatest value occurs initially. T h e  bound for d~/2 o is 

V'(1 + C/h a) and if the extreme values are divided by this we obtain the curves of Fig. 8. 

T h e  ~ bounds are always reached when the disturbance is entirely in 2 (h -> oo). I f  there is a 

d i s tu rbance  in x too the extreme always falls short of the bound. However,  as C decreases, the 

amount  by which the bound overestimates the extreme decreases. For  very small C the bound is a 

good approximation to the extreme except for disturbances that contain very little velocity. 

Comparison of Figs. 6 and 8 shows that the bound for 2 is close to the extreme when the bound 
for x is much greater than the extreme, and vice versa. 

We must not forget that however  close the extremes are to the bounds the variables decrease 

from the extremes so that for most of the t ime the overestimate in taking the bound for the actual 

value is much greater than the ratio of the bound to the extreme. 

I f  b is negative the bounds increase with t ime like exp ( -  bt) = exp ~ and we must  consider 

the ratio of the solution to the bound as a function of time. Although the solution diverges this ratio 
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is b o u n d e d  and tends  to zero as t -> oo so tha t  we  may  discuss its ext reme values in the same wa y  

as for  the stable equat ion.  A r o u g h  examinat ion  of  this analysis suggests tha t  the  conclusions w o u l d  

be similar to those  for  the case of  b positive. 

3.2. c Constant; Linear Variation of b. 
I n  this case we  have 

b = b o (1 + ~t) 

C = C  0 , 

T h e n  A = /z, and H = 2b o (1 +~ t ) ,  vanishing at t = z -- - 1/~. T h e  solutions for A, /~ are as 

fol lows:  

b sign of  H A,/* range 

b o > 0, S > 0 + 1 t h r o u g h o u t  

b o > 0 , ~ < 0  

b o < 0, ~ < 0 

b 0 < 0, 8 > 0 

+ 

+ 

exp 

1 

e x p ( - b o t - ~ S - t  ~) 

bo~ 
e x p ( - b o ~ ' - ~ - ' r  ~) 

e x p ( - b o t - ~ t  2) 

0 < t  < ~- 

t > - r  

0 < t < z  

t > ~ r  

t h r o u g h o u t  

Fig. 9 shows  d iagrammat ica l ly  the shape of  the curves. 

T h e r e  are two notable  features of  these results. First,  A, /z are i ndependen t  of  c 0. Second,  A, /x 

coincide wi th  the results for b constant  so long as b is positive. W h e n e v e r  b becornes negative, 

t rouble  'occurs. 

3.3. b Constant; Linear Variation of c. 
Consider  next  

b = b 0 

c = co(1 + et). 

W h e n  e is negative the  solut ion stops w h e n  c = 0, at t = T = - 1/e. I n  this case we have 

e 

H - 1 + et + 2b° 

and  so H =  e + 2 b  o at t = 0 and decreases h y p e r b o l i c a l l y  to 2b o at t = oo w h e n  e >  0, and to 

- Go a r t  = T w h e n  e <  0. 
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I t  follows f rom this that  the sign changes in H are: 

e > O  

b o > O, 

e < O  

e -~<bo<O, 

C 
b o < - _ 

2 '  

H +  

H + -  

H -  

£ 

bo> - ~ ,  H +  - 

£ 

b o < - ~ ,  H -  

T h e  sign changes occur at t = -r = - + . 

T h e  solutions may now be tabulated as follows: 

e bo 

bo>  0 

positive 

negative 

C 
- ~ < b o < O  

_% 

c exp { -  bo(t- ~-)} 

b ° <  - 2  c e x p ( - b o t  ) 

C 
bo > -~ 

c exp { -  bo(t- ~-)} 

b ° <  - 2  c e x p ( - b o t  ) 

J( o) 
exp { -  b ° ( t -  z)} 

exp ( -  bot ) 

J( o) 
j(c ) 

c exp{--b°( t - -T)}  

exp ( - bot ) 

range 

O < t < o o  

O < t < ~ -  

t > - r  

O < t < o o  

O < t < ~ -  

~ - < t <  T 

0 < t <  T 

T h e  sketches of Fig. 10 show diagrammatically the shapes of the curves in the several cases. 

17 
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Notable features of these results are: 

(1) ;~, ~ always depend on b0, becoming steadily worse as bo decreases. It  is the sum of b o and 

half the slope of c/c o that determines the character of the curves. 

(2) When c is increasing,/z gives more trouble than A, and when c is decreasing, ;~ gives more 

trouble than/z.  

(3) ~,/~ are never the same as would be obtained on the assumption that c is constant at t ime t. 

3.4. Linear Variation of  both Coefficients. 

In this case 
b = b o (1 + 3 0 

c = c o (1 + et) 

and to limit the work we shall take b o to be positive. We then have 

C 
H - 1 + et + 2b°(1 + St) 

and H o the initial value of H is 2b o + e. Also 

f ( ' )  d t =  l o g s / c + b  o t + 2  t~ " 

It will be convenient to consider H in the form 

H = x - y  
where 

x = 2bo(1 + 3 0 

e 

Y - l ~ - e t  

The  zeros of H occur at the intersection of these curves. 

a straight line 

a rectangular hyperbola. 

3.4.1. Consider f i rs t  e > O. 

(1) I f  S > 0, then H > 0 and the solution is 

A = I  

C 

CO 

This  has already been sketched (Fig. 10). 

(2) I f  3 < 0 the geometry for H is sketched in Fig. 11a. Th e  solution is therefore 

0 < t < ~ ,  H > 0 ,  A =  l, / ~ = ~ ( ~ )  
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t >  r ,  H <  0 ,~ = exp 

= 

/ , =  )t 

e x p  

where t = r is the positive root of 

2bo(1 + St) (1 + et) + e = O. 

This  solution is sketched in Fig. 12a. 

t H dr) 

3.4.2. Consider nex t  e < 0. The  geometry for the zeros of H is sketched in Fig. l l b  and 

there are several cases to consider. 

(1) I f  H o > O, or b 0 > - e/2, as at P, then H changes sign once, at A, and the solution is 

O < t < r ,  H > O ,  

t > r ,  H < 0 ,  

T he  solution is sketched in Fig. 12b. 

;~= 1, / x =  

;~ = 7 exp 

e x p  

J( 0) 

(2) I f  H a < O, or b o < - e/2 as at Q, then H has two sign changes, at B1, B2, or none, accord- 

ing as the slope of x is greater or less than the slope of the tangent f rom Q to the hyperbola y. 

T he  critical slope is found as follows. T h e  equation for H = 0 can be written 

H 0 = 0  
~et2 + (~ + e)t + ~ 0  " 

This  has equal roots if 

o r  

g o (8 + e) 2 = 28e b~- 

(9) 

(90847) B 2 

the less of these. 

Hence 

E1 Ho + 
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Thus  if ~ > ~, H changes sign at ~1, ~-~, the two positive roots of (9) and the solution is 

0 < t <  ~h, H < O ,  A =  N / ( c f ) e x p  ( - b 0 t - ~ t  2) 

~-1 < t < ~-~, H > 0, 

7~.< t < T, H <  0, A = exp 

= /(c°cL2tex p 

,c-r1/ 

The solution is sketched in Fig. 12c. 

Finally, if 3 < g, H <.0 and the solution is 

j( 0) ( b0,} 
h = c~ 1 exp -bo-r 1 - -~ - - r l~  

/z = exp - b 0 * l - ~ - r l  2 

bo3 ~ 
- b o o -  1 - ~ -  

- bo[{t - ( ~ - ~ - ~ ) }  + ~ { t ~  - ( ~ /  

- b0[{t ~ ( ~ - ~ 1 ) }  + ~ {t2 _ ( ~ _  ~?)}1  . 

j(c0) ( 
0 < t <  T A = c exp - b o t -  t 2 

Iz = exp { -  bot -  b°S ; t 2~j" 
This is sketched in Fig. 12d. 

This example has been worked out mainly to show the complications that occur in analysing the 
bounds when b, c are simple functions of t. It  includes examples 3.2, 3.3 as particular cases, for 
b 0 > 0, when first e and then 3 is made to vanish. 

As noted in the other examples, the results get consistently worse as the slope of b decreases. 
When the slope of c is positive,/z gives more trouble than A; and vice versa. 

