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Comparisons are made between low-speed experimental results and estimates based on attached-flow 
theory for the lateral stability derivatives of slender wings at incidence, and it is found that the flow separation 
has little effect on the sideslip" derivatives. The reduction in l v due to part-span anhedral is evaluated, and a 
semi-empirical formula is derived to account for important second-order terms. For the rotary derivatives, an 
attempt is made to estimate the effect of the leading-edge vortices, but no satisfactory conclusions have been 
reached. 

The fin contributions to the derivatives are evaluated on the basis of treating the Wing surface as a total 
reflection plate. Good agreement with experiment is reached for the sideslip derivatives, and for the damping- 
in-yaw at moderate incidences. Sidewash is found to have a large effect on the rolling derivatives, and further 
information on the strength and position of the leading-edge vortices in non-symmetric flow is required before 
a complete calculation of the sidewash can be given. 
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1. Introduction. 

At the present time, a fairly extensive wind-tunnel programme is giving experimental results 
for the lateral stability derivatives at subsonic speeds of slender wings, of various planforms, span- 
length ratios, etc. The theoretical calculation of the derivatives has already been given for delta 
wings with attached flow ~, independent of Mach number, in Ref. 1, and the theory is easily 
extended to other slender planforms. The present report compares the experimental results With 
those of the attached-flow theory, in order to discover its limitations in subsonic flow, and attempts 
to calctilate the effect of the leading-edge vortices which arise from flow separation when slender 
wings are at incidence. ,, 

The sideslip derivatives are found to be little affected by the leading-edge vortices, and the 
attached-flow theory is extended so that the reduction in the nlagnitude of l v due to putting anhedral 

on the wing in various ways may be calculated. A semi-empirical formula is then derived for delta 

wings With drooped tips, which includes second-order terms in angles of incidence and andedral. 

The leading-edge vortices seem to have an appreciable effect on the derivatives due to rolling, and 

in fact the attached-flow theory predicts a much greater loss in damping-in-roll with increasing 

incidence (and the wing rolling about the wind axis), than is found experimentally. Also, the n~ 

derived in Ref. 1 arises from the suction forces along the leading edge, which vanish when the 

flow separates, so that a better estimate for. n~, when there is no dihedral, is zero with respect to 
body axes (i.e. - l ~  for wind-body axes~), which agrees quite well with experiment. The effect 

of the vortices on the antisymmetric pressure distribution on the rolling wing is calculated from 
the boundary condition on the wing, in terms of the symmetric loading which can then be taken 
from theory or experiment. However, this does not lead to a great improvement in the estimation 
of l~, and any future theoretical considerations will have to make allowance for tt~e asymmetric 
strength and position of the vortices from a rolling wing. For the wing alone, the experimental 
results for derivatives due to yawing are very sparse, and the American oscillatory tests available 
give results which vary greatly with frequency, so that comparisons with theory are inconclusive. 
The attached-flow theory of Ribner neglects terms of order A in comparison with those of order 
1/A,  and so the result for wings of aspect ratio of order 1 is derived, and a parallel calculation to 
that for the damping-in-roll is given for the effect of the vortices on the asymmetric pressure 
distribution. The resulting l r is found to differ little from the attached-flow result, and the n r is 
small for moderate incidences. 

The fins of current designs are of relatively simple planforms, and the estimation of their 
effectiveness is made easier than for the fin and tailplane configuration when the fin is placed on 

the wing surface. From structural reasons, it is highly probable that the.major part of the fin area 
will lie ahead of the wing trailing edge, and so we may consider the wing surface as a totai reflection 
plate for the net fin: Thus sideslip is equivalent to incidence~ yawing to pitching, and rolling to a 
symmetric distribution of incidence varying linearly along the semispan o f  the fin. Theoretical 
estimates for lift and moment due to incidence are available, for most planforms, and results for the 
fin contribution to the sideslip derivatives are in good agreement with experiment. For the rolling 
motion, a lifting-surface theory has to be used for calculating ,the lift and moments, and the contri- 

e i.e. it is assumed that the flow remains attached throughout the incidence range. 

~- In order to be concise, the wind-body system, of axes will be referred to as wind axes in the remainder of 
this report. 
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bution to the l~ and n~ from this effective incidence on the fin is found to be very different from the 

experimental results. This is due to the sidewash on the fin, which arises from the asymmetric lift 
distribution on the wing, and the asymmetry in the strength and position of the leading-edge 

vortices. Attached-flow theory is used to estimate part of the sidewash, but as the incidence of the 

wing increases the influence of the vortices becomes more important, as is .expected, and so more 
theoretical work will have to be done before satisfactory agreement with experiment is reached. 

The oscillatory damping-in-yaw, evaluated from the oscillatory damping-in-pitch of the reflected 

fin, is in satisfactory agreement w i t h  experiment up to about 15 ° , but  overestimates the damping 

at higher incidences. 

2. The Derivatives Due to Sideslip. 

2.1. Flat-Plate  Wings with Ful l -Span  Dihedral. 

Theoretical estimates of the sideslip derivatives y~, l~ and n. for low-aspect-ratio delta wings 

with attached flow' are given in Ref. 1, and for" slender bodies of general .cross-section in Ref. 2. 

For thin delta wings the results of Ref. 1, referred to wind axes, are 

Iv = 7r~ AF 
3 6 (1) 

where I ~ is the dihedral angle, and  all the derivatives are independent of the chordwise position of 
the reference point*. 

The analysis may be extended to gothic wings to give 

y~ = 0 "~ 

2 ~  AP 
lv = 5 6 (2) 

n~ - - + ~ -  

These formulae might be expected to hold for small a only; since leading-edge separation effects 

are neglected, but the results shown in Fig. 1, where experiment 3,4 and theory are compared for 

several wings, indicate that, for delta wings of aspect ratio 1, the theory applies satisfactorily up to 

incidences of 15 °. The American tests 8 (Fig. la) have also included delta wings of very low aspect 

ratio, 0.53 and 0.25, for which the Yv and n v become very erratic as the incidence increases, and 

l v shows some slight non-linearities with e~. These effects may be due to the leading-edge vortices, 

but an attempt to calculate l v led to unsatisfactory answers. For the gothic wing of aspect ratio 1.0 

the difference in the slope of the l~ - ~ Curve m a y b e  due in part to the 'non-slenderness'  of such a 
planform, where b/c o = 2/3. 

