

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Forces on Aerofoils with both Incidence and Forward Speed Varying

By D. G. Randall

LONDON: HER MAJESTY'S STATIONERY OFFICE
I965

# Forces on Aerofoils with both Incidence and Forward Speed Varying 

By D. G. Randall.<br>\section*{Communicated by the Deputy Controller Aircraft (Research and Development), Ministry of Aviation}

> Reports and Memoranda No. 3414*
> May, $196_{4}$

## Summary.

Determination of the inviscid, incompressible flow due to a thin, two-dimensional aerofoil moving with varying incidence and forward speed requires the solution of an integral equation. This report examines the case of harmonic variation of both incidence and forward speed (same frequency, different amplitude and phase). A solution is obtained in which the first terms neglected are of order $(\nu \log \nu)^{2}$, where $\nu$ is the reduced frequency.

## LIST OF CONTENTS

## Section

1. Introduction
2. Two-Dimensional, Unsteady, Inviscid, Incompressible Flow past an Aerofoil
2.1 Flow past a general aerofoil
2.2 Flow past a particular aerofoil
3. Approximate Form of the Integral Equation
4. Solution of the Approximate Integral Equation
4.1 A preliminary result
4.2 The approximate solution
5. Results and Discussion

Symbols

## References

Table 1-Coefficients for determining lift and pitching moment
Illustration-Fig. 1. Quasi-steady and corrected lift for a representative aerofoil
Detachable Abstract Cards

[^0]
## 1. Introduction.

The determination of the aerodynamic forces acting on a helicopter rotor is a most complicated problem, and at the present time approximate solutions only can be obtained. A common procedure is to use a 'quasi-steady' theory: at each instant of time the problem is solved by determining the forces produced by a steady flow past the configuration with the current incidence and forward speed. This clearly results in a substantial simplification, since one of the independent variables, the time, becomes merely a parameter.

The purpose of this report is to obtain an estimate of the error incurred by the use of a quasisteady theory. A problem bearing some similarity to the determination of the flow field about a helicopter rotor is solved by two methods; one is a quasi-steady theory, the other is a more accurate theory. It is hoped that the comparison may help to answer the question whether a quasi-steady theory can adequately predict the aerodynamic forces acting on a helicopter rotor.

The problem considered is the determination of the inviscid, incompressible flow due to an infinitesimally thin, two-dimensional aerofoil that is moving forward with variable speed and oscillating in pitch at the same time. This has some connection with the motion of a helicopter blade: the forward speed of the helicopter combined with the rotatory motion of the blades means that each blade moves normal to its leading edge with variable speed; the incidence of each blade also varies. The assumption of incompressible flow and the restriction to a two-dimensional aerofoil are easily justified: the forward speed of a helicopter and the speed of rotation of the blades are normally not high enough for compressibility effects to be important; and the aspect ratio of a helicopter blade is normally large enough for two-dimensional aerofoil theory to be applicable. As usual, it is assumed that somebody else will investigate the effects of viscosity.

The procedure adopted is as follows. Section 2 treats the problem of an arbitrary aerofoil moving in a straight line with arbitrarily varying forward speed and changing its shape in an arbitrary manner; the problem is reduced to the solution of an integral equation. The analysis is based on that given in Chapter 5 of the book by Robinson and Laurmann ${ }^{1}$; the reader who has read the chapter may feel that the number of symbols has been reduced; he will be right. At the end of Section 2 the formulas obtained are applied to a flat-plate aerofoil. $U$, the speed, is assumed to be given by

$$
\begin{equation*}
U=U_{0}(1+\Upsilon \cos \omega t) ; \tag{1}
\end{equation*}
$$

$U_{0}$ corresponds to the linear speed of rotation of a cross-section of a helicopter blade and $\Upsilon U_{0}$ to the forward speed of the helicopter. $\alpha$, the instantaneous incidence, is assumed to be given by

$$
\begin{equation*}
\alpha=\alpha_{0}[1+a \cos (\omega t+\epsilon)] . \tag{2}
\end{equation*}
$$

$U_{0}, \Upsilon, \omega, \alpha_{0}, a$ and $\varepsilon$ are constants, $\omega$ being the circular frequency; $t$ is the time.
Sections 3 and 4 are concerned with the solution of the integral equation derived in Section 2. In Section 3 an approximate form of the integral equation is obtained by expanding it in powers of $\nu$, the reduced frequency; $\nu$ is given by

$$
\nu=\frac{\omega c}{U_{0}}=\frac{c}{r},
$$

because $\omega$ is equal to $U_{0} / r$; here, $c$ is the chord of the aerofoil and $r$ its distance from the axis of rotation. Terms of order unity, $\nu \log \nu$, and $\nu$ are retained; terms of order $(\nu \log \nu)^{2}$ and higherorder terms are neglected. The approximate integral equation is solved to the same order of accuracy
in Section 4. All this obviously introduces another assumption, that $\nu$ is small compared with unity. For a typical blade the chord is about 15 inches, and the length at least 12 feet; hence, the flow about a blade near its tip corresponds to the flow about the aerofoil satisfying equations (1) and (2) with $c$ equal to 15 inches, and $r$ equal to 12 feet. It follows that

$$
\nu \doteqdot 0 \cdot 1
$$

the assumption that $v \ll 1$ is, therefore, justified. A representative value for the forward speed $\left(\Upsilon U_{0}\right)$ of the helicopter is 250 feet per second and for the tip speed $\left(U_{0}\right) 500$ feet per second, so that $\Upsilon=\frac{1}{2}$ at the tip. Throughout the report it is assumed that $\Upsilon<1$; from equation (1) it is seen that, if $\mathrm{Y}>1$, the value of $U$ is periodically negative, so that the aerofoil periodically moves back into its wake.

In Section 5 it is shown that, not surprisingly, the 'quasi-steady' solution can be obtained by retaining the terms of order unity and neglecting the terms of order $\nu \log \nu$ and $\nu$ as well as all higher-order terms. Section 5 also contains the most important formulas derived in Sections 2, 3 and 4, and a discussion of the results obtained by using these formulas. The reader who wishes to forgo the analysis of Sections 2, 3 and 4 can turn to Section 5 now.

## 2. Two-Dimensional, Unsteady, Inviscid, Incompressible Flow past an Aerofoil.

### 2.1. Flow past a General Aerofoil.

Let $X$ and $Y$ be rectangular Cartesian coordinates fixed in space, and let $T$ be time; the origin of these quantities is of no importance. Suppose that the aerofoil is moving along the $X$ axis in the negative direction with speed $U(T)$. The aerofoil is infinitesimally thin, so that, if the local incidence at any point is sufficiently small, boundary conditions on the aerofoil may be satisfied on the section of the $X$ axis momentarily lying between the normal projections on to this axis of the leading and trailing edges. Let the $X$ coordinate of the mid-point of this section be $X_{m}(T)$, so that

$$
\begin{equation*}
\dot{X}_{m}(T)=-U(T) \tag{3}
\end{equation*}
$$

a dot denotes differentiation with respect to time. Let the density of the fluid be $\rho$, the local pressure be $p$, and the pressure at infinity be $p_{\infty}$. Let the length of the aerofoil chord be $c$.
Suppose that the conditions (Ref. 1, page 10) for the existence of a velocity potential, $\phi$, are satisfied; then the components of velocity in the $X$ and $Y$ directions are respectively $\phi_{X}$ and $\phi_{Y}$, and $\phi$ satisfies Laplace's equation,

$$
\begin{equation*}
\phi_{X X}+\phi_{Y X}=0 . \tag{4}
\end{equation*}
$$

Bernoulli's equation (Ref. 1, page 15) states that at any instant of time

$$
\begin{equation*}
\frac{p}{\rho}+\frac{1}{2}\left[\left(\frac{\partial \phi}{\partial \bar{X}}\right)^{2}+\left(\frac{\partial \phi}{\partial Y}\right)^{2}\right]+\frac{\partial \phi}{\partial T}=\frac{p_{\infty}}{\rho} . \tag{5}
\end{equation*}
$$

The assumptions made about the geometry of the aerofoil allow squares of the velocity components to be neglected in comparison with the velocity components; hence, equation (5) may be approximated by

$$
\begin{equation*}
\frac{p}{\rho}+\frac{\partial \phi}{\partial T}=\frac{p_{\infty}}{\rho} . \tag{6}
\end{equation*}
$$

The acceleration potential, $\Omega$, is now introduced, where

$$
\begin{equation*}
\Omega=\frac{\partial \phi}{\partial T} \tag{7}
\end{equation*}
$$

from equation (4) it satisfies

$$
\begin{equation*}
\Omega_{X X}+\Omega_{Y Y}=0 \tag{8}
\end{equation*}
$$

From equations (6) and (7), $\Omega$ is zero at infinity. The pressure is continuous everywhere except across the aerofoil, and so the same must hold for $\Omega$, from equations (6) and (7); $\phi$, of course, is discontinuous across the wake as well, which is why the use of $\Omega$ is preferred.
Let $x$ and $y$ be rectangular Cartesian coordinates moving with the aerofoil and having their origin at the point $X=X_{m}(T), Y=0$; let the $x$ axis have the same direction as the $X$ axis. When the space coordinates are $x$ and $y$, let $t$ denote the time; there is then no doubt about what is being kept constant during partial differentiations. Hence,

$$
\begin{align*}
x & =X-X_{m}(T)  \tag{9a}\\
y & =Y,  \tag{9b}\\
t & =T . \tag{9c}
\end{align*}
$$

From equation (3), it follows that

$$
\begin{align*}
& \frac{\partial}{\partial x}=\frac{\partial}{\partial X}  \tag{10a}\\
& \frac{\partial}{\partial y}=\frac{\partial}{\partial Y},  \tag{10b}\\
& \frac{\partial}{\partial t}=-U(T) \frac{\partial}{\partial X}+\frac{\partial}{\partial T} . \tag{10c}
\end{align*}
$$

From equations (8), (10a) and (10b), $\Omega$ satisfies

$$
\Omega_{x x}+\Omega_{y y}=0
$$

hence

$$
\Omega=\mathscr{R} \psi(z, t),
$$

where $\psi$ is a complex function of $\approx$, and

$$
z=x+i y .
$$

In the $x, y$ coordinate system the aerofoil lies between the points $(-c / 2,0)$ and $(c / 2,0)$; this part of the $x$ axis may be mapped on to the unit circle by the transformation

$$
\begin{equation*}
z=\frac{c}{4}\left(\zeta+\frac{1}{\zeta}\right) . \tag{11}
\end{equation*}
$$

Past experience (Ref. 1, page 125) suggests the following form for the function $\psi$ :

$$
\begin{equation*}
\psi=i\left[-a_{0}(t) \frac{\zeta}{1+\zeta}+\sum_{n=1}^{\infty} \frac{a_{n}(t)}{\zeta^{n}}\right] . \tag{12}
\end{equation*}
$$

From the antisymmetry of the problem,

$$
\Omega(y)=-\Omega(-y) .
$$

The aerofoil is the only part of the $x$ axis where $\Omega$ is discontinuous; therefore, $\Omega$ must be zero along the rest of the $x$ axis and, hence, along the part of the real axis of $\zeta$ lying outside the unit circle. It follows that $\psi$ is a function whose real part is zero along the real axis of $\zeta$; hence, the $a_{n}(n \geqslant 0)$ in equation (12) are all real.