4. An Aerodynamic Pitching Problem. 

We next consider the application of these ideas to a simple aerodynamic problem. Suppose an 

aircraft is pivoted at its c.g. and free to rotate in pitch in an airstream of varying velocity: what  is 

its motion after receiving a small disturbance from the t r immed position ? Alternatively, the aircraft 
may be taken to fly horizontally with varying speed under a control which keeps the lift equal to 

the weight. I f  V is the speed and x the angle of rotation, the static moment varies as x V  2 and the 
damping moment  as 2V. The equation of motion is therefore 

2 + m~V~'+ mlV~x = 0, (10) 

ml ,  m 2 being constants, of which m I is taken to be positive. The  aircraft receives the disturbance 
Xo, xo at t = 0 when the speed is V 0. 
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We thus have 

and so 

b = m 2 V  

C = m l  V2 

2 
H = ~ ( V + m 2 V  ~) 

fo d t v = log Vo ° + m~s 

where s is the distance travelled (by the air or the aircraft) after the disturbance. 

The  following relations should also be noted: 

2E o = :~o ~ + rnlVo~xo 2 . 

V 
A,/~ are independent  of mr, and/~ = V00 A" 

We shall consider three speed laws: hyperbolic, linear and exponential, as sketched in Fig. 13. 

T he  first two are chosen because t h e  equation can then be formally integrated. No exact solution 

is known with the exponential speed law, but  the case is interesting as representing roughly a 

practical course of transition from one steady speed to another in a finite time. 

T h e  analysis of each motion will conclude with some numerical examples. Th e  numbers  used 

are collected in Table  1. 

4.1. Hyperbolic Speed  Variation. 

4.1.1. Analysis  o f  b o u n d s . - - T h e  speed law is 

V 1 
' 7 J  - -  

Vo - 1 + K V o t  

so that if K is positive V decays to zero as t -+ oo, and if K is negative V -+ oo at t = - 1 / K V  o . 

Thus  we have 
= - K V o  v2 

c = mzVo2v 2 

H = 2Vov(m 2 - -  K ) .  

In this example therefore H never changes sign during the motion but  is positive or negative 

according as m 2 > or < K. 

A H +  O B] H -  C 
m . , > 0  

m~< 0 

K = 0  K = m ~  

D H +  [E O H -  F 

K = m  2 K = 0  

acceleration ] deceleration 
+ -  ] - +  

21 



We have 

H d t  = 2 V o ( m 2 - K  ) dt 
0 

f 
v 

2 V o ( m 2 _ K  ) v -- dqo 
1 7) 

m2 - K fv dv 
= - 2  I £  d l  v 

= log gj2(1--m2*K) 

and so 

e x P t f l o H d t )  = V2(1--m2 fig) 

which is required when m~ < K.  

The  results can now be written down from the general formulae. 

m 2 >  K 
2 2 

f =  x 2 + - -  
m l  Vo2v 2 

2 
. [  = ( m2 - K ) 2 2 

7nl Vo ~ 

x°" + m l V o U  

~B 
= ~/(~o ~ + nh Vo2xo 2) v.  

It  will be seen from the sketch that this applies to the regions: 

m 2 > 0 (stable at constant speed) 

(11) 

AO (acceleration), v > 1, and so 

OB (deceleration), v < 1, and so 

m~ < 0 (unstable at constant speed) 

[..b --> oO 

ix --> O . 

m ~ < K  

DE (acceleration), v > 1, and so 

,,~2 

f = 2VoV(m ~ - K )  vm-md~)x~ 

tz - > oo . 

= V 'm2lK--1  ] 

tZ = ¢0m2 I K  , 
(12) 
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This applies to the regions: 

and so 

m 2 > O  

and so 

and so 

m 2 < 0  

BC 
m 2 

(deceleration), 0 < 

;~ -+ oo, tz -~0.  

EO 

OF 

< 1, v < 1, 

(acceleration), m2 ~ > 1 ,  v > l  

z~ - +  c~:), /L --~ c O .  

(deceleration), m2 ~ < 0 ,  v < l  

A-+co,  tz ~ o o .  

A broad conclusion from these results is that ;L or/z,  or both, exceed unity in all cases except 

one, the region OB of the sketch. In this case the system is stable at constant speed, and has an 

initial deceleration which does not exceed m2Vo ~ . In these conditions ;~ = 1 a n d / z - + 0  with v. 

4.1.2. Exact  solution when osc i l la tory . - -The  hyperbolic equation 

Appendix II  where it is transformed to the constant coefficient equation 

is integrated in 

d y e +  - 1 ) ~ + ~ x  = 0 (13) 

y = log (1 + K V o t  ) . 
by the substitution 

The characteristic equation is therefore 

u~+  - 1  u + ~-2 = O. 

If  the roots are complex, - c~ + ifl, so that 

a = ~ _  m 2 _  1 

192 ml ~ 1 

J ( & )  x =  C x° 2 +  o v ~ c o s ( f i l o g v + e l )  

2 = D V'(m2Vo2xo 2 + 202) v ~+1 cos (fi log v + e~) 

the solution is 

(14) 

where C, D, q ,  e 2 are constants and C, D become equal to unity when e~/fi is small. 
The solution is oscillatory, the time interval between successive zeros increasing without  limit 

in deceleration (v < 1, K > 0) and decreasing to zero in acceleration (v > 1, K < 0). 
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T h e  enveloping curves are given by 

x E = C Xo °"+m~vo 2] 

XE = D %/(mi Voxo 2 + ~o ~) v ~+l . 

T h e  asympto t ic  values are therefore:  

> 0, x, 2 -+ 0 

- 1 < c ~ < 0 ,  x-+ oo, g -+ O 

c~< - 1 ,  x, :~ -+ oo 

c~ > O, X, ~ - + o 0  

- 1 < o ~ < 0 ,  x - > O ,  ~ -> oo 

a <  - 1, x , ~ - + 0  

1 in  decelerat ion (v < 1, K > 0) 

in acceleration (v > 1, K < 0) 

(is) 

4.1.3. Comparison of bounds with envelopes of oscillation.--It is interest ing to compare  the  

bounds  xB, 2B of  (11) and (12) wi th  the envelopes XE, 2E of (15). T h e  bounds  can be wr i t ten  

xB = x°2 + mlVo 2] m e > K 

xB v + 

xj3 = v 2~ x°2 + m:Vo2/ m2 < K 

v/(m 7o .o + Xo 
In deceleration ~ > 0 cor responds  to m 2 > K and ~ < 0 to m 2 < K. 

Hence  for ~ > O w e  have 

1 1 
x~/x~ = ~ v - ~ ,  ~ B / ~  = b  v-~ 

and for  a < 0, 

T h u s  in all cases 

and 

1 1 
xB/x~ = - c V  ~, eB/~E = b V  ~. 

1 1 
xB/x ~ = ~ v-l<, ~B/Sc~ = b v-I~l 

xB = xE,  2B = 2E w h e n  ~ = 0 .  

Hence,  apart  f rom the constants  C, D the bounds  mul t ip ly  the envelopes by the increasing 
func t ion  v-I st (v < 1). 

In acceleration c~ > 0 cor responds  to m~ < K and ~ < 0 to m e > K.  

By a similar a rgumen t  we f ind 

1 1 

xB = xE, xB = XE w h e n a  = 0 

and the bounds  mul t ip ly  the envelopes by the increasing funct ion v I~E (v > 1). 
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Thus  with this speed law, when the motion is oscillatory, the difference between the bounds and 

the envelopes is expressed by a factor of uncertainty. Th e  bounds multiply the envelopes by an 

increasing function, v I~'~ in acceleration and v -l~l in deceleration. This  result is analogous to that 

obtained in the analysis of the equation with constant coefficients. 

4.1.4. Aperiodic sohttion.--If equation (14) has real roots - 7 ,  - 3  the solution is 

aperiodic: 
x = A v ~ ' + B & .  

We cannot then define an envelope or discuss the factor of uncertainty in the same way. We can, 

however, see to some extent how the extreme values of the solutions compare with the bounds by 

adapting the analysis of Section 3.1.2. 