• .*" The term rra~/3, which arises from the transformation to wind axes (see Appendix I) as ~rc~ sin ~/3, is 
retained here, although Ribner neglected it. This has been done throughout the report, so that it is possible 
to account for this part of second-order terms in a, and then any further second-order effects of a shown in 
the comparison with the experimental results must arise from the leading-edge vortices. 



There are also some experimental results 6 for a delta wing of aspect ratio 1.0 with anhedral, 
and these are compared with the theoretical estimates in Fig. 2. Again the agreement for l, and n v 

is surprisingly good, even for incidences of 15 ° with anhedral angle of 20 °. 
Thus we are justified in assuming t h a t  the leading-edge vortices do not affect the sideslip 

derivative s greatly, for wings of aspect ratio of order 1, and so attached-flow theory may be used 
to estimate effects of thickness, part-span dihedral etc. 

2.2. W i n g s  w i t h  T h i c k n e s s .  

• Experimental results reported in Ref. 4 indicate that wing thickness carl have an appreciable effect 
on n v , and to a smaller extent on l v . Theoretical estimates can be obtained for wings with spanwise 
cross-sections which are transformable to a circle, from the formulae given in Ref. 2. The majority 
of wind-tunnel tests to date have been for wings with diamond cross-sections, for which Maskell 
has derived the transformation, in some unpublished work. Consider a spanwise cross-section, in 
the e-plane, distance x from the wing apex, of semispan s, and semi-thickness h. In order to use 
Sacks' formulae ~ we need to transform this to a circle of radius r0, in the a-plane, as shown in 
Fig. 3. The relationship between the two planes is given by 

where 

d, i'a + ( % 
d--~ = \ a  S - r o ~ ] 1 -  a s ]  

(3) 

d~ 

nv0 = 4 A  o ~ t a n r  - 4 \Co~ r d 70 . (7 )  

The variation of s with x is determined from the planform: 

and the variation of 
under consideration 

s A(c~)  for a delta wing t 
c o 4 

(8) 
s A ( ~ )  ( 2 _ ~ )  for a gothic wing ) 
c o 3 

h with x is given by the chordwise thickness distribution, i.e. for the wings 

h 2 ( c ~ ) ( c ~ ) ( 1  c~) (9) - -  = - -  . 

g0 

The integrals in equations (6) and (7) have to be evaluated numerically, and the results for six 
different wings are shown in Fig. 4. The experimental results were taken from various sources, 

(6) 

h 
tan r = - .  (4) 

s 

By integrating along one side AB of the diamond, i.e. along one quadrant A'B' of the circle 

(see Fig. 3), we find that 
7r 1/2 s e e  T 

r0 = ,  2 ' (5 )  

Equations (3) and (5) are sufficient for the evaluation of the sideslip derivatives, and those affected 
by thickness are given by 



Refs. 4, 5 and 6, in order to cover a large range of thickness/chord ratios. For the delta wings, the 
estimation of l~ is very good, but for the gothic wings the same order of difference in the slope of 
the 1 v - ~ curve is observed as in the flat-plate results. The value of n o at a = 0 is slightly over- 
estimated for the thick wings (t/c = 12%), but is in good agreement for the thinner wings, and 
the variation of n~ with incidence is satisfactorily predicted for all wings. 

2.3. Wings with P a r t - S p a n  Dihedral. 

Ribner 1 t~as considered wings with full-span dihedral and his theory is easily extended to account 
for varying dihedral across the span, for example wings with drooped leading edges. 

Consider the wing section where the semispan is s, and let the dihedral-anhedral distribution 
across the span be that shown in Fig. 3b. The corresponding downwash distribution across the 
span is given by 

W 
- s  < y  < - As, ~ = a + y2/3 

gO 
- ; ~ s < y  < 0,  ~ = a -  r~/~ 

0 < y <  As, w fi T / =  ~ + P l  

A s < y < s ,  

to the first order in % 13 and 
bution is written as a Fourier 

The velocity potential is then 

(lO) 

gO 

dihedral angles. Following Ribner's analysis 1, the downwash distri-  
cosine series, where y = s cos 0, and 

go 
V - A° + ~ A~ cos nO. 

1 

given by 

Vs - A o sin O + -~- sin 20 

co 

Vs ~ B~ sin nO, say. 
1 

~° A n J s i n ( n + l )  0 siC_n-I)0)3 

For a wing in sideslip, the pressure difference is given by the approximate relation, 

and so the rolling moment, L, is given by 

L =  - f f  py+d  

= - 2pv + . +  2pv/3 Jo 

_= 2. p V  ~ ~ [B~]TE -I-/37rB 1 s2dx 
0 

(11) 

(12) 

(23) 
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From equation (12), we have that 

B1 = - Ao - ~ -  

B~ - A1 As  
4 4 '  

and from equations (10) and (11), 

(14) 

Ao = - = + 0 ( 3 )  

& = 23 [r~ + r~ - ( 1 -  ~ ) l , 2 ( ~ l + n + r l +  r~)] 

(15)  
& = o( /3)  

23 
A3 = ~ [ -  r l  - r2 - ( 1 -  ;~2)a12 (4A2-1 ) (Y l+y .+  r~+ r~)]. 

Finally, from equations (13), (14) and (15), the result for a delta wing is 

1 d L  
l v - -  - -  

½ p V 2 S b  d 3  

A ~ a  
- 12 [r~ + r 2 - ( 1 -  }t2)~,2(y~+yz+l?~+F~) ] 3 " (16) 

For a symmetric'  distribution of dihedral, i.e. Yl = Y~ = Y, and F 1 = F 2 = P, 

A ~ra 
l v = - ~ [P - (1-A2)8'z(y+P)] 3 " (16a) 

I t  is seen from equations (13), (14) and (15) that the dihedral contribution to il v is independent of 
the planform of the wing, and so for a gothic wing we have 

A 2Tr~ 
l~ = 6 [r - ( 1 -  AT~)~'~(r+r)] 5 (16b) 

These equations (16), (16a) and (16b) are only strictly true for small dihedral angles, and so 

the special case of leading edges deflected through 90 ° was also considered. The  cross-section was 

transformed to a circle, so that the formulae given in Ref. 2 could be used. The  transformations 
necessary are outlined in Appendix II.  The numerical work involved is lengthy, since 1 v is given 
as the sum of an infinite series, which was found to converge rather slowly, and only one result, 
for )t = 3/4, was obtained. 