Let the equation of the aerofoil be

$$
\begin{equation*}
y=F(x, t) \tag{13}
\end{equation*}
$$

The boundary condition is that the velocity component normal to the aerofoil should be zero. The component of velocity in the $x$ direction is $U+\phi_{x}$, which is approximately $U$, and the component of velocity in the $y$ direction is $\phi_{y}$; so the boundary condition is approximately

$$
\begin{equation*}
\left(\frac{\partial \phi}{\partial y}\right)_{y=0}=U \frac{\partial F}{\partial x}+\frac{\partial F}{\partial t} . \tag{14}
\end{equation*}
$$

On the unit circle, which corresponds to the aerofoil, write

$$
\begin{equation*}
\zeta=e^{i \mu} \tag{15a}
\end{equation*}
$$

so that, from equation (11),

$$
\begin{equation*}
x=\frac{c}{2} \cos \mu . \tag{15b}
\end{equation*}
$$

The right-hand side of equation (14) can now be expanded as $b_{0} / 2+\sum_{n=1}^{\infty} b_{n} \cos n \mu$, where the $b_{n}$ are known functions of $t$; the boundary condition on the aerofoil becomes

$$
\begin{equation*}
\left(\frac{\partial \phi}{\partial y}\right)_{y=0}=\frac{b_{0}}{2}+\sum_{n=1}^{\infty} b_{n} \cos n \mu . \tag{16}
\end{equation*}
$$

From equation (7),

$$
\begin{equation*}
\phi(X, Y, T)=\int_{-\infty}^{T} \Omega d T_{1}=\mathscr{R} \int_{-\infty}^{T} \psi\left(z_{1}, T_{1}\right) d T_{1} \tag{17}
\end{equation*}
$$

here, $T_{1}$ is the variable of integration and, from equation (9)

$$
\begin{equation*}
z_{1}=X-X_{m}\left(T_{1}\right)+i Y \tag{18}
\end{equation*}
$$

the lower limit of the integral can be replaced by any value of the time early enough for $\Omega$ to be zero at the point $X, Y$. From equations (17) and (18),

$$
\begin{equation*}
\frac{\partial \phi}{\partial Y}=-\mathscr{F} \int_{-\infty}^{T} \psi^{\prime}\left(z_{1}, T_{1}\right) d T_{1} \tag{19}
\end{equation*}
$$

where $\psi^{\prime}(z, T)$ has been written for $\partial \psi / \partial z$. From equations (18) and (3),

$$
d z_{1}=-\dot{X}_{m}\left(T_{1}\right) d T_{1}=U\left(T_{1}\right) d T_{1}
$$

hence, equation (19) becomes

$$
\begin{equation*}
\frac{\partial \phi}{\partial Y}=-\mathscr{I} \int_{-\infty}^{z} \psi^{\prime}\left(z_{1}, T_{1}\right) \frac{d z_{1}}{U\left(T_{1}\right)} \tag{20}
\end{equation*}
$$

here, $T_{1}$ is to be regarded as a function of $z_{1}$, given by equation (18); and $z$ is given by

$$
z=X-X_{m}(T)+i Y
$$

On the aerofoil equations (16), (10b) and (20) give

$$
\begin{equation*}
\mathscr{I} \int_{-\infty}^{x} \psi^{\prime}\left(z_{1}, T_{1}\right) \frac{d z_{1}}{U\left(T_{1}\right)}=-\frac{b_{0}}{2}-\sum_{n=1}^{\infty} b_{n} \cos n \mu, \tag{21}
\end{equation*}
$$

where $-c / 2 \leqslant x \leqslant c / 2$. In the integral $X$ is kept constant; $x$ is given by equation (9a), and $T_{1}$ (or, in an obvious notation, $t_{1}$ ) is given in terms of $z_{1}$ by

$$
\begin{equation*}
z_{1}=X-X_{m}\left(T_{1}\right)=X-X_{m}\left(t_{1}\right) \tag{22}
\end{equation*}
$$

from equations (18) and (9c). Differentiation of equation (21) with respect to $T$ gives

$$
\begin{equation*}
\mathscr{I} \psi^{\prime}(x, T)=\mathscr{I} \psi^{\prime}(x, t)=-\frac{\dot{b}_{0}}{2}-\sum_{n=1}^{\infty} \dot{b}_{n} \cos n \mu-U \frac{\partial}{\partial x}\left(\frac{b_{0}}{2}+\sum_{n=1}^{\infty} b_{n} \cos n \mu\right), \tag{23}
\end{equation*}
$$

from equations (10a), (10c) and (9c). Now, from equations (11) and (12),

$$
\begin{equation*}
\psi^{\prime}(z, t)=\frac{\partial \psi / \partial \zeta}{\partial z / \partial \zeta}=\frac{-i\left[\frac{a_{0}}{(\zeta+1)^{2}}+\sum_{n=1}^{\infty} \frac{n a_{n}}{\zeta^{(n+1)}}\right]}{\frac{c}{4}\left(1-\frac{1}{\zeta^{2}}\right)} ; \tag{24}
\end{equation*}
$$

hence, on the aerofoil,

$$
\begin{align*}
\psi^{\prime}(x, t) & =-\frac{4 i}{c} \frac{\left[\frac{a_{0} e^{i \mu}}{\left(e^{i \mu}+1\right)^{2}}+\sum_{n=1}^{\infty} n a_{n} e^{-i n \mu}\right]}{\left(e^{i \mu}-e^{-i \mu}\right)} \\
& =-\frac{2}{c \sin \mu}\left[\frac{a_{0}}{2(\cos \mu+1)}+\sum_{n=1}^{\infty} n a_{n}(\cos n \mu-i \sin n \mu)\right] . \tag{25}
\end{align*}
$$

From equation (15b),

$$
\begin{equation*}
\frac{\partial}{\partial x}=-\frac{2}{c \sin \mu} \frac{\partial}{\partial \mu} \tag{26}
\end{equation*}
$$

on the aerofoil. From equations (23), (25) and (26),

$$
\frac{2}{c \sin \mu} \sum_{n=1}^{\infty} n a_{n} \sin n \mu=-\frac{\dot{b}_{0}}{2}-\sum_{n=1}^{\infty} b_{n} \cos n \mu-\frac{2 U}{c \sin \mu} \sum_{n=1}^{\infty} n b_{n} \sin n \mu ;
$$

it follows that

$$
\begin{equation*}
a_{n}=-\frac{c}{4 n} b_{n-1}+\frac{c}{4 n} b_{n+1}-U b_{n} \quad(n \geqslant 1) . \tag{27}
\end{equation*}
$$

The flow field is completely determined once $\psi$ is known, and the only unknown quantity in the expression for $\psi$ given by equation (12) is $a_{0}$. Only the differentiated form of equation (21) has so far been used; substitution of $\psi^{\prime}\left(z_{1}, T_{1}\right)$ into equation (21) provides the desired relation for $a_{0}$. From equations (24) and (27),

$$
\begin{aligned}
\psi^{\prime}(z, T) & =\psi^{\prime}(z, t)=-\frac{4 i \zeta^{2}}{c\left(\zeta^{2}-1\right)}\left\{\frac{a_{0}}{(\zeta+1)^{2}}-\sum_{n=1}^{\infty}\left(\frac{c}{4} \dot{b}_{n-1}-\frac{c}{4} b_{n+1}+U n b_{n}\right) \frac{1}{\zeta^{(n+1)}}\right\} \\
& =\frac{i}{\left(\zeta^{2}-1\right)}\left\{-\frac{4 a_{0} \zeta^{2}}{c(\zeta+1)^{2}}+\left(b_{0}+\zeta \dot{b}_{1}\right)\right\}-i \sum_{n=1}^{\infty}\left\{\frac{b_{n}}{\zeta^{n}}-\frac{4 U}{c} \frac{n b_{n}}{\left(\zeta^{2}-1\right) \zeta^{n-1}}\right\} \\
& =\frac{i}{\left(\zeta^{2}-1\right)}\left\{-\frac{4 a_{0} \zeta^{2}}{c(\zeta+1)^{2}}+\left(\dot{b}_{0}+\zeta \dot{b}_{1}\right)\right\}-i U\left(\frac{\partial}{\partial z}+\frac{1}{U} \frac{\partial}{\partial T}\right) \sum_{n=1}^{\infty} \frac{b_{n}}{\zeta^{n}} .
\end{aligned}
$$

When $X$ and $Y$ are held constant,

$$
\frac{d}{d z_{1}}=\frac{\partial}{\partial z_{1}}+\frac{d T_{1}}{d z_{1}} \frac{\partial}{\partial T_{1}}=\frac{\partial}{\partial z_{1}}+\frac{1}{U\left(T_{1}\right)} \frac{\partial}{\partial T_{1}},
$$

from equation (18); in the integral in equation (21), therefore, $\psi^{\prime}\left(z_{1}, T_{1}\right)$ is given by

$$
\psi^{\prime}\left(z_{1}, T_{1}\right)=\frac{i}{\left(\zeta_{1}^{2}-1\right)}\left\{-\frac{4 a_{0} \check{\zeta}_{1}^{2}}{c\left(\zeta_{1}+1\right)^{2}}+\left(\dot{b}_{0}+\zeta_{1} \dot{b}_{1}\right)\right\}-i U \frac{d}{d z_{1}} \sum_{n=1}^{\infty} \frac{b_{n}}{\zeta_{1}{ }^{n}}
$$

where $\zeta_{1}$ is defined by

$$
\begin{equation*}
z_{1}=\frac{c}{4}\left(\zeta_{1}+\frac{1}{\zeta_{1}}\right) . \tag{28}
\end{equation*}
$$

Hence,

From equation (21),

$$
\begin{equation*}
\mathscr{R} \int_{-\infty}^{x} \frac{1}{\left(\zeta_{1}{ }^{2}-1\right)}\left\{\frac{4 a_{0} \zeta_{1}{ }^{2}}{c\left(\zeta_{1}+1\right)^{2}}-\left(b_{0}+\zeta_{1} \dot{b}_{1}\right)\right\} \frac{d z_{1}}{U\left(T_{1}\right)}=\frac{b_{0}}{2} . \tag{29}
\end{equation*}
$$

The path of integration may be taken as the part of the $x$ axis from $-\infty$ to $x$; but $x$ lies in the range $-c / 2 \leqslant x \leqslant c / 2$, so that the path includes the point $x=-c / 2$; the integral becomes singular there, since, from equation (11), the point $x=-c / 2$ corresponds to $\zeta=-1$; hence, the path of integration must be indented at the point $x=-c / 2$.

In terms of $\zeta_{1}$ equation (29) becomes

$$
\mathscr{R} \int_{-\infty}^{i \mu}\left\{\frac{4 a_{0}}{c\left(\zeta_{1}+1\right)^{2}}-\frac{1}{\zeta_{1}^{2}}\left(\dot{b}_{0}+\zeta_{1} \dot{b}_{1}\right)\right\} \frac{d \zeta_{1}}{U\left(T_{1}\right)}=\frac{2 b_{0}}{c},
$$

from equations (28) and (15a); the path of integration runs from $-\infty$ to -1 along the real axis of $\zeta_{1}$, is indented at $\zeta_{1}=-1$, and then runs from $\zeta_{1}=-1$ to $\zeta_{1}=e^{i \mu}$ around the unit circle. The last equation may be written

$$
\begin{align*}
& \mathscr{R} \int_{-\infty}^{e^{i \mu}} \frac{1}{\left(\zeta_{1}+1\right)^{2}}\left\{\frac{4 a_{0}\left(T_{1}\right)}{c U\left(T_{1}\right)}-\frac{4 a_{0}(T)}{c U(T)}\right\} d \zeta_{1}=\frac{2 b_{0}}{c}+ \\
& \quad+\mathscr{R} \int_{-\infty}^{e^{i \mu}} \frac{\left(b_{0}+\zeta_{1} b_{1}\right)}{\zeta_{1}^{2}} \frac{d \zeta_{1}}{U\left(T_{1}\right)}-\mathscr{R} \frac{4 a_{0}(T)}{c U(T)} \int_{-\infty}^{e^{i \mu}} \frac{1}{\left(\zeta_{1}+1\right)^{2}} d \zeta_{1} \tag{30}
\end{align*}
$$

But

$$
\mathscr{R} \int_{-\infty}^{e^{i \mu}} \frac{1}{\left(\zeta_{1}+1\right)^{2}} d \zeta_{1}=-\mathscr{R} \frac{1}{\left(e^{i \mu}+1\right)}=\mathscr{R} \frac{-\left(\cos \frac{\mu}{2}+i \sin \frac{\mu}{2}\right)}{2 \cos \frac{\mu}{2}}=-\frac{1}{2}
$$

hence, equation (30) becomes

$$
\mathscr{R} \int_{-\infty}^{e^{i \mu}} \frac{1}{\left(\zeta_{1}+1\right)^{2}}\left\{\frac{4 a_{0}\left(T_{1}\right)}{c U\left(T_{1}\right)}-\frac{4 a_{0}(T)}{c U(T)}\right\} d \zeta_{1}-\frac{2 a_{0}(T)}{c U(T)}=\frac{2 b_{0}}{c}+\mathscr{R} \int_{-\infty}^{e^{i \mu \mu}} \frac{\left(\dot{b}_{0}+\zeta_{1} b_{1}\right)}{\zeta_{1}{ }^{2}} \frac{d \zeta_{1}}{U\left(T_{1}\right)} .
$$

This equation has to be satisfied for one value only of $\mu$, since the differentiated form is known to be true; when $\mu=\pi$ it becomes

$$
\begin{equation*}
\mathscr{R} \int_{-\infty}^{-1} \frac{1}{\left(\zeta_{1}+1\right)^{2}}\left\{\frac{4 a_{0}\left(T_{1}\right)}{c U\left(T_{1}\right)}-\frac{4 a_{0}(T)}{c U(T)}\right\} d \zeta_{1}-\frac{2 a_{0}(T)}{c U(T)}=\frac{2 b_{0}}{c}+\int_{-\infty}^{-1} \frac{\left(b_{0}+\zeta_{1} b_{1}\right)}{\zeta_{1}^{2}} \frac{d \zeta_{1}}{U\left(T_{1}\right)} . \tag{31}
\end{equation*}
$$

From equations (28) and (22),

$$
\begin{equation*}
\frac{c}{4}\left(\zeta_{1}+\frac{1}{\zeta_{1}}\right)=X-X_{m}\left(T_{1}\right) ; \tag{32}
\end{equation*}
$$

at the chosen instant of time, $T, \mu=\pi$, and the last equation becomes

$$
\begin{equation*}
-\frac{c}{2}=X-X_{m}(T), \tag{33}
\end{equation*}
$$

from equations (15b) and (9a); subtraction of equation (33) from equation (32) gives a relation between $\zeta_{1}$ and $T_{1}$ with $T$ as a parameter,

$$
\begin{equation*}
\frac{c\left(1+\zeta_{1}\right)^{2}}{\zeta_{1}}=X_{m}(T)-X_{m}\left(T_{1}\right) \tag{34}
\end{equation*}
$$

Provided that $a_{0}$ and $U$ have a Taylor expansion about $T_{1}=T$, it follows that the integrand in the integral on the left-hand side of equation (31) is not singular at $\zeta_{1}=-1$, so that the path of integration may be taken as the part of the real axis of $\zeta_{1}$ from $-\infty$ to -1 .

Equations (6) and (7) give

$$
p-p_{\infty}=-\rho \Omega ;
$$

hence, the loading at a point on the aerofoil is $\rho\left(\Omega_{u}-\Omega_{l}\right)$, where $\Omega_{u}$ and $\Omega_{l}$ are respectively the values of $\Omega$ on the upper and lower surfaces of the aerofoil; from equations (12) and (15a),

$$
\rho\left(\Omega_{u}-\Omega_{l}\right)=\rho\left(a_{0} \tan \frac{\mu}{2}+2 \sum_{n=1}^{\infty} a_{n} \sin n \mu\right) .
$$

The lift on the aerofoil is $L$, where

$$
\begin{aligned}
L & =\rho \int_{-d / 2}^{c / 2}\left(\Omega_{u}-\Omega_{i}\right) d x \\
& =\frac{1}{2} \rho c \int_{0}^{\pi}\left(a_{0} \tan \frac{\mu}{2}+2 \sum_{n=1}^{\infty} a_{n} \sin n \mu\right) \sin \mu d \mu=\frac{\pi}{2} \rho c\left(a_{0}+a_{1}\right),
\end{aligned}
$$

from equation (15b); the lift coefficient is $C_{L}$, where

$$
\begin{equation*}
C_{L}=\frac{L}{\frac{1}{2} \rho c U^{2}}=\frac{\pi\left(a_{0}+a_{1}\right)}{U^{2}} . \tag{35}
\end{equation*}
$$

The moment about the leading edge is $M$, where

$$
\begin{aligned}
M & =\rho \int_{-c / 2}^{c / 2}\left(\Omega_{u}-\Omega_{l}\right)\left(x+\frac{1}{2} c\right) d x=\rho \int_{-c / 2}^{c / 2}\left(\Omega_{u}-\Omega_{l}\right) x d x+\frac{1}{2} c L \\
& =\rho \frac{c^{2}}{4} \int_{0}^{\pi}\left(a_{0} \tan \frac{\mu}{2}+2 \sum_{n=1}^{\infty} a_{n} \sin n \mu\right) \sin \mu \cos \mu d \mu+\frac{1}{2} c L \\
& =\frac{\pi \rho c^{2}}{8}\left(a_{0}+2 a_{1}+a_{2}\right) ;
\end{aligned}
$$

the moment coefficient is $C_{m}$, where

$$
\begin{equation*}
C_{m}=\frac{M}{\frac{1}{2} \rho c^{2} U^{2}}=\frac{\pi\left(a_{0}+2 a_{1}+a_{2}\right)}{4 U^{2}} . \tag{36}
\end{equation*}
$$

### 2.2. Flow Past a Particular Aerofoil.

Now consider the aerofoil defined in Section 1. From equation (1),

$$
\begin{equation*}
U(T)=U_{0}(1+\Upsilon \cos \omega T) \tag{37}
\end{equation*}
$$

If the mid-point of the aerofoil is at the origin of the $(X, Y)$ coordinates when $T=0$, then, from equations (3), (37) and (9c),

$$
\begin{equation*}
X_{m}(T)=-U_{0}\left(T+\frac{\Upsilon}{\omega} \sin \omega T\right)=-U_{0}\left(t+\frac{\Upsilon}{\omega} \sin \omega t\right) . \tag{38}
\end{equation*}
$$

From equations (13) and (2), if the aerofoil is assumed to be pitching about the leading edge,

$$
F(x, t)=-\alpha_{0}\{1+a \cos (\omega t+\epsilon)\}\left(x+\frac{1}{2} c\right) ;
$$

hence, from equation (37),

$$
\begin{aligned}
U \frac{\partial F}{\partial x}+\frac{\partial F}{\partial t}= & -\alpha_{0} U_{0}(1+\Upsilon \cos \omega t)\{1+a \cos (\omega t+\epsilon)\}+\alpha_{0} a \omega \sin (\omega t+\epsilon)\left(x+\frac{1}{2} c\right) \\
= & -\alpha_{0}\left[U_{0}(1+\Upsilon \cos \omega t)\{1+a \cos (\omega t+\epsilon)\}-\frac{a \omega \epsilon}{2} \sin (\omega t+\epsilon)\right]+ \\
& +\alpha_{0} a \omega x \sin (\omega t+\epsilon)
\end{aligned}
$$

so that, from equations (14), (16) and (15b)

$$
\begin{align*}
& b_{0}=-2 \alpha_{0}\left[U_{0}(1+\Upsilon \cos \omega t)\{1+a \cos (\omega t+\epsilon)\}-\frac{a c \omega}{2} \sin (\omega t+\epsilon)\right],  \tag{39}\\
& b_{1}=\frac{\alpha_{0} c \omega a}{2} \sin (\omega t+\varepsilon),  \tag{40}\\
& b_{n}=0 \quad(n>1) . \tag{41}
\end{align*}
$$

From equation (39),

$$
\begin{align*}
\dot{b}_{0}= & 2 \alpha_{0} U_{0} \omega[\Upsilon \sin \omega t\{1+\alpha \cos (\omega t+\epsilon)\}+a(1+\Upsilon \cos \omega t) \sin (\omega t+\epsilon)+ \\
& \left.+\frac{a \nu}{2} \cos (\omega t+\epsilon)\right] \tag{42}
\end{align*}
$$

where $\nu$ is the reduced frequency, $c \omega / U_{0}$; from equation (40),

$$
\begin{equation*}
\dot{b}_{1}=\frac{1}{2} \alpha_{0} U_{0} \omega \nu \alpha \cos (\omega t+\epsilon) \tag{43}
\end{equation*}
$$

from equation (41),

$$
\begin{equation*}
\dot{b}_{n}=0 \quad(n>1) . \tag{44}
\end{equation*}
$$

From equations (27), (37) and (39) to (44) inclusive,

$$
\begin{align*}
a_{1}= & -\frac{1}{2} \alpha_{0} U_{0}{ }^{2} \nu[\Upsilon \sin \omega t\{1+a \cos (\omega t+\epsilon)\}+a(1+\Upsilon \cos \omega t) \sin (\omega t+\epsilon)+ \\
& \left.+\frac{a \nu}{2} \cos (\omega t+\epsilon)\right]-\frac{1}{2} \alpha_{0} U_{0}{ }^{2} \nu a(1+\Upsilon \cos \omega t) \sin (\omega t+\epsilon) \\
= & -\frac{1}{2} \alpha_{0} U_{0}{ }^{2} \nu[\Upsilon \sin \omega t\{1+a \cos (\omega t+\epsilon)\}+ \\
& \left.+2 a(1+\Upsilon \cos \omega t) \sin (\omega t+\epsilon)+\frac{a \nu}{2} \cos (\omega t+\epsilon)\right]  \tag{45}\\
a_{2}= & -\frac{\alpha_{0} c^{2} \omega^{2} a}{16} \cos (\omega t+\epsilon)=-\frac{\alpha_{0} U_{0}{ }^{2} \nu^{2} a}{16} \cos (\omega t+\epsilon),  \tag{46}\\
a_{n}= & 0 \quad(n>2) .
\end{align*}
$$

To obtain $a_{0}$ equation (31) must be solved. It is convenient to make the following substitutions:

$$
\begin{align*}
\theta & =-U_{0} T / c  \tag{47a}\\
\theta_{1} & =-U_{0} T_{1} / c  \tag{47b}\\
A_{0}(\theta) & =\frac{a_{0}(T)}{U_{0}^{2} \alpha_{0}(1+\Upsilon \cos \omega T)},  \tag{47c}\\
\eta & =-\zeta_{1} \tag{47d}
\end{align*}
$$

From equations (31), (37), (39), (42), (43) and (47),

$$
\begin{align*}
& \int_{1}^{\infty}\left\{A_{0}\left(\theta_{1}\right)-A_{0}(\theta)\right\} \frac{d \eta}{(\eta-1)^{2}}-\frac{1}{2} A_{0}(\theta) \\
&=-\left[(1+\Upsilon \cos \nu \theta)\{1+a \cos (\nu \theta-\epsilon)\}+\frac{a \nu}{2} \sin (\nu \theta-\epsilon)\right]- \\
&-\int_{1}^{\infty} \cdot\left\{\frac{\nu\left[\Upsilon \sin \nu \theta_{1}\left\{1+a \cos \left(\nu \theta_{1}-\epsilon\right)\right\}+a\left(1+\Upsilon \cos \nu \theta_{1}\right) \sin \left(\nu \theta_{1}-\epsilon\right)-\frac{a \nu}{2} \cos \left(\nu \theta_{1}-\epsilon\right)\right]-}{2 \eta_{1}^{2}}\right. \\
&\left.-\frac{a \nu^{2}}{8 \eta_{1}} \cos \left(\nu \theta_{1}-\epsilon\right)\right\} \frac{d \eta_{1}}{\left(1+\Upsilon \cos \nu \theta_{1}\right)} ; \tag{48}
\end{align*}
$$

here, from equations (34), (38) and (47),

$$
\begin{equation*}
\left(\theta_{1}-\theta\right)+\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)=\frac{1}{4} \frac{\left(\eta_{1}-1\right)^{2}}{\eta_{1}} . \tag{49}
\end{equation*}
$$

## 3. Approximate Form of the Integral Equation.

Equation (48) may be written in the form

$$
\begin{align*}
A_{0}(\theta)= & 2(1+\Upsilon \cos \nu \theta)\{1+a \cos (\nu \theta-\epsilon)\}+a \nu \sin (\nu \theta-\epsilon)+ \\
& +\nu \int_{1}^{\infty}\left[\frac{\Upsilon \sin \nu \theta_{1}\left\{1+a \cos \left(\nu \theta_{1}-\epsilon\right)\right\}}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}+a \sin \left(\nu \theta_{1}-\epsilon\right)\right] \frac{d \eta_{1}}{\eta_{1}^{2}}- \\
& -\frac{a \nu^{2}}{4} \int_{1}^{\infty}\left(\frac{2}{\eta_{1}^{2}}+\frac{1}{\eta_{1}}\right) \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d \eta_{1}}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}+2 \int_{1}^{\infty}\left\{A_{0}\left(\theta_{1}\right)-A_{0}(\theta)\right\} \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}} . \tag{50}
\end{align*}
$$

First, it is shown that the second integral is $\mathrm{O}(\log v)$. Clearly,

$$
\left|\int_{1}^{\infty} \frac{2}{\eta_{1}^{2}} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d \eta_{1}}{\left(1+\Upsilon^{\prime} \cos \nu \theta_{1}\right)}\right|<\frac{2}{(1-\Upsilon)} \int_{1}^{\infty} \frac{d \eta_{1}}{\eta_{1}^{2}}=O(1) ;
$$

so it suffices to show that

$$
\begin{equation*}
\int_{1}^{\infty} \frac{1}{\eta_{1}} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d \eta_{1}}{\left(1+Y^{\prime} \cos \nu \theta_{1}\right)}=\mathrm{O}(\log \nu) . \tag{51}
\end{equation*}
$$

Write

$$
\begin{equation*}
Q_{1}=\left(\theta_{1}-\theta\right)+\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right) . \tag{52}
\end{equation*}
$$

From equation (49),

$$
\frac{1}{4} \frac{\left(\eta_{1}-1\right)^{2}}{\eta_{1}}=Q_{1}
$$

It follows that

$$
\begin{equation*}
\left.\eta_{1}=\left(1+2 Q_{1}\right)+2\left(Q_{1}+Q_{1}\right)^{2}\right)^{1 / 2} ; \tag{53}
\end{equation*}
$$

the positive sign of the square root is required, since, as $\theta_{1} \rightarrow \infty, Q_{1} \rightarrow \infty$ and $\eta_{1} \rightarrow \infty$. From equations (52) and (53),

$$
\frac{d \eta_{1}}{\eta_{1}}=\frac{d Q_{1}}{\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}}=\frac{\left(1+\Upsilon \cos v \theta_{1}\right) d \theta_{1}}{\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}}
$$

Therefore, the equation to be verified, equation (51), may be written

$$
\begin{equation*}
\int_{\theta}^{\infty} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d \theta_{1}}{\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}}=\mathrm{O}(\log \nu) . \tag{54}
\end{equation*}
$$

It is convenient to split the range of integration into two parts by writing

$$
\begin{equation*}
\int_{\theta}^{\infty} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d \theta_{1}}{\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}}=\int_{\theta}^{\theta+2 \pi / \nu} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d \theta_{1}}{\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}}+\int_{\theta+2 \pi / \nu}^{\infty} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d \theta_{1}}{\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}} ; \tag{55}
\end{equation*}
$$

the only significance in choosing $\theta+2 \pi / \nu$ as the intermediate stage is that it makes the analysis simpler; the essential points are that the integrand in the first integral is singular at the lower limit
( $Q_{1}=0$ when $\theta_{1}=\theta$ ) but not at the upper one, whereas in the second integral only the upper limit requires care. From equations (52) and (53),

$$
\begin{align*}
& \theta_{1}=\theta+\frac{2 \pi}{\nu} \rightarrow Q_{1}=\frac{2 \pi}{\nu}  \tag{56a}\\
& \theta_{1}=\theta+\frac{2 \pi}{\nu} \rightarrow \eta_{1}=\left(1+\frac{4 \pi}{\nu}\right)+2\left(\frac{2 \pi}{\nu}+\frac{4 \pi^{2}}{\nu^{2}}\right)^{1 / 2}=\eta_{A} ; \tag{56b}
\end{align*}
$$

the last equation defines $\eta_{A}$.
Consider the second integral on the right-hand side of equation (55). From equation (52),

$$
\begin{aligned}
\left(\frac{1}{\theta_{1}}-\frac{1}{Q_{1}}\right)+\left[\frac{1}{Q_{1}}-\frac{1}{\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}}\right]= & -\frac{\theta-\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)}{\theta_{1} Q_{1}}+\frac{\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}-Q_{1}}{Q_{1}\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}} \\
= & -\frac{\theta-\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)}{\theta_{1} Q_{1}}+ \\
& +\frac{1}{\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\left[\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}+Q_{1}\right]}
\end{aligned}
$$

hence,

$$
\begin{align*}
\int_{\theta+2 \pi / \nu}^{\infty} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d \theta_{1}}{\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}}= & \int_{\theta+2 \pi / \nu}^{\infty} \frac{\cos (\nu \theta-\epsilon) d \theta_{1}}{\theta_{1}}+ \\
& +\int_{\theta+2 \pi / \nu}^{\infty} \frac{\left[\theta-\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)\right] \cos \left(\nu \theta_{1}-\epsilon\right)}{\theta_{1} Q_{1}} d \theta_{1}- \\
& -\int_{\theta+2 \pi / \nu}^{\infty} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d \theta_{1}}{\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\left[\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}+Q_{1}\right]} . \tag{57}
\end{align*}
$$

The first of the integrals on the right-hand side can be written in terms of tabulated functions, as follows:

$$
\begin{equation*}
\int_{\theta}^{\infty} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d \theta_{1}}{+2 \pi / \nu \theta_{1}}=-\cos \epsilon \operatorname{Ci}(2 \pi+\nu \theta)+\sin \epsilon\left[\frac{\pi}{2}-\operatorname{Si}(2 \pi+\nu \theta)\right] ; \tag{58}
\end{equation*}
$$

here, Ci and Si are respectively the cosine and sine integrals (Ref. 2, page 3), defined by

$$
\mathrm{Ci}(\vartheta)=-\int_{\vartheta}^{\infty} \frac{\cos \vartheta_{1}}{\vartheta_{1}} d \vartheta_{1},
$$

and

$$
\operatorname{Si}(\vartheta)=\int_{0}^{\vartheta} \frac{\sin \vartheta_{1}}{\vartheta_{1}} d \vartheta_{1}
$$

it is known that ${ }^{2}$

$$
\operatorname{Si}(\infty)=\frac{\pi}{2} .
$$

Since ${ }^{2} \mathrm{Ci}(2 \pi+\nu \theta)$ and $\mathrm{Si}(2 \pi+\nu \theta)$ are both $\mathrm{O}(1)$, it follows from equation (58) that

$$
\begin{equation*}
\int_{\theta+2 \pi / \nu}^{\infty} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d \theta_{1}}{\theta_{1}}=\mathrm{O}(1) . \tag{59}
\end{equation*}
$$

For the second of the integrals, equation (52) gives

$$
\begin{align*}
& \left|\int_{\theta+2 \pi / \nu}^{\infty} \frac{\left[\theta-\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)\right] \cos \left(\nu \theta_{1}-\varepsilon\right)}{\theta_{1} Q_{1}} d \theta_{1}\right| \\
= & \left.\int_{\theta+2 \pi / \nu}^{\infty} \frac{\left[\theta-\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)\right] \cos \left(\nu \theta_{1}-\epsilon\right)}{\theta_{1}\left[\left(\theta_{1}-\theta\right)+\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)\right]} d \theta_{1} \right\rvert\, \\
< & \left(\theta+\frac{2 \Upsilon}{\nu}\right) \int_{\theta+2 \pi / \nu}^{\infty} \frac{d \theta_{1}}{\theta_{1}\left(\theta_{1}-\theta-\frac{2 \Upsilon}{\nu}\right)}=\log \frac{2(\pi-\Upsilon)}{(2 \pi+\nu \theta)}=\mathrm{O}(1) . \tag{60}
\end{align*}
$$

For the third of the integrals, equations (52) and (56a) give

$$
\begin{align*}
& \left|\int_{\theta+2 \pi / v}^{\infty} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d \theta_{1}}{\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}\left[\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}+Q_{1}\right]}\right| \\
= & \left|\int_{2 \pi / v}^{\infty} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d Q_{1}}{\left(1+\Upsilon \cos \nu \theta_{1}\right)\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}\left[\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}+Q_{1}\right]}\right| \\
& <\frac{1}{2(1-\Upsilon)} \int_{2 \pi / \nu}^{\infty} \frac{d Q_{1}}{Q_{1}{ }^{2}}=\frac{\nu}{4 \pi(1-\Upsilon)}=\mathrm{O}(\nu) . \tag{61}
\end{align*}
$$

From equations (57), (59), (60) and (61), it follows that

$$
\begin{equation*}
\int_{\theta+2 \pi / \nu}^{\infty} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d \theta_{1}}{\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}}=\mathrm{O}(1) \tag{62}
\end{equation*}
$$

Now consider the first integral on the right-hand side of equation (55). From equations (52) and (56a),

$$
\begin{align*}
& \left|\int_{0}^{\theta+2 \pi / \nu} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d \theta_{1}}{\left(Q_{1}+Q_{1}\right)^{1 / 2}}\right|=\left|\int_{0}^{2 \pi / \nu} \frac{\cos \left(\nu \theta_{1}-\epsilon\right) d Q_{1}}{\left(1+\Upsilon \cos \nu \theta_{1}\right)\left(Q_{1}+Q_{1}\right)^{1 / 2}}\right| \\
= & \left\lvert\,\left[2 \sinh ^{-1} Q_{1}^{1 / 2} \frac{\cos \left(\nu \theta_{1}-\epsilon\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right.}\right]_{0}^{2 \pi / \nu}+\right. \\
& \left.+2 \nu \int_{0}^{2 \pi / \nu}\left[\frac{\sin \left(\nu \theta_{1}-\epsilon\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}-\frac{\Upsilon \sin \nu \theta_{1} \cos \left(\nu \theta_{1}-\epsilon\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{3}}\right] \sinh ^{-1} Q_{1}^{1 / 2} d Q_{1} \right\rvert\, \\
< & \frac{2}{(1-\Upsilon)} \sinh ^{-1}\left(\frac{2 \pi}{\nu}\right)^{1 / 2}+2 \nu\left[\frac{1}{(1-\Upsilon)^{2}}+\frac{\Upsilon}{(1-\Upsilon)^{3}}\right] \int_{0}^{2 \pi / \nu} \sinh ^{-1} Q_{1}^{1 / 2} d Q_{1} \\
= & \frac{2}{(1-\Upsilon)} \sinh ^{-1}\left(\frac{2 \pi}{\nu}\right)^{1 / 2}+2 \nu\left[\frac{1}{(1-\Upsilon)^{2}}+\frac{\Upsilon}{\left(1-\Upsilon^{r}\right)^{3}}\right] \times \\
& \times\left[\frac{\sinh ^{-1} Q_{1}^{1 / 2}}{2}\left(1+2 Q_{1}\right)-\frac{1}{2}\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\right]_{0}^{2 \pi / \nu} \\
= & \frac{2}{(1-\Upsilon)} \sinh ^{-1}\left(\frac{2 \pi}{\nu}\right)^{1 / 2}+\frac{2}{(1-\Upsilon)^{3}}\left[\frac{\sinh ^{-1}\left(\frac{2 \pi}{\nu}\right)^{1 / 2}}{2}(4 \pi+\nu)-\frac{1}{2}\left(4 \pi^{2}+2 \pi \nu\right)^{1 / 2}\right] \\
= & O(\log \nu) . \tag{63}
\end{align*}
$$

From equations (55), (62) and (63), it follows that equation (54) is correct; hence, equation (51) has been proved. Therefore, equation (50) may be written

$$
\begin{align*}
A_{0}(\theta)= & 2(1+\Upsilon \cos \nu \theta)\{1+a \cos (\nu \theta-\epsilon)\}+a \nu \sin (\nu \theta-\epsilon)+ \\
& +\nu \int_{1}^{\infty}\left[\frac{\Upsilon \sin \nu \theta_{1}\left\{1+a \cos \left(\nu \theta_{1}-\epsilon\right)\right\}}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}+a \sin \left(\nu \theta_{1}-\epsilon\right)\right] \frac{d \eta_{1}}{\eta_{1}{ }^{2}}+ \\
& +2 \int_{1}^{\infty}\left\{A_{0}\left(\theta_{1}\right)-A_{0}(\theta)\right\} \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}}+\mathrm{O}\left(\nu^{2} \log \nu\right) \\
= & 2(1+\Upsilon \cos \nu \theta)\{1+a \cos (\nu \theta-\epsilon)\}+a \sin (\nu \theta-\epsilon)+ \\
& +\nu\left[\frac{\Upsilon \sin \nu \theta\{1+a \cos (\nu \theta-\epsilon)\}}{(1+\Upsilon \cos \nu \theta)}+a \sin (\nu \theta-\epsilon)\right]+ \\
& +\nu^{2} \int_{\theta}^{\infty} \frac{A d \theta_{1}}{\eta_{1}}+2 \int_{1}^{\infty}\left\{A_{0}\left(\theta_{1}\right)-A_{0}(\theta)\right\} \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}}+\mathrm{O}\left(\nu^{2} \log \nu\right), \tag{64}
\end{align*}
$$

where

Clearly,

$$
\begin{align*}
A= & a \cos \left(\nu \theta_{1}-\epsilon\right)+\frac{\Upsilon \cos \nu \theta_{1}\left[1+a \cos \left(\nu \theta_{1}-\epsilon\right)-a \Upsilon \sin \nu \theta_{1} \sin \left(\nu \theta_{1}-\epsilon\right)\right]}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}+ \\
& +\frac{\Upsilon^{2} \sin ^{2} \nu \theta_{1}\left[1+a \cos \left(\nu \theta_{1}-\epsilon\right)\right]}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}} \\
= & a \cos \left(\nu \theta_{1}-\epsilon\right)+\frac{\Upsilon\left[\cos \nu \theta_{1}+a \cos \left(2 \nu \theta_{1}-\epsilon\right)\right]}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}+\frac{\Upsilon^{2} \sin ^{2} \nu \theta_{1}\left[1+a \cos \left(\nu \theta_{1}-\epsilon\right)\right]}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}} . \tag{65}
\end{align*}
$$

$$
\begin{equation*}
|A|<a+\frac{\Upsilon(1+a)}{(1-\Upsilon)}+\frac{\Upsilon^{2}(1+a)}{(1-\Upsilon)^{2}} . \tag{66}
\end{equation*}
$$

It is now shown that the last but one integral in equation (64) is $\mathrm{O}(\log \nu)$. The range of the integral is split up into two parts by writing

$$
\begin{equation*}
\int_{\theta}^{\infty} \frac{A d \theta_{1}}{\eta_{1}}=\int_{\theta}^{\theta+2 \pi / \nu} \frac{A d \theta_{1}}{\eta_{1}}+\int_{\theta+2 \pi / v}^{\infty} \frac{A d \theta_{1}}{\eta_{1}} . \tag{67}
\end{equation*}
$$

First, consider the second integral. From equations (52) and (53),

$$
\begin{aligned}
\left(\frac{1}{4 \theta}-\frac{1}{4} \frac{Q_{1}}{Q_{1}}\right)+\left(\frac{1}{4 Q_{1}}-\frac{1}{\eta_{1}}\right) & =-\frac{\theta-\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)}{4 \theta_{1} Q_{1}}+\frac{2\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}-\left(2 Q_{1}-1\right)}{4 Q_{1} \eta_{1}} \\
& =-\frac{\theta-\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)}{4 \theta_{1} Q_{1}}+\frac{\left(8 Q_{1}-1\right)}{4 Q_{1} \eta_{1}\left[2\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}+\left(2 Q_{1}-1\right)\right]}
\end{aligned}
$$

hence,

$$
\begin{gather*}
\int_{\theta+2 \pi / \nu}^{\infty} \frac{A d \theta_{1}}{\eta_{1}}=\int_{\theta+2 \pi / \nu}^{\infty} \frac{A d \theta_{1}}{4 \theta_{1}}+\frac{1}{4} \int_{\theta+2 \pi / \nu}^{\infty} \frac{A\left[\theta-\frac{Y}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)\right]}{\theta_{1} Q_{1}} d \theta_{1}- \\
-\frac{1}{4} \int_{\theta+2 \pi / \nu}^{\infty} \frac{A\left(8 Q_{1}-1\right) d \theta_{1}}{Q_{1} \eta_{1}\left[2\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}+\left(2 Q_{1}-1\right)\right]} .  \tag{68}\\
14
\end{gather*}
$$

For the second of the integrals on the right-hand side, equations (52) and (66) give

$$
\begin{align*}
& \left|\int_{\theta+2 \pi / \nu}^{\infty} \frac{A\left[\theta-\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)\right]}{\theta_{1} Q_{1}} d \theta_{1}\right| \\
& \quad<\left[a+\frac{\Upsilon(1+a)}{(1-\Upsilon)}+\frac{\Upsilon^{2}(1+a)}{(1-\Upsilon)^{2}}\right]\left(\theta+\frac{2 \Upsilon}{\nu}\right) \int_{\theta+2 \pi / \nu}^{\infty} \frac{d \theta_{1}}{\theta_{1}\left(\theta_{1}-\theta-\frac{2 \Upsilon}{\nu}\right)} . \\
& \quad=\left[a+\frac{\Upsilon(1+a)}{(1-\Upsilon)}+\frac{\Upsilon^{2}(1+a)}{(1-\Upsilon)^{2}}\right] \log \frac{(2 \pi+\nu \theta)}{2(\pi-\Upsilon)}=O(1) . \tag{69}
\end{align*}
$$

For the third of these integrals, equations (52), (53), (56a) and (66) give

$$
\left.\begin{align*}
& \left|\int_{\theta+2 \pi / \nu}^{\infty} \frac{A\left(8 Q_{1}-1\right) d \theta_{1}}{Q_{1} \eta_{1}\left[2\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}+\left(2 Q_{1}-1\right)\right]}\right| \\
& \quad=\mid \int_{\theta+2 \pi / \nu}^{\infty}\left(1+\Upsilon \cos \nu \theta_{1}\right) Q_{1}\left[2\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}+\left(2 Q_{1}+1\right)\right]\left[2\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}+\left(2 Q_{1}-1\right)\right]
\end{align*} \right\rvert\,
$$

From equations (68), (69) and (70)

$$
\begin{equation*}
\int_{\theta+2 \pi / \nu}^{\infty} \frac{A d \theta_{1}}{\eta_{1}}=\frac{1}{4} \int_{\theta+2 \pi / \nu}^{\infty} \frac{A d \theta_{1}}{\theta_{1}}+\mathrm{O}(1) . \tag{71}
\end{equation*}
$$

Equation (65) may be written as

$$
A=2 a \cos \left(\nu \theta_{1}-\epsilon\right)+\frac{(\Upsilon-a \cos \varepsilon)}{\Upsilon\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\left(1-\Upsilon^{2}\right)(\Upsilon-a \cos \varepsilon)}{\Upsilon\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}-\frac{a\left(1-\Upsilon^{2}\right) \sin \epsilon \sin \nu \theta_{1}}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}
$$

Now,

$$
\int\left[\frac{1}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\left(1-\Upsilon^{2}\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}\right] d \theta_{\mathbf{1}}=\frac{\Upsilon \sin \nu \theta_{1}}{\nu\left(1+\Upsilon \cos \nu \theta_{1}\right)},
$$

and

$$
\int \frac{\sin \nu \theta_{1} d \theta_{1}}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}=\frac{1}{\nu \Upsilon\left(1+\Upsilon \cos \nu \theta_{1}\right)} .
$$

From the last three equations and equation (58),

$$
\begin{aligned}
& \left|\int_{\theta+2 \pi / \nu}^{\infty} \frac{A d \theta_{1}}{\theta_{1}}\right|<2 a|\operatorname{Ci}(2 \pi+\nu \theta)|+2 a\left|\frac{\pi}{2}-\operatorname{Si}(2 \pi+\nu \theta)\right|+\left\lvert\,\left[\frac{(\Upsilon-a \cos \epsilon) \sin \nu \theta_{1}}{\nu \theta_{1}\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\right.\right. \\
& \left.\quad-\frac{a\left(1-\Upsilon^{2}\right) \sin \epsilon}{\nu \Upsilon^{\top} \theta_{1}\left(1+\Upsilon \cos \nu \theta_{1}\right)}\right] \left._{\theta+2 \pi / \nu}^{\infty}\left|+\frac{1}{\nu}\right| \int_{\theta+2 \pi / \nu}^{\infty}\left[\frac{(\Upsilon-a \cos \epsilon) \sin \nu \theta_{1}}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{a\left(1-\Upsilon^{2}\right) \sin \epsilon}{\Upsilon\left(1+\Upsilon \cos \nu \theta_{1}\right)}\right] \frac{d \theta_{1}}{\theta_{1}^{2}} \right\rvert\, \\
& \quad<2 a|\mathrm{Ci}(2 \pi+\nu \theta)|+2 a\left|\frac{\pi}{2}-\operatorname{Si}(2 \pi+\nu \theta)\right|+\frac{(\Upsilon+a)}{(1-\Upsilon)(2 \pi+\nu \theta)}+\frac{a\left(1-\Upsilon^{2}\right)}{\Upsilon(1-\Upsilon)(2 \pi+\nu \theta)}+ \\
& \quad+\frac{1}{\nu}\left[\frac{(\Upsilon+a)}{(1-\Upsilon)}+\frac{a\left(1-\Upsilon^{2}\right)}{\Upsilon(1-\Upsilon)}\right] \int_{\theta+2 \pi / v}^{\infty} \frac{d \theta_{1}}{\theta_{1}^{2}} \\
& \quad=2 a|\mathrm{Ci}(2 \pi+\nu \theta)|+2 a\left|\frac{\pi}{2}-\operatorname{Si}(2 \pi+\nu \theta)\right|+\frac{2}{(2 \pi+\nu \theta)}\left[\frac{(\Upsilon+a)}{(1-\Upsilon)}+\frac{a(1+\Upsilon)}{\Upsilon}\right] \\
& \quad=\mathrm{O}(1) .
\end{aligned}
$$

From this equation and equation (71) it follows that

$$
\begin{equation*}
\int_{\theta+2 \pi / \nu}^{\infty} \frac{A d \theta_{1}}{\eta_{1}}=\mathrm{O}(1) . \tag{72}
\end{equation*}
$$

Now consider the first integral on the right-hand side of equation (67). From equations (52), (53) and (56a),

$$
\begin{align*}
& \left|\int_{\theta}^{\theta+2 \pi / \nu} \frac{A d \theta_{1}}{\eta_{1}}\right|=\left|\int_{0}^{2 \pi / \nu} \frac{A\left\{\left(1+2 Q_{1}\right)-2\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}\right\} d Q_{1}}{\left(1+\Upsilon^{\top} \cos \nu \theta_{1}\right)}\right| \\
& \quad \leqslant \\
& \quad\left|\left[\frac{A}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}\left\{Q_{1}+Q_{1}^{2}-\frac{1}{2}\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\left(1+2 Q_{1}\right)+\frac{1}{2} \sinh ^{-1} Q_{1}^{1 / 2}\right\}\right]_{0}^{2 \pi / \nu}\right|+ \\
& \quad+\left\lvert\, \int_{\theta}^{\theta+2 \pi / \nu} \frac{d}{d \theta_{1}}\left\{\frac{A}{\left(1+\Upsilon^{\prime} \cos \nu \theta_{1}\right)}\right\}\left\{Q_{1}+Q_{1}^{2}-\frac{1}{2}\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\left(1+2 Q_{1}\right)+\right.\right.  \tag{73}\\
& \left.\quad+\frac{1}{2} \sinh ^{-1} Q_{1}^{1 / 2}\right\} d \theta_{1} \mid .
\end{align*}
$$

From equation (66),

$$
\begin{equation*}
|A|=\mathrm{O}(1) \tag{74}
\end{equation*}
$$

from equations (65) and (66),

$$
\begin{align*}
& \left\lvert\, \begin{array}{l}
\frac{d}{d \theta_{1}} \frac{A}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}|=\nu| \frac{\Upsilon \sin \nu \theta_{1}}{\left(1+\Upsilon \cos \nu \theta_{1}^{2}\right)}-\frac{a \sin \left(\nu \theta_{1}-\epsilon\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)} \\
\quad-\frac{\Upsilon\left\{\sin \nu \theta_{1}+2 a \sin \left(2 \nu \theta_{1}-\epsilon\right)\right\}}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}+\frac{\Upsilon^{2} \sin \nu \theta_{1}\left\{\cos \nu \theta_{1}+a \cos \left(2 \nu \theta_{1}-\epsilon\right)\right\}}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{3}}+ \\
\quad+\frac{\Upsilon^{2}\left[2 \sin \nu \theta_{1} \cos \nu \theta_{1}\left\{1+a \cos \left(\nu \theta_{1}-\epsilon\right)\right\}-a \sin ^{2} \nu \theta_{1} \sin \left(\nu \theta_{1}-\epsilon\right)\right]}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{3}}+ \\
\left.\quad+\frac{2 \Upsilon^{2} \sin ^{3} \nu \theta_{1}\left\{1+a \cos \left(\nu \theta_{1}-\epsilon\right)\right\}}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{4}} \right\rvert\, \\
< \\
\quad \nu\left[\frac{\Upsilon}{(1-\Upsilon)^{2}}\left\{a+\frac{\Upsilon(1+a)}{(1-\Upsilon)}+\frac{\Upsilon^{2}(1+a)}{(1-\Upsilon)^{2}}\right\}+\frac{a}{(1-\Upsilon)}+\frac{\Upsilon(1+2 a)}{(1-\Upsilon)^{2}}+\frac{\Upsilon^{2}(1+a)}{(1-\Upsilon)^{3}}+\right. \\
\left.\quad+\frac{\Upsilon^{2}(2+3 a)}{(1-\Upsilon)^{3}}+\frac{2 \Upsilon^{3}(1+a)}{(1-\Upsilon)^{4}}\right]=\mathrm{O}(\nu) .
\end{array} .\right.
\end{align*}
$$

Now,

$$
\begin{aligned}
\frac{d}{d Q_{1}}\left[Q_{1}+Q_{1}^{2}-\right. & \left.\frac{1}{2}\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\left(1+2 Q_{1}\right)+\frac{1}{2} \sinh ^{-1} Q_{1}^{1 / 2}\right]= \\
& =\left(1+2 Q_{1}\right)-2\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2} \\
& =\left[\left(1+2 Q_{1}\right)+2\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\right]^{-1} .
\end{aligned}
$$

This is always positive in the range of integration, so the maximum of $\left[Q_{1}+Q_{1}{ }^{2}-\frac{1}{2}\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}\right.$ $\left.\left(1+2 Q_{1}\right)+\frac{1}{2} \sinh ^{-1} Q_{1}^{1 / 2}\right]$ in the range occurs at $Q_{1}=2 \pi / \nu$. Hence,

$$
\begin{align*}
Q_{1}+ & Q_{1}^{2}-\frac{1}{2}\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\left(1+2 Q_{1}\right)+\frac{1}{2} \sinh ^{-1} Q_{1}^{1 / 2} \\
& \leqslant \frac{2 \pi}{\nu}+\frac{4 \pi^{2}}{\nu^{2}}-\frac{1}{2}\left(\frac{2 \pi}{\nu}+\frac{4 \pi^{2}}{\nu^{2}}\right)^{1 / 2}\left(1+\frac{4 \pi}{\nu}\right)+\frac{1}{2} \sinh ^{-1}\left(\frac{2 \pi}{\nu}\right)^{1 / 2}=\mathrm{O}(\log \nu) . \tag{76}
\end{align*}
$$

From equations (73), (74), (75) and (76),

$$
\begin{equation*}
\left|\int_{\theta}^{\theta+2 \pi / \nu} \frac{A d \theta_{1}}{\eta_{1}}\right|=\mathrm{O}(\log \nu) \tag{77}
\end{equation*}
$$

From this equation and equations (67) and (72),

$$
\begin{equation*}
\int_{\theta}^{\infty} \frac{A d \theta_{1}}{\eta_{1}}=\mathrm{O}(\log \nu) \tag{78}
\end{equation*}
$$

Hence, equation (64) becomes

$$
\begin{align*}
A_{0}(\theta)= & 2(1+\Upsilon \cos \nu \theta)\{1+a \cos (\nu \theta-\epsilon)\}+ \\
& +\nu\left[2 a \sin (\nu \theta-\epsilon)+\frac{\Upsilon \sin \nu \theta\{1+a \cos (\nu \theta-\epsilon)\}}{(1+\Upsilon \cos \nu \theta)}\right]+ \\
& +2 \int_{1}^{\infty}\left\{A_{0}\left(\theta_{1}\right)-A_{0}(\theta)\right\} \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}}+\mathrm{O}\left(\nu^{2} \log \nu\right) . \tag{79}
\end{align*}
$$

This is the required approximate form of the integral equation, equation (48).

## 4. Solution of the Approximate Integral Equation.

4.1. A Preliminary Result.

The problem considered in this section is the expansion of the integral

$$
\int_{1}^{\infty} \frac{\left(1+\Upsilon \cos \nu \theta_{1}\right)\left\{1+a \cos \left(\nu \theta_{1}-\epsilon\right)\right\}-(1+\Upsilon \cos \nu \theta)\{1+a \cos (\nu \theta-\epsilon)\}}{\left(\eta_{1}-1\right)^{2}} d \eta_{1}
$$

as a term in $\nu \log \nu$ plus a term in $\nu$ plus higher-order terms. It is convenient to write

$$
\begin{align*}
& \int_{1}^{\infty} \frac{\left(1+\Upsilon \cos \nu \theta_{1}\right)\left\{1+a \cos \left(\nu \theta_{1}-\epsilon\right)\right\}-(1+\Upsilon \cos \nu \theta)\{1+a \cos (\nu \theta-\epsilon)\}}{\left(\eta_{1}-1\right)^{2}} d \eta_{1} \\
= & \int_{1}^{\infty} \frac{\left[\Upsilon\left(\cos \nu \theta_{1}-\cos \nu \theta\right)+a\left\{\cos \left(\nu \theta_{1}-\epsilon\right)-\cos (\nu \theta-\epsilon)\right\}+\frac{a \Upsilon}{2}\left\{\cos \left(2 \nu \theta_{1}-\epsilon\right)-\cos (2 \nu \theta-\epsilon)\right\}\right]}{\left(\eta_{1}-1\right)^{2}} d \eta_{1} \\
= & \Upsilon(1,0)+a J(1, \epsilon)+\frac{a \Upsilon}{2} J(2, \epsilon), \tag{80}
\end{align*}
$$

where

$$
J(n, \delta)=\int_{1}^{\infty} \frac{\cos \left(n \nu \theta_{1}-\delta\right)-\cos (n \nu \theta-\delta)}{\left(\eta_{1}-1\right)^{2}} d \eta_{1} .
$$

After an integration by parts,

$$
\begin{equation*}
J(n, \delta)=\left[-\frac{\cos \left(n \nu \theta_{1}-\delta\right)-\cos (n \nu \theta-\delta)}{\left(\eta_{1}-1\right)}\right]_{1}^{\infty}-n \nu \int_{\theta}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(\eta_{1}-1\right)} d \theta_{1} . \tag{81}
\end{equation*}
$$

From equations (52) and (53),

$$
\begin{align*}
& \operatorname{Lim}_{\eta_{1} \rightarrow 0}\left[-\frac{\cos \left(n \nu \theta_{1}-\delta\right)-\cos (n \nu \theta-\delta)}{\eta_{1}-1}\right]=\operatorname{Lim}_{Q_{1} \rightarrow 0}\left[-\frac{1}{2}\left\{\frac{\cos \left(n \nu \theta_{1}-\delta\right)-\cos (n \nu \theta-\delta)}{Q_{1}+\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}}\right\}\right] \\
& =\operatorname{Lim}_{Q_{1} \rightarrow 0}\left[-\frac{1}{2}\left\{\frac{-n \nu \sin \left(n \nu \theta_{1}-\delta\right) \frac{1}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}}{1+\frac{\left(1+2 Q_{1}\right)}{2\left(Q_{1}+Q_{1}^{2}\right)^{2 / 2}}}\right\}\right]=0, \tag{82}
\end{align*}
$$

by l'Hôpital's rule; so equation (81) becomes

$$
\begin{equation*}
J(n, \delta)=-n \nu \int_{\theta}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(\eta_{1}-1\right)} d \theta_{1}=-\frac{n \nu}{2} \int_{\theta}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left[Q_{1}+\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}\right]} d \theta_{1}, \tag{83}
\end{equation*}
$$

from equation (53). Split the range of integration into two parts and write

$$
\begin{equation*}
\int_{\theta}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left[Q_{1}+\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\right]} d \theta_{1}=\int_{\theta}^{0+2 \pi \mid \nu} \frac{\sin \left(n \nu \theta_{1}-\delta\right) d \theta_{1}}{\left[Q_{1}+\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\right]}+\int_{\theta+2 \pi / \nu}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right) d \theta_{1}}{\left[Q_{1}+\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\right]} . \tag{84}
\end{equation*}
$$

Consider the second integral on the right-hand side. From equation (52).

$$
\begin{aligned}
\left(\frac{1}{2 \theta_{1}}-\right. & \left.\frac{1}{2 Q_{1}}\right)+\left[\frac{1}{2 Q_{1}}-\frac{1}{Q_{1}+\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}}\right]= \\
& =-\frac{\theta-\frac{\Upsilon}{v}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)}{2 \theta_{1} Q_{1}}+\frac{\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}-Q_{1}}{2 Q_{1}\left[Q_{1}+\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\right]} \\
& =-\frac{\theta-\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)}{2 \theta_{1} Q_{1}}+\frac{1}{\left.2\left[Q_{1}+\left(Q_{1}+Q_{1}\right)^{2}\right)^{1 / 2}\right]^{2}}
\end{aligned}
$$

hence,

$$
\begin{align*}
& \int_{\theta+2 \pi / v}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right) d \theta_{1}}{\left[Q_{1}+\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\right]}=\frac{1}{2} \int_{\theta+2 \pi / v}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\theta_{1}} d \theta_{1}+ \\
& \quad+\frac{1}{2} \int_{\theta+2 \pi / v}^{\infty} \frac{\left[\theta-\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)\right] \sin \left(n \nu \theta_{1}-\delta\right) d \theta_{1}}{\theta_{1} Q_{1}}-\frac{1}{2} \int_{\theta+2 \pi / v}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right) d \theta_{1}}{\left[Q_{1}+\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\right]^{2}} \tag{85}
\end{align*} .
$$

The first of the integrals on the right-hand side of this equation can be written $\mathrm{as}^{2}$

$$
\int_{\theta+2 \pi \nu}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\theta_{1}} d \theta_{1}=\cos \delta\left[\frac{\pi}{2}-\operatorname{Si}(2 \pi n+n \nu \theta)\right]+\sin \delta \mathrm{Ci}(2 \pi n+n \nu \theta) ;
$$

$\mathrm{Si}(2 \pi n+n \nu \theta)$ and $\mathrm{Ci}(2 \pi n+n \nu \theta)$ are both ${ }^{2} \mathrm{O}(1)$, so that

$$
\begin{equation*}
\int_{\theta+2 \pi / v}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\theta_{1}} d \theta_{1}=\mathrm{O}(1) . \tag{86}
\end{equation*}
$$

For the second of these integrals, equation (52) gives

$$
\begin{align*}
& \left|\int_{\theta+2 \pi / \nu}^{\infty} \frac{\left[\theta-\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)\right] \sin \left(n \nu \theta_{1}-\delta\right) d \theta_{1}}{\theta_{1} Q_{1}}\right| \\
& \quad=\left|\int_{\theta+2 \pi / \nu}^{\infty} \frac{\left[\theta-\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)\right] \sin \left(n \nu \theta_{1}-\delta\right) d \theta_{1}}{\theta_{1}\left[\left(\theta_{1}-\theta\right)+\frac{\Upsilon}{\nu}\left(\sin \nu \theta_{1}-\sin \nu \theta\right)\right]}\right| \\
& \quad<\left(\theta+\frac{2 \Upsilon}{\nu}\right) \int_{\theta+2 \pi / \nu}^{\infty} \frac{d \theta_{1}}{\theta_{1}\left(\theta_{1}-\theta-\frac{2 \Upsilon}{\nu}\right)}=\log \frac{(2 \pi+\nu \theta)}{2\left(\pi-\Upsilon^{*}\right)}=\mathrm{O}(1) . \tag{87}
\end{align*}
$$

For the third of these integrals, equations (52) and (56a) give

$$
\begin{align*}
\left\lvert\, \int_{\theta+2 \pi \nu \nu}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right) d \theta_{1}}{\left[Q_{1}+\left(Q_{1}+Q_{1}\right)^{1 / 2}\right]^{2}}\right.
\end{align*}\left|=\left|\int_{2 \pi / \nu}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right) d Q_{1}}{\left[Q_{1}+\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}\right]^{2}\left(1+\Upsilon \cos \nu \theta_{1}\right)}\right|\right.
$$

From equations (85), (86), (87) and (88), it follows that

$$
\begin{equation*}
\int_{\theta+2 \pi \nu \nu}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left[Q_{1}+\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}\right]}=d \theta_{1}=\mathrm{O}(1) . \tag{89}
\end{equation*}
$$

From equations (85), (88), and (52), this integral can be approximated by

$$
\begin{equation*}
\int_{\theta+2 \pi / \nu}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right) d \theta_{1}}{\left[Q_{1}+\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}\right]}=\frac{1}{2} \int_{\theta+2 \pi^{\prime} v}^{\infty} \frac{\sin \left(n \nu \theta_{1}-\delta\right)}{Q_{1}} d \theta_{1}+\mathrm{O}(\nu) . \tag{90}
\end{equation*}
$$

Now consider the first integral on the right-hand side of equation (84). From equations (52) and (56a),

$$
\begin{align*}
\int_{\theta}^{0+2 \pi / \nu} \frac{\sin \left(n \nu \theta_{1}-\delta\right) d \theta_{1}}{\left[Q_{1}+\left(Q_{1}+Q_{1}{ }^{1 / 2 / 2}\right]\right.}= & \int_{0}^{2 \pi / \nu} \frac{\sin \left(n \nu \theta_{1}-\delta\right) d Q_{1}}{\left(1+\Upsilon \cos \nu \theta_{1}\right)\left[Q_{1}+\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}\right]} \\
= & \frac{\sin (n \nu \theta-\delta)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}\left[\sinh ^{-1}\left(\frac{2 \pi}{\nu}\right)^{1 / 2}+\left(\frac{2 \pi}{\nu}+\frac{4 \pi^{2}}{\nu^{2}}\right)^{1 / 2}-\frac{2 \pi}{\nu}\right]- \\
& -\nu \int_{\theta}^{\theta+2 \pi / \nu}\left[\frac{n \cos \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}+\frac{\Upsilon \sin \nu \theta_{1} \sin \left(n \nu \theta_{1}-\xi\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}\right] \times \\
& \times\left[\sinh ^{-1} Q_{1}^{1 / 2}+\left(Q_{1}+Q_{1}{ }^{2}\right)^{1 / 2}-Q_{1}\right] d \theta_{1} . \tag{91}
\end{align*}
$$

Now,

$$
\sinh ^{-1}\left(\frac{2 \pi}{\nu}\right)^{1 / 2}+\left(\frac{2 \pi}{\nu}+\frac{4 \pi^{2}}{\nu^{2}}\right)^{1 / 2}-\frac{2 \pi}{\nu}=\frac{1}{2} \log \frac{8 \pi}{\nu}+\frac{1}{2}+\mathrm{O}(\nu) ;
$$

and, from equation (52),

$$
\begin{aligned}
& \left|\int_{\theta}^{\theta+2 \pi / \nu}\left[\frac{n \cos \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}+\frac{\Upsilon \sin \nu \theta_{1} \sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}\right]\left[\frac{1}{2}+Q_{1}-\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\right] d Q_{1}\right| \\
& \quad<\left[\frac{n}{(1-\Upsilon)^{2}}+\frac{\Upsilon}{(1-\Upsilon)^{3}}\right] \int_{0}^{2 \pi / \nu}\left[\frac{1}{2}+Q_{1}-\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\right] d Q_{1} \\
& \quad=\left[\frac{n}{(1-\Upsilon)^{2}}+\frac{\Upsilon}{(1-\Upsilon)^{3}}\right]\left[-\frac{1}{4}\left(1+2 Q_{1}\right)\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}+\frac{1}{4} \sinh ^{-1} Q_{1}^{1 / 2}+\frac{Q_{1}^{2}}{2}+\frac{Q_{1}}{2}\right]_{0}^{2 \pi / \nu} \\
& \quad=\mathrm{O}(\log \nu)
\end{aligned}
$$

here, the fact that $\frac{1}{2}+Q_{1}-\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}>0$ for $0 \leqslant Q_{1}<\infty$ has been used. So equation (91) may be written

$$
\begin{align*}
\int_{\theta}^{\theta+2 \pi / \nu} & \frac{\sin \left(n \nu \theta_{1}-\delta\right) d \theta_{1}}{\left[Q_{1}+\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\right]}=\frac{1}{2}\left(\log \frac{8 \pi}{\nu}+1\right) \frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}- \\
& -\nu \int_{\theta}^{\theta+2 \pi / \nu}\left[\frac{n \cos \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}+\frac{\Upsilon \sin \nu \theta_{1} \sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}\right]\left(\sinh ^{-1} Q_{1}^{1 / 2}+\frac{1}{2}\right) d \theta_{1}+\mathrm{O}(\nu \log \nu) \\
= & \frac{1}{2}\left(\log \frac{8 \pi}{\nu}+1\right) \frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}- \\
& -\nu \int_{\theta}^{\theta+2 \pi / \nu} d \theta_{1}\left[\frac{n \cos \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}+\frac{\Upsilon \sin \nu \theta_{1} \sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}\right] \sinh ^{-1} Q_{1}^{1 / 2}+\mathrm{O}(\nu \log \nu) . \tag{92}
\end{align*}
$$

From equation (56a),

$$
\begin{align*}
\nu \int_{\theta}^{0+2 \pi / \nu} & {\left[\frac{n \cos \left(n \nu \theta_{1}-\delta\right)}{\left(1-\Upsilon \cos \nu \theta_{1}\right)}+\frac{\Upsilon \sin \nu \theta_{1} \sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}\right] \sinh ^{-1} Q_{1}^{1 / 2} d \theta_{1} } \\
= & {\left[\left\{\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon^{2} \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right\} \sinh { }^{-1} Q_{1}^{1 / 2}\right]_{\theta}^{\theta+2 \pi / \nu}-} \\
& -\frac{1}{2} \int_{0}^{2 \pi / \nu}\left[\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right] \frac{d Q_{1}}{\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}} \\
= & -\frac{1}{2} \int_{0}^{2 \pi / \nu}\left[\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right] \frac{d Q_{1}}{\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}} . \tag{93}
\end{align*}
$$

Now,

$$
\begin{align*}
\mid \int_{0}^{2 \pi / \nu} & \left.\left\lvert\, \frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{\left(1+\Upsilon^{2} \cos \nu \theta\right)}\right.\right] \left.\left[\frac{1}{Q_{1}}-\frac{1}{\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}}\right] d Q_{1} \right\rvert\, \\
< & \left|\left[\left\{\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right\}\left\{\log Q_{1}+2 \log 2-2 \sinh ^{-1} Q_{1}^{1 / 2}\right\}\right]_{0}^{2 \pi / \nu}\right|+ \\
& +\nu \left\lvert\, \int_{\theta}^{0+2 \pi / \nu}\left[\frac{n \cos \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}+\frac{\Upsilon \sin \nu \theta_{1} \sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}\right] \times\right. \\
& \times\left[\log Q_{1}+2 \log 2-2 \sinh ^{-1} Q_{1}^{1 / 2}\right] d \theta_{1} \mid \\
= & \nu \left\lvert\, \int_{0}^{2 \pi / \nu}\left[\frac{n \cos \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}+\frac{\Upsilon \sin \nu \theta_{1} \sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}\right] \times\right. \\
& \times\left[\left.\log Q_{1}+2 \log 2-2 \sinh ^{-1} Q_{1}^{1 / 2} \frac{d Q_{1}}{\left(1+\Upsilon \cos \nu \theta_{1}\right)} \right\rvert\, .\right. \tag{94}
\end{align*}
$$

from equations (52) and (56a). Hence,

$$
\begin{align*}
& \left|\int_{0}^{2 \pi / \nu}\left[\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right]\left[\frac{1}{Q_{1}}-\frac{1}{\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}}\right] d Q_{1}\right| \\
& \quad<\nu\left[\frac{n}{\left(1-\Upsilon^{2}\right)^{2}}+\frac{\Upsilon}{(1-\Upsilon)^{3}}\right] \int_{0}^{2 \pi / \nu}\left[2 \sinh ^{-1} Q_{1}^{1 / 2}-\log Q_{1}-2 \log 2\right] d Q_{1} \\
& = \\
& \quad \nu\left[\frac{n}{(1-\Upsilon)^{2}}+\frac{\Upsilon}{(1-\Upsilon)^{3}}\right]\left[-Q_{1} \log Q_{1}+Q_{1}+\left(1+2 Q_{1}\right) \sinh ^{-1} Q_{1}^{1 / 2}-\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}-\right. \\
& \left.\quad-2 Q_{1} \log 2\right]_{0}^{2 \pi / \nu}  \tag{95}\\
& =
\end{align*}
$$

here, the fact that $\left[2 \sinh ^{-1} Q_{1}^{1 / 2}-\log Q_{1}-2 \log 2\right]>0$ for $0 \leqslant Q_{1}<\infty$ has been used. From equations (92, (93) and (95),

$$
\begin{align*}
\int_{0}^{\theta+2 \pi / \nu} & \frac{\sin \left(n \nu \theta_{1}-\delta\right) d \theta_{1}}{\left.Q_{1}+\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\right]} \\
\quad & \frac{1}{2}\left(\log \frac{8 \pi}{\nu}+1\right) \frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}+\frac{1}{2} \int_{0}^{2 \pi / \nu}\left[\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right] \frac{d Q_{1}}{Q_{1}}+\mathrm{O}(\nu \log \nu) \\
\quad & \frac{1}{2}\left(\log \frac{8 \pi}{\nu}+1\right) \frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}+ \\
& +\frac{1}{2} \int_{0}^{\theta+2 \pi / \nu}\left[\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right] \frac{\left(1+\Upsilon \cos \theta_{1}\right) d \theta_{1}}{Q_{1}}+\mathrm{O}(\nu \log \nu) \tag{96}
\end{align*}
$$

from equations (52) and (56a). From equations (83), (84), (90) and (96),

$$
\begin{align*}
J(n, \delta)= & -\frac{n \nu}{4}\left(\log \frac{8 \pi}{\nu}+1\right) \frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}- \\
& -\frac{n \nu}{4} \int_{0}^{\theta+2 \pi / \nu}\left[\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right] \frac{\left(1+\Upsilon \cos \theta_{1}\right) d \theta_{1}}{Q_{1}}- \\
& -\frac{n \nu}{4} \int_{\theta+2 \pi / \nu}^{\infty} \sin \left(n \nu \theta_{1}-\delta\right) \frac{d \theta_{1}}{Q_{1}}+\mathrm{O}\left(\nu^{2} \log \nu\right)=\mathrm{O}(\nu \log \nu), \tag{97}
\end{align*}
$$

from equations (89) and (90). Change the variable of integration from $\theta_{1}$ to $\chi$ where

$$
\chi=\nu \theta_{1} .
$$

Equation (97) then becomes

$$
J(n, \delta)=\frac{n}{4} \frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)} \nu \log \nu-\frac{n \dot{\nu}}{4} K(n, \delta)+\mathrm{O}\left(\nu^{2} \log \nu\right),
$$

where

$$
\begin{align*}
K(n, \delta)= & (\log 8 \pi+1) \frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}+ \\
& +\int_{\nu \theta}^{2 \pi+\nu \theta}\left[\frac{\sin (n \chi-\delta)}{(1+\Upsilon \cos \chi)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right] \frac{(1+\Upsilon \cos \chi) d \chi}{R}+\int_{2 \pi+\nu \theta}^{\infty} \sin (n \chi-\delta) \frac{d \chi}{R} ; \tag{98}
\end{align*}
$$

here, from equation (52),

$$
\begin{equation*}
R=\nu Q_{1}=(\chi-\nu \theta)+\Upsilon(\sin \chi-\sin \nu \theta) . \tag{99}
\end{equation*}
$$

From equation (80),

$$
\begin{align*}
& \int_{1}^{\infty} \frac{\left(1+\Upsilon \cos \nu \theta_{1}\right)\left[1+a \cos \left(\nu \theta_{1}-\epsilon\right)\right]-(1+\Upsilon \cos \nu \theta)[1+a \cos (\nu \theta-\epsilon)]}{\left(\eta_{1}-1\right)^{2}} d \eta_{1} \\
&= \frac{1}{4}\left[\Upsilon \frac{\sin \nu \theta}{(1+\Upsilon \cos \nu \theta)}+a \frac{\sin (\nu \theta-\epsilon)}{(1+\Upsilon \cos \nu \theta)}+a \Upsilon \frac{\sin (2 \nu \theta-\epsilon)}{(1+\Upsilon \cos \nu \theta)}\right] \nu \log \nu- \\
&-\frac{1}{4}[\Upsilon K(1,0)+a K(1, \epsilon)+a \Upsilon K(2, \epsilon)] \nu+\mathrm{O}\left(\nu^{2} \log \nu\right) . \tag{100}
\end{align*}
$$

### 4.2. The Approximate Solution.

It is now shown that the approximate solution of equation (77) is

$$
\begin{align*}
A_{0}(\theta)= & 2(1+\Upsilon \cos \nu \theta)[1+a \cos (\nu \theta-\epsilon)]+\left[2 a \sin (\nu \theta-\epsilon)+\frac{\Upsilon \sin \nu \theta\{1+a \cos (\nu \theta-\epsilon)\}}{(1+\Upsilon \cos \nu \theta)}\right] \nu+ \\
& +\frac{[\Upsilon \sin \nu \theta+a \sin (\nu \theta-\epsilon)+a \Upsilon \sin (2 \nu \theta-\epsilon)]}{(1+\Upsilon \cos \nu \theta)} \nu \log \nu- \\
& -[\nu K(1,0)+a K(1, \epsilon)+a \Upsilon K(2, \epsilon)] \nu+\mathrm{O}\left[(\nu \log \nu)^{2}\right] . \tag{101}
\end{align*}
$$

Write equation (77) as

$$
\begin{align*}
A_{0}(\theta)- & 2(1+\Upsilon \cos \nu \theta)[1+a \cos (\nu \theta-\epsilon)]- \\
& -\nu\left[2 a \sin (\nu \theta-\epsilon)+\frac{\Upsilon \sin \nu \theta\{1+a \cos (\nu \theta-\epsilon)\}}{(1+\Upsilon \cos \nu \theta)}\right]-2 G\left[A_{0}(\theta)\right]+\mathrm{O}\left(\nu^{2} \log \nu\right)=0, \tag{102}
\end{align*}
$$

where $G$ is an operator defined by

$$
G[f(\theta)]=\int_{1}^{\infty}\left[f\left(\theta_{1}\right)-f(\theta)\right] \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}}
$$

## Clearly

when $k$ is a constant, and

$$
\begin{equation*}
G[k f(\theta)]=k G[f(\theta)], \tag{103}
\end{equation*}
$$

$$
\begin{equation*}
G\left[f_{1}(\theta)+f_{2}(\theta)\right]=G\left[f_{1}(\theta)\right]+G\left[f_{2}(\theta)\right] . \tag{104}
\end{equation*}
$$

If $A_{0}(\theta)$ as given by equation (101) is to satisfy equation (102), then, from equations (100), (103) and (104), the following equation must be true:

$$
\begin{aligned}
& 2 a \nu G[\sin (\nu \theta-\epsilon)]+\nu \Upsilon G\left[\frac{\sin \nu \theta\{1+\cos (\nu \theta-\epsilon)\}}{(1+\Upsilon \cos \nu \theta)}\right]+ \\
& \quad+\nu \log \nu\left[\Upsilon G\left\{\frac{\sin \nu \theta}{(1+\Upsilon \cos \nu \theta)}\right\}+a G\left\{\frac{\sin (\nu \theta-\epsilon)}{(1+\Upsilon \cos \nu \theta)}\right\}+a \Upsilon G\left\{\frac{\sin (2 \nu \theta-\epsilon)}{(1+\Upsilon \cos \nu \theta)}\right\}\right]- \\
& \quad-\nu \Upsilon G[K(1,0)]-\nu a G[K(1, \epsilon)]-\nu a \Upsilon G[K(2, \epsilon)]=\mathrm{O}\left[(\nu \log \nu)^{2}\right] .
\end{aligned}
$$

To prove this it is sufficient to show that

$$
\begin{align*}
G[\sin (\nu \theta-\epsilon)] & =\mathrm{O}(\nu \log \nu),  \tag{105}\\
G\left[\frac{\sin \nu \theta\{1+a \cos (\nu \theta-\epsilon)\}}{(1+\Upsilon \cos \nu \theta)}\right] & =\mathrm{O}(\nu \log \nu),  \tag{106}\\
G\left[\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right] & =\mathrm{O}(\nu \log \nu), \tag{107}
\end{align*}
$$

and

$$
\begin{equation*}
G[K(n, \delta)]=\mathrm{O}(\nu \log \nu) \tag{108}
\end{equation*}
$$

where $a$ is equal to 1 or 2 and $\delta$ is equal to 0 or $\epsilon$. Equation (106) can be written

$$
G\left[\frac{\sin \nu \theta+\frac{a}{2} \sin (2 \nu \theta-\epsilon)+\frac{a}{2} \sin \epsilon}{(1+\Upsilon \cos \nu \theta)}\right]=\mathrm{O}(\nu \log \nu)
$$

from equations (103) and (104), the proof of this is dependent only on the proof of equation (107), with $n$ now equal to 0,1 or 2 .

Equation (105) is

$$
\int_{1}^{\infty} \frac{\left[\sin \left(\nu \theta_{1}-\epsilon\right)-\sin (\nu \theta-\varepsilon)\right] d \eta_{1}}{\left(\eta_{1}-1\right)^{2}}=\mathrm{O}(\nu \log \nu) .
$$

Now,

$$
\begin{aligned}
\int_{1}^{\infty} & \frac{\left[\sin \left(\nu \theta_{1}-\epsilon\right)-\sin (\nu \theta-\epsilon)\right] d \eta_{1}}{\left(\eta_{1}-1\right)^{2}} \\
& =\int_{1}^{\infty} \frac{\left[\cos \left(\nu \theta_{1}-\frac{\pi}{2}-\epsilon\right)-\cos \left(\nu \theta-\frac{\pi}{2}-\epsilon\right)\right]}{\left(\eta_{1}-1\right)^{2}} d \eta_{1} \\
& =J\left(1, \frac{\pi}{2}+\epsilon\right)=\mathrm{O}(\nu \log \nu)
\end{aligned}
$$

from equation (97); this proves equation (105).
Equation (107) is

$$
\int_{1}^{\infty}\left[\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right] \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}}=\mathrm{O}(\nu \log \nu) .
$$

Split the range of integration into two parts by writing

$$
\begin{align*}
& \int_{1}^{\infty}\left.\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right] \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}} \\
& \quad \int_{1}^{\eta_{A}}\left[\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{\left(1+\Upsilon^{\prime} \cos \nu \theta\right)}\right] \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}}+ \\
& \quad+\int_{\eta_{A}}^{\infty}\left[\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right] \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}}, \tag{109}
\end{align*}
$$

where $\eta_{A}$ is given by equation (56b). Now,

$$
\begin{gathered}
\left|\int_{\eta_{A}}^{\infty}\left[\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right] \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}}\right|<\frac{2}{(1-\Upsilon)} \int_{\eta_{A}}^{\infty} \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}} \\
\quad=\frac{2}{(1-\Upsilon)\left(\eta_{A}-1\right)}=\frac{\nu}{(1-\Upsilon)\left[2 \pi+\left(4 \pi^{2}+2 \pi \nu\right)^{1 / 2}\right]}=\mathrm{O}(\nu)
\end{gathered}
$$

hence, from equations (109) and (56b),

$$
\begin{align*}
\int_{1}^{\infty} & {\left[\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right] \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}} } \\
= & \int_{1}^{\eta_{A}}\left[\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right] \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}}+\mathrm{O}(\nu) \\
= & {\left[-\frac{1}{\left(\eta_{1}-1\right)}\left\{\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon^{n} \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right\}\right]_{1}^{\eta_{A}}+} \\
& +\nu \int_{\theta}^{\theta+2 \pi / \nu}\left[\frac{n \cos \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}+\frac{\Upsilon \sin \nu \theta_{1} \sin \left(\nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}\right] \frac{d \theta_{1}}{\left(\eta_{1}-1\right)}+\mathrm{O}(\nu) \tag{110}
\end{align*}
$$

From equations (56), the upper limit in the first term vanishes; the argument used to prove equation (82) shows that the lower limit also vanishes. Hence, from equations (52), (53), (56a) and (110),

$$
\begin{align*}
\mid \int_{1}^{\infty} & { \left.\left[\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right] \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}} \right\rvert\, } \\
& \left.=\frac{\nu}{2} \left\lvert\, \int_{0}^{2 \pi \nu \nu}\left[\frac{n \cos \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{2}}+\frac{\Upsilon \sin \nu \theta_{1} \sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)^{3}}\right] \overline{\left[Q_{1}+\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2 / 2}\right.}\right.\right]+\mathrm{O}(\nu) \\
& <\frac{\nu}{2}\left[\frac{n}{(1-\Upsilon)^{2}}+\frac{\Upsilon}{(1-\Upsilon)^{3}}\right] \int_{0}^{2 \pi / \nu} \frac{d Q_{1}}{\left[Q_{1}+\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}\right]}+\mathrm{O}(\nu) \\
& =\frac{\nu}{2}\left[\frac{n}{(1-\Upsilon)^{2}}+\frac{\Upsilon}{\left(1-\Upsilon^{2}\right)^{3}}\right]\left[\sinh ^{-1} Q_{1}^{1 / 2}+\left(Q_{1}+Q_{1}^{2}\right)^{1 / 2}-Q_{1}\right]_{0}^{2 \pi / \nu}+\mathrm{O}(\nu) \\
& =\mathrm{O}(\nu \log \nu) \tag{111}
\end{align*}
$$

this proves equation (107).

To prove equation (108) it is sufficient to demonstrate the truth of both

$$
\begin{align*}
\int_{1}^{\infty} & {\left[\int_{\nu \theta_{1}}^{\left(2 \pi+\nu \theta_{1}\right)}\left\{\frac{\sin (n \chi-\delta)}{(1+\Upsilon \cos \chi)}-\frac{\sin \left(n \nu \theta_{1}-\delta\right)}{\left(1+\Upsilon \cos \nu \theta_{1}\right)}\right\} \frac{(1+\Upsilon \cos \chi) d \chi}{R_{1}}-\right.} \\
& \left.-\int_{\nu \theta}^{(2 \pi+\nu \theta)}\left\{\frac{\sin (n \chi-\delta)}{\left(1+\Upsilon^{\prime} \cos \chi\right)}-\frac{\sin (n \nu \theta-\delta)}{(1+\Upsilon \cos \nu \theta)}\right\} \frac{(1+\Upsilon \cos \chi) d \chi}{R}\right] \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}}=\mathrm{O}(\nu \log \nu), \tag{112}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{1}^{\infty}\left\{\int_{\left(2 \pi+\nu \theta_{1}\right)}^{\infty} \sin \left(n_{\chi}-\delta\right) \frac{d \chi}{R_{1}}-\int_{(2 \pi+\nu \theta)}^{\infty} \sin \left(n_{\chi}-\delta\right) \frac{d \chi}{R}\right\} \frac{d \eta_{1}}{\left(\eta_{1}-1\right)^{2}}=\mathrm{O}(\nu \log \nu), \tag{113}
\end{equation*}
$$

where equations (98), (111), (103) and (104) have been used; here,

$$
R_{1}=\left(\chi-\nu \theta_{1}\right)+\Upsilon\left(\sin \chi-\sin \nu \theta_{1}\right),
$$

and

$$
R=(\chi-\nu \theta)+\Upsilon(\sin \chi-\sin \nu \theta)
$$

from equation (99). Equations (112) and (113) are proved by splitting the range of integration into two, as before; the expressions are now fairly cumbersome, and it is hoped that the reader will be satisfied with a brief sketch of the procedure; the arguments are very similar to those used before.
Consider equation (112) first. Split the range of the outer integral into two, 1 to $\eta_{A}$, and $\eta_{A}$ to $\infty$, where $\eta_{A}$ is given by equation (56b). The inner integrals are both $\mathrm{O}(1)$, and so are less than $C$, where $C=\mathrm{O}(1)$; hence, the outer integral from $\eta_{A}$ to $\infty$ is less than $C \int_{\eta_{A}}^{\infty} d \eta_{1} /\left(\eta_{1}-1\right)^{2}$, which is $\mathrm{O}(\nu)$. The outer