It  is convenient to transform (13) to 

d2x dx 
dz- ~ + Vo(m2-K)  dz + mlV°2x = 0 (16) 

by the further substitution 

Y 
Z - -  KVo" 

Equation (16) has, of course, the same initial and stationary values of x as equation (13). Its 

solution has also, by Section 3.1, the bounds (11), (12). And finally it may be verified that 

(dx /dz)o  = So. 
We shall consider only the case m 2 > K, when x - + 0  as t - + e e .  In this case (see Section 3.1.2) 

Fig. 6 gives the ratio of the extreme values of x to its bound (11), in terms of the parameters 

h - ~ o _ 1 2o  

Vo(m = K)xo Vo(m -K) 

C - m l  

(m~-  K)  z" 

T he  adaptation of Fig. 8 to give similar information about 2 appears to be much less simple. 

4.1.5. Numerical example.--As an illustration the numerical solutions have been worked 

out for the following conditions: 

V 0 = 200 ft/sec 

initial acceleration = g or - g .  

T he  constants m 1 and m 2 have been chosen so that at a steady speed of 200 ft/sec the period is 

3 seconds and the oscillation damps to half its amplitude in one cycle. This  gives 

mlVo ~ = 4"444, m2V o = 0.4622, KVo 2 = ~ 32.2 ,  
so that 

m I = 0-000 111 1, m 2 = 0-002311, K = -T- 0.000 805  

T he  solutions for x and 2 are plotted for the decelerated case in Fig. 14 and for the accelerated 

case in Fig. 15. The  envelope of the curves and the bounds predicted, by the Polya analysis are 

also shown. We see that the Polya bounds are pessimistic and in this example in the accelerating 

case they predict an increasing oscillation when in fact it decreases. 
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In this case we may use the method of Section 2.3 and try to obtain closer bounds. We obtain 

ii + (m s + 2 K )  Vgt + (m 1 + m2K  ) Vht  = 0 

where u = 2. We deduce that if m 1 + m 2 K  > 0, m 2 + K > 0 the bound for u will be constant. 

As shown in Section 2.3 this constant value depends on the initial conditions. In our example 

we h a v e  
m 1 + m~K = 0.000 092 2 and m s + K = 0.001 506 

so that these conditions are satisfied and 2 has a constant bound. 

In Fig. 16 the acceleration o~ is plotted for the accelerated case and we see that although x and 

are tending to die out the amplitude of 2 is increasing. This  is typical of this sort of equation; the 

decay of the variable itself is no guarantee of the decay of its derivatives. 

4.2. Linear Speed Variation. 

4.2.1. Analysis of  bounds . - -Wri te  the speed law 

V 
v - - 1 + nVot ,  

Vo 
n being a constant, positive for acceleration and negative for deceleration. In the latter case we shall 

consider only positive values of V. 

Thus  for n > 0, with acceleration nVo s, v goes from 1 to oo and for n < 0, with deceleration 

nVo ~, v goes f rom 1 to 0. 

We then have 
C : n'/tVo2v 2 

H = 2V° (m2v ~ + n) 
~d 

so t h a t H =  0 a t v  = v 1 where vl ~ = - n / m  s . 

Since v is always positive, H has the sign of mev s + h, and can therefore in certain cases change 

sign once during the motion. The  signs of H can be summarised as follows: 

m s > 0  
H -  I H +  - I H +  

n = - - m  2 n : O  

m 2 <  0 
H -  [ H + -  

n = 0  n = - - m  2 

deceleration+_ I acceleration__+ 

To  make a survey of the bounds we shall require the integral of ~ /ove r  certain intervals. We have 

H dt = - m~v + dv 
7" V, r n V, r 

n Vr 2 
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T h e n  if ~- = 0 

and 
f 

t m 2  
H d t  = - - ( 7 3 2 - 1 )  + log v 2 

0 n 

0 1) 1 
This  is requi red  w h e n  H is negative th roughou t .  

Again if r = tl where  H = 0 and so 7312 = - n/m2 we have 

i 
l 732 732 

H dt = 1 - + l o g - -  
t 1 7)1 2 731 2 

and 

exp H d t  = - - e x p  1 -  
t l  7)12 ~12 " 

This  is requi red  w h e n  H changes  sign f rom + to - .  

T h e  f funct ions  and  the bounds  can n o w  be wr i t t en  d o w n  f r o m  the general  formulae .  

4.2.2. Consider f irst  the condition m 2 > 0, the sys tem being stable at constant  speed. 

T h e  sketch shows that  there  are three cases to consider.  

(1) Acceleration n > O. 
~2 

f ~ 372 ._~ m Vo---1  r '  2732 

2 
/ = (m#" + n) x2 

m l  V073 3 

~ -= X B  = 1 

2B 

/~ = V(~o 2 + mlVo2xo 2) 
= v --> co wi th  v .  

(2) Deceleration, - m 2 < n < O. 

In  this case H changes  f r o m  + to - at v 2 = vl  ~ = - n /m 2. 

Hence  in t h e  interval  v 1 < v < 1 the results are as for case (1), and  thereafter :  

v2 [ 1 -  v2 ~2 
f = - - e x p  ~ ~1~) ( x 2 +  ml~O~VU) Vl 2 

)t =Vl--exp - ½  1 -  --->oo a s v ~ 0  
73 

/ z = v l e x  p - ½  1 -  ~ a s v ~ 0 .  
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(3) Deceleration,  n < - m 2 . 

H being negative throughout  we have 

f = v 2 exp - m--~2n ( 1 - v  2) x ~ + ml~-o2V2 

( m~(1-v~)}  x 2 .f = 2Vov(m~v  ~ + n) exp - ~ -  

)t =l_v exp {m~(1-v2)}  -+co as v-+O 

/z = exp m22n(1-v 2) - + e X P 2 n a S V - + O  

4.2.3. N e x t  consider the condition m~ < 0, the system now being unstable at constant 

speed. The  sketch shows that there are two cases, according as n < or > - m~. 

(1) n < - m 2 . The  solution is formally the same as case (3) above, so that 

? t = l e x p {  m 2 ( l - v 2 ) } v  2n 

/z = exp 2nn 

but  we must distinguish between deceleration and acceleration. In deceleration (n < O, v < 1), 

increases and -+ oo as 1/v, and /z decreases to the limit exp (m~/2n).  In acceleration up to 

n = -  m2, A increases and -+co as ( l / v ) e x p { ( - m J 2 n ) v 2 } ,  and pc increases and -+co as 

exp { ( -  m~/2n)v~}.  

(2) Accelerat ion wi th  n > - m 2 . 

The  solution is formally the same as case (2) above, and n is now positive and v > 1. 

A = 1 up to v = v 1 or ~ / ( n / -  m~), and thereafter increases to co like 

( l /v)  exp {½ (v2/vl~)}. 

increases as v up to v 1 and thereafter increases to oo like 

exp {~- (v~/v12)}. 

Surveying the above results as a whole, it appears that ~, o r / , ,  or both, exceed unity in every 

case except the first part of the motion in case 4.2.2 (2) when the system is stable at constant speed 

and the deceleration is less than m2Vo 2. 

4.2.4. Comparison  wi th  exact  s o l u t i o n . - - T h e  exact solution of the equation discussed 

above is derived formally in terms of confluent hypergeometric fimctions in Appendix II.  This  

solution is of no practical use for finite values of t in important  practical cases because the functions 

have not been tabulated for imaginary values of the argument.  The  asymptotic behaviour (t -+ co) 

of the exact solution can, however, be obtained in a case of particular interest: when the motion 

at constant speed is oscillatory. The  result is as follows: 

If  the constant speed solution is exp ( - a + ib)t, then x behaves like t -112 exp { ( -  an~2) Vot ~} and 

2 behaves like t 112 exp { ( -  an~2) Vote}. Thus  x, 2 + 0 or co according as an is positive or negative. 
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T h e  bounds derived above for n > 0 do not suggest this result in case 4.2.2(1) (an > 0) for in 

that  case A = 1 and /~ increases as v or t. T h u s  in this particular case the 2 bound is too wide 

to be of practical use. 

We may, however,  try to nar row the 2 bound by the method of Section 2.2. T h e  equation for 

u or 2 is 

ii + (m~V 2n~:°~) (~ + (mlV2-m~nVo~)u = O. 

T h e  model being stable at constant speed and accelerating, ml ,  m 2 and n are all positive. T h u s  

if the 'c' of this equation is positive we must  have 

m 1 - m ~ n  > 0 

and under  this condition H reduces to 

H - 2V° {mlm2v 4 - n (m~+ ml)v 2 + 2m~n 2} 
( - ) 

where 
V 

v0 
Since mlm ~ is positive, H must  be positive in a range extending f rom a finite value of t to oc. 