T h e  only published experimental results ~5 available are for a delta Wing of aspect ratio 1-56 

(with leading-edge sweptback 68.7°), mounted on a body whose maximum diameter is 1/6 of the 
maximum span of the wing. The  wing was hinged at its root chords, and along a line sweptback 
77 °, so that the outer portion of the  wings could be drooped with ATE = 0" 667. The experimental 
results are shown in Fig. 5, with the theoretical results. When the dihedral is constant across the 

semispan (i.e. F 1 = - y ) ,  the agreement between experiment and theory for the dihedral contri- 
bution to l v is good for F < 20 °, but the slope of the l v - o~ curves is overestimated by theory, which 
may be due partly to the presence of the body, and partly to the comparatively large aspect ratio of 
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the wing. Drooping the outer portion of the wings by 20 ° causes a change in the-slope of.the l v - ~  

curve at small incidences, which is not indicated by the theory, and the dihedral contribution is 

overestimated, this being probably due to the large angles involved. 
A w i n g  of aspect ratio 1.0, with 25°,/o of the semispan drooped at the leading edges has been 

tested at the Royal Aircraft Establishment by ~ Kirby, and the unpublished results are compared 

with theory in Fig. 6. The result from equation (16a), a~: ~ = 0 °, underestimates the effect of the 

anhedral, as shown in Fig. 5b, for which no satisfactory explanation has been found.~ It  may also 

be seen from Fig. 5b that the theoretical value for l v due to deflecting the leading edges through 90 ° 

is equal to that due to deflecting them through 30 ° , so that the linear equation (16) is only valid for 

small angles of deflection. An empirical relation for large angles of  deflection is derived in the 

following section, and discussion of these results will be given there. 

2.4. Wings  wi th  Drooped  Tips. 

The analysis for the contribution of drooped tips to l v is exactly similar to that for part-span 

dihedral, and the rolling moment  is given by equation (14). The Fourier coefficient B 2 is now a 

function of x, since A varies with X, and so we have that 

L = - o v a  . 
o 

To the first order in F and ~, s ~ remains unchanged with dihedral, and so for a delta wing with 

tips drooped through an angle 7, and inboard dihedral I?, 

i ~re~ 
lv = 6 [P - (1--ATE2~a'2@+F)],  , 3 (17) 

The experimental results from Ref. 6 on a delta wing of aspect ratio 1-0, for two sizes of tips, 
and three droop angles, are shown in Fig. 7, together with the theoretical results. A comparison 
indicates that there is an. effect of ~ on dIJdc~ which has not been accounted for in the first-order 

theory, and so an analysis of the experimental results was made for the contribution of l o due to 

drooped tips at ~ = 0 °, and ~ = 15 ° with P = 0 °, by writing 

Al, _ 7 (1 + E ~ )  + FT~ .  
6 A(1 - ATE~) a'~ 

The  results are shown in Fig. 9, together with the curves obtained by taldng E = - ½, F = 1, 

which are satisfactory mean curves for the experimental points. Thus  the empirical formula 

suggested is 

l v = ? -  

The modulus of ~ is u.sed for the incidence variation, since the experimental results for ~ = - 20 ° 

and - 45 ° shown in Fig. 6a indicate a decrease in the magnitude of dlv/do~. 

The values for l v gi;cen by equation (18) are shown by the chain-dotted lines in Figs. 6 and 7, 

and also for the ogee wing with drooped tips in Fig. 8. For this wing s, l v is non-linear with a, so 

that for a > 5 °, the empirical value of/v departs from experiment, until a t  c~ = 15 ° the experiment 
gives only a third of the estimated value. It does not seem possible to predict such non-linearities 

at present. 



3. The  D e r i v a t i v e s  D u e  to Rol l ing.  

The theory for attached flow 1 gives the damping-in-roll, referred to body axes, as 

7rA 
l ' °  - 32 ' 

for any slender planform, since the rolling moment depends only on the loading at the trailing edge, 
and not on the chordwise distribution. Both side force and yawing moment due to rolling arise, 
for attached flow, from two different sources, the first being due to the leading-edge suction forces, 
and the second from the components of the forces acting on wings with dihedral. When the flow 
separates from the leading edge, the suction forces are assumed to vanish, and so only the dihedral 
contribution remains. Thus, for body axes, we have 

and 

Ypo = 

npO 

6 
for a delta wing 

P (  4x0) 
1- 7 ° 

(19a) 

Ar 1 
Y,0 = 6 

n"° - 70 1 19 

for a gothic wing (19b) 

where Y~0 differs from the American C ~  0 used in Ref. 1 by a factor ~,1 and x 0 is the distance of the 
centre of moments behind the wing apex. 

In order to transform the derivatives to wind axes, the values of Y~0, l~0 and n~0 are needed (see 

Appendix I). These are derived in Section 4, and so for rolling about wind axes, we write 

AP 
J 

Y ~ =  6 

~rA 
I .  - 32 + (It° + n ' ° ) ° ~  (20) 

n .  = n .o  + - l~.oO~ o~ 

where lr0 and n~0 depend upon planform, dihedral and centre-of-gravity position. 
The experimental results available are for flat wings (P = 0), so that n~0 = 0. The comparison 

in Fig. 10 indicates that the value of l,. o is probably too large, and that the vortices must cause an 
increase in the magnitude of lv at moderate incidences. The chain-dotted curves for n~ have been 
obtained from the relation n, = - Ip oxpa, (which holds for flat wings), and are seen to give satis- 
factory agreement for ~ up to 15 °. Since experimental results for l~ are more readily available than 
for nv, this relation gives a useful guide to values of n , .  

The effect of the leading-edge vortices does seem to be appreciable in the rolling motion, and is 
probably due to two changes from the attached flow, namely, the different basic pressure distri- 

bution on the wing at incidence, and the asymmetric strength and position of the two v.ortices on 
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the rolling wing. T h e  latter problem has not been solved, even for the comparatively simple vortex 

system used by Brown and MichaeP, but  the former  may be approached in a similar way to that 

suggested by Gdaliahu 1° for wings of large aspect ratio. 

Consider the slender wing at any spanwise station, distance x f rom the apex of the wing. Th e  

boundary condition on the wing is 

W 

0 = + - ( 2 1 )  

where ~ is the incidence of the wing, e is the additional incidence due to rolling, and w is the 

downwash due to the vortex system. 

For attached flow, 

w = ~ j~y, y _ y 

where s is the local semispan, and F(y) is the vorticity distribution on the wing (see Ref. 11). 

However,  .this value of the downwash will be modified by the presence of the leading-edge vortices, 

and so we assume that 

A(y) f+8 dP dy' (22) 

where A(y) is an Unknown function. This  downwash is similar to that for the lifting-line theory, 

and so we may follow the analysis of Ref. 10. 

We write 
co 

P(y) = 4sV • A ~  sin mO 
1 (23) 

y = s cos 0 

so that 
co  

w _ 2h(O) Z mAre sin mO 
V 1 sin 0 

and equation (21) gives that 
mA,.  sin mO 

0 = ~ + e - 2 A ( O )  Z 1 sin 0 (24) 

Let  A,,~ = a,,~ + bin, and fur ther  assume that ~t(O) is independent  of e, so that we may separate 

equation (24) into two parts, 
co  

0 = 1 - 2)t(O) ~] mare sin mO (25a) 
1 sin 0 

and 
co 

0 = e - 2A(O) ~] mb,,~ sin mO (25b) 
1 sin 0 

I f  A(0) = 1 for all O, then we have the solution a 1 = ½, a~ = 0 for n + 1, that is, the elliptic 

loading given by De Young 11. I f  we have a more exact solution for the lift distribution due to 

uniform incidence % then equation (25a) will give h(O), and equation (25b) may then be used to 

give the b~'s, the Fourier  coefficients of the antisymmetric loading, i.e. 

co co  

2 ~ ma~ sin mO 2 ~ mb~ sin mO 
1 1 1 

- = ( 2 6 )  
A(0) sin 0 e sin 0 

11 



For rolling motion, the antisymmetric incidence is given by 

p y  ps cos 0 
V V ' 

and so, on equating coefficients of sin nO in equation (26), we have 

p s  
nb n = ~ f f  [ ( n -  1)a~,~,_l + (~/+ 1)a,a,+l] . (27) 

To the first order in perturbation velocity, the pressure difference across the wing is given by 

a¢ 
Ap = 2 p v ~ ,  

and the rolling moment  due to this pressure difference is then 

ff L = - 2 p V  y dy dx  = - 2 p V [ ¢ ] T E Y  dy 
J - b / 2  

= - p V P (y )y  dy = - p V 2 7rd~ on using equation (23) 
d -b/2 

= - p V 2 ~ (a 1 + 3as) f rom equation (27) (28) ~ ,  

Thus  the damping-in-roll  coefficient, referred to body axes, is 

1 d L  ~rA (a 1 + 3a3)" (29) 
16 ('I IP° ½pV2Sb d 

There  are various sources available for evaluating the coefficients a 1 and a3; as a check, it is 

seen that De Young's  theory 11 gives a 1 = ½, a 3 = 0, which leads to Ribner 's  1 result, l~ o = - 7rA/32. 

There  are at present three theories for slender delta wings with leading-edge separation, and some 

experimental load distributions have also been reported, so these have been used in the 
calculations. 

(i) Kiichemann 1~ considers part-span vorticity on the wing surface in order to account for the 

breakaway at the leading edges. The  theory gives an analytic solution for the a~'s, 

a l  - -  7rAoL 

and (30) 
2 fncosn0o sinn0o t 

a~ = ~ A ~  n(n~- 1) ( cos 00 sin 0 o ] for n odd, n ~= 1 

where the suggested value for the parameter 0 o is 

25 
cos 0 o = 1 - - -  (31) 
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The value of l~o is then given by 

~rA C L 
l~° = 16 zrA~ 

cos 200 - CL (1 8~ 8c~2~ (32) 
16~ - ~ -  + ~ ] "  

(ii) There are two theories which represent the leading-edge separation by vorticity distributions 
above the wing 9,18, but as the latter approach, due to Mangler and Smith, is the more accurate of 
the two, the a,~'s were evaluated from the load distributions shown in Fig. 8 of Ref. 13. Here the 
load, L(y) = 2P(y)/V, is given in the form KL(y) /sC N as a function of a/K, where K = A/4 and 
C N = normal-force coefficient. CN/K 2 is also a function of s/K, and so finally we find that 

C N K 1 f "  KL(y)  sin nO dO. 
- _ o s C 

(33) 

The final result for l~o/A is given in the accompanying table. 

l o/A 

0 
-0 .098 

0-25 
- 0 .  165 

0.5 
-0.163 

1.0 
-0 .132 

2-5 
-0 .019 

(iii) Experimental values of L(y) are given in Ref. 14 for a delta wing of aspect ratio 0. 705. 

The a 1 and aa have been evaluated, using equation (30), and tile results for Ip0 are given below. 

l o/A 
0"25 0.5 

-0.099 
1.0 

- O. 047 
2.5 

-0 .028 

The results from the three loadings are shown in Fig. 1 la, together with Ribner's attached-flow 
result, for a delta wing of aspect ratio 1.0, with l~ referred to body axes. The loadings from 
experiment, and from Mangler and Smith's theory, do indicate an initial increase in the magnitude 
of l,po, followed by a decrease as c~ increases further. The transformation to wind axes, using the 
l~o derived in the following section, leads to the results shown in Fig. l ib .  Again it appears that 
l~0 is too large for all the loadings. The effect of the vortices at moderate incidences (<  10 °) is 
overestimated by the Mangler and Smith loading, and further attempts at estimating l~ will have 
to consider the effect of the asymmetric values of the strength and position of the vortices caused 
by the rolling of the wing. 

4. The Derivatives Due to Yawing. 

The value of lr given in Ref. 1 is applicable to wings of very small aspect ratio, for which A may 
be neglected in comparison with 1/A. This approximation is not valid for the wings under current 
consideration, and so the complete expression for the rolling moment due to yawing must be used 
(as in Ref. 15), 

L = - 2p ( V - r y )  O~ + r (x -x° )  -~y y dy dx (34) 

where x 0 is the distance of the centre of moments behind the wing apex, and ~ is the velocity 
potential due to a wing at incidence a. 
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For attached flow, equation (34) gives 

( ( x o )  l~o _ ~Ao~ _¢ ~o,~ ~ 2 r  
- - 1 6 -  + 1 - 3  co] A + 3 -  1 -  ~0 f o r a d e l t a w i n g  

1~ ° 7rA~ 33 6 7r~ x o 
= 1--6- + ~ 5 A + 3 -  1 -  for a gothic wing 

(3s) 

If  the wings are thin, we may assume that the profile drag is small, so that, in body axes, 

n~0 ~ 0. In wind axes, we then have that 

l T = ITo - lvoo~ 

and 

- 32 + 1 - ~  ~ - + - f - 1 -  

d - 32 + ~ 5 ~ + ~ -  1 -  

for a delta wing [ 

for a gothic wing 

_ [3~rAa 4 

L ~ Y  + ~ 5 ~ Z + r  fifo 

for a delta wing 

a for a gothic wing 

(36) 

= - IT~ for all planforms when P = 0. (37) 

The  experimental results available (Ref. 3 for the oscillatory l~. and n,. of a series of delta wings, 

and Ref. 16 for the oscillatory nr of a delta and two gothic wings) are very erratic, showing large 

variations with frequency. Fig. 12 shows some of the American results, together with the theoretical 

values given by equations (36) and (37), but  it is impossible to draw any conclusions as to the degree 

of accuracy of the theory. 
From equation (34), it may be seen that the rolling moment  arises from two different effects of 

yawing, the first term being due to an effective forward velocity, g - ry ,  and the second term to 
an effective sideslip velocity r ( x  - Xo). We have seen that the leading-edge vortices have little effect 
on the sideslip derivatives, and so we assume that the second term is unchanged in separated flow. 
The contribution of the first term to the rolling moment, L~ say, is given by 

L1 - 2 p ( V - r y )  ~ y dy dx  = - p ( V - r y ) P ( y ) y  dy  
d--b/2 

= pV \2 ]  2 (3a) 

in the notation of Section 3. The  corresponding contribution to the derivative, 11,. say, is thtis 

7rA 
llr = -~- (a 1 + a3)~ (39) 

which now replaces the term 7rAa/16 in equations (35). The  a 1 and a a calculated from the various 
loadings discussed in Section 3 w-ere used to give values for I1,.. The  results are: 
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(i) Kfichemann's loading 12 

ll r C n { 8o~ 8~1  
= - f f  1 - ~ + 3 ~ r ~  J.  

(ii) Mangler and Smith's loading 18 

(40) 

c~lK 0 0.25 0.5 1- 0 2.5 
llrlA~ 0.196 0.263 0.284 0.303 0- 276 

(iii) Experimental loading 14 

~<IK 
GIAo< 

0-25 0 " 5  
0" 245 

1.0 
0.233 

2-5 
0.286 

These values were used to give lro , required for the transformation of l~ o to wind axes {equation 
(20)} for the comparison in Fig. l lb ,  and the results for lr obtained using the Mangler-and-Smith 
loading are shown in Fig. 12, in comparison with results from experiment and attached-flow theory. 

5. Fin Contributions to the Derivatives. 

5.1. The Derivatives Due to Sideslip. 

As stated in the Introduction, the fins envisaged at the moment for aircraft with slender wings 
are of comparatively simple shape, and their effectiveness may be estimated by considering the 
wing to be a total reflection plate. For the sideslip derivatives, the lift-curve slope and chordwise 
position of the aerodynamic centre of the planform derived by reflecting the exposed fin area in 
the wing surface may be obtained from the Data Sheets of the Royal Aeronautical Society2L 
Then 

1 {dc ] 
YvFin  = - -  ~ \ ' d ~ - - / l ~ i n  ~ -  (41)  

where Sp is the net area of the fin, and S is the area of the wing, 
and 

. X / ;  

?/v Fin = - -  S7 YV Fin (42) 

where x F is the distance of the aerodynamic centre of the fin behind the centre of moments, and 
sw is the semispan of the wing. When the wing is at incidence, we have that 

xF = X~o + ZFo~ (43) 

where XFo is the distance of the aerodynamic centre of the fin behind the centre of moments, 
measured along the centre line of the wing~ and z~, 0 is the height of the centre of pressure of the 
fin above the root chord of the fin. For triangular fins, we assume that 

where s• is the height of the fin. 
Similarly, 

= Is ( 4 4 )  

lv Fin ~ --~F ] Sw Yv Fin 
where / (45) 

~/v = ZF0 --  XF0 c~" 

15 



A series of experiments by Kirby at the R.A.E. give a useful comparison with the theoretical 

results obtained from the above analysis, and from slender-body theory 2. The wing tested was a 

flat-plate delta, with A = 1.0, and with three different fins, as shown in Fig. 13a, which all had 

the  same fin height, but different chords. For fins of practical size, i.e. S~/S ~< 0.2, the slender- 

body theory overestimates Yv Fin and n,~ Fin as might be expected, but gives good agreement for the 

largest fin, which is the most slender of the three. The estimates based on equations (41) and (42) 

give good agreement up to incidences of 15 °. The l~Fi~ , is not quite so good (Fig. 13d), but the 

error is negligible when compared to the contribution to l v from the wing at incidence. The con- 

figuration was also tested with the wing at 20 ° anhedral, and for these the estimate based on the 
reflected fin is not so satisfactory. The experiment sho~s that the fin becomes more effective on 
the wing with aDhedral, and that its effectiveness increases as the incidence of the wing increases, 

suggesting the existence of sidewash effects which have not been accounted for in the theory. 
The results for 60 ° delta fins tested by Avro is, on a gothic wing of aspect ratio 0.75, are also 

compared with the theoretical estimates in Fig. 14, and show remarkable agreement up to angles 

of incidence of 15 ° , both for single fins, and for twin fins of various sizes. 

5.2. The Derivatives Due to Rolling. 
The incidence distribution on the reflected fin, taken as a wing rolling about its centreline chord, 

is w = P l Y I, where y is the ordinate along the span, and so the lift and moments have to be evaluated 
by a lifting-surface method. Miss Klanfer at the R.A.E. used the Bristol programme on DEUCE 
for Multhopp's theory 17 on a 60 ° delta wing, and these results have been used to calculate the 

contribution to the derivatives from the fin. 
If dCL/d(ps~/V ) is the lift-curve slope dueto  the rate of roll, then the derivatives are 

Yp F i n  : -- 

Ip  F i n  - -  

n ~  F i n  - -  

I~] dCc sF SF 

2;pF 
- -  - -  Y p  F i n  3w 

'% 'pF  . 

~w yp F i n  

referred to body axes (46) 

where Z:oF and xpy for the rolling fin correspond to the z~0 and xv0 for the sideslipping fin, and 

are evaluated from the lift distribution and pitching moment respectively. The transformation to 

wind axes involves more than measuring the z~F and x~F relative to the wind direction, as was 
possible for the sideslip moment arms, {equations (43) and (45)} since the rolling axis has also to 

be transformed. The formulae for the transformations are 

I v = /vo(1 - c~ 2) + (l,.o + n~,o)(X + n,.o o~ / (47) 

n,, n ,o(a- + - #oo  ) 
and so we require ~:he derivatives due to yawing, as given in the following section, equations (52). 

As may be seen from Fig. 15, where the Avro experimental results for the same fins as sbown in 
Fig. 14 are compared with equation (47), the theory underestimates the fin contributions. This is 
probably due to the effect of the sidewash on the fin arising from the vorticity distribution on the 
wing, and the leading-edge vortices. The sidewash due to the antisymmetric vorticity distribution 
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on the rolling wing may be evaluated, using attached-flow theory, in a similar manner to that 

suggested by Michael ~° for wing and tailplane configurations. The sidewash velocity on a centrally 

placed fin is given by 

v = (~)v=o (48) 

where, from Ref. 26 

i.e. 

¢ = }ps~e -2~ sin 2~? 

y = s cosh ~ cos ~/ 

z = s sinh ~: sin 

(49) 

V 

The contribution of the sidewash to the derivatives is most easily estimated by considering the 

average value of the sidewash angle a = v / V  over the height of the fin, which leads to 

=? 1 + ! - 

av 

(50) 

where h is the local height of the fin, and s is the local semispan of the wing, measured at the chord- 

wise position of the centre of pressure of the fin. 

Then, in wind axes, the increments in the rolling derivatives due to the sidewash from the wing 

are given by 

Al, Fin = - Yp Fin \ Sw 

X p F  
A n p F i n  = Y p F i n  \ $w 

sw 0 2V ~v 

(51) 

S w OL - - ~  . 

av  

Including these sidewash terms does improv e the estimate for n~j Fin, see Fig. 15, but when the 
wing is at incidence, it is obvious that the sidewash due to the leading-edge vortices must also be 
taken into account. Since this sidewash depends on the asymmetric strength and position of these 
vortices, the basic problem of a slender wing in an antisymmetric flow must be solved before a 
satisfactory estimate of fin effectiveness in roll can be obtained. 

5.3. The Derivatives Due to Yawing. 

The yawing motion of the fin may be considered to be equivalent to a pitching motion of the 

planform derived by reflecting the fin in the wing surface, if sidewash effects are neglected. For 

triangular planforms, the charts of Ref. 21 may be used, and estimates for sweptback untapered 

wings are given in Ref. 22, so that interpolation is necessary for intermediate taper ratios. For the 

rolling moment, the lift distribution due to steady pitch of a 60 ° delta wing, obtained using 

Multhopp's lifting-surface theory 17, gives a moment arm of 0.36si~, and so a good approximation 

for most fins would be ½s F . It is' probably most convenient to evaluate the force and moment 

derivatives for an ax~s through the fin apex, changing the reference area and length from fin area 

17 
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and fin mean chord to wing area and wing semispan before transforming the axis 9f rotation to the 
centre of moments of the aircraft. If the suffix 'a' refers to the derivative of the fin, due to rotation 
about an axis through the fin apex, which is a distance x~, behind the centre of moments, then, 

about body axes, 
Xa 

Y r F i n  = Y?'a - -  $ Y~lF in  

_ s~. (52)  /rFin = Ira--XalvFin~s ½-S yrFin 

The transformation to wind axes is obtained using the equations in Appendix I, together with the 
rolling derivatives derived in Section 5.2. The available experimental resuks are all for oscillatory 
damping-in-yaw, n r -  n~, and this derivative may be estimated from the equivalent oscillatory 
pitching motion, in a similar way to that described above for the steady motion. The charts of 
Ref. 21 give the equivalent damping-in-pitch, rag, for delta wings but for other planforms the 
Multhopp calculation for oscillating wings would have to be used ~S, from which may be derived 
the value of m~ about the axis through the centre of moments of the aircraft. Then, converting the 
reference areas and lengths, the damping-in-yaw, referred to body axes, is 

S~ eF ~ 
( n ~ -  ~ ) 0  F ~  = m ~  S s~ " (53)  

For the transformation tO wind axes, the oscillatory rolling derivatives should be used, but Gray 
has shown experimentally, in some unpublished work at the R.A.E., that there is no significant 

difference between the steady and oscillatory values of lp, and so the estimated steady values were 
used. It has also to be assumed that l o ~ 0, so that 

(n~-  no) = (n, , -  no) o (1 - ~ )  - (l,o + n~0)~ + l ,o  a~ (54)  
from Appendix I. 

The comparison with experimental results, from Ref. 16, is shown in Fig. 16; the Bristol results 

are for the fins shown in Fig. 14. The theoretical estimate is seen to be quite good for incidences 
up to 15 °, but the loss in damping at higher incidences is not predicted. Similar agreement is 

obtained with Gray's unpublished results for 60 ° delta fins on a delta wing with rounded tips 

(Fig. 16b). 

6. Conclusions. 
The theoretical estimates for the sideslip derivatives for slender wings with fins are shown to be 

in good agreement with experimental results, and a second-order semi-empirical formula is derived 
for the anhedral effect on l v due to drooping the tips of delta wings. However, it should be noted 
that this formula does not extend to the ogee wing which has been tested, where l~ becomes markedly 
n0n-linear with ~. For the derivatives due to rolling, estimates cannot be given so confidently, and 
further work needs to be done on the effect of the leading-edge vortices on the wing and on the fin 
when the roiling of the wing causes an asymmetry in the strength and position of the vortices. The 
assessment is also complicated by the fact that the wind-tunnel measurements have been made for 
wings rolling about the wind axes, so that the theoretical estimation involves the value of lro, for 
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which no reliable experimental check is available. The damping-in-yaw of the wing and fin is 
satisfactorily given by theory for incidences up to about 15 ° , but the loss in damping at higher 
incidences is not predicted. 

7. Future Work. 

Although it has been shown that reasonable estimates for the sideslip derivatives may be obtained 

by neglecting the effects of leading-edge separations, it is obviously necessary to seek to understand 

why this is so. For the rotary derivatives, the influence of the vortices is not adequately estimated 

by the present theory at large incidences, and, as stated in the text, more exact methods of calculating 
the flow field are needed. The main problem is the calculation of the strength and position of the 

leading-edge vortices when the wing is moving laterally, and as a first step to the solution, an attempt 

is being made to extend the lifting-surface theory of Ref. 12. Other factors which must be considered 

are the effects of change of planform (e.g. to ogee wings) and the effects, both direct and from 
interference, due to mounting the wing on a body. 

Some experimental results at supersonic speeds for the sideslip derivatives are now available, and 
estimates are being made for comparison. Since flight at high speeds will necessarily be at small 
incidences, the effect of the leading-edge separation will not be so important as in the low-speed, 
high incidence case which is the main interest of this present report. 
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LIST OF SYMBOLS 

Fourier coefficients 

span 

Normal-force coefficient 

Lift-curve slope of fin due to incidence 

Lift-curve slope of fin due to rolling 

Root chord of wing 

Mean chord of fin 

Local semi-thickness of diamond cross-section (Section 2.2) 

Height of fin at centre of pressure (Section 5.2) 

A/4 for delta wings 

Rolling moment 

Load distribution 

Oscillatory damping-in-yaw coefficient 

Pressure difference 

Angular velocity in roll, radians per second 

Angular velocity in pitch, radians per second 

Angular velocity in yaw, radians per second 

Parameter used in Section 2.2 

Area of wing 

Net area of fin 

Local semispan of wing 

Semispan of wing at trailing edge 

Height of fin 

Thickness of wing 

Forward velocity 

Velocity in y-axis direction 

Downwash velocity 

Chordwise co-ordinate, along wind or body axes 
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LIST OF SYMBOLS--continued 

Xa 

Xo 

Y 

Z 

Xpo, ZFo 

X p F ,  ~ p p  

O~ 

V1, 72, Pl, F~ 

r (y)  

P 

C 

0 

Oo 

A 

p 

(Y 

"i" 

¢ 

( 

Distance of apex of fin from centre of moments, measured along the chord of 
the wing 

Distance of centre of moments behind wing apex 

Spanwise co-ordinate 

Co-ordinate normal to x - y plane 

Co-ordinates of centre of pressure due to incidence on fin, in body axes 

Co-ordinates of centre of pressure due to rolling on fin, in body axes 

Angle of incidence, radians 

Angle of sideslip, radians 

Angles of anhedral and dihedral, radians 

Anhedral-dihedral distribution across the span (see Fig. 3) 

Spanwise distribution of Vorticity 

Gamma-function (Section 2.2) 

Effective incidence due to rolling 

y + iz, physical plane 

c o s  - 1  (y/s) 

Parameter used in Section 3 

Inboard fraction of semispan for a wing with part-span dihedral 

Function introduced in equation (22) 

Density 

Transformation plane (Section 2.2) 

Sidewash velocity (Section 5.2) 

tan -1 (h/s) for wing with diamond cross-section 

Velocity potential 

Co-ordinates in transformation plane 

The derivatives are as defined in R. & M. 1801 

& xes 

0 

1 

T E  

F i n  

Derivative referred to body axes 

Part of l r due to effective incidence 

Trailing edge 

Contribution of fin to derivative 
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A P P E N D I X  I 

Formulae for  the transformation of  the lateral stability derivatives 

(i) F o r m u l a e  fo r  t h e  t r a n s f o r m a t i o n  o f  t h e  l a te ra l  s t ab i l i t y  d e r i v a t i v e s  f r o m  b o d y  to w i n d - b o d y  

axes.  

Y~ = Y~0 

Y~ = Ypo cos  c~ + Y,.o s in  a 

Y,. = Yro cos a - Y~o s in  

l~ = 1~o cos  ~ + nvo sin a 

l .  = ~To c°s2 a + (l~o + n.o ) s in  a cos  a + n,. o s in  2 

l~ = l,, o cos  ~ ~ + (n,. o - I ,o ) s in  ~ cos ~ - n2, o s in  ~ 

n., = %0 cos  ~ - I~o s in  

n~ = nj, o cos  2 c~ + (n~o -  l~,o) s in  c~ cos  ~ - l~o s in  2 

n,, = nro cos  ~ c~ - (l~o+npo) sin a cos  c~ + / T o  sin2 ~ .  

(ii) F o r m u l a e  fo r  t h e  t r a n s f o r m a t i o n  o f  t h e  l a t e ra l  s t ab i l i t y  d e r i v a t i v e s  to  a n e w  o r i g i n  o f  axes,  

d i s p l a c e d  b y  d i s t a n c e s  A x  a n d  A z  ( p o s i t i v e  f o r w a r d  a n d  d o w n  r e s p e c t i v e l y ) .  

! 
y ~, = y~ 

A z  
_ _  y 

Y'*/ = Y ~ +  s y+' 

n x  j t  3 + '  = y + - - - y + ,  
S 

n z  
l:~,- l~ + s ) ,  +, 

1'~,  = l 9 + -  ( l ~ + y : )  + y ~  
3 

A z  A x  Ax  A z  
= - - -  l,, y,~ l'~, l~ + T -  y~ s s s 

A~d 
t 

?Z.v,  = n v --__yo 
3 

A x  A z  A x  A z  
n '  v, = n~, - ~ -  yr, + s - -  n+ . . . . . .  y~ 

. S S 

t 
n ~,, ~ n r - - -  

w h e r e  s = s e m i s p a n  of  w i n g .  

s ( y , . + n y  + y+ 

24 



A P P E N D I X  II 

E v a l u a t i o n  o f  l~ f o r  Wings  w i t h  T ips  Drooped  through 90 ° 

The transformation planes are shown in Fig. 17. The C-plane is a section across the span, and 
this is rotated through 90 ° , so that the z-plane is symmetrical about its real axis 

z = i t .  (55) 

The Schwarz-Christoffel transformation to the upper half of the t-plane is 

d z  M ( t  - b ~ )  ( t  - a2) 1,'z 

d~ = [ ( t -  al)  ( t -  aa) ( t -  a4)] 1'2 (56) 

but it is easier to consider the more general transformation 

d z  M (  t -  bl) ( t -  b2) 

d~- = [ ( t - a 1 )  ( t - a s )  ( t - a ] )  ( t - a 4 ) ]  1,'2 (57) 

and then use the Appendix of Ref. 24 for the integration. The substitution used there is 

a s n u + b  
t -  

c s n u  + d 

and then equation (57) becomes 

(5s) 

dz N(sn  u- /21)  (sn u -  t22) 
dTZ = (sn u -  ~)2 (59) 

where } 
- b + b ld  - b + bad - d 

/ 2 1 -  a - b 1  c , /22 - a - b 2  c , u = --c 

and 
N = M ( a d -  bc) (a - b~c) (a - b2c)/c ~ . 

Integration of equation (59) gives 

{ cn dn  t z _  2AK__ E ( u ) - ~ T u +  s n u - v ;  
S 

(60) 

(61) 

where the coefficient of the elliptic integral of the third kind has been made to vanish, and the 
relationship between the corresponding points in the z and u planes have been satisfied. These 
conditions are: 

ffv-/2~) (,-/2~) (1 +k~-2k2~, ~) = 0 (62) 2v - / 2 ~  - / 2 2  + ~ - i ~ v ~  

a + b  b - a  
a4 - d ' a l  - c +  c - d  

(~-/23 ( '-/2~)7 E(,,-/23 (,'-/28) 
(T--GF)) ] = (1 - v 2) (1 - kh, ~) 

(63) 

(64) 

K 1 + 

a + kb a - kb "~ 
a 8 - -  a 2 - -  _ _  c + k d '  c - k d  

N(v-/21) (v-/2~) _ 2AK 
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b2 - a + bk sng  
c +  d k s n g  

and (65) 

( l - A )  2AK{E(g)  v k e n g d n g  ~__} 
7r 1 - vk  sn g 

We are free to choose two points in the t-plane, and so we put  

a I = - 2 r  o aa = + 2 r  o (66) 

which will be convenient for the transformation to a circle of radius r 0 in the e-plane, required by 

Sacks 2. 

Thus ,  f rom equations (62) to (66), we find that 

and also 

2 , o ( k -  - + k) 
a s -  1 - v k  a2 = b l -  l + v k  

- 1  

/ z l -  k ' 

v = ~ ( 1 -  k s) - 1 

(67) 

1 

/z2 = k sng"  

For  the numerical solution of these equations, it is better to work with the va-functions, choosing 

(68) 

vq2 = 2qV4(1 + qO. + q6 + . . .) 

va3 = l + 2 q + 2 q  4 + 2 q  ' ~ + . . .  

k = ~ z / G  ~. 

the parameter q. 

T h e n  

The  values of v and sn g are given by equation (67). T h e  elliptic functions may also be expressed 

in terms of the S-functions, and we have to use the relationships: 

t93 val(G) gw g (69) 
sn g - 82 ~4(G ) where G - 2K - va3 z 

and 
z91(G ) = 2q11~(sin G - q Z  sin 3 G + q  6 sin 5 G + . . . )  

t94(G ) = 1 - 2 q c o s 2 G + 2 q  4 c o s 4 G - . . .  

(70) 

These  equations have to be solved by an interation process, to give G. 

T h e n  
E 7r va4'(G ) 

E ( g )  - g K - 2 K  ~94(G) 

where 
vq4'(G) = 4q sin 2G - 8q ~ sin 4G + . . . 

(71) 

• ( 7 2 ~  
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and so equation (65) gives that 

1 - ; ~  ~4'(G) 
G(c) 

where 

cn~g = 1 - snZg 

2 K  vk cn g dn g (73) 
~r 1 - vk sn g 

and dn2g = 1 - h 2 sn~g. (74) 

Thus  we find the ratio (1 - ;~)/A in terms of q, and so for a given ;~ we have to interpolate to find 

q, and then evaluate the constants in the transformations. 

The  t-plane must now be transformed to the e-plane, the real axis of the t-plane between the 

points B and F being transformed to a circle, with centre at the origin and radius r0, i.e. 

t = i @ - ~ ) .  (75) 

In order to use Sack's results, we require the coefficients in the expansion of ~ in terms of e, 

0 a~ (76) 

or  

d~ _ 1 - ~o na.,~ (77) 
de e ~+1 ' 

the latter form being more useful, since it avoids the expansion of the elliptic functions. 

F rom equations (55) to (59), and (75), we have that 

d~ ih2 r°~-~ 1 + 1 + - -  (78) 
d e -  M 1 +  ~ ~2] e e 2] ~ ~ ]  

and, on comparing equations (77) and (78) we have the relations 

M = 1 and b 2 = ½(a 3 - a 2 ) .  

The  former equation, with equations (6~,) and (67), gives that 

2r 0 _ ;~ 2K  (1 - v2h2) 112 
s rr ( l - v 2 )  '/2 (79) 

and the latter equation gives a check on the arithmetic, since it is satisfied by the algebraic expressions 

for b~, a 2 and a 3. 
In  equation (78), we may write b~ = roB2, a2 = rod2 and a 3 = roAa, and then expand, by the 

multinomial theorem, in terms of (ro/e)G obtaining 

- 1 + o~ C~ 

so that the a~'s of Sack's expansion are given by 

1 
~ ~+i for G n = --_ (..'~+lr0 

n 

27 

n > o .  (80)  



T h e  coefficient a 0 is obtained by consideration of the co-ordinates of the point B, say, i~ the ~ and 
~-planes. This  results in 

~o---~of-~ ~--~1 } ~  (-,)- 

= roC o say. 

The  expression for l~ obtained by Sacks includes the infinite sum 

(81 )  

Thus  

~ a l  
= doro2 + ~1ao + - -  + tO2 " . . 

G G  = roa C o -  C~C o + . ~ - + . . .  

47r 
G)~=o = ~ Imag. {2}x=~ 

. (82) 

4~ ( ~  r~-  ~,~7 ~'~ ~ ~ Imag. [ G -  C~Co+ ..] = sT \ ~ /  L 1L-~j \2] 

v r d ( ~ ) a [  1 - v ~ h 2 ]  

2 Li --~-J 
3 / 2  

Imag. [C o - C~C o + . . . ] .  (83) 

The  slope of the I v - ~ curve is also affected by the drooped leading edges, and we have that 

;z dl,, 8~" Real a:ldX 
doz S b o 

~(~)2 ~ ~ ~Real~G~ 
3 \ l - v  ~ ] 

The  computation was carried out for A = 3/4, with the coefficients a~ evaluated as far as as, with 
the result 

l v = 0. 025A - 0-739c~. (85) 
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