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Summary. 

A method of obtaining numerical values of generalised airforces on a thin wing oscillating harmonically in 
subsonic flow is described. It is assumed that the linearised equations of potential fl0w are valid. The essence 
of the method is the approximate solution, by collocation, of the integral equation relating the loading distri- 
bution and upwash on the wing and the use of the loading distribution so determined to calculate the 
generalised forces on the wing and control surfaces at general frequencies of oscillation. 

The procedure has been programmed in autocode for the Ferranti Mercury Computer and.is available as 
programme R.A.E.161A. A modification is programme R.A.E.263A for determining the loading distribution 
over the wing. 
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1. Introduction. 

It is now becoming increasingly the practice to obtain airforces on thin wings by solving approxi- 
mately the linearised integral equation relating the unknown loading distribution to a known 
upwash. This practice has the advantage over analytic methods in that wings of more general shape 
can be considered. Analytical methods are applicable to wings of only a few particular shapes such 
as the circular wing and the elliptical wing. 

When airspeeds were low and wings were straight and of high aspect ratio, the steady lifting force 
on a wing was determined by assuming that the lift was concentrated on a line lying spanwise across 
the wing. Even with the advent of higher speeds and the introduction of low-aspect-ratio wings 
having sweepback this method continued to be used, with the extension that the lift was assumed 
to be concentrated on several lifting lines. 

An important step forward was made by Falkner 1. Falkner considered the integral equation 
relating the unknown velocity potential on the wing and in the wake to the upwash and carried out 
approximate integrations by dividing the wing and wake up by a mesh of lines and assuming 
simplified behaviour over the resulting lattices. 

The final step towards a continuous theory for steady subsonic flow was made by Multhopp ~ and 

this theory is known as a lifting-surface theory in contrast to the lifting-line theory. The loading 
distribution is approximated by the first few terms of a series in orthogonal functions and this series 
is substituted into the integral equation relating the loading distribution to the upwash. The 
coefficients of the terms in the series for the loading can then be determined by integrating term by 
term and comparing the values obtained with the values of the known upwash at a set of points on 
the wing equal in number to the number of terms in the series for the loading. The loading may 
then be determined and also any required total airforces. 



This method was extended 3 to the case of a wing oscillating at low frequency. Further progress 
was made by Richardson 4 and Acum a who extended the method to deal with general frequencies of 
oscillation. 

The method described in this paper is again based on Multhopp's lifting-surface conception and 

consists of a fusion of ideas presented in the theories of Richardson ~ and Acum a. The treatment of 

the equations is, however, different in detail from that of either of those two theories. 
Following the method described in the present paper, a programme has' been written in Autocode 

for the Ferranti Mercury Computer for the calculation of the generalised airforces on a wing capable 
of oscillation in several rigid or flexible modes at a given frequency in a flow of given main-stream 
subsonic Mach number. This is available as programme R.A.E.161A. A modification of this 
programme has been made so that loading distributions in the various modes of oscillation can be 
determined. This modified programme is available as programme R.A.E.263A. 

The theory of Falkner, also, has been extended to deal with oscillating wings and has been used 
by W. P. Jones 6 and Doris E. Lehrian 7 among others. The integration concepts of Falkner are used 
by Runyan and Woolston s, though they use the integral equation for the loading rather than the 
velocity potential, as Falkner does. 

The integral equation relating loading distribution and upwash in oscillatory flow is also the 
basis of the method of Ref. 9 where the procedure is in some respects similar to that of Multhopp ~. 
The loading distribution, however, is not approximated to by the first few terms of a series in 
orthogonal functions and integrations along the span are performed by dividing the span into several 
intervals rather than using just one interval. 

Stark 1° uses an integral equation based on the integrated velocity potential. One important 
feature of Stark's method is that the approximation to the integrated velocity potential is not 
determined by equating the upwash calculated from the integral equation to the known upwash at 
a set of points but rather by minimising the sum of the squares of the differences between the two 
values at a larger number of points. This can be expected to be more accurate than merely equating 

the values at a smaller number of points, but because of the extra numerical work involved a similar 
feature has not been incorporated into the present method. 

The treatment of control surfaces by the lifting-surface theory of Multhopp leads to complications, 

and as yet has not been carried through. However, a procedure based on equivalent displacements 
and upwashes was proposed by Falkner in Ref. 11 for a full-span control surface, where each chord 

was considered as if it were on a two-dimensional wing. Treatment of spanwise effects has since 
been proposed, and Richardson in Ref. 4 describes how a part-span control surface may be treated 
by considering chordwise and spanwise effects separately. In the present paper a procedure, again 
based on equivalent displacements and upwashes, is put forward. With this procedure generalised 
airforces on a part-span control surface may be obtained without separating the chordwise and 
spanwise effects. Only some of the generalised airforces on the control surfaces can be obtained 
with good accuracy but values of the right order of magnitude may be expected for the others. 

2. The Integral Equation Relating the Loading and Upwash on the Wing. 

The wing, which is assumed to be very thin and nearly plane, is immersed in an airstream so that 
its inclination to the main-stream direction is very small. It is assumed to oscillate with small 
amplitude about a mean position in either rigid or flexible modes. Accordingly linearised theory is 
applicable and the wing may be replaced by an oscillating flat plate the mean position of which is 
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parallel to the main-stream direction. Wings in practice are symmetrical about a centre chord so 
only symmetrically shaped wings will be considered, though in fact the theory is also applicable to 
non-symmetric wings. 

A system of right-handed Cartesian coordinates (x, y, z) is introduced as shown in Fig. 1, which 
is stationary with respect to the mean position of the flat-plate wing. The origin is taken to be some 
point on the mean position of the axis of symmetry. The positive x-axis is taken along the main- 
stream direction, the z-axis normal to the mean position of the flat plate and upwards, and the 
y-axis is taken mutually at right angles to complete a right-handed system. 

The vertical displacement of a point (x, y) on the surface of the wing at time t in a harmonic 
oscillation with circular frequency ~o may be given by 

Z(x, y, t) = g(x, y)e i°'t (1) 
where, as is usual in using complex functions, only the real or the imaginary part represents the 
pertinent physical quantity. 

The boundary condition that the airflow is tangential to the wing surface must be satisfied and 
this leads to the equation 

w(x, y) = V ~ g(x, y) + icogCx, y) (2) 

if non-linear terms are neglected. The function w(x, y) in equation (2), called the upwash function, 
is such that the component of the air velocity in the z-direction at the Wing mean plane is w(x, y)d o't. 
V is the velocity of the main stream. 

Corresponding to the wing displacement given by equation (1), or the upwash function given 
by equation (2) there is at the point x, y on the wing surface an upward lifting force per unit area, 
or loading l(x, y)e i°'t. 

Reduced upwash and loading functions are introduced by the equations 

1 
.(x, y) = g w(x, y) (3) 

1 
a(x,y) = p0V--ql(x,y) (4) 

• where P0 is the density of the air in the undisturbed main stream. 
Then, as shown in Appendix I, and elsewhere, the integral equation 

f f A(xo,Yo)K(x-xo,Y-yo)dxodyo y )  = (5) 

is satisfied, where S represents the area of the wing and the kernel K(x, y) is given by 

(-.+Mn)t(1--~'~2) (U 2 +y~)m + R(x 2 + y~) exp - 
with 

R = ~/{x z + ( 1 - M ~ ) y  ~} 

(6) 

(7) 

and M is the Mach number of the main stream. 
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If now the modified functions 

&(x, y) = a(x, y)e io'~jr~ 

~(x, y) = A(x, y)d °'xtv 

K(x, y) = K(x, y)d 'Èxlv 

are introduced into the integral equation (5), it becomes 

l f f  ~(Xo,Yo)i~(X_Xo,y_yo)dxodyo. a(., y) = U~ 

Into this integral equation introduce the new variables 

1 [ .  _ ~ ( y ) ]  
~ = ~  

1 
T = s y  

1 
¢o - [~o - ~ ( y o ) ]  c(yo) 

1 
To = sYo 

(8)  

(9)  

( l o )  

(11) 

(12) 

and 

where 

f 
oo 

RI(x, Y) = e-i~,ulv 
(--. + 2¢I R)/(1-- 2kI 2) 

du 
(u 2 + y2)a12 

L (¢-')l- j~ + 7  

_ PI(--x+MR)I(1--M 2) e_i~ul  # du 
! ¢o (u s +y~)at2 

Rdx,  y ) = R(x~+y~).exp - g \ 1~-£-M ~ ] " (18) 

In the above 11 and K 1 are modified Bessel functions of the first and second kinds and first order 
while ]HI_ 1 is a Struve function in the usual notation (see for example Ref. 13). 

(13) 

(14) 

(15) 

(16) 

(17) 

It is convenient to split up the kernel K(x, y) into 

K(x,y) = Kl(X ,y) + K2(x ,y) 

~(~, T) = a(.,y). 

where s is the semi-span of the wing, c(y) is the local chord length and xL(y ) is the coordinate of 
the leading edge at the spanwise position y as shown in Fig. 1. The  integral equation then becomes 

~(~, T) = ~ -1 C(yo)dTo o X(~o, To)R(X-Xo, y-yo)d~o 
where 

- ~(~o,  To) = ~(Xo, yo) 



If the kernel is split up in this manner in the integral equation (13) and an integration by parts 

carried out on the integral involving the first component Kl(x, y) then there results the equation 

sf+  ; 
= -1 C(yo)dno 1 Xo, y - y o )  + 

+ c(y0)X(l  n 0 ) & ( x - x 0 ,  y-y0)}d  + 

S f+l 
C(yo).~ (1) (1, % ) R l ( x -  x:r(yo), y -yo)&)o (19) 

where 

Xm (~o, no) = 7t(v, %)dv (20) 
0 

1 ( M x + R )  ~ exp - (21) 
ff2a(x' Y) - R (x ~ + y~)~ g 1 - M s ] J 

and x:r(y ) is the x-coordinate of the trailing edge at the spanwise position y. 

The integral equation (19) can be handled more easily than the integral equation (13) for now 
the rather complicated expression (17) occurs only under a single integral rather than under a 
double integral. 

3. Approximations to the Loading Function and Location of Loading and Upwash Points. 

The integral equatiou (19) may be solved numerically for values of the loading function X(~o, T0) 
only at a finite number of points on the wing. Accordingly a set Of points, the loading points, at 
which the values of the loading are to be determined are chosen at the outset and the values of the 
loadings at these points are regarded as unknowns. The loading function is then represented 
approximately in terms of its values at the loading points by use of interpolation functions which 
have the same behaviours as the loading distribution near the edges of the wing. 

The upwash distribution on the wing obtained from the integral relation (19) by using the 
approximations just described for the loading function cannot be made to coincide exactly with the 
given upwash distribution all over the wing. Coincidence at a number of points, the upwash points, 
equal in number to the number of loading points can, however, be obtained. In this way a set of 
simultaneous equations for the values of the loading function at the loading points in terms of the 
values of the upwash at the upwash points is set up. 

The accuracy with which the loading function is determined depends on the number of loading 
and upwash points taken and also on the choice of their positions over the wing. 

In subsonic flow, since the harmonic velocity potential of the flow about the oscillating wing 
satisfies an elliptic partial differential equation, the loading distribution can be expected to be 
smooth over the wing, away from. any discontinuities in the upwash distribution such as occur at 
control surface edges, and also away from any discontinuities in slope of the wing edges. This 
would not be so in supersonic flow where the harmonic velocity potential satisfies a hyperbolic 
partial differential equation, and, for example, a discontinuity in slope of the wing leading edge gives 
rise to discontinuities in the loading distribution across a 1V~ach line from the point of discontinuity 
of slope on the leading edge if the Mach line lies on the surface of the wing. 

For a wing without control surfaces in subsonic flow the loading distribution is smooth except 
in the immediate neighbourhood of any points of discontinuity of slope of its edges, s o A(~0, T0) may 



be approximated quite well by a few terms of an expansion in terms of elementary orthogonal 
functions over the whole wing except in the immediate neighbourhood of these points of discon- 
tinuity of slope. The values of total forces on the wing obtained by using this approximation should 

be little different from the actual values. 
In thefollowing theory the positions of the leading and trailing edges of the wing are specified 

at only a relatively small number of stationsalong the span and it is assumed that a sufficiently 
good approximation to the leading and trailing edges is obtained by taking the equations of these 
edges to be polynomials which give the correct values at the specified stations. This leads to small 
errors in the neighbourhood of discontinuity of slope in the leading and trailing edges but the 

overall effect on the total forces is expected to be small. 
The loading function ~(G0, T0) has a singular behaviour like 1/~/G0 near the leading edge and 

tends to zero like ~ / ( 1 -  G0) near the trailing edge. These are the behaviours near the leading and 
trailing edges of a two-dimensional wing, which must be followed near the leading and trailing 

edges of a finite wing. 
The selection of upwash points along a chord will be made on the basis of two-dimensional 

steady-flow theory. For a particular finite oscillating wing there may be better selections but the 
problem of their choice remains. The selection made on the basis of two-dimensional theory should 

be better than an arbitrary selection. 
An approximation to the loading function X(Go, To) along the chord at T = T0, and which has 

the correct behaviour at the leading and trailing edges is given by 

~ - - 1  

If XO(Go, To), for a particular value of T0, represents the loading on a two-dimensional wing 
"lying between ~o -- 0 and ~0 = 1 in steady subsonic flow, then the corresponding upwash at any 
point ~ in (0, 1) may be calculated. If this calculated upwash is equated to the prescribed upwash 
at each of n points ~ in (0, 1), then there results a system of n simultaneous linear equations which 
may be solved for the values at(To ). The values of the at(To ) so obtained will depend on which 
points have been selected as the n upwash points ~ in (0, 1). 

The values of the a~(T0 ) for which Xe(~0; T0) of equation (22) is the best approximation to 

5(~0, T0) are deemed to be those for which 

o [X(Go, To) - X (Go, To)]  --To 

is a minimum for a given value of T0. This best set of values of the at(To ) cannot be determined 
exactly since the function ;~(G0, T0) is not known explicitly. However, it is possible to select the 
n upwash points G in (0, 1) so that the values of the at(T0 ) calculated in terms of the two-dimensional 
steady-state upwashes at these upwash points are, in general, as good approximations to the best 
set of values of the a~(T0 ) as it is possible to get with n points only. The procedure for doing this 

involves rewriting equation (22) in terms of orthogonal polynomials. 
If the set of polynomials/,.(Go) Of degree r is defined as an orthogonal set over (0, 1) with respect 

to ~/{(1 - ~0)/Go} as weight function, i.e. 

f i  l~,(~o)Zs(~o) ~ ( ~ o ~ ° )  d~o = 8~,s, (24) 



where 3r, ~ is Kronecker 's  delta, and the series (22) is writ ten 

then the integral (23) is a minimum when 

f br(%) = X(_~o, vo)lr(~o)d~o, 0 ~< r ~< n - 1. (26) 
0 

The br(%) are the coefficients of the first n terms in the infinite expansion of ,~(seo, ~7o) in terms 
of the/r(~:0): 

co 

X(~°' % ) =  {,.=~o b"(%)l"(~°)} N / ( 1 - ~ )  ' (27) 

Corresponding to the loading distribution 

on the two-dimensional wing in steady subsonic flow let there be an upwash distribution %(~:). 
Then %(~) is given by the integral formula 

; %(~) = o l ' dG)K(~-  G) d~o (28) 

where K(~) is the steady subsonic two-dimensional kernel, and ~ is distance aft of the leading edge. 
The ' funct ion %(~) turns out to be a polynomial of degree n in ~. 

Then, corresponding to the loading distribution h(~0, %) of equation (27) there is a two- 
dimensional upwash distribution u(~, %) given by the formula 

co  * 

u(~, V0) = ?~ b,.(~0)%(~). (29) 
~ ' = 0  

If  equation (29) is written down for n separate points ~ in (0, 1), a set of equations is obtained 
which may be solved for the b~(~?o), 0 ~< r < n - 1, in terms of the values of the two-dimensional 
upwash u(~, '70) at these points and of the b~.(%), r > n. Approximate values of the b~(%), 0 ~< r < 
n - 1 are then obtained by neglecting all the br(%) , r >1 n. If, however, the n separate points ~ in 
(0, 1) are chosen to be the n roots 

k (w) 

of the polynomial equation 

k = 1, 2 , . . .  ,n, (30)  

= 0 (31)  

then the values of the br(%) , 0 ~< r <~ n - 1 do not depend on the value of b,~(%). The approximations 
to the br070), 0 ~< r ~< n - 1, will then, in general, be better than those obtainable using the values 
of u($, %) at any other selection of n points $ in (0, 1). The  corresponding values of the G.(~0) 
are then the values which are to be taken as the approximations to the best set of values of the 
at(%). It follows that the points (30) are, in general, the best ones to take for the chordwise positions 
of the upwash points on a two-dimensional wing in steady flow. As mentioned earlier, these points 
will be taken as the upwash points in the case of a finite oscillating wing. The  points are numbered 
in order from the leading edge. 



The functions ~ (~)  and l~(~) are in a simple relationship, as the following analysis shows: 
Since the function %(1 - ~) is a polynomial of degree r it may be written as a linear combination 

of the lp(~) with p ~< r. It  then follows from the relation (24) that 

when r < s. If  r > s, the integral relation (28) is used, and we obtain 

= J'i e°) 

= f 1%(1 - t:°)l~(~°)o N//(1-G-o ~°) ds¢° 

= 0 .  (33) 

Therefore % ( 1 -  ~) must be proportional to/,~(~) and the n upwash points are given by 

~1~ (w) = 1 - ~i(~) 

where 
i = n - k + l  

and 
~i(o i = 1, 2, . . . ,  n, 

k = 1 , 2 , . . . , n  (34) 

( 3 s )  

(36) 

are the roots, numbered in order of increasing size, of the polynomial equation 

1,~(~) = O. (37) 

As is shown in Appendix III ,  the points ~i (~) are given by 

~i(~ ) _ 1 1 [ 2 i -  1 
- ~ - ~ cos ~2~+-1 rr] i = 1, 2 , . . . ,  n. (38) 

The  approximate values of X(~0, ~/0) at n points along a chord may be determined from the 
approximation formula (22). Reciprocally the approximate formula for X(~0, ~70) may be determined 
in terms of the approximate values at these n points by the use of interpolation functions having the 
correct behaviours at the leading and trailing edges. It is very convenient from the point of view of 
mathematical formulation and numerical computation if these n points are taken to be the n points 
~i (0 defined above in equation (38). These n points will be called the chordwise loading points. 

Corresponding to each point ~a,  an interpolation function h~(~)(~o) is formed which is unity at 
the point ~i (z) and zero at the other ( n -  1) loading points, and which is the product  of @{(1 - ~0)/~0} 
with a polynomial of degree ( n -  1) in C0: 

~i q) 



The approximation to the loading along a chord of the wing may then be given as the sum 
~b 

X(~o, 70) = E X(~i (~), 7o)hi(~)(~0) (40) 
/ = 1  

where the asterisk has now been dropped from the X, for it is no longer required if one bears in 
mind that the quantities denoted by X are henceforth approximations to the actual quantities. 

Formula (40) is exactly equivalent to formula (22). 
The  loading distribution behaves like V ' ( 1 - 7 )  near the starboard tip of the wing and like 

~ ( 1  + ~/) near the port tip. These are the behaviours near the edges of a very slender rectangular wing. 

An approximation to the spanwise function ~(~i a), ~/o) may then be taken as the product  of 
~ ( 1 -  ~70 ~) with a polynomial of degree ( m - 1 )  in 70. Foll6wing the procedure for the chordwise 

variable ~0, a set of polynomials ~,.(70) of degree r is defined as an orthogonal set over (0, 1) with 

~ / ( 1 -  702) as weight function, i.e. 

j ~(7o)Vs(70) ~/(1 - ~0~)d~/o = 3~,~. (41) 
o 

To choose the spanwise locations of the upwash points it is observed that the kernel /£(x,  y) in 
equation (11) behaves like 1/y ~ near y = 0. The  spanwise distribution of upwash win(7) corres- 
ponding to the loading distribution Y~(7o) ~/(1 - ~02), and upon which the choice of upwash points 

depends is then taken to be 

= V(1-,0 )dT0 (42) 

where the singular integral is a principal-value integral which has to be evaluated using Hadamard 's  
'Finite Part '  method of integration. The  function Win(7) turns out to be a polynomial of degree 
m in 7. The  spanwise locations of the upwash points are then chosen as the m roots 

7 f  °) r = 1, 2 , . . . ,  m,  (43) 

of the polynomial equation 

w~(~) = 0 (44) 

for reasons similar to the ones for which the chordwise upwash points were chosen. The spanwise 

points are numbered  in order starting from the starboard tip. 

The  points (43) are given by 

%(~) = - 7j r = 1, 2 , . . . ,  m (45) 
where 

j = m - r + 1  (46) 
and 

~j j = 1, 2 , . . . ,  m (47) 

are the roots, numbered in order of decreasing %. from ~70 = 1 to ~7o = - 1, of the polynomial 

equation 
~m(70) = 0. (48) 

The  relations (45) and (46) are obtained by an argument similar to the one used in obtaining the 

relations (34) and (35). 
The  points 7j are symmetrical with respect to 70 = 0, in view of the symmetry of ~ / ( 1 -  702) 

about  this point, so that the spanwise locations of the loading and upwash points are the same. 
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As is shown in Appendix III,  the points %. are given by 

7j = cos , j = 1, 2 , . . . ,  m.  (49) 

Again it is convenient if the m points 7j defined in equation (49) are taken as spanwise loading 
points and the loading given in terms of its values at these points. 

Corresponding to each point %. an interpolation function gj("0(~/0 ) is formed which is unity at the 
point ~Tj and zero at the other ( m -  1) spanwise points, and which is the product of ~(1  - ~7o ~) with 
a polynomial of degree ( m -  1) in %: 

g/~)(7o) = r~(7o) ¢ (1  - 7g) (5o) 

(7o_ 7,)(J_o ,,~(7o))~o = ~ ~ / ( 1 - ¢ ) "  

The approximation to ~(~i (°, 70) is then given by 

X(~% 70) = E ~(~& ~;)g/~)(7o) (51) 
j = l  

so that, from equation (40), 
79Z 

X(~o, '7o) = X Y~ X(~i (*), ~Tj)h~(~)(~o)gj°~(7o) • (52) 
i = l  j = l  

To end this section formulae for the loading and upwash points on a finite wing are given. 
The totality of loading points are given by 

x~,/z~ = c ( y j ) ~ )  + xL(y~) 

yj = s~Tj 

and the totality of upwash points are given by 

x,c,r(w) = c(yr)~k (w) + xL(yr) 

Yr = sTr 

i =  1 , 2 , . . . , n  
j =  1 , 2 , . . . , m  

k = 1 , 2 , . , . , n  

j = 1 , 2 , . . . , m .  

(53) 

(54) 

4. The Numerical Integration. 
Substituting the approximation (40) for X(~o, 70) into the form (19) of the integral equation 

results in 

=1 " f+1_1 i(~,(o,(7_ 7o) '7°) I,(->(7, 70, e)aTo (55) ~(~, 7) = 2: 
i =  

where 

h~)(7, no, ~) = ~ C(yo) (7 - 7o) ~ {h~(~o)g~(x- Xo, y -yo) + 

+ c(yo)h~ ~1' ~)(~o)~a(x - xo, y -yo)}d~o + hi (1' ~(1)K~(x- X:v(Yo), Y -.Yo) 1 (56) 

and 

h,(1. ~)( ,o) = f i° h,(~)(u)du . (57) 
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The function Ii{~)(V, 70, x) may be developed into a series of the form 

co {;0 

= E {,,o£~ 6 0 ( 7 _ 7 o ) ~ + ( 7 _ 7 o ) ~ 1 o g 1 7 _ 7 o 1  Z F~,~(~)(7, ~ ) ( ~ - 7 o )  ~ 1i{~)(7, 70, ~) X ~,~ ,,,, 
8=0 8=0 

(58) 

in the neighbourhood of 70 = 7. 
The principal value integral in equation (55) could be evaluated approximately by using the 

interpolation formula 

X(~i(°, 7o)Ii(~)(~, rio, s c) = Z i(~:i {°, 7~.)I,{~)(V,-qj, ~:)g~(~)('qo) (59) 
j = l  

and integrating each term obtained by putting this series into (55). The accuracy of the value 
obtained would however be adversely affected by the presence of the logarithmic terms in the 
expansion (58), and in particular by the lowest-order logarithmic term, especially if the value of m 
is small. The accuracy can be much improved if the lowest-order logarithmic term is removed 
from Ii(~)(~, 70, ~) and dealt with separately while the remainder is dealt with by using the inter- 
polation procedure. In order to do this an expression for the function Fo.i{~)(7, ~) is required and 
this is found in Appendix IV to be 

i~o ~2 } 
1 s - (1 -M~)hi(n)'(~) + 2 F c(y)h¢{~)(~) + ~ c~(y)hi(l'~)(~) " F°'i(?~)(7' ~) - 4= c(y) (60) 

To evaluate the principal-value integral in equation (55) a procedure similar to that of Mangler 
and Spencer 14 is carried out. 

Put 

I~°")(7, 70,  ~:) = I,~(")~(7, 70, ~:) + Fo,~(")(7, ~:) ( 7 - 7 o )  2 log 17 - 7ol (61) 

and write the identity 

,~(~2~ {°, 7o)/i(~)(7, 7o, ~) 

~ / ( 1 -  7o 2) 
= x(~(~}, 7) V ( 1 2 ~  {z~(~)(7, 70,  ~:) - ±~(")*(7, 70,  ~:)} + 

( 6 2 )  

The lowest-order logarithmic singularity is missing in the expression in square brackets so the 
interpolation process is to be applied to that expression. We then obtain approximately 

~(~{('), 7o)Zi(~)(7, 70, ~:) 

?l'f I 
_- X(fi(o, 7) V ( 1 - 7 o  ~) Fo ~(~°(7, f) ( 7 - 7 o )  ~ log [7 - 7o] + 2: X(f~(o, 7j)I~(~)(7 , 70, ~) - 

~ / ( 1 - 7  ~) , j=~ 

t /(1 7~ 2) 7 
i(~:i(o, 7) G,i(n)(7, ~ ) ( 7 - 7 j )  2 log I T-7~1/g,(m)(7o) • %/(1 - 72) J 

(63) 
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Hence, from (55) we obtain the approximate equation 

r~ f+l  g).<,~)(no)d~/o ~ - ~3 (n - 7j) a log 1 7 -  ~J] ~ / ( 1  ~3. 2) + 
j=l -1 ( ~ -  70) ~ _I 

~,~ (+1 gS,~,(~o)d~lo (64) 
+ Z !2 x(6 (~), nj)I~(')(n, n0, #) 3-1 (~-~0)  2 " 

i = 1  i = 1  

If the equation (64) is written down for the m n  upwash points (x~.r (~), y,.) on the wing there 
results the following set of m e  simultaneous linear equations 

A(~i (1), ~/r) I f  +1 log 17~ - 7015/( 1 - ~o2)dB0 - ~ ( ~ ( w > ,  ~) = ,_Z ~ - ~ )  F o , ~ ( ~ > ( ~ ,  6~ <~>) __-~ 

+ 
J j = l  

+ Z Z X(~ (z), ~j)U")(7,., ~j, ~:k (~)))  dTo 
i=1 j=l -1 (7~-  no) ~ 

k = 1 , 2 , . . . , n  

r = 1 , 2 , . . . , m  (65) 

for the mn unknowns X(¢tq), ~/j). 
Integrals required for the evaluation of the coefficients in equations (65) are 

f 
-I-1 q'? qr 

-~ log 1~, - no] ~/(1 - 7o2)d~o = ~ (2~/~ 2 -  1) - ~ log 2 (66) 

and 

~_( 2rr~ ( m + l )  } +~ / 2 V ( 1 - ~ 7 ~  z) r = j  

j _  g/~)(70)d7o _ ~/(a - 7; 2) (67) P~,/~) ( ~ - % ) ~  ] ( m + l )  (~r-%.) ~" r + j  an odd number 

ko r + j an even number and r # j. 

Multhopp obtained the expressions (67) in Ref. 2, but their derivation is included in Appendix III 
for completeness. 

Also required in equation (65) are the values I~('~(~/~, ~b', ~k(w)) • 
If r + j values of this quantity may be obtained by performing numerically the integrations 

appearing on the right-hand side of equation (56). The performing of these integrations is quite 
straightforward, but care must be exercised when the integrand is changing rapidly with ~0 as 
happens if (*?r-~J) is small when ~0 is near to ~(x~,~ (~>, y~). It is suggested that the chord of the 
wing be divided into a number of intervals over each of which a Gaussian numerical quadrature 
formula of low order can be used with good accuracy. The lengths of these intervals depend on 
the value of ('7~.-Bj) and the location of the interval with respect to x~,r(WL These intervals will be 
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short when (~]r-- 71j) is small and when their x-coordinates are near to xk,~(~) and longer otherwise. 
The  singular behaviours of hi('~)(~0) and hi(1,~)(~0) near the leading and trailing edges of the wing 
have to be taken into account in the numerical integration formulae used. 

If  r = j the integrands in equation (56)are  singular and non-integrable so that the value of the 

quantity can only be obtained by taking the limit as ~70 ~ ~7. It  is shown in Appendix V that this 
process leads to 

1 g(y) hi(1,n)(~)" (68) 
I i ( ~ ) ( n '  V' ~:) - 2 ~  s 

The values of Fo, i(~)(~7,., ~k (w)) are obtained straightforwardly from equation (60). 
All the coefficients of 7t(~ia), ~) in equations (65) may be determined and then the set may be 

solved. 

5. Matrix Formulation of the Equations. 
In what  follows it will be assumed that the number  of spanwise points m is an even number. 

Then  there is no spanwise point on the centre section and the set of simultaneous linear equations 
(65) may be written as the matrix equation 

IA++ 

I:~l = LA_+ AAA~-I E~I (69) 

where the elements are submatrices defined below. 

[a+] is a column matrix of ½mn elements with the element 

k =  1 , 2 , . . . , n  
~(~k (w), ~Tr) (70) 

r = 1 , 2 , . . . , m / 2  

in the n(m/2-r) + k' th  row. 

[a-] is a column matrix of ½mn elements with the element 

k =  1 , 2 , . . . , n  

r = 1 , 2 , . . . , m / 2  

in the n(r-  1) + k ' th row. 

(71) 

[X +] is a column matrix of ½ran elements with the element 

i =  1 , 2 , . . . , n  

j =  1 , 2 , . . . , m / 2  

in the n(m)2-j) + i ' th row. 

(72) 

[A-] is a column matrix of ½ran elements with the element 

i =  1 , 2 , . . . , n  

j =  1 , 2 , . . . , m / 2  

in the n( j -  1) + i ' th  row. 

(73) 
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[A ++] is a square matrix of order ½mn x ½mn with the element 

f+ l  dT]0 + 
&Xm)(%) 

-rP)G., 7]5, G (~)) -~ (7]_ 7];)~ 

1 I f  .1 . - -  log [7],.- 7]o1 ~/(1-7]o~)d7]o- + '3J"F°'i(")(7]~' ~k(~)) x/(1-7]~ 2) -1 

f+igp)(7]o) ] - 2 (7]~-7]~)~ log I~, - 7]~1~/(1-7]~) a~o 
~ = 1  --1  (7], - -  7]0)  2 

i =  1 , 2 , . . . , n ;  k = 1 , 2 , . . . , n  

j =  1 , 2 , . . . , m / 2 ;  r = 1 , 2 , . . . , m / 2  (74) 

in the n ( m / 2 - r )  + k'th row and n ( m / 2 - j )  + i'th column. 

[A +-] is a square matrix of order ½rnn x ½ran with the element 

z#)(7]~, . ~ / ~ ,  G(~')) d_~ ~ _ - ~ o )  ~ ,~7]o 

i =  1 , 2 , . . . , n ;  k = 1 , 2 , . . . , n  

j = 1 , 2 , . . . , m / 2 ;  r = 1 , 2 , . . . m / 2  (75) 

in the n ( m / 2 - r )  + k'th row and n ( j -  1) + i ' th column. 

Since the wing is assumed to be symmetric about the centre chord the remaining submatrices 

may be defined by 
A-+ = A+- , (76) 

and 
A - - =  A ++. (77) 

It will be noticed that the + sign is associated with the starboard side of the wing and the - sign 

with the port side. 
The arrangement of elements in the above matrices corresponds with counting the points from 

the leading to the trailing edge along the chords at each spanwise section in turn, starting with the 
spanwise section nearest the wing centre line and proceeding towards the tip. This applies to both 

starboard and port sides of the wing. 
Let the elements in the column matrices in equation (69) be written as the sum of symmetric 

and antisymmetric components by 

where 
D q = ½ D  + + ~ - ] ,  X ~ = ½ [ 5 + + X - ]  

[~] = ½ D+ - ~- ] ,  X~ = ~ [X+ - X-]. 
Then from (69) in virtue of relations (76) and (77), 

which maybe  replaced by 
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The set of mn equations in mn unknowns has therefore been reduced to two sets of ½mn equations 
in ½ran unknowns corresponding respectively to symmetric and antisymmetric oscillations. 

The equations (81) may be solved for the matrices [25q or [25% Then 5(~0, ~70) may be obtained 
from equation (52) and so the reduced loading )(Xo, Yo) may be obtained by using equations (9) and 
(14). Programme R.A.E.263A has been constructed to determine values of A(xo,Yo) at points 
(Xo, Yo) on the wing when it is oscillating in given symmetric or antisymmetric modes at a given 
frequency in a main-stream flow of given Mach number. 

6. Modes of  Oscillation and Associated Generalised Forces. 

If the wing surface may be displaced in a linear combination of a number (k say) of independent 
modes of displacement then the vertical displacement Z(x,  y ,  t) of the point (x, y) on the wing at 
time t in any vibration involving these modes only can be given by the formula 

k 

Z(x,  y,  t) = 1 y~ f/)(x, y)b/)(t) (82) 
~ = 1  

where 1 is a typical dimension of the wing, the fp(x ,  y), p = 1, 2, . . . , k, define the shapes of the 
k independent modes and the b/)(t), p = 1, 2 , . . . ,  k, are independent generalised coordinates 
which are functions of the time. 

If at time t the wing surface undergoes an incremental virtual displacement 

k 

3Z(x, y) = l 2 fv (x ,  y)3b~ (83) 
I )=1  

where the Sb~), p = 1, 2 . . . .  , k are incrementally small and arbitrary, then the virtual work done 
by the airforces on the wing at time t in this virtual displacement is given by 

= [ [  L( o, yo, yo)d odyo 8 W 
d d S 

= 2 8b/)l L (xo ,Yo ,  t)f~(xo,Yo)dxodyo (84) 
3)=1 N 

where L(x,  y ,  t) is the upward lifting force per unit area, or loading function, at a point (x, y)  on 
the wing at time t when the wing is vibrating according to equation (82). 

In a small incremental virtual displacement, however, the virtual work is given by 

lc 

Q/)(t)Sbp (85) 
/)=1 

where Qp(t) is the generalised aerodynamic force in the p ' th mode at time t. 
Comparing (82) and (83), noting that the 3b/) are arbitrary, leads to 

f f r( o,yo, (86) O/)(t) l 
S 

When the wing is oscillating harmonically with circular frequency ~o the generalised coordinate 
bv(t ) is written 

b/)(t) = b~o ei°~t . (87) 
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Since the governing equations of the flow about the wing are linearised the principle of super- 
position holds and the loading may be given by 

k 

L(x, y, t) = pV~ X ~(x, y)b~oei~t (88) 
q = l  

where 
p V2aq( x, y)#~t (89) 

is the loading distribution on the wing corresponding to the harmonic oscillation 

Zq(x, y, t) = lfq(x, y)e i~t. (90) 

If the expression (88) for L(x,  y,  t) is substituted into (86) there results 

f f yo)l~(xo, yo)dxodyo Q~(t) = p V2l ~ bqo ei~°t 
q = l  

k 

= pV~sl 2 y~ Q~,qbqo ei~t (91) 
q = l  

where 
1 ( ' 7  

Q~,q = ~ JJffAXo, yo)aq(Xo, yo)eiotdxodyo (92) 

The quantity Q~, q is a generalised aerodynamic force coefficient and is a dimensionless complex 

number. For similar wings oscillating in similar modes p and q, from dimensional considerations 
one can see that it depends only on the Mach number M of the flow and the frequency parameter 

v, where 
~ol 

v = V"  (93) 

In flutter theory it is often convenient to write 
Q t • t/ Q~,~ ~,q + zvQ~,,q (94) 

where Q~,q and Q " ' ~o,q are real numbers. 
By making the transformation of variables from (x 0, Y0) to (~o, ~70) as defined in equation (12) 

in the integration variables of (92) there results 

f f +~ 4y.) dn0 f&0,  yo)a&o, yo)d#. 
Q~,~ = -~ ~ -  o 

= , .roj~ q~so, ~70)d¢o • (95) 
--1 0 

Then, using the expression (52) with the suffix q attached to the A's this becomes 

Q~, q = Z ~] Xq(~i(~, rlj ) - 7 -  gJ("o(w°)d~° hi('~)(¢o)e-i~olVf~,(Xo, yo)d¢o. (96) 
i = 1  j = l  - 1  0 

It will be assumed that an adequate approximation to 

C(yo)e-~°Ivf~(xo, Yo) (97) 

over the whole wing may be given by a double polynomial of degree not greater than the n ' th in ~o 
and not greater than the m'th in ~70. This approximation may not be so good near points of discon- 
tinuity of slope of leading and trailing edges of the wing, as obtains for example at the wing apex, 
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but this is expected to be only a local effect in subsonic flow, and is equivalent to modifying the 
wing contour so that there are no such discontinuities. The values of (COxo/V) must also not be too 
large anywhere on the wing, its greatest permissible magnitude being determined mainly by the 
number of chordwise points. If large values of (COxo/V) occur then oscillations in the function 
e-i~x0 F become important and this would need special treatment. 

In Appendix III  it is shown that if a(~0) is a polynomial of degree not greater than the n'th in ~0 
and if e010) is a polynomial of degree not greater than the m'th in ~0, then 

and 

where 

and 

f = (98) 
0 

f +l e(*lo)gJ('~)(~o)d~lo = e(~j)G~ ('~) (99) 
--1 

• f Hi(") = hi°~)(~o)dSo (100) 
0 

Gj (~) = gS'°(~o)d~/o • (101) 
--1 

So equation (96) may be replaced by 

Ov q = ~E ~ H~(~)GS m> c(yj) exp i~o ~ ' ~=1j'=1 - T -  - F xi'S° f~(xi'J~)'Y~)Ttq(~i(z)' ~lj) (102) 

or, in matrix form 

ka(J (103) 

for a symmetric wing. The submatrices appearing as elements in equation (103) are defined below: 
[f~+] is a row matrix of ½mn elements with the element 

f =  1 , 2 , . . . , e  
f~(x~,j(o, yj) j = 1, 2 , . . . ,  m/2 (104) 

in the n(m/2- j )  + i 'th column. 

[f~-] is a row matrix of ½mn elements, with the elefllent 

i =  1 , 2 , . . . , n  
f2o(xi, mt2+j (0, Y,~/~+j) j = 1, 2 , . . . ,  m/2 

in the n ( j -  1) + i 'th element. 

(lO5) 

[B] is a diagonal matrix of order ½mn x ½mn with the element 

{ ico (z)} i =  1 , 2 , . . . , n  c(y~) Hi(n)G~(m) exp - x~, 
l g j = 1 , 2 , . . . , m / 2  

in the n(m/2- j )  + i ' th row and column. 

(106) 
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The column matrices ha+ and Xe- are defined by (72) and (73) only now with the addition of the 
suffix q. 

The equation (103) may be replaced by 

Q~,~ = [f~q [B] [2Xg] + i f  a] [B] [2h~"] (107) 
where 

[f~q = ½[/~+ + f s ] ,  [/~a] = ½ i f +  _fq-]  (108) 

[xg] = ½ [x~+ + x~-], [x~q = ½ [x~+ - x~-] (109) 

are respectively symmetric and antisymmetric components of the row and column matrices appearing 
in equation (103) 

The matrices [2h~] and [2hq ~] in equation (107) are obtained by solving equations (81) with 
suffices q added to the A's and the re's, and on using these solutions in (107) there results 

2 [ ~ ]  + [f~'~] [B] -A++ ~ A+- [~q~] (110) 

where ~q is obtained from equations (2), (3), (8) and (15) on putting 

g(x, y) = lfq(x, y) (111) 

and the suffmx q is added to the a's in these equations. 
So 

%(x, y) = l ~ fq(x ,  y) + ivfq(x, y). (112) 

Now define column matrices [%+] and [%-] as follows: 

[%+] is a column matrix of ½ran elements with the element 

k = 1 , 2 , . . . , n  
%(xk ,,.(w), y,.) r = 1, 2 , . . . ,  m/2 (113) 

in the n(m/2-r )  + k'th row. 

[%-] is a column matrix of ½mn elements with the element 

k =  1 , 2 , . . . , n  
%(xk"~/2+~(w" Y~) r = 1, 2 , . . . ,  m/2 (114) 

in the n(r -  1) + k'th row. 

As before, define 

[%q = ½ [%+ + %-] [%°] = ½ [%+ - %-] (115) 

as the symmetric- and antisymmetric-component column matrices. 

Then for a symmetric wing 

[~qq = [D] [e~g], [~a] = [D] [%a] (116) 
where 

D is a diagonal matrix of order ½mn x ½ran with the element 

exp rico xk.,.(,o)~ ~V [ k =  1,2 . . . . .  n 
r = 1, 2 , . . . ,  m/2 (117) 

in the n(m/2-r )  + k'th row and column. 
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The expression for [O~, q] may now be written 

[Qm, q] = [f±7] [B] [ A+++2 A+-]-* [D] [%*] + [f~a] [B] [A++__ 2 A +-]-1 [D] [%a]. (118) 

In flutter theory the modes of oscillation f,,(x, y) are either purely symmetric or purely anti- 
symmetric. Hence only one of the matrices [f~*] and [fa] is non-null and also only one of the 
matrices [%s] and [%~] is non-null. So if p and q refer to modes which are not both symmetric or 
not both antisymmetric then 

[O~,q] = 0. (119) 

If p and q both refer to symmetric modes, then 

[ "++ <1-' O,,,q = [fs0] [B] 2 [D] [%] (120) 

while if p and q both refer to antisymmetric modes, then 

[A++ - A+-]- I  
O~,q = [f~,] [B] ~- [D] [%] (121) 

where in both (120) and (121) 

[f~,] = [f2, +] (122) 
and 

[%] = [%+]. (123) 

The row matrix [f~] and the column matrix [%] are made up of numbers associated with the 
displacement and upwash on the starboard half of the wing in both symmetric and antisymmetric 
oscillations. 

Equations (120) and (121) as they stand determine just one of the possible k 2 generalised airforce 
coefficients Q~,q. 

If the rows [f~], p = 1, 2 , . . . ,  k are arranged consecutively beneath each other to form a 
matrix [f] of order k x mn and if the columns [%] are arranged consecutively alongside each other 
to form a matrix [~] of order mn x k then for symmetric modes of oscillation 

[Q] = [f] [B] [A++ + A+-] -1 2 [D] [a] (124) 

and for antisymmetric modes of oscillation 

[Q] = [f] [B] [A++- A+-] -1 [D] [~] (125) 

where [Q] is a square matrix of order k x k with the element Q~, ~ in the p ' th row and q'th column. 
The matrices obtained from the products 

[B] [ A++ +2 A-+--]-I [D] (126) 

and 
A++- A+-]-I 

[B] ~- [D] (127) 

may be respectively called the symmetric and antisymmetric influence matrices for the wing 
oscillating at a given frequency parameter in a flow of given main-stream Mach number. 
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A programme in autocode for the Ferranti Mercury Computer has been constructed which can 
be used to determine the matrix Q of generalised airforce coefficients given by equations (124) or 
(125). Details of wing geometry, number of chordwise and spanwise points, frequency parameter 
and Mach number of the main stream as well as the matrices [f] and [~] are required as data by 
this programme. 

The programme is available as programme R.A.E. 161A. 

7. Examples. 

The first example taken will be that of a symmetric tapered wing as shown in Fig. 2. The typical 
dimension 1 of the wing  will be taken to be the root chord c o = 2. The wing  will be assumed 
immersed in a subsonic flow with free-stream Mach number M = 0.9 and to be oscillating with 
frequency parameter v = 0.6 in one of two rigid modes of oscillation defined by 

A(x,y) = 1 (128)  
and 

x 
f~(x, y) = 7" (129) 

The  number of spanwise points across the whole span of the wing is taken to be m = 4 and 
the number of loading and of upwash points along a chord is taken to be n = 2. 

The x-coordinates of the loading and upwash points on the starboard half of the wing are found 
by using the formulae (53) and (54). They are: 

x1,1 q) = 0.6715 

x2,1 (o = 1.1255 
and 

xl, 1 (~ = 0. 8745 

x~,t (w~ = 1" 3285 

xl, 2 (~ = 0. 3745 

x~,~(~ = 1.2389 (130) 

xl,~ (~) = 0-7611 

x~., (,o~ = 1.6255. (131) 

The  matrices A ++ and A +- whose elements are defined by (74) and (75) are found to be 

A ++ = + i l - 0 ' 0 2 9 8  -0"1021 - 0 . 0 1 9 6  -0 .02011  

] + 0 ' 0 0 5 7  0"0780 0 . 0 1 0 0 - 0 . 0 2 5 0 [  

] -0 "0493  0,0659 0 " 0 1 4 7 - 0 . 0 5 0 4  / 

L-0 .0321 -0 .0881  +0.0028 -0.0385_] 

- 0 . 3026  - 0.0091 +0.0204 +0.00011 

-0 .2848  - 0.5001 +0.0441 + 0.0602] 

+0.1121 +0.0159 -0 .2543  +0.0117~ 

+0.1367 +0.1081 -0 .2356  -0.4223_] 

(132) 

A + - =  [ + 0 . 0 5 5 9 - 0 . 0 0 9 8  0 i ] + i  

+0"i879 +0"0920 0 

0 - O. 0020 - O. 0032 

0 - O. 0010 - O. 0032_] 

- 0 . 0 4 3 2  - 0.0394 0 0 1 

-0 .0225  - 0.0663 0 O 

P 0 0 -0 .0015  -0 .0001  

0 0 - 0  0028 -0 .0025  A 

(133) 
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The modes of oscillation are symmetric modes, so the symmetric influence matrix defined by 
(126) is required. Th is i s  

~A++ + -1 
[ B ]  - 2 A+~ 1 [D] 

= I + 1 . 5 0 7 - 0 . 1 0 2 + 0 . 1 3 2 - 0 . 0 5 7 1  

[ - 0 " 8 8 1  + 1.451 +0.013 +0 .208[  

/ + 0 " 2 1 2 - 0 " 0 3 9 + 0 . 4 4 3 - 0 . 0 0 6 [  

L+0"016 +0 .109  -0 -371  +0.429J  

+ i  10 .008  - 0 . 5 2 6  - 0 . 0 6 9  -0 .142 -  

0.469 - 0 . 0 8 0  +0  085 0.088 

0 . 0 7 4 -  0.149 +0  026 0.077 

0.070 - 0 . 0 5 7  +0.053 +0.013 (134) 

To obtain the generalised airforce coefficients, matrices [f] of the displacement at the loading 
points and [~] of the upwash at the upwash points are used. These are 

and 

1 , 1 ]  

01873 0619  033 8 0 627 /135/ 

J If i] 06i[i 00003806  37366 2  127 
The matrix of the generalised airforce coefficients obtained using equation (24) is then 

~e~ -- [i0.~36 -3.,sol + 0.6i [-3.064 -,.0== ] 
0.031 - 1. 137_1 1.075 - 0 . 9 9 5 /  

(136) 

(137) 

The values of the elements in (137) cannot be expected to be really good approximations to the 
generalised airforce coefficients since the number of spanwise and chordwise points is rather small. 
A better matrix of values is obtained by using m = 8 and n -- 2. The matrix is then 

[Q] = I + 0 " 3 3 1 - 3 " 4 4 6 1 + 0 " 6 i l - 3 " 0 6 8 - 1 " 0 6 1 1  

0.042 - 1. 145/ 1.087 - 1. 060_1 (138) 

and these values are not far removed from the values (137). 
Intermediate results have been given in the above example to illustrate some of the matrices 

obtained in the procedure. In the next example only the final result will be given. 
The second and final example is that of a circular wing oscillating at very low frequency in 

incompressible flow. The reason for choosing this example is that van Spiegel 15 has also obtained 
values for airforces on a circular wing oscillating at very low frequency in incompressible f low.  
van Spiegel's method 15 is completely different from that of the present paper in that he solves 
directly the differential equation governing the flow about the wing, and so it is of interest to 
compare the two sets of results obtained. 

The  quantities Q~, q' and O~, ~" defined in equation (94) are now for the limiting case of vanish- 
ingly small frequency parameter. 
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The typical dimension l of the wing will be taken to be the radius of the circle. 
First, the symmetrical modes of oscillation defined by 

f~(x, y) = 1 (139) 

X 
f (x,y) = 7  (140) 

X 2 

fa(x, y) = 7/ (141) 

y 2  

f4(x,y) = 17 (142) 

are considered. 
The values of the quantities Q~, q' and Q~, q" obtained from the method of the present paper will 

be given with the corresponding values obtained from van Spiegel's method 15 written in brackets 

beneath them. 
The values obtained from the method of the present paper were obtained by Woodcock with 

m = 12 spanwise points and n = 4 chordwise points using programme R.A.E.161A and are 
reported in full by him in Ref. 16 together with a collection of other results he obtained using this 

programme. 
Van Spiegel .5 did not determine Q~,q' and Q~j,~" for all combinations of p = 1, 2, 3, 4 and 

q = 1, 2, 3, 4. Here only those values which were also determined by van Spiegel are given. They 
a r e  

Q1,1' = 0 Q1, 2' = - 2. 820 Q~, a' = - 2.963 Q1, 4' = 0 

(0) ( - 2 . 8 1 2 )  ( - 2 . 9 3 1 )  ( 0 ) )  (143) 
Q~, 1' = 0 Q2, ~' = 1.485 Q~, a' = - 1. 398 Q=, 4' = 0 

(0) (1.465) ( -  1.379) (0) 

Q1, 1 ~t = - -  2" 820 Q1, =" = - 3.822 Q1, a" = - 0.822 Q1, a" = - o. 698 ] 

( - 2 . 8 1 2 )  ( - 3 . 7 6 6 )  ( - 0 . 8 0 9 )  ( - 0 . 6 9 5 )  l (144) 
Q~,," = 1.485 Q2,~" = - 0 . 8 8 5  Q~,a" = - 0 . 9 4 5  Q~,4" = 0.309 

(1.465) ( -  o. 847) ( -  o. 935) (0.302) 

Secondly the antisymmetrical modes of oscillation defined by 

Y 
Y) = 7 (145) 

xy 
Y) = 

t / /  are considered. The values of Q~, q and Q~),~ in this case are 

! ~ t t 

Q5,5 0 Q5,6 = - 0 . 3 8 6  Q6,~ = 0 

(0) ( -  0" 385) (0) 

Q5,5" = -0"386  . Q5,6" = - 0 . 5 5 0  Q6,5" = 0"186 

( -  0-385) ( -  0.527) (0. 181) 

The two sets of values are seen to be in good agreement in all cases. 

Q6,(= 0.186 1 (0.181) 

Q6,(' = - 0 " 1 0 0  

( - O" 102) 

(146) 

(147) 
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The values given in van Spiegel's report 15 are those given here divided by ~. The value of Q5,6" 
given by van Spiegel (in a different notation in his paper) is incorrect. Woodcock 16 discovered a 
wrong sign in formula (3.4.13), page 102 of Ref. 15, and when this sign was corrected the above 
result was obtained. The values 06 ' 5', QG, 5", Q6, 6' and Q6, 6" are not given at all by van Spiegel but 
their values have been obtained by Woodcock from intermediate results given by van Spiegel. 

8. The Treatment of Control Surfaces. 

If there are control surfaces on the wing then =modes of displacement are possible in which the 
displacement function f~(x, y) of equation (82) is not smooth across all the inboard edges of the 
control surfaces (i.e. edges of the control surface which are not outside edges of the planform). 
Such modes of displacement will be called control-surface modes. If the mode q is a control-surface 
mode then c~q(x, y) as given by equation (112) is not smooth near the inboard edges of the control 
surfaces and this in turn leads to a corresponding reduced loading distribution ~q(x,y) with 
singularities at these inboard edges. An approximation of the form (52) for Xq(~o" ~?0) is then not 
valid and it should be replaced by an approximation which takes into account the singularities at 
the inboard edges of the control surfaces. The subsequent procedure would be considerably more 
complicated than that which has been described already in the present paper, and as far as the 
writer is aware this has not been carried through to a successful conclusion. For a control-surface 

mode fD(x, y) the approximation to (97) by a low-order polynomial would not be permissible and 
the evaluation of the integrals in (95) would have to be carried out by a different procedure from 
that described in Section 6. 

The procedure described below for obtaining the generalised airforce coefficients Q~,q is valid 

only when p and q do not both refer to control-surface modes at the same time. This procedure is 
related to that of Richardson 4. 

Even though the procedure is not justified when both p and q refer to control-surface modes it 
may be used to provide estimates of the coefficients Q~,q in these cases until a proper procedure is 
available. 

If the mode q is not a control-surface mode, then it may be expected that the corresponding 
reduced loading function ~q(xo, Yo) can be represented with good accuracy by the double series of 
a finite number of terms 

A~(Xo, Yo) = 2 ~g a~(x,,j (~>, yj)h~('~)(#o)gS'~)(~o): (148) 
i = l  j = l  

This equation is quite similar to equation (52). The difference is that a factor d ~tv was intro- 
duced by equation (9) to modify }~(x, y) so as to simplify the integral equation, whereas here no 
such factor has been introduced to modify the reduced loading in equation (148) since the analysis 
in simpler without it. 

/~ form of equation completely equivalent to (148) is 

"~q(Xo, Yo) = 2 2 %1,.((o)e~(~7o) ~/(1 - ~o ~) (149) 
r=0  8~0 

where the coefficients a~ are constants. The generalised force coefficient to be evaluated is 

1 
j j  f,,(*o, yo)ag o, yo)dxodyo 

f fl = +1 c(yo) g,7o f (xo, yo)a (.o, yo)d o 
--1 ~ l -  0 

(150) 
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and if the series (149) is substituted into this it becomes 

where 

n - - 1  m - - 1  

Qp, q = - X  X %b,~ (151) 
~'=0 8 = 0  

f +14yo) f ~/(To ~°) b's = - -1 -  Ys(7°)V(1 - 7°2)d7° l'(~°) f ' ( x ° '  Y°)d¢°" 
--1 0 

(152) 

The  constants b~s can be determined, even when p refers to a control-surface mode, by numerical 
integration procedures. The generalised airforce coefficient ~ , q  can then be determined from 
equation (151) provided the mode q is not a control-surface mode. 

It is possible to write the equation for the coefficient Q~,q in the form of equation (102) provided 
the values off~(xi, Sz) , 99) in that equation are replaced by equivalent values as described below. 

Define the equivalent function fJ~)(~0, ~0) by 

l n - -1  f a - - I  

- Z ~ b,.~/~.(G)y,(7o). (153) f~(°)(~o, 70) ~(yo) ,=o ~=o 

Then using the orthogonal properties (24) and (4i), we obtain 

so that 

0 : o ,  q = 

= .]-1 ~ - -  7s(7°)~/(1 - 7°~)d7° o/p(~)(~:°' 7o)/,.(G) d~:o 

f fl ~=12 ~-lx~. +1 ~-4Yo) r~(7o)V(1 - 7o~)d7o f~(°)(~:o, 70);(¢0) d~o 
r = O  8 = 0  --1 0 

(154) 

and then using 

f +l c(yo) f l  (~)(~:o, - 1 - 7 -  dTo f~ 7o)~&o, yo)d~=o 
0 

(148) 

(155) 

c+1 c(yo) , o,d of I O,,q = • 2 ?tq(Xi, g(°, Yj) j _ l - 7 -  gA7 ) 7 fv(~)(~:o, 7o)h~(~)(~:o)d~:o . (156) 
i = 1 j = 1  

Now from (153) we see that  

C(yo) ~ (~)r~ 
7 J .  ,~o, 70) (157) 

is a double polynomial of the n ' th degree in ~o and the m' th  degree in 7o, so using the properties 
(98) and (99) we can replace equation (156) by 

i = 1  j = l  

= Z Hi(~)G~ (m) exp - xi, SO fv(e)(~i (l), 7j)Xq(~:i (°, 7j) (158) 
i = 1 i = 1  

which is analagous to equation (102), with the values f ,(xi ,  j(0, yj.) replaced by the equivalent values 
f (e)(~p, @. 
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Now from (153) and (152) we have 

I ~-1 ,~-1 (+~ c(yo) 
' , = Z 52 / , . ( ~ i ( ~ ) ) ~ ( @  J ~ - -  y s ( ~ o ) ~ / ( 1  - ~o2)d~o  x 

f~(°)(~?) ~J) c(yj) ~=o 8=0 -1 

fl x fv(Xo, yo)/r(~:o) d~: o 
0 

I (+1 C(yo) ~-~  
- ~(yj) J - 1  z s=oZ 7 s ( ~ & X V o ) V ( 1 - ~ g ) d V o  × 

x fv(xo,Yo) Z /~(Si(1))/r(~o) d~o 
0 ~'=0 

_ Hi(~)GJ £(YJ)l --1+1 )- gJ(")(v°)dv° o ]~(x o , yo)hi('~)(¢o)d¢o (159) 

on using results from Appendix III. The double integral in (159) is to be evaluated numerically, 
taking into account the discontinuities of fp(xo, Yo) and its derivatives at the inboard edges of the 
control surfaces. The equivalent values fJ~)(~a), %.) are then obtained from (159) rather than from 
(153) and (152). 

If the function 
c(Yo)f~(xo, Yo) (160) 

can be represented with good accuracy by a polynomial of degree not greater than n in ¢0 and not 
greater than m in ~70 then using the properties (98) and (99) in (159) leads to 

f~e)(~ia), @ = f~(xi,~ (z), Vj) (161) 

so that in this case the equivalent values are equal to the actual values of the displacement function 
at the loading points. 

If the mode q is a control-surface mode then the reduced upwash distribution a~(x, y) of equation 
(112) is not smooth at the inboard edges of the control surface and it cannot be expected that 
equation (148) will hold with good accuracy. The value of the generalised airforce coefficient 
Q~, q can, however, still be obtained with good accuracy provided that the mode p is not a control- 
surface mode. This is justified with the aid of the reverse-flow theorem 17. 

If the reduced loading function ;tq(x, y) in the direct flow corresponds to the reduced upwash 
function %(x, y) and if the reduced loading function ~p(x, y) in the reverse flow corresponds to 
the reduced upwash function f~(x, y), then according to the reverse-flow theorem 

Q ; , e =  f f sG(Xo, Yo),~q(Xo, Yo)dxodyo = f f s ~q(Xo, Yo)G(Xo, Yo)dxodyo. (162) 

Since fv(x,  y) is now assumed to be smooth, the reduced loading ~p(x, y) can be represented by 
a series of the form (148) with the difference.that the singularities at the leading and trailing edges 
of the wing are reversed. This series is 

~(Xo, Yo) = Z Z ~(xk,~(% Yj) hi(~)( 1 - ~o)gj(m)(~7o) (163) 
1c=1 v=l  

for according to (34) the loading points in the reverse flow become the upwash points in the forward 
flOW. 
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The integral on the right of equation (162) may then be replaced by the integral 

= yo) +0 yo (164) 
d J  S 

where ~q(*)(~:o, T0) is an equivalent upwash function obtained by repeating the process by which 
fJ*)(~o, To) of equation (153) was obtained, only with ~o replaced by 1 - ~o- 

Applying the reverse-flow theorem to (164) then leads to 

Q~o,q = ~ (  ;~q(~)(xo, yo)f~(xo, Yo)dXodyo (165) 
d d  N 

where ;~q(+)(xo, Yo) is the loading corresponding to the equivalent upwash function ~q(~)(~o, To) in 
the direct flow. 

To obtain hq(~)(Xo, Yo) by the procedures of the present paper the values of ~(~¢(~), *lr) are required 
on the starboard half of the wing. These are obtained by analogy from equation (159) on replacing 
~o and ~(~) by 1 - ~o and 1 - ~fl) respectively and then taking 

~z~ (w) = 1 - ~i (0 (166) 
where, from (35) 

k = n - i + 1 .  (167) 
These values are given by 

= gr(m)(To)d~7o %(x o , yo)h~_1¢+~(~)(1 - ~:o)d~: o . (168) 
mf~>(~:+~ (+), T~) H~+-,'++a.(++)Gv (:'+> c(YP) --1 0 

The double integral in (168) is to be evalflated numerically, taking into account the discon- 
+ 

tinuities of %(Xo, Yo) and its derivatives at the inboard edges of the control surfaces, and then the 
equivalent values m~*)(+k (+°>, T~) are determined. 

If the function 
c(yo) %(Xo, Yo) (169) 

can be represented with good accuracy by a polynomial of degree not greater than n in ¢o and not 
greater than m in To then using the properties (98) and (99) in (168) leads to 

++(+)(~l+ (+>, T+.) = %(xk,~(% Y+.) (170) 

so that in this case the equivalent values are equal to the actual values of the upwash at the upwash 
points. 

If the leading edge of a control surface does not coincide with the hinge then the displacement 
function corresponding to control rotation will have a finite step jump at the leading edge and 
consequently the upwash will have the behaviour of a dirac delta function at the control leading 
edge. The integral (168) can still be evaluated and no difficulty occurs. 

Hence Q~,+ can be determined when at most one of p and q refers to a control-surface mode 
provided equivalent values of displacement or upwash are used in equation (102). 

9. Conclusions. 
A lifting-surface theory has been described for determining generalised airforces on a flat-plate 

wing oscillating harmonically in a subsonic stream. The calculations are long but straightforward 
and are best carried out on an electronic digital computer. For this purpose programme R.A.E.161A 
has been constructed. Also programme R.A.E.263A has been constructed for obtaining loading 
distributions on a wing. 
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Only two examples hav e been given. The first is put in to illustrate some of the numbers occurring 

during the course of a calculation and is concerned with a symmetric tapered wing. The second 
example gives results for the generalised airforces on a circular wing, and these results are seen to 

compare favourably with results obtained by a completely different method by van SpiegeP 5. 

No other examples are given. Systematic application of programme R.A.E.161A to a selection of 
wings of different shapes using different numbers of chordwise and spanwise points and with 
different frequency parameters and flow Mach numbers would provide results which should 

indicate how many chordwise and spanwise points are to be taken in the case of any particular wing 
to obtain reliable results. The results of Woodcock 16 obtained using programme R.A.EA61A are a 

selection of such results. 
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SYMBOLS 
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APPENDIX I 

Derivation of the Integral Equation 

Besides the system (x, y, z) of right-handed Cartesian coordinates introduced in Section 2 of the 
main text, another system (X, Y, Z) of right-handed Cartesian coordinates is introduced which is 

stationary with respect to the main-stream flow and which coincides with the system (x, y, z) at 
time t = 0. Then at time t the following relationships exist between the coordinates of a point in 

the two systems 
x = X +  V t )  

y = y [ (171) 

z =  Z. ) 

If the flow of air about the wing is assumed to be irrotational then a velocity potential ~ exists 

such that the velocity q of a fluid particle relative to the (X, Y, Z) coordinate system is given by 

a¢ ~¢ a¢ 
q = i ~  +j ~-~ +,kff~ (172) 

where i, j and k are unit vectors directed along the X, Y, and Z axes respectively. 
With the usual assumptions of linearised theory it is found from Euler's equation of motion of 

inviscid flow, the continuity equation, and the adiabatic equation of state that 6 satisfies the wave 

equation 
(~2 02 ~2) 1 a2¢ (173) 

+ + ¢ - a 2  t2" 

The airflow must be tangential to the surface of the wing and this leads to a boundary condition. 
Within the accuracy of linearised theory it is permissible to apply this condition at the mean position 
of the wing in the plane Z = 0 rather than on its surfaces. The condition may then be writter/ 

( ~ ) z = o  = w(x, y, t) (174) 

.over the area of the wing in its mean position, where 

w(x, y, t) = ~x + 

and Z(x; y, t) is the vertical displacement of the point x, y on the wing at time t. 

The function 
1 0 {~.(t;r/a)} (176) 

¢1(X, Y, Z, t) = - 4-~ ~-2 

where 
r = ~/{(X-X0)  2 + ( Y -  Yo) 2 + (Z -Z0)  2} (177) 

and/x(t) is an arbitrary differentiable function; satisfies the wave equation (173) and corresponds 

to the potential about a doublet of strength/~(t) at time t placed at the fixed point (Xo, Yo, Zo) and 

orientated in the positive direction of Z. 
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If there is a doublet layer on the Z o = 0 plane then the potential of the flow about this layer, by 
the principle of superposition, is 

1 f f  I~Z {/~- (X°' Y ° ' t - r / a ) } l  dXodY  o. (178). 
¢(x ,  Y, z ,  t) = - 4~ z0=o~:a-o r z0=o 

As is usual with doublet layers, there is a discontinuity of potential across the layerl In Appendix II  
it is proved that the discontinuity in potential across a layer at any point on it is of amount equal 
to the strength of the layer at that point, so that 

¢(Xo, Yo, + 0, t) - ¢(X o, Y o , - 0 ,  t) = F(X0, Yo, t). (179) 

In linearised theory the wake shed by the wing from its trailing edge is plane and parallel to the 
main-stream flow. The wing and its wake will be replaced by a doublet sheet and the strength of 
the sheet will be adjusted so that the boundary condition (175) is satisfied on the wing and so that 
no loading is sustained by the wake. The flow about this system will then be exactly the same as 
that about the wing and its wake and the airforces on the doublet sheet will be equal to those on 

the wing. 
The linearised Bernoulli equation is 

a~ _ ( p - p o )  (18o) 
Ot Po 

where p is the pressure at a point in the flow, Po is the free-stream pressure and P0 is the free-stream 

L(Xo,  Yo, t) = p(Xo,  Yo, - O, t) - p(Xo,  Yo, + O, t) 

8 
= po ~ [¢(Xo, Yo, + o, t) - ¢(Xo,  Y o , -  o, t)] 

0 
= po ~ [~(Xo, Y0, t)] (181) 

be the upward force pe r unit area, or .loading,. on the wing. 
The equations of the 16ading and trailing edges of the wing are respectively 

x = xL(y),  z = 0; (182) 
and 

x = x~(y), z = O. (183) 

Since the two systems of axes coincide at time t - O, the point (Xo, Yo, O) is on the leading edge 
of the wing at time 

XL(Yo) - Xo (184) 
to--  V.. 

provided 
I Yol < s. (18s) 

Before time t o the strength of the doublet layer at the point (X0, Yo, 0) is zero for the wing has 

not yet reached it. 
Integrating equation (181) and making use of  this last observation leads to 

~(Xo, Yo, t) = _1 [~ L(Xo, Yo, ~)d,,. (186) 
Po J {=L(Yo)-Xo}/V 
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On making the change of variables 

Xo = Xo + Vu 

in the integral in (186) we obtain 

(187), 

If 

,) 1 y ,  ( 
, = - -  L Xo ,  Yo,  X° 

po V d~L(rO) V dx°" (188), 

The velocity potential, due the presence of the doublet layer, is then according to equation (178) 

1 8 ° E~ fxo+.~,.,o, L {Xo. Yo,  xo__~__X_o } dxolzo=O (189), 
4nrpoV 3Z  XL(ro) . " 

l(xo, Yo, t) = L ( X o ,  Yo,  t) (190) 

where Xo, Yo in the (x, y, z) coordinate system corresponds to X0, Y0 in the (X, Y, Z) coordinate- 
system, then l(xo, Yo, t) is the loading distribution on the wing and wake as a function of the 
coordinates fixed relative to the mean position of the wing, and it is non zero only on the wing.. 

Since 

7 0} 

the expression (189) for ~ becomes 

¢(x, y ,  z,  t ) -  1 8 f+~ dy ° . f  °~ 
dxo ~ 0  -- 21'~[r] 

4rrpoV 3z _ - s  - =L(Uo) [r] a =L(Yo) 
where 

[r] = ~/{(x--Xo) z + (y--yo) 2 + z 2} 

V 
a 

(191} 

l [Xo,yo, x°-~° } - ~  + t dxo (192} 

(193), 

(194)' 

The order of integration of the inner two integrals in (192) is to be changed. Relevant areas of 
integration of the corresponding double integral are shown shaded in Figs. 3, 4 and 5 for the three 
cases (i) M < 1, (ii) M > 1 and (iii) M = 1. 

The curved boundary of the areas has the equation 

Xo = x o - M [ r ]  

= x o - M ~ / { ( X - X o )  ~ + ( y - y o )  ~ + z2}. (195), 

To invert the order of integration the points of intersection of this curve with the straight line 

Xo = const. (196), 

must be obtained. These can be obtained by solving equation (195) for x o in terms of Xo. The  
result is 

1 
x o = x + ( l l - M  2 ~  {Xo - x + M v ' [ ( X o - x )  2 + (1 - M 2 ) { ( y - y o )  ~ + z2}]}. (197), 
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Since, according to (195) 
Xo - Xo > O, (198) 

.only the positive sign of the square root in (197) is applicable when M < 1, and so the boundary 

curve is intersected in only one point by the straight line (196). 
If M > 1, then from (195) 

x - Xo = ( x - X o )  + M~V/{(x - Xo) ~ + ( y - y o )  ~ + z z} 

> 0 (199) 

and so both signs are applicable in (197) provided 

x - Xo > 5/[( M ~ -  1){(y-y0) ~ + z~}] (200) 

while there in no intersection at all otherwise. 
If M + 1 + 0 the second point of intersection moves to infinity and there is then a point of 

intersection only if 
- No > o.  (2Ol) 

If, for the present, the case M < 1 is considered, then changing the order of the inner two 

:integrals in (192) yields 

¢(x, y,  z, t) = 1 O f +~ f ~  47rpoV 3z _~ dy° dxo x 
xL(y O) 

F { ' -  x l Xo,Y  , Xo xo 
x+{1/(l_zT12)}{(gO_x)+ l-ii ~/[(Xo_X)2+(l_lVi2){(y_yo)2+z2}] } V 

- -  + t) dx° c2o2~ 

¢(x, y, z, t ) =  1 3 f ~ ]  dyo r jo~ dXo x 
4~vpoV Oz ~L(Vo) 

x l Xo,Yo, t -  
{~/(~_~)}{~+~(xo_~)+~E(xo_~+(>~+z~@_~o)%@} ~ / { ( ~ - x  + xo) ~ + ( y - s o )  ~ + z~} 

(203/ 
If the wing is oscillating harmonically, then we may write 

l(x, y,  t) = l(x, y ) d  °,t (204) 

where only the real or imaginary part of a complex function represents the physical quantity. So, 

using the fact that 
~(x, y, t) = 0 (205) 

f o r  
x > xT(y), (206) 

i.e. beyond the trailing edge, the expression for the potential becomes 

l(Xo, yo)dXo x ¢(x, y, z, t) = 4zrpoV 3z -8 aXL(VO) 

X e_i~o¢lv d~ 
{~+z/(~_~1~}{~(xo_x)+,/~%-~)~+(~-~@-~o)~+@} V { ( ~ - x  + xo) ~ + ( y - y o )  ~ + ~} 

(207) 
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The  upwash due to the doublet layer is then 

0¢ 

- ~ T . V  lim dyo l (Xo, yo)dXo x 
DO z-+O -~2 --s d xz(Y O) 

X 8 -i°~°'lV 
MI(1--M2)}{M(xo-X)+ C[(Xo-X) 2+(1--M2){(y--yO)2+z2}I} 

Let 

~2 f o~ e -i°J~lV K(x, y) = lim - ~ z  ~ 
z-+ 0 J {Mt(1 -M2)}(--Mx+R1) 

= linl - e -ioxlV - -  e -i°mlV 
z-+o. ~Z2 (--x+MRlif(1-MZ) 

d~ 

V'{(cr- x +  Xo) ~ + (y -yo)  2 + z 2} 

d~ 
V{(~-~)~ + y~ + ~} 

du 
V ( u  ~ + y'- + z~) 

= lim - e_io)xlV __8 x 
z-+O OZ 

I: _ e_ioml V z du Mz  
X ,~ (_x+MR1)I(I_M2) (U2 + y 2  + Z2)312 Rx 

-- lim - e  -i~'xIV ~ x 
z-+o 3z 

IF X -- e_icoulV z du _ 
(_x+MR1)i(I_M2) (U 2 + y~ + z2) at2 

= e -i~xlV X 

X e-i°mlV (U 2 +y2)812 + R ( x  2 +y~)  
(--x+.MR)I(1--M 2) 

R~ = ~/{x 2 + ( 1 - M  e) (ye+z2)} 

R = V'{x ~ + ( 1 -  M~)y=}. 

where 

(208) 

e x p { -  ic° - - x + - M R 1 ] I  1 V (  i - M ~  ] j  

f _ ~  ] + +z~} 

M ( M x +  R1) z  { ioJ i -  x + MRI~ t~ 
R~(xe+9+z~ )exp - ~ - (  1 - M  2 ] ) J  

exp{-i o { -  x + MR] (209) 

(21o) 

(211) 

If  then the limit and differentiation are taken under the first two integral signs in (208) we obtain 

the equation 

1 f f  l(xo, yo)K(x-  x0, y-yo)dxodyo (212) w(x, y) = 4@oV 
w h e r e  X 0 has been replaced by x 0 as it is only a variable of integration, S is the wing area and 

w(x, y) is defined by 

w(x, y, t) = w(x, y)e iot. (213) 

The  kernel K(x, y) of the integral has a non-integrable singularity at x = 0, y = 0 and this is to 

be dealt with using Hadamard 's  'Finite Part '  method of integration. 
Using equations (3) and (4) of the main text in (212) then leads to the form of integral equation 

given in equation (5). 
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when 

If M > 1, the infinite upper limit in equation (202) must be replaced by 

1 
x (M 2-  1) {(Xo-X) - M ~ / [ ( X o - x )  ~ - ( M  ~ -  1){(y-yo)~ + z~}]} (214) 

- xo > a / [ ( M ~ -  1 ) { (y -y0 )~  + ~ } ] ,  (215) 

and the whole inner integral must be replaced by zero otherwise. 
The procedure following equation (202) is then followed, and it again leads to an integral equation 

of the form (212) with the kernel K(x,  y)  given by 

K ( . ,  y )  = 

F f (x+MR)I(~2-1) e io~ulV du M ( M x -  R) ex I ioJ /x  + M R \  
e-i~°xlVLJ(._U~)/(M~_l ) - ( u 2 + y ~ ) a l S + ~ ~  - P t--  V tT/Ig~ 1)} + 

M ( M x +  R) ~ i~o / x -  M R \  ~ ~ . . + e P/- 
' , 0  x < V ( M ~ - I ) I y  I . (216) 

If M = 1, the lower limit in equation (202) must be replaced by 

1 
lim x + (1-M2----~ {(X°-X) + Ma/[ (X°-X)2  + (1-M2){(y-yo)  2 + z~}]} 

M - - > I - -  0 - 

1 1 (y-yo)  ~ + z ~ 
= x - ~ ( X - X o ) + 2  (X-Xo)  ' X o - X o > 0  

oo , Xo - Xo < 0 .  ( 2 1 7 )  

The same procedure again leads to an integral equation of the form (212) with the kernel K(x,  y) 

.2,3/2 2 + ; ~ y ~  exp x - x > 0 

x < 0 .  (218) 

given by 

I: i~oxlV e-icoulV 
K(x,  y)  = -x/2+y~/2x 

The kernel (218) would be obtained by proceeding to the limit M = 1 - 0 in (209) or to the 
limit M = 1 + 0 in (216). 

If the change of variables 

A = _°~ [_  u + V'(u~+y~)] (219) 
a 

is made in the 
kernel function 

K ( . ,  y)  = 

integral on the right-hand side of equation (218) then the following form of the 
K(x,  y)  is obtained for the case M = 1 

i°'*l~ I ~  exp {~--~ ( x -  ~ ) }  ~ o  exp x > 0  

x < 0 .  (220) 
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APPENDIX II 

Discontinuity across a Doublet Layer 

We have to consider the behaviour of 

1 f f  I ~  Z { u(X°' Y ° ' t - r / a ) l ~  dXod¥ o (221) 
¢(X, Y, Z, t) = - 4-~ Zo=Ov]ano r ,_lZo= o 

near the plane Z = O, where 

r = ~/{(X-2(o) 2 + ( Y -  Y0) z + (Z-Zo)~}. (222) 

The doublet strength /~(X o,Yo, t) is assumed to be non-zero only in a strip of finite width 
- s ~< Yo ~< s, for in general the integral (221) is not convergent. 

The integrand in the integral (221) becomes infinite at X o = X, Yo = Y when Z -> 0. However 
for any point X0, Yo outside a finite neighbourhood of the point (X, Y) in the Z 0 = 0 plane the 
integrand remains finite as Z -+ 0, and so the value of the integral over the area outside this finite 
neighbourhood is continuous in Z at Z = 0. 

The integral 

I(X, Y, Z, t) - 4rr c -~  r Zo=O 

is now considered. The point (X, Y) is taken within the doublet strip, and the finite neighbourhood 
C of the point (X, Y) is taken to be a circle radius R and centre (X, Y) lying entirely within the 
doublet strip. 

Write 

f f (224) II(X, Y, Z, t) = 47r c r J'Zo=O 

I2( X ,  Y ,  Z ,  t) = 4 ~  G -£2 r - r +-zo=o 

then 

I (x ,  Y, z,  t) = I i (x ,  Y, z,  t) + z~(x, Y, z,  t). 

Introduce polar coordinates (a, O) by means of the equations 

(226) 

so that 

X o - X =  acos 0 } 

Y o - Y =  acosO 

[r]~o=O = V ( ~  + z~): 
Then 

1 "dO I1 (x ,  Y,  z ,  t) = - ~ z 
0 ~" ]_lZo=O 

dcr 

1 { t * { X , Y , t  ~/(Rz+Z~)-- 

- - ~ z V ( R ~  + z ~ )  a 
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Thus, on making Z -+ 0 from above and below, the equation 

I i (x ,  Y, + O, t) - 11(2, Y, - O, t) = ~(X, Y, t) (230) 
is obtained. 

Also 
~(Xo, Yo, t -r/a) tz( X, Y, i~(x, Y, z ,  t) = ~ z .  do - t -~ /~! i  ~ do + 

dO 0 . F3 T3 .J Z0=0 

i ~dO ~(Xo Yo, t -  + ~ Z  ' - ~da .  (231) 
0 aT2 a/~2 Zo=0 

It will be assumed that/x(Xo, Yo, t) satisfies the uniform Lipschitz condition 

J~(Xo, Yo, t) - ~(x,  Y, t) I .< B~ (232) 

inside the circle C, where B is a constant. 

The Lipschitz condition is certainly satisfied by any function /~(Xo, Yo, t) whose derivatives 
with respect to Xo, Yo are uniformly bounded. The assumption that these derivatives exist every- 
where is, however, avoided by taking the Lipschitz condition (232). 

It will also be assumed that/xt(Xo, Yo, t) is bounded inside the circle C, i.e. 

]th(Xo, Yo, t)[ ~< D 

within and on C, where D is a constant. 
So 

0 0 J Z0=0 

and 

f R a~da <~ 27rB o (a2+Z2) 3I~ 

(~ dO f ~ [ ~ , ( X o  - ~(x '  Y' t--r /~)7 ~ d~ [ 
0 0 at2 ar2 J Z0=0 

4rrD t ~ c ~ d e  

< - -a  J0 (JU2~) 
2rrD I~/(R~+Z~)~ 

- a l o g  [ [Z[ ]" (234) 

It follows, therefore, that 
lim I~(X, Y, Z, t) = 0 (235) 

so that z->0 
¢(X, Y, + O, t) - ¢(X, Y, - O, t) = ~(x,  Y, t) (236) 

which is the required discontinuity relation. 
If the point (X, Y, O) is outside the doublet strip all the integrands are finite and ¢ is continuous 

across Z = O. 
If the point (X, Y, O) is on the boundary of the doublet strip, then a point within the strip is 

first considered and the limit taken as the point on the boundary is approached. 
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A P P E N D I X  I I I  

Properties of Orthogonal Polynomials 

If, in the integral relation (24) of the main text, the change of variables 

1 ( 1 -  cos 0o) ~o = 

is made in the integrand, the relation becomes 

f (  ) (  ) lr 1 - c o s O  o 1 - c o s O  o 0 o 
o 2 /8 2 cos 2 ~- d 0 o = 3r,~. 

(237) 

(238) 

It  follows that 

/~'( 1 - c°s 0 ° ) 2  = J(2)~r  
cos (r  + ~) Oo 

1 
cos ~ 0 o 

(239) 

for this is a polynomial of degree r in the original variable ~o, and (238) is satisfied. 
There  are just n values of cos 0 o at which the expression (239) is zero when r = n and these are 

(2i -  1] 
cos  00 = cos  \ 2 ~ U 1 ]  ~ i = 1, 2 , . . . ,  n (240) 

so that the n chordwise loading points are given by 

where 

1 1 
~(o . . . .  cosO i i =  1,2, . n (241) 

2 2 " ' 

2 i -  I 
0~= 2 n + l r r  i =  1 , 2 , . . .  n (242) 

The interpolation function defined in equation (39) of the main text may be given by the 
equivalent formula 

(1-cos 00) 
1 

sin g 0 o 
I' 1°1 1 cos 0 o -  cos Oi) sin ~ 0 

°°--->°i COS n -t- 0 o 

2 ( -  1) i+1 1 
(2n + 1~ sin 0 i sin ~ 0 i 1 (cos 0o-cos  00" 

sin 2 0 o 
(243) 
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Then  

f ; ( ) ~ 1 h4(~ ) 1 - c o s 0  o sin0od0 o 
H4(~) = o h4(~)( 6:°)d6:° = 2 o 2 , 

1 
2 ( -  1)4+1 1 f ~  cos n + 0 o cos ~ 0 o 

-(2n + 1---~ sin 04 sin ~ Oi o (cos 0 o -  cos 04) 

( -  1) ~+~ 1 f "  cos (n+  1)0o + cos nO o 
- (2n + 1~ sin 04 sin ~ 0 i ) dO o 

o cos O-cos  0 i 

( -  1) '+17r 1 F s i n ( n + l ) O i  sin n0~] 
-- ( 2 n + l )  s i n O i s i n 2 0 i  L sTn~?i + s in0~J 

= ( 2 n + l )  s ln~O4sin n +  04cos~O 4 

dOo 

7r 
- (2n~ 1) sin 0 i . (244) 

Now suppose P~(6:o) is a polynomial of degree not greater than the n ' th in 6:0, then 

P~(6:o) = q~(6:o) (6:0- 6:i q)) + P~(6:4 (°) (245) 

where qn(6:o) is a polynomial of degree not greater than the ( n - 1 )  st. So, using the definition of 
h4(n)(6:o) given in equation (39) of the main text, we get 

since 

f ~ P.(6:o)h?~(6:o)d6:o = 
0 . f l  P-(6:4(°)Hi (~) + q~(6:o) (6:0-6:i(°)hi(~(6:o)d6:o 

0 

1 fl p.(6:?))H~(-) + / { 1  - ~?)~ q~(6:o)U6:o 
/#(6:?)) ~ o 

p 6: (O)H (~) n( 4 / 4 (246) 

fl o q~(6:o)/~(6:o) d6:o = 0 (247) 

for q~(6:o), being a polynomial of at most degree n - 1, can be expressed as a linear combination of 
polynomials lr(6:o) with r ~< n - 1 and then relation (24) applied to each term gives the result. 

Now h4(n)(6:o) can be given by the sum 

h4(~)(6:0) = Z d/r(6:o) 

where the coefficients 

0 and 1, and applying the relation (24) and (246). Doing this leads to 

o r  

(248). 

d r are found by multiplying equation (248) by /~(6:), integrating between 

• 
hi(n)(~o) = H i  (~) Z l,(~q))l,.(~o) 

r=O 

(~  - -  COS 00) ..~_ ~ 4 s i n  1 04 ~ - 1  
h4(n) 2 (2n + 1) sin ½ 0£ F, cos (r + ½) 04 cos (r + 1) Oo" 

r=O 

(249) 

(250) 
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If  in the integral relation (41) of the main text the change of variables 

70 = COS ¢0 

is made in the integrand, it becomes 

(251) 

f ~ Yr( c°s ¢o)Ys( cos ¢o) sins ¢od¢o = 8r,,. (252) 
o 

It follows that 

7r( c°s ¢0) = ~r sin ¢0 (253) 

for this is a polynomial of degree r in the original Variable %, and (252) is satisfied. There are just 
m values of cos ¢0 at which the expression (253) is zero when r = m ,  and these are 

cos ¢0 = cos g T ~  j =  1, 2 , . . . , m  (254) 

so that the m spanwise points are given by 

where 
n5 = cos¢5 j = 1, 2 , . . . , m  (255) 

u m . ¢5 m + 1 j = 1, 2 , . .  m.  (256) 

The interpolation function defined in equation (50) of the main text may be given by the 
equivalent formula 

sin (m + 1)¢ o /cos ¢o - cos ¢~ 
gs(m)( cos ¢o) = c~-~o Z c~s Cj l i m  \ ~n7~7+-~-)~ ] 

¢o-+¢~ 

( _ 1)5+1 sin (m + 1)¢0 sin ¢~. 
- ( r e+ l )  (cos ¢0-cos  ¢7) (257) 

Then 

Gj(m) _= f+1 fz-  &.('o(%)d% = gjCm)( c°s ¢o) sin ¢od¢o 
--1 0 

sin Cj f~  sin (m+ 1)¢ o sin ¢o ( -  1)~+1 de0 ( m + l )  J0 (c°s¢o-C°S¢~') 

~ sin ¢3. f~  cos (m¢o) - cos {(m + 2)¢0} de ° 
= (-1)J+x (m+l )  o (cOS¢o-COS¢j) 

sin Cj Fsin (mCj) sin {(m + 2)¢;} 7 
= ( -  1)J+l 2 (m +-ii L sin ¢j ~ -] 

q-g 
= ( -  1) 7 ~ cos {(m+ 1)¢j} sin ¢~. 

7r 
- (m + 1) sin Cj. (258) 
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If  r,~(~o) is a polynomial of degree not greater than the m' th  in 70, then it follows in exactly 
the same manner as that used in proving equation (246) that 

f +l r,c(~o)gff~)(%)dTo = r-~(TJ)G~ ('~) (259) 
--1 

and in exactly the same manner  as that used in proving equation (249) that 

$~t,-- 1 

gff*)(%) = G/"~) ~] V,(7j)V,(%)~/(1-~0 z) (260) 
s = 0  

Define 

o r  

2 ~9,--1 

gj(~)(cos ~bo) - ( m +  1) s=O2 sin (s+ 1)~j sin (s+ 1)~b o . (261) 

f + l  gj('~)(~o) dTo. 
p~, (m~ = -1 ( 7 o -  7~) ~ 

Then  using the expression (261) this becomes 

2 ~-1  ( "  sin (s+ 1)~b o sin ~b o 
pj, f , o -  ( m + l )  ,=o2 sin ( s+ l )¢ j  J o (cos ~bo-COS q5,,)2 

Now 

sin (s + 1)~b o sin -- sin (s + 1)~b o d _1 d~ ° 
o (cos   o-COS o cos  4o cos  

f " c ° s ( s + l ) $ °  d$o 
= - (s+ 1) o (cos ~5o-COS ~,,) 

sin (s + 1)¢r 
= - zr(s+ 1) sin 4~ 

where the integrals occurring are principal-value integrals° 
Hence 

2w 1 m-1 
= E (s+ 1) sin (s+ 1)¢j sin (s+ 1)9~ , 

pj,,,(m) ( m +  1) sin ~b r ,=o 

= - (m + 1) si~-~b~ s=0 y~ (s + 1) [cos (s + 1) (45 - ~r) - cos (s + 1) (~bj 

Then  

,+¢,)]. 

~v 1 V1 1 - (m + 1) cos 2m~bj + m cos 2(m + 1)~bj 
pj, ffa) _ ( m + l )  s inSj  [~ m ( m +  1) + 2 ( 1 - c o s  29~j) 

(262) 

Also, for r 4= j 

P j ,  r (m) ~__ 

w 1 
( m ~  1) sin 96j 

zc ( r e + l )  
2 v ' ( 1 - C ) "  

1 (rn + 1)] I~ m(m + 1) + -~ 

+ 

w 1 [ - -  1 + (m + 1) cos m(¢j - ¢~.) - m cos (m + 1) (¢j - 6~.) 
( rn~ 1) sin 96. [ 2{1 - cos ( ~ - C j ) )  

+ 1 -- (m + 1) cos m(~bj + ~r) + m cos (m + 1) (~j + ~b~,)] . 
] 2{1 - cos ( ~  + 4r)} 

d4o. (263) 

+ 

(.264) 

(265) 

(266) 

(267) 
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Using the relations 

cos ( m + l ) ( $ j  _+ 4~) = ( - 1 )  j+~ 

and 
cos {m(~j _+ ~)}  = ( - 1)J+, cos (~bg _+ ~ )  

[1 - cos ( ¢ j -  ¢,)] [1 - cos (~b~ + ~b~)] = (cos q~j- cos ~,)~ 

in (267) we obtain 

P j ,  r (m) = 

I lence  

7r 1 [ - -  1 + 1 ( -  1):'+r(m+ 1) cos (~bj-$~) - m ( -  1) j+~ 

( m +  1) sin ~r [_ 2{1 - cos ( ~ . - ~ , ) }  

+ 1 - ( -  1)J+~(m + 1) cos (~j +~r)  + m ( -  l y  +r-] 

+ 2{1 - cos (¢j + ¢~)} J 
~r 1 [cos (¢j + q~) - cos (¢j - Cr)] [1 - ( - 1)J+~] 

(m + 1) sin ~ 2(cos $~ - cos ~b~) 2 

2~r s i n ~  [-1 - ( -  " 
(m + 1) (cos @ - ~ o s  ~r) ~ L 2 1):+'j, 7 

0 2~r~/(1 - ~Tj ~) 

Pj, r (~) = (m - 1) (% - ~Tj) 2 

2 ~ / (1  - , / , )  

if (j  + r) is even and j 4= r 

if (j + r) is odd 

i f j  = r .  

+ 

(268) 

(269) 

(270) 

(271) 

(272) 
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A P P E N D I X  IV 

The Lowest-Order Logarithmic .Singularity 

Instead of equation (56) we may write the equivalent equation . 

s fl Ii(~)(~, %, ~) = ~ c ( y 0 ) ( ~ - % )  ~ hi(~)(~o)[R1(x-xo,y-yo)  + R ~ ( x - x o , y - - y o ) ] d ~  o (273) 
o 

which comes from the form (13) of the integral equation on using relation (16). 
Now, by integrating by parts, we obtain 

f ihi(~)( ~o)I(~(x- xo , y - yo)d~o 

if . f{f o . }< = 4o hi('°(u)duI(1(x- Xo, Y - Y o )  - h~(~)(u)du ( x -  Xo, -yo)d~o 
~(x, yo ) o o ~(x, vo) ~ Y 

f l ~(x, YO) = &(*-*~(yo),  y -yo)  h?~(.)a~ + & ( x - ~ ( y o ) ,  y -yo)  J1 ° h,(~(u)d~ - 
~(x, vo) 

f l  8/~1 f ' o  hi(n)(u) du - o-~o (~ -  ~o, y-yo)d~o ~(~,~o, 

= &(~ -*~(yo), y -yo) &(~(u)du + &(~  - ~(yo), y -yo/ h~(~(u)du + 
0 ~(x, yo ) 

f ? + c(yo) K a ( x -  Xo, y -yo)d~o h~('~)(u)du (274) 
o Cx, vo) 

where 
1 

~:(x, Yo) = C-~o ) [x - xL(yo) ] . (275) 

Hence 

s t f.~(x, vo) 
• - 4~ c(yo) ( n -  ~°)~ t & ( ~ - * d y ° ) '  y - y o )  Jo h~(~)(u)& + 

+ R l ( x -  x~(yo), y - Y o )  hi(~)(u) du + 
~(x, vo) 

+ h~(&)R~(~-x0, y -y0)d~0 + c(y0) &(~-x0, y-y0)d&(!° h?~(u)du. (276) 
o o dg(x, yo ) 

The  various terms in (276) are now considered. 
In  

au 
/(l(x, y) = e (-i~/~ (277) 

(-x+Mi~)/a-M~) ( U ~ + y~ ) ~l~ ' 

if X < 0 the lower limit of integration is positive and the integrand therefore remains integrable 
throughout  the range of integration as y ~ 0. So a logarithmic singularity does not occur in this case. 

If, however, x > 0, the lower limit of integration is negative when y is sufficiently small since 
M < 1, and the integrand does not then remain integrable in the neighbourhood of u = 0 as y --~0. 
This case must therefore be investigated further and to do this the range of integration is split up 
so that 

. - 

Kx(x, y) = + + du (278) 
(--x+~IR)/(1--M g) --8 ~ (u ~ + y~)al~ 
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where 3 is any positive number.  Only the integral over the interval ( - 3 ,  3) contributes to the 
logarithmic singularity for this is the only interval over which the integrand does not remain 

integrable as y :~ 0. The  integral over this interval may then be writ ten 

f 
'~ e ( - i~ l~3u  1 (~llyl e(- i (olV)lylv  

-.~ (u ~ + y~)~ du = ~ J-~/,~,, (v~+ 1)~J ~ dv 

2 
y~ 

2 
y2 

cos yv 
dv 

~llvl 

o (v "~ + 1)81" 

g)2s 

(v 2 + 1)3/2 
dr. (279) 

If  y is so small that 

then 

o (v 2+1)3/2dv = o(V 2+1)31 ~ d v + o l  v ~s-~ l + v 2  ] dv 

31ly I > 1 (280) 

o(v2+l) 3 / ~ d v + o l  v 2s-3 1 +  - ~ +  v~ + . . .  dv 

- -  + terms not containing log [y[ if s + 0 
. / 1  \ s - - 1  / 7) 

-~12) log (a/lYl) + terms not containing log lYl if s oe 0. 
s--1 / 

(281) 

I f  s = 0 there are no terms at all involving logarithims. 
The  contribution from (279) to the lowest-order logarithmic singularity comes from the s = 1 

term only of the summation and hence 

-s ( u~ +y2)~l~ du = log l Y] + higher-order logarithmic terms + other terms.  (282) 

It  follows that the contribution of 

{ ÷ 

f '  1 + ~:l(x- x~(yo), y -yo)  ?~)(u)d. (283) 
g(x, yo  ) 

to the lowest-order logarithmic singularity is given by 

4rr C(yo) (7 - ~/o) ~ log [7 - 7o [ ao h~(")(u)du, (284) 

since x-XT(Yo) < 0 and so no logarithmic singularity arises from Kl(x-xf(yo) ,  y-yo).  
Next the term 

~_ C(yo) (~7 - 7 0 )  2 -ft hi('( ~o)X~( x -  xo , (285) y -  yo) d~o 
J 0 

is considered. 
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Now 

f l  _ Xo, y-yo)d~o hi ('+)( (o) R.2( x 
0 

= h~('+)(~o)/£2[C(yo) (((x, Yo) - ~o), s(~ - %)Ida: o 
0 

= ~+(x,~o) h+('+)( +:(x, Yo) -  +:o)&[C(yo)+:o, s ( ,7-  r/o)]d+:o 
J+(x, yo)- i  

f+ ; f+ o, = + + hi(++)(se(x, Yo) - ~o)R~[C(yo)~:o, s(r/- r/o)]d~o (286) 
~<x, yo)- i  - 8  .18 

where 8 is any positive number such that 

3 < ~(x, Yo) (287) 
and 

a < 1 - ~(. ,  yo). (288) 
Only the middle interval can give rise to a logarithmic singularity for this is the only interval inside 
which the integrand does not remain integrable as % -> ~7. 

Using the convergent Taylor expansion 

1 
hi('~){~( x, Yo) - ~o} = hi('°{~(x, Yo)} - ~ohi('°'{~( x, Yo)} + ~ ~o2hi('~)"{~( x, Yo)} + . . .  (289) 

in the integral over ( -  8, 3) we obtain 

f ~ h?+)(~(~, y o ) -  s(++- r/o)]d~o ~o) R~[C(yo)~o, 
- 3  

fa  M[Mc(yo)~o + ~/{c2(yo)~o ~ + ( 1 -  M~)s~(~ 7 -r/o)2}] 
= -~ h?+(~(~,  yo) - +:o) V{~(yo )+ :g  + (1 - M~)s~(r/- r/o) ~} [~(yo)+:o 2 + s~( r / -  +lo) ~] × 

x exp { - ( V )  [ -  c(Y°)~°+ M'~/{c=(Y°)~°2+(1-1 - M ~ M2)8207-%)2}]} d~° 

1 fe(v0)el(*lv-v0,) k# {e(x, yo) *I+~:+-°[+'°X M(Mv° + ~(v°~+ 1-M~)} 
= sc(yo)lv - +7o] o-e~o)~,(~l>,0~) c(yo) J 0 7 7 o ~ V T @ ¥ i - - m ~  × 

-(1---M~ (v° - M'V/(V°~ + 1 - 

1 (~(vo'~/(*'+?-,,ol) [h,(,~)(~(x, yo)}_s]r/_%[voh,(~),(~(X, yo)}+ . . I x  
= se(yo)]++ - r/o] J -<,o~+](sl+-+ol> ~(yo) " 

M{M'vo+ 0 +--7o~-~o ~'x/(v°m + 7 I. I----M-TJ -Mm)} {i ( ~ ) s i r  / - ]. :_7 -M--+ %1 x + [% - MV(Vo ++ l -M=) ]  + . . . t j  d% 

= s~(yo)l+ - :+ol Jo f 1 + Vo ~ (l+vo~)~/(Vo=.+l-M ~) + ' ' "  h~('°{~(x'Y°)} + 

+ ~(yo) (1 + ~o~)V(~#  + 1 - M~) ~(y.)  ~ + Vo~ 

(290) 

where the omitted terms do not contribute to the lowest-order logarithmic singularity. 
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The lowest-order logarithmic term in (290) is obtained by assuming that C(yo)S/(s [ ~7- "% 1) is very 
large compared with unity, expanding the integrand near the upper limit of the integral in ascending 
powers of 1/%,  and retaining only terms in 1/%.  On doing this we obtain 

f+ ~ h~(~,(~(~, y0) - [~(y0)~o, .l'~ - ~o I]d~o ~o)R~ 

2M z 
- c e ( y o )  h,(~)'{~:( x,  Yo)} log 1~/- ~ol + 

+ higher order logarithmic terms + 

+ other terms. (291) 

The contribution of 

s f l  c(yo) ( v -  ~o) ~ h?~(~:o)R~(~- ~o, y-yo)d¢o 
o 

to the lowest-order logarithmic singularity is therefore given by 

Finally 

is considered. 
Now 

M ~ s 

27r C(yo) 
- -  - -  h~(~)'{~:( x,  Yo)} (~  - r/o)~ l og  I~ - "%1" 

4--~s f l  f~o - ~(yo) ( ~ - ~o) R~(x- :Co, y -  yo)d~o h~(~)(.)du 
o ~<ee, ~o ) 

j.1 f~o hi('~(u)du o K 3 ( x - x o , y - y o ) d ~ o  ¢(~,vd 

= , -~  g;~{c(yo)~o ,  ~ ( ~ -  ~o))d~o ~(~,~o~ 

f-~ f+~ (~(~,, 7/0) r,(~, 7/0,-~0 h,(~@)du 
= ~(X, 7/0)--1 -}- --~ + ,)~ Ka{c(Y°)~°' s(~7 --~7°)}d¢° J¢(~,7/o) 

where 3 is any positive number, such that 

and 

(292) 

(293) 

(294) 

(295) 
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1 ~gh?~)'{~(x, yo)} + ~-~(~,~,o)-go h ? ~ ( u ) d .  = - ~:oh?~{~:(x, Yo)} + ~ . . .  
d g(x, yo ) 

(298) 

Only the middle interval can give rise to a logarithmic singularity for this is the only interval 
inside which the integrand does not remain integrable as ~/o -+ ~/. 

Using the convergent Taylor expansion 

3 < ~:(x, Yo) (296) 

3 < 1 - ~(x, Yo). (297) 



we obtain 

f s  f~(x, yo)-~o hi(~)(u) du -~ R~{~(yo)~:o, ,(7-7o))a~o ~(~, ~o) 

: f '  l~*(='vo)-'o h,(~)(u)du) [Mc(yo)~ o + ~/{c2(yo),o~ + (1-M2),~(7-7o)~}] ~ 
-~ ~ JCx, vo) ~v/{c2(yo)~oZ + (1 - M~)sZ(7 - 7o) ~} [cZ(yo)~:o z + s~(7 - 7o) z] 

x exp { - ( V )  [ -  c(Y°)~°+M~/(ce(Y°)'°~'+(1-M~)s~(7-7°)~}]}l - M ~ d~° 

_ _  ~ ro,,,,~,~-~o,~[l 
sc( yo) (7 -- 7o) 2 ~ o 

sl~ ~ol 2~o~ (;)s~(~ ~o)~ 
~(yo) (1+%~)~ ~(yo) 

[Vo 4 + VOW(1 _ 2M2)] } 
x (1 + VoZ)~/{Vo2 + (1 + M2)} + " "  hi('){~(x' Yo)} + 

I 1_ s~(7 - 7o) ~ ~o~(M%~ + v :  + 1 - M~) 
+ [ 2  c2(yo) (l +voZ)Z,V/(Vo~+ l - M  ~) + 2 c~(yo) 

X 

v ° Z ( M v ° Z - M ) }  1 x (l+voZ) ~ + . . .  h,ff')'{~( x, Yo)} + . . .  dvo (299) 

= -  2 { _ ( v )  S~(7- 7O)2 h~(~){~(X, yo)} + 
s~c( yo) ( 7 - 7o) ~ c( yo) 

+ 1 s~(7-  7o) ~ 
2 d(yo)  

(M2+ 1)h~(~)'{~( x, Yo)}} log 17 - 7o1 + 

+ higher order logarithmic terms + 

+ other terms. (300) 

The contribution of 

s ~  fl  f~o c (yo) (7 - 7o) ~ f : ~ ( ~ -  xo, y - y o ) d ~ o  h~(~(~)d. 
o ~(x, vo) 

to the lowest order logarithmic singularity is therefore given by 

(301) 

I ~ _ Z _  (~ ~o~log i ~  ~ol [2 (~)c(yo~h,~,~(x yo~(l+~hi~<x yo,~l (302) 
4~ C(Yo) 

Then, by adding together the contributions (284), (293) and (302) and expanding c(yo) and 
~(x, Yo) as Taylor series about Yo = Y we obtain 

1 s [- (1-M~,)hi(~)'{~(x,y)}+2(v)C(y)hi(~){~(x,y)}+ 

+ ~ c2(y) h¢(~)(u)du • (303) 
dO 
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A P P E N D I X  V 

Determination of a Limit 

It is required to determine 

lira I~(~)(T, To, 8) 
~/0-->~ 

s f = lim ~ C ( y o ) ( T - % )  2 h~(~)(8o)[K~(x-xo,y-yo) + K2(x-xo ,y -yo)]dSo  
~0--~ 0 

where the form (273) has been used for Ii(n/(T, To, 8). 

Using (17) we obtain 

lim T~K~(x, y) = lira ~1 ~ f o~ e_iWul V du 
n~O n--~o (--x+MR)/(I-M ~) (U2 + y 2 ) 3 / ~  

(304) 

Now 

lim± ÷ - -  

~-+o [YI 1 - m~ ] + oo 

Hence if x > 0 

lim ~Ka(x,  y) = ~ (v 2 + 1)312 
*/-+0 co 

lim e (-i~y)lylv 
~--+0 P (1/[YI){(-x+MR)/(1-M2)} 

if x > 0  

dv 
(v ~ + 1)~J ~" 

if x < O. (305) 

and i f  x < 0 

2 
s ~ (306) 

i f  ~ & lim T=Rx(x, y) = ~ (v~+ 1)al 2 
~-->-0 co 

= o .  (307) 

From (18) we see that R2(x, y) is finite as y + 0  for both x > 0 and x < 0, so 

lim ~2&(x,  y) = 0 .  (308) 
*~-+0 

Hence using the limit relations (306), (307) and (308) in (304) we obtain 

1 c(yo) (309) 
lim Ii(~)07, %,  8) - 2~r s 

B0-+r) 

The point x = 0 has not been considered in the limit relations (306), (307) and (308), since the 

expressions are indeterminate in the neighbourhood of x = 0. This does not affect the result (309) 

however, since the expressions concerned are never infinite and the point x = 0 corresponds to an 

isolated point in the integral in (309). 
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