Hence  by the general theory the bound of ~ must  be finite and constant as t -+ oo, provided 

m 1 > man. 

4.2.5. Numerical example.--As an example we consider the same steady speed conditions 

as in Section 4.1. T h a t  is a period of 3 seconds and/or t ime to halve ampli tude of 1 cycle at 

200 ft/sec. We assume that  the speed increases or decreases f rom this steady value wi th  an accelera- 

tion of + g. 

T h e  values of ;~ and/x for lg deceleration are plotted in Fig. 17. We see that  as V decreases f rom 

200 ft/sec A is at first constant and /z  decreases as V. As the speed decreases fur ther  A increases to 

infinity as V tends to zero and /z  continues to decrease to a value 0. 369. 

I f  there is an acceleration, A is constant at unity a n d / z  increases being equal to V / V  o . I f  we 

apply the method to the differeritiated equation we find that  in this example H does not change 

sign at all and the 2 bound is constant. T h e  value of /~  varies wi th  the initial conditions but  is 

always close to unity. 

4.3. Exponential Speed Variation. 

4.3.1. Analysis of bounds.--Suppose the speed changes exponentially f rom V = V 0 at 

t = 0 t o  V =  V ~ a t  t =  o o , s o t h a t  

V - Vo~ = ( V 0 -  Voo) exp ( - a V o t )  

where a is a positive constant. 

Wri t ing v = V/Vo, v~ = V ~ / V  o we have 

v - vo~ = ( 1 - % 0 )  exp ( - a V o t )  
and so 

= a V 0 ( v ~ -  v ) 

where v goes f rom 1 to v~ as t goes f rom 0 to co, and v~  may have any value be tween 0 and oo. 
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I n  this case, therefore,  

C ~--- mlg02g)  2 

and 

where  

d 2~) 

£ V 

H = 2aVo 
kv 2-:- v + ~d ~ 

k m2 
a 

Since v is positive, H has the sign of  kv  ~ - v + v~o, and changes  sign at the roots of  

]~V ~ -  V + V~o = 0 

that  lie be tween  1 and  v o~. 

Th i s  expression and hence  H may  have no changes  of  sign, or one, or two,  be tween  v = 1 and 

v~o, depend ing  on the values of  v~  and k. T h e  sign changes  are de te rmined  in relation to vo~ and k 

as follows. 

W r i t e  

Hence  

(1) 
k v ~ - v + v ~ - k  v - ~  

¢ ( 1 )  = k -  1 +vo~ 

- ; ~ k  + v~  = 4, (say).  
2 1 

4, ( v ~ )  = kv~o ~ 

and ¢ has a m a x i m u m  w h e n  k < 0, and  a m i n i m u m  w h e n  k > 0, at v = 1/2k with  the  value 

v ,  - 1/4k. 

T h u s  if k is negative there  can be no s ta t ionary value in the range 1 to v~.  4,(v~o) is a lways 

negative and there  is one or no change of  sign accord ing  as k + vo~ - 1 > or  < 0. 

I f k  is positive ¢ (vo~) > 0 and i l k  + v ,  - 1 < 0 there  m u s t  be one sign change.  I f k  + v~o - 1 > 0 

there  is no sign change  or  two.  T h e r e  are two  if there  is a m i n i m u m  in the range 1 to v ,  and the  

value at the m i n i m u m  is negative,  tha t  is if 

1 
v ~ - ~ < 0 .  

I f  this lies in the range, then  1/2k lies be tween  1 and vo~ • Th i s  is impossible  if vo~ > -~-. 

Th i s  analysis shows  that  the  various sign sequences o f  H are separated by k = 0, k + v~o - 1 = 0 

and  kvo~ - ~ = 0. T h e s e  are s h o w n  on a v~o, k d iagram in Fig. 18. 

I f  H is negative in an interval beginning  wi th  t = t l ,  v = v 1 then  

l 1 ll 

7)2 fg  
= l o g - ~  + 2 b dt .  

r i -  ll 
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Also 

Thus  

and so 

bd t  = m 2 V  o v dv 
t l  v 1 ~) 

f 
v V 

= k - - d r  
v t  V co - -  T 

= - k ( v - v l ) +  log //v - v~  \|-k~o. 
\ v l  - %o/  

f' = log I v  ~ (v-__vo~ 1-2kv~°] _ 2 k ( v _ v l )  
~1 ~ \ v l  - vow~ J 

( f )  exp H dt = - -  exp { -  2 k ( v -  vl) } . 

Expressions for f ,  f ,  x B 2 B can now be constructed f rom the general formulae. 

Expressions for A = xB/.X/(Xo2+:~oa/miVo ~) as a function of v, v~o and k are tabulated below for 

all the sign sequences of H . / z  follows f rom the relat ion/z = 22~/~/(~02 + mlVo2Xo ~) = vA.  

Sign of H ~ range in v 

+ 1 tovo~ 

changing at v~ 

- +  

changing at v 1 

+ - - +  

changing at v l ,  v 2 

1 

1 ( v - v o ~ k ~ ° ~  
-~ ~1 - v~o] exp { k ( v -  1)} 

1 

v 1 ( v - vo~ i kvo~ exp { k ( v -  vl) } 
v \ v  1 - Vow~ 

As for H - 

1)} exp 
I - ] 

As for H + - 

/ v 2  ~co 
\ kv o0 

/ | exp v,)} 
v~ \ v  1 - % o /  

1 to v~  

I to v I 

v I to v~ 

1 to V 1 

V 1 to Z~oo 

I to vl 

v t to v~ 

V 2 t o  V oo 

4.3.2. Numer ica l  e x a m p l e s . - - F r o m  the preceding analysis we have seen that  A and /~, 

which determine the shape of the bounds of x and ~, are functions of k = m J a ,  v ~  and v. These  

bounds have been plotted for various k for v~o = 0 .2  and v~o = 2 .0  in Figs. 19 to 22. Figs. 19, 20, 

for v~o = 0-2, explore the section AB of Fig. 18. Figs. 21, 22 for v~ = 2 .0  explore the section CD. 
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Since a is a positive constant, positive k corresponds to a system which is stable in steady motion 
and negative k to an unstable system. When k is positive, A and/z are always finite, ;~ is always less 

than 5 and/~ always less than 1 when v~ = 0.2. When v = 2 .0  )t is always less than 1 and/~ less 

than 2. I f  k < 0 then ?t and/z  both increase without  limit. 

In order to present a clearer picture of the effects of change of speed these results have been used 

to plot ;~ and/z against time for constant m 2 and varying a. The values of m 2 chosen are appropriate 

to a model which halves or doubles its amplitude in 3 seconds when in a steady airstream at 

200 ft/sec. The  variation of speed with time for the various k are shown in Fig. 23. 

The conclusions are: 

(a) Stable model decelerating, v~ = 0 .2  (Figs. 24, 25). 

For small decelerations (h large) ~t is constant at unity and/z  decreases slowly from unity to 0.2. 

As the deceleration increases ;~ remains constant at unity b u t / ,  decreases more rapidly to the value 

0 .2  until k reaches the value 1.25. When the deceleration increases beyond this, A stays constant 

at unity for the first part of the motion and then rises gradually to a new value and stays constant 

again. /~ still decreases but the value to which it falls begins to rise as the deceleration increases. 

This trend continues until k reaches 0.8. For larger decelerations than this A rises from the beginning 

of the motion and its final value is higher for larger decelerations. The final value of/z continues to 

increase. When the deceleration is very large ~ rises rapidly to the value 5 and remains constant and 

/x decreases little from unity. 

(b) Stable model accelerating, v~ = 2.0 (Fig. 26). 

A is always constant at unity./~ for 2 increases from 1.0 to 2.0 behaving in exactly the same way 
a s  2). 

(c) Unstable model decelerating, v~ = 0" 2 (Figs. 27, 28). 

/z always increases without limit but as the deceleration becomes larger the rate of increase 
becomes less. )t also increases without  limit; the initial rate of increase is larger for larger decelera- 
tions but finally A is lower for higher decelerations. 

(d) Unstable model accelerating, v , ,  = 2 .0  (Figs. 29, 30). 

Comparison of Figs. 29, 30 with Figs. 27, 28 shows that acceleration has opposite effects to 

deceleration on the )t, /x diagrams for an unstable model. /x now increases more Steeply as the 

acceleration rises (Fig. 30) while A increases at first less steeply and subsequently more steeply as 
the acceleration rises. If  the acceleration is large enough to make h < - 1.0, ;~ is constant for some 

time after the disturbance. 
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P A R T  I I  

Bound Analysis for Two Variables 

5. One second-order and one first-order equation. 

5.1. Theory. 

So much  for the analysis of a single second-order  equation. T h e  method can be extended in 

some cases to second-order  equations wi th  two variables x, y. T h e  simplest  system is that  which is 

second order in x and first order in y:  

£ + a~ + bx + cy = 0 

# + dy + e2 + f x  = 0 

where  a, b, c, d, e, f are functions of t. 

Here  we seek p, q, r, functions of t such that  

F = px 2 + qdc ~ + ry 2 

is always positive, and F is always negative. 

In  this case the bounds are 

Fo Fo 
N B  2 - -  , X B  2 ~ - -  

p q 

where F o is the value of F at t = 0. 

We find by differentiation that 

F =  
and so 

P =  
if 

(17) 

(18) 

f o 
yi32 = - -  (19) 

r 

bx ~ + ( q -  2aq)~ ~ + (,~- 2dr)y z + 2 x 2 ( p -  bq) - 2y2(cq + er) - 2frxy 

x2 + ( q -  2aq) 22 + 0 ; -  2dr)y ~ (20) 

p - b q = O  } 

cq + er = 0 

f r  = O. 

(2:) 

The  method fails unless f = 0, for i f f  =~ 0 we must  have 

p = q = r = O .  

I t  follows f rom (21) that b and A = - c/e must  be positive. (21) gives two relations between the 

three disposable functions p, q, r. We choose the third condition by equating to zero any one of 

the coefficients of x 2, 2 2, y~ in F. Consider these in turn. 

1 A 
Case 1. p = 1, so that q = ~, r = ~. 

N o w  
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where 

Thus we have 

1 2a dr)  exp( 0  exp( f 
h 2d dr) r'=rexp(-f2ddt) = ~exp ( - f  . 

1 28 h y= F = x~+~ +~  

Hence if b and A are positive, 

and 

d dt)} and ~ {~exp 

are negative, all the conditions are satisfied and the bounds are 

where 

b 
xB 2 = Fo, 2B 2 = bFo, yB 2 = ~ Fo 

1 '~o 
Fo = Xo 2 + ~ 2 o  ~ + ~ y o  • 

Note that if a and d are both positive the differential conditions reduce to db/dt > 0 and 

(dldt) (h/b) < O. 

Case 2. O - 2 a q  = 0, so that q = e x p ( ( t 2 a d t ) ,  
\ d 0  

In this case 

Thus  we have 

p = bq, r = Aq. 

d {3. exp ( f  2(a-d)dt)} 

d {bexp ( f  2adt)} x~ + exp 

Hence if b and A are positive, 

and 

exp 

and 
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are negative, all the conditions are satisfied and the bounds are 

e x p ( - f t o  2adt) t e x p ( - f : 2 a d t )  
XB~ = b F°' 2B2 = exp ( - f o 2 a d t )  F°' YB~ = 

where 
F o = boxo 2+2o 2+Aoyo =. 

F~ 

Case 3. 1 ; - 2 d r  = 0, so that r = exp 2ddt , q -  A' p = ~r.  

In this case by similar reasoning we have 

F =  exp 2d dt x 2 + ~ + y~ 
• 0 

d 2ddt) e x p ( f 2 a d t ) ~ t { ~ e x p ( f 2 ( d -  }2 2 . /~ = ~ {~exp ( f  } x 2 +  d a)dt) 

Hence if b and A are positive, 

and 

 { exp(f 2ddt)) and 

are negative, all the conditions are satisfied and the bounds are 

( Y )  ( Y )  xB 2 = ~ e x p  - 2ddt Fo, 2B ~ = Aexp - 2ddt Fo, 
0 0 

where 
bo 2o ~ 

F o = ~ X o  2+~+yo 2. 

d \ 

YBZ = exp ( -  f [  2ddt) Fo 

5.1.1. It  can be shown as follows that the cases considered above are mutually exclusive. 

For  the functions whose differential coefficients have to be negative are: 

1 2a dt) A 2d dr) 

(2) b e x p ( f  2adt), A e x p ( f  2(a-d)dt) 

bexp(f2dd 0 ' 0 (3) ,  expj 

and it will be seen that a function and its reciprocal occur in any two eases. Hence there is only 

one solution at most for given functions a, b, c, d, e. 

5.1.2. Wizen b = 0, the original equations are both of the first order if we put 2 = z: 

~ + az + cy = 0 

j~ + dy + ez = O. 
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Thus x and case (1) disappear from the solution and we are left with cases (2) and (3) with b = 0. 
The necessary conditions are: 

d {Aexp ( f  2 ( a - d ) d t ) }  0 A > 0 , ~  < case (2), 

case (3), h > 0, ~ exp 2(d-a)d t  < O. 

5.2. Application to a Problem of Jet Lift. 

Equations of the form discussed in this section occur in the theory of the motion of transition of 
a jet-borne aircraft between rest and airborne flight. Consider a simple transition motion in which 
the aircraft flies horizontally with acceleration n at no lift. The weight is supported by the jet and 

the drag is neglected. In considering the disturbed motion from this path there are two variables, 
x the attitude and y the incidence, and the speed is 

V =  Vo + nt. 

The usual static and damping moments in pitch are respectively proportional to V2y and V2. 

These are reinforced by two moments, proportional to x and 2, to provide stability in the hovering 
condition. The pitching-moment equation is therefore 

2 + ( m  2 V + m ~ ) 2 + m ~ x + m  1V2y = 0 

where ml, m~, ma, m 4 are positive constants. 

The forces acting in the disturbed motion are shown in Fig. 31, n(W/g) being the component 

of the jet reaction supplying the acceleration n in the undisturbed motion. The acceleration 

V(d/dt) ( x - y )  normal to the path is provided by lift proportional to V~y and by n (W/g)y .  The 
lift equation is therefore 

where l is a positive constant. 
In this case therefore we have 

It follows that i fp  = 1, then 

y - 2 = O  

a = m 2 g  + m,~ 

b = m 4 

e = m l  V 2  

n 
d= I v + p  

e = - - 1 .  

1 
q = - -  

m 4 

IH 1 V 2  

m 4 

t; - 2dr = - 2lml V~ 
• m 4 

- 2aq - 2(mzV+m3) 
m 4  
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H e n c e  so long as V > 0, case (1) is appl icable ,  w i th  the resul ts  

;~2 m l g _ g  
F = x 2 + - -  + y~" 

/T/4 I/% 

where  

[; _ 2 ( m ~ V  + ma) fc 2 2 l m l  V-  y 

Tn 4 he14 

m 4 
x n  ~ = Fo,  ~B ~ = m4Fo,  y z  2 - m l V ~  Fo 

• I n  I Vo 2 
F o = Xo 2 + x °  ~ +  yo ~. 

m 4 ~n 4 

W e  also note  tha t  if w = V y  is the  veloci ty  no rma l  to the  chord,  then  

m~ F0" W£¢ 2 ~ -  

ml  

T h e s e  resul ts  are i n d e p e n d e n t  of  n and  there fore  app ly  w h e t h e r  the  m o t i o n  is accelera t ing or 

decelera t ing so long as in the  lat ter  case the  speed  does not  fall to zero. In  all cases the  b o u n d s  of  

x, 2 and  w are constant ,  bu t  the  b o u n d  o f y  (the incidence)  varies inverse ly  as V. W e  should  there -  

fore  expec t  no t roub le  in t rans i t ion  mot ions  of  this s imple  kind. 

I t  is in teres t ing to examine  the  effect of  r e m o v i n g  the  au toma t i c  cont ro l  ma2 , m4x.  Here ,  cases 

(2), (3) app ly  w i th  b = 0. I n  case (2) we  have, f r o m  ~ - 2aq = O, 

q = exp (f[ 2m2 Vdt) 

w h e r e  s is dis tance t ravel led in t ime  t 

= exp (2m~s) 

r = m l V 2 q  

- 2dr = 2 m l ( m  ~ - l) V'aq. 

If, therefore ,  m,, < I the  resul ts  are 

F = ( ~  + m 1 g a y  2) exp (2m2s) 

fi" = - 2 m l ( 1 -  m 2 ) V  a exp (2m~s)y  ~ 

2B ~ = exp ( - 2 m 2 s ) F  o 

exp ( - 2rn2s ) 
y 2  = Fo 

Vf/1 V 2 

where  

exp ( ± 2mzs)  
WB 2 ~ . F 0 

In  1 

fro = Xo 2 + mlVo2Yo 2. 
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where 

In case (3) we have from i - 2 dr = O, 

V 2 
- Vo 2 exp (2/s) 

r 

q - mlV~ 

2(l- m2) 
- 2aq - r 

In I g 

2 ( / -  m2) 
- - -  V ex p  (2/s). 

/n lg0 2 

If, therefore, m 2 > l the results are 

exp (2/s) (22 + mlV2y2) 
F -  ml  Vo 2 

/~ 2 (m~- l )  V~ ~ exp (2/s) 
mlVo 2 

~ 2 = miVo  2 exp ( - 2 h ' ) F  o 

Vd 
y1~ 2 = ~ / e x p  ( - 2ls) F o 

w~; z = Vo 2 exp ( - 21s) Fo 

,%2 

F o - mtVo ~ + y o  z. 

As before, these results apply whether  the motion is accelerating or decelerating, so long as in 

the latter case the speed does not become negative. With this proviso the bounds of 0~ and w always 

decrease. T h e  bound of y decreases in acceleration but  ultimately increases in deceleration as V 

approaches zero. 

6. Two Second-Order Equations. 

FinaUy we may sketch the bounds analysis for the general second-order equations with two 

variables: 

2 + a 2 + b x + c ; 9 + d y  = 0 }  (22) 

y + e# + f y  + g~ + hx = 0 

where a, b . . . are functions of t. 

We now want to find p, q, r, s functions of t such that 

F = p x  ~ + q~2 + ry2 + @2 

is always positive and -~ is always negative, where x, y satisfy (22). 
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By differentiation, using equations (22) 

f~ = f ~x~ + i'Y 2 + ( q - 2 a q )  ~2 + ( s -  2es)2 ~ + 

+ 2 (p -bq )x~  + 2(r- fs )yS ,  - 2(cq+gs)~p - 

- 2qd~cy - 2sh#x. 

I t  is not easy to proceed unless d = h = O, in which case the only coupling terms are damping 

ones. 

With this simplification we have 

ff  = ] )x2 + i'Y ~ + (q -2 aq )  ~ + (~-2es )y  2 (23) 

provided p, q, r, s are chosen so that 

p - b q = O  } 

r - f s = O  

cq + gs = O. 

Since p, q, r, s must be positive, these relations show that 

must  be positive. 

We then have 

£ 

b,f ,  and cr = - - 
g 

three relations between p, q, r, s. 

(2¢) 

p q r s 

b 1 .fc~ 

We may choose the fourth condition by suppressing one of the four terms in (23). We get one 

type of solution by suppressing either x 2 or yZ, and a second type by suppressing either 2~ or 3)L 

Type 1. Suppress x 2 by choosing p = 1, so that 

N ow  put  

and we have 

1 fG 

s exp 0 

0 
, 4 
F = x 2 + ry ~ + q,2,2 + s,L9,2 

39 



Hence, if ~, (l', i' are always negative, then F < F 0 and we get bounds for x, y~ ~;o, L9 in the usual 
way. The  conditions to be satisfied besides (24) are 

d dt)} d t { ~ e x p ( - f  all negative. d (f~) dt {lbexp ( - f 2 a  d 2edt)} (25) dt ' 

If a, e are both positive it is sufficient to have 

df d ( ~ )  d ( ; )  all negative 
d~' d~ ' d~ 

If we suppress y2 in F by putting r = 1 we obtain a similar solution, the differential conditions 
being 

d d 1 2adt) d 2edt)}all (26) dt ( ~ ) '  dt{ fc~exp(-  f }' d - t { f e x p ( - f  negative. 

Type 2. Suppress 22 by choosing q - 2aq = 0 so that 

q = e x p ( f  2adt) 

p = bq 

r = foe 
S ~ ¢yq .  

It will be found that the substitutions 

b' = b e x p ( f  2adt) 

4 
cr'= crexp(f  2(a-e)dt) ~. 

0 
y = ,exp  ( f ed t )  

reduce F P~, to the forms 

f = b'x ~ + ~'~ + (f~),y2 + d?,z 

P = b'x 2 + (fO)'y 2 + 6'L9 '2 . 

Thus  if b', (f(~)', ~' are negative, F < F o and we get bounds for x, y, 2, 2P in the usual way. 
The  conditions to be satisfied besides (24) are 

d 2adt) d e)dt)}aUnegative.(27) d , di{ f~exp(f  }, ~ { a e x p ( f 2 ( a -  
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If we suppress 92 in _# by choosing g - es = 0 we obtain a similar solution, the differential 

conditions being 

d 2edt)  d 2 e d t ) } ,  d - a ) d t ) ) a l l n e g a t i v e .  d~ {bexp ( f  ) ,  ~ { fexp  ( f  ~ {1 exp ( f  2(e ' (28) 

If the differential conditions (25) to (28) of the four solutions are examined it will be found, in' 
any two cases, that the differential coefficients of one function and of its reciprocal are required to 

be negative. For example, in the first two solutions the function is f~/b. Thus the solutions are 
mutually exclusive, and any set of functions a, b, . . . g will yield at most only one set of bounds, 

at least of the kind considered here. 
If h, d are retained in equation (22) it is possible to proceed by writing F in the form 

f~ = (])x 2 - 2hsx# + (g -  2es).-9 ~} + {¢yZ - 2dqy2 + (( t-  2aq) ~2} 

and introducing the conditions that the quantities within curly brackets are perfect squares, in 

addition to the conditions 
p - b q =  0 

r - f s = O  

cq + gs = O. 

However, the conditions under which bounds can be obtained now become too complicated for 

practical use. 

7. Conclusions. 

In classical stability theory the amplitudes of the motion do not explicitly occur: if the motion 

decays it is assumed that the amplitudes will always be small enough. It has, however, long been 
realised that in some flight problems this treatment is not adequate. Even if a complex system is 
stable, some types of disturbance may force one or more components of the motion to initial 
amplitudes that cannot be tolerated. Behind all such arguments lies the concept of bounds. 

In the present analysis of the motion following a disturbance to a given accelerated motion we 
have in effect initiated a search for its bounds. This approach seems to us to be dictated by a 
combination of mathematical necessity with the practical logic of its application. In practical 
applications the datum motion persists for a short time only: the problem is to ensure that no 
disturbance occurring in that time produces intolerable amplitudes. Thus in any actual problem 
of this kind we start with a set of practical bounds. Even if the equation could be solved, we should 
be comparing the extremes of the motion with the practical bounds. This being generally impossible, 
the next best thing is to establish as narrowly as possible a set of theoretical bounds. If these turn 
out to be less than those practically required, a short cut has been found through the mathematical 
difficulties of the problem. The present paper is a preliminary sortie in this direction. 

The particular method of bounds explored here has some very clear limitations. It does not, 
except in special cases, work for equations of higher degree than the second. It works only when 

certain relations between the functional coefficients of the equations are satisfied. And even when 
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bounds are found, a basic and as yet unanswered question remains: how much too big are they in 

relation to the actual extremes of the motion ? Nevertheless we feel that the method has the right 

angle to the problem and could profitably be pursued in two directions. 

(1) To attack the problem of excess in the bom~ds. This we think can only be done by making 

a survey of the numerical solutions of a number of widely assorted second-order equations, 

and examining the field of uncertainty thus obtained. 

(2) Part II of this paper contains only a rough sketch of the application of the bound analysis 

to systems containing two variables. We need here a thorough classification of such systems 

for which bounds can be obtained, in order to see more clearly to what extent the method 

can be applied to practical current problems of accelerated flight. 

Finally we may glance at the alternatives to this method. Analytically, since the frontal attack is 

so difficult, the only way open seems to be to divide the time range into intervals so small that in 

each the coeffidents may be treated as constants, and then to construct the solution in steps, using 

the end condition of one interval as the initial conditions of the next. A matrix solution of this kind 

is worked out by Frazer, Duncan and Collar in Ref. 10. It is, however, laborious; it is of course 
blind in the sense that it is difficult to assess the nature of the solution until its salient points have 
been worked out; and it is impossible to assess the changes in character which arise from changing 
the parameters without computing many solutions. In particular, it is quite unsound in general to 

discuss one of the small intervals in terms of stability with constant coefficients: this will often lead 

to absurd results. 
It may be then that a frontal attack is only possible by transferring it to the powerful computing 

machines now available. In this way we could obtain a wide range of solutions of some important 
practical problems, and then proceed by experience or by using the numerical survey as a basis for 
an approximate analytical approach. This is the sort of situation in which one is probably right in 

first working hard for a short cut. 
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b~ C 

XE ~ 2/d 

H 

/x 

f 
~ 

N O T A T I O N  

Coefficients of the general second-order linear equation (Section 1) 

The bounds for x and ~ derived by the present analysis (Section 2.1) 

The envelopes of an oscillatory solution for x and 2 (Section 3.1.1) 

d 
- -  - + 2b (Section 2.1) 

C 

= x B / v / ( X o  ~ + 2o2/Co) (Section 2.4.1) 

= 2 B / ~ / ( c x o  ~ + 203) (Section 2.4.1) 

A dot denotes differentiation with respect to t 

A suffix 0 denotes the value at t = 0 

sign of integration when only negative values of the integrand are admitted. 
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A P P E N D I X  I 

The Stationary Values of the Aperiodic Sohttion of ~ + b2 + cx = 0 

when the Coefficients are Constant 

We assume that b and c are positive. Then  we have seen in Section 3.1.2 that the equation 

£ + b~ + cx = 0 
may be reduced to 

x" + x' + Cx = 0 

where C = c/b 2, r = bt and a dash denotes differentiation w . r . t . r .  

I f  C < ~ the solution is aperiodic and may be wri t ten 

x =  A e x p ( - ~ r ) + B e x p ( - f i r )  

where e~ + f = 1, 04? = C and the constants A, B are determined by the initial conditions. We 

shall assume x = Xo, x' = K x  o at t = 0. We have 

o ~ = - {Ace exp ( - a t )  + B/~ exp ( - f i r ) }  
so that 

A =  \7C--~7"°' B =  \ ~ _ f ! . o .  

Now since C > 0, a and f are both positive. It  is convenient to take a to be the larger root so 

that we can be sure about the signs of the terms. 

T h e  solution for x has a stationary value when ~ = 0, i.e. when 

A~ exp ( - ~ r )  + B E exp ( - f i r )  = 0, 

i.e. when  
Aa _ c~(f + K)  

exp {(a - 8)r} . . . .  
B f  f(o~ + K)  

r is real and positive when {~(fi+K)}/{fi(~+K)} > 1, i.e. when K > 0 or K < - ~. Now 

x = d e x p ( - ~ r ) + B e x p ( - f r )  

= e x p ( - 2 )  I B e x p { ( ~ @ - ~ ) r  } 

so the stationary value of x when K > 0 is given by 

I 1 l n f ~ ( f + K ) ) ]  F ( ~ + K ) / l ~ ( f + K ) t  ( f + K ) / I ~ _ ( _ ~ + K ) t  q 
= x 0 exp 2(c~- /~ \/3(c~+K)) L - ( ~ @  ~/ [ f ( ~ + K ) J  ( ~ - f )  ~/ [ c , ( f + K ) ) . ]  

/~(~ + K)/-1t{2~-p~} ~/{(~ + K) (8 + K)} 
= *0/~(GTg))/ ~/(~f) 

( I + K )  ~'(~-p} 

--= X 0 

1 K~ ~I~-p~" + 7!  
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Similarly when  K < - 

X m =-: 

K }~l(~-p) 
- -  XO O~ 1 

K 1 )Vl(~-p) 

The  bound  we deduced for x is 

so that  

xm 1 + ~- 

Xz' 1 +  1 + 

For a stationary value of 2, 2 = 0 so that 

and 

Xm 

exp ( ~ -  fl)r - 

B52 ~2(~+K) 

la2(~+K)t-1/( 2(~,-fl)} (ot+K 1 o~ ( f i + K ~  ( f i + K ~  _ 

= - ~° t ~ ~ ,  {to<-/~,/3~ d t ~ !  - t~ -~ !  ~<! \ f i+ K]  J 

which can be reduced to 

Now the bound  for 2 is 

so that 

2 ~ =  x o~/ (K2+ C ) =  x o~/(afi) d ( l +  - ~ )  

The  stationary values may or may not exceed the initial values. For these we have 

x o _ 1 

x~[ d ( l +  ~__~2 ) 

~ / ( K  2 + C) ~/e ' 
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A P P E N D I X  II  

Exact Sohttion of the Pitching Equation for Hyperbolic Speed Variation 

If the speed varies hyperbolically with time we have 

V 1 
V o 1 + KVot  

If we now write y = log (1 +KVot  ) = log Vo/V then the equation 

£ + m 2Vx + ml V2x = 0 
reduces to 

d2x ( m 2 = ) d x  ml 
dy + 7( 1  +R x=O 

which is linear with constant coefficients and if the characteristic equation has complex roots 
- a +_ i/3 the solution is 

x = exp ( - ay) {A sin fly + B cos fly} 

= v ~ {A sin ([3 log v) + B cos (/3 log v)} 
where 

V 
e 0 ~ - -  

v0 

 2ml = ~ - {  - 1  . 

Now since :~ = (dx/dv)i~ and 7)= - K V o  v~ we have on differentiating x 
- ~ / K V  o = v ~+1 ( ( a A - f l B )  sin (/3 log v) + ( f iA+aB)  cos (fi log v)}. 

giving 

and 

Now i f x  = Xo,2 = 2 o w h e n t  = 0, i . e .v  = 1 

Thus 

B = xo 

fiA + ~B = :~o 
X V o  

A = - ~  aXo + 

- - a ~ +/3~ a 2o 
Xo 3 KVo" 

1 (  a x ° +  ~ o ) s i n  (3 l°g v)) x = v = {Xo cos (/3 log v) - 

= Pv ~ cos (fl log v + q)  

= f~V°va+l { ~ 0 0  COS (t3 log V)+\(a2 +fi fl~ XO+ 3a ~o0)Xo sin (13 log V)} 

= Qv ~+1 cos (/3 log v + e2) 
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where 
c~ 2) ~o 2 2o~ 

p2 = Xo 2 1 + ~  +/32~KZVo ~ + ~ x o 2  o 

Q~ = K2Vo2 [(o~2+32) 2 1 ( ~ )  t /32 Xo~+~V~g ~+~ ~o~+ 
If  ~//3 is small these reduce to 

,/( X = Xo 2 + mlVo2]  cos (/3 log v + q)  

:~ = ~ / (mlVoZxoZ+ 2o2)V ~'+1 cos (/3 log v + q ) .  

It is convenient then to write 

where 

~ KVoJ " 

x = C Xo ~ + m l  Vo2] cos (fl log v + q)  

2 = D ~ / (mlVo2xo  ~ + 2o2)V ~+1 cos (/3 log v + ez) 

x° 2 ~ P~ 
C 2 Xo°~ + m : V o  ~} 

D 2 (m 1 Vo2xo 2 + 202) = Q2. 

The solution is an oscillation with the frequency varying logarithmically. The amplitudes of 

x and 2 vary in the following way: 

c~>0 x, ~ --~0 

- 1 < ~ < 0  x - + o c , 2 - > 0  

= <  - 1  x ,~-+o~ 

The envelopes are for ~//3 small 

x E = v~ xo~ + mlVo~]  

s:~ = v~+ 1 v ' ( m l V&O ~ +sC) .  

If  the characteristic equation has real roots, - 7, - 3, the solution is 

x = A e x p ( - T y ) + B e x p ( - S y )  

= A v 7  + B &  
and on differentiation 

} a t-,oo 

2 
- (7Av7+1 + 3 B & + I ) .  

- K V o  

48 



A P P E N D I X  I I I  

Solution of  the Pitching Equation for  Linear Speed  Variation* 

T h e  equation is 

This  may be wri t ten 

where  

2 + m s ( V  o + nt)~ + m l ( g  o + nt)Sx = O. 

2 + 2(p + qt)2 + A(p + qt)Sx = 0 

mS ~/2 
p = - 2 - V o ,  q = - ~ n ,  

Change the dependent  variable f rom x to z by the subst i tut ion 

I - 4ml  
m22 " 

x = e x p ( - T ) z  
where  

C S T = p t  + ½qt s + ~ ( t - m )  

c and m being disposable constants. 

The  result is 

£ - 2 c ( t - m ) ~  + { ( ~ - 1 ) ( p  + qt) ~ + d ( t - m )  s - q - c}z = O. 

I f  c and m are chosen so that  the coefficient of  z is constant we have 

c =  _+ ~/(1-~)q } 

m---- P 
q 

and the coefficient of z is - (q+c)  or - c{1 + 1 /~ / (1 -A)} .  

T h e  equation is now 

5 -  2 c ( t - m ) ~ - c  1 +_ 5 / ( i - -  z = 0 

where  c, m are given by (1). 

N o w  change the independent  variable by the substi tution 

T h e  result is 

where  

c ( t - m ) ~  = . .  

dSz dz  
u ~ + ( ~ - u )  ~z = 0 

= } 1 _+ V ( i -  " 

(1) 

(2) 

(3) 

The properties of the confluent hypergeometric function used in this analysis are taken from a very 
useful paper by Webb and Airey n. 
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The solution of (2) is 

= AM(a,  1_, . )  + Bu1~ M(a + ~, ~,3 U) = M(a ,  I,  u) 

in terms of the confluent hypergeometric function 

~(~+ 1) a(~+ 1)(~+ 2) 
M(~, 7, u) = 1 + l~yU + 1.2.7(y+ 1 ) z,2 + 1.2.3y(r+ 1)(y+2) ua + "" " 

A and B are constants. 
Thus the solution of the original equation is 

I < .  (4, x = exp -{pt+½-qt 2+~ ~, 

where 
_M = AM{a, I, c( t -m) z} + Bc 11~ ( t -  m) M{a + ½, -a,z, c( t -m) ~} 

and c, m, a are given by (1) and (3). 
It appears that there are two values of c and a, associated with + @(1 - ~). But from the relation 

M(a, y, u) = M(y -a ,  7, -u )  exp u 

connecting M's of positive and negative arguments u and - u  it can be shown that 

exp { ~/(1-;~)2 q(t-m) ~} M t \1+ @(f--1 l , ) , 1 , @ ( l . - A ) q ( t - m )  

@(i-- ;~)]  1, _ @ ( 1 - , ~ ) q ( t -  

and similarly for the second M function involved in 37r. 
It follows that in (4) the complete solution is given by choosing either of the two values of c 

given by (1). 
The solution at constant speed (n = 0) is exp ( - /z t )  where/ ,  is given by 

~ - 2 p ~  + ~p" = 0 

o r  

~2 = ] ± @ ( 1 - ~ ) .  
P 

Now 

pt+½-qt " + ~ ( t - m )  =pt+½qt  ~+ 2 q t+ 

={1 +@(1-2 t )}p  t + ~ t  2 + @(1-;~)~q 

= {1 _+ @ ( 1 - ) ) } p  t + ~00 t~ + constant. 

It follows that the exponential factor in (4) is 

n 
exp { - / x  (t + ~ t2) } or exp ( - - ~ o )  

where /x is one root of the constant-speed solution 

and s is the distance travelled by the airstream in time t. 
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W e  are par t icular ly  interested in the case where  the  cons tan t  speed solut ion is oscillatory. I f  

/z = a + fb the exponent ia l  factor  is of  the f o r m  exp ( -  as/Vo) cos (bs/Vo). W h e n  the speed is 

increasing s increases w i t hou t  limit and  so the  per iod -> 0 and the damp ing  --> oo or - oo according  

• as a > or < 0. W h e n  the speed is decreasing s is a m a x i m u m  at V = 0. Hence  the per iod -~ oo at 

V = 0, whi le  if the d a m p i n g  is positive at cons tant  speed it increases up to V = 0, and if the 

d a m p i n g  is negative at cons tant  speed it increases negatively up to V = 0. 

This ,  however ,  is only  one factor  in the  solut ion for x. T h e  M funct ions  in (4) have an imaginary  

a r g u m e n t  and a complex  parameter  a, and as they  have no t  been tabula ted in such ranges we  d o  

not  k n o w  the f o r m  of x for  finite t. W e  can, however ,  examine the  asympto t ic  values of  x since 

the  asymptot ic  fo rms  of  the M funct ions  are known.  

W h e n  u is large 
M(o~, 7, u) oc u~-r exp u 

and  
u 1-:' M ( a -  y + 1, 2 -  y ,  u) cc u - ~  . 

I n  our  case u is p ropor t iona l  to it 2, 7 = ½, 

( c~= ~ 1 + ~ / ( ~ t - 1  

( ' )  - 1 T - V ( 2 _ 1 )  " 
Hence  

u -~ o c t  -1/~ ti/{ 2~/(~-1)} 

t - l e  exp [i log t /{2X/(A-  1)}] 

and  
u ~-7 exp u oc t - l a  exp [i log t / ~ / ( h -  1)] exp ( i#) .  

Both  funct ions  therefore  behave as t -1/2 exp (i¢) whe re  ¢ is a real func t ion  of  t. 

T h e  asympto t ic  f o r m  of  x is therefore  

exp { - (a + ib) t-it2 2Vo] exp (i¢) \ 

and  its behaviour  depends  on t -1t2 exp { -  (an/2Vo)t~}. T h u s  x -->0 or oo according  as an > or < 0. 

By differentiat ion we  f ind that  2 depends  on t lt2 exp { -  (an/2Vo)# } with  the  same result. 
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General 

T A B L E  1 

Pitching Model--Values Used in Numerical Examples 

Period at steady speed of 200 ft/sec 

T i m e  to halve ampli tude at steady speed of 200 ft/sec 

ml  

m2 

Hyperbolic speed variation V = Vo/(1 + KVot ) . 

3 sec 

s e c  

0"000 111 ft  -2 

0"00231 ft -1 

K = + 0. 000 805 ft  -1 corresponding to initial acceleration of -Y g. 

Linear speed variation V = V0(1 + KVot ). 

K = + 0 .000 805 ft -1 corresponding to acceleration of + g. 

Exponential speed variation ( V -  Vow) = (Vo-  V~) exp (-aVot). 

v ~  = v~o/Vo = 2 . 0  

m 2 

a 

2 

1 

0"5 

a 

( f t -O 

0.00116 

0.00231 

0.00462 

initial acceleration 

R/sec z g 

46"2 1"44 

92"4 2"87 

184"9 5"74 

Voo ~-~ v=/Vo = 0 . 2  

m 2  

a 

2 

1 

0.5 

a 

(ft-1) 

0.00116 

0.00231 

0.00462 

initial deceleration 

ft/sec 2 g 

37"0 1"15 

74" 0 2" 30 

147" 9 4" 59 

T h e  unstable case wi th  the sign of m 2 changed has also been considered. 

52 



/ ' t  

\ 

((:1) H > O  

FIG. la and b. 

(b) H<o 

Sketch of analysis when motion is oscillatory. 

FIG. 2. Sketch of analysis when H 
changes sign. 

FIG. 3. Sketches of analysis c < O. 

H<O 
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FIO. 4. Relation between envelope and @f. 
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FIC. 5. Aperiodic solutions of equation with 
constant coefficients--Displacement. 
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FIG. 6. Equation with constant coefficients. Comparison of extreme values and 
bounds for x. 
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Fro. 7. Aperiodic solutions of equation with 
constant coefficients--Velocity. 
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FIG. 8. Equation with constant coefficients. Comparison of extreme values and 
bounds for ~. 
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Fro. 10. Shape of bounds--b constant, c varying 
linearly. 
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FIG. l la and b. Geometry for H--both 
coefficients varying linearly. 
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FIG. 12a to d. Shape of bounds--both coefficients 
varying linearly. 
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FIG. 14. Pitching model with hyperbolic decrease of 
speed. Comparison of bounds and exact solution. 

FIa. 15. Pitching model with speed increasing hyper- 
bolically. Comparison of bounds and exact solution. 
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FIC. 16. Pitching model with speed increasing 
hyperbolically. Time history of acceleration. 
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Fzo. 19. Pitching model for exponential speed 
variation, x bounds for deceleration to v co = 0.2. 
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FIO. 26. Pitching model with exponential speed variation. 
bounds for acceleration to voo = 2.0, m 2 > 0. 
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FIO. 27. Pi tching model  with exponential  speed variation. 
x bounds  for deceleration to v® = 0.2,  m 2 < 0. 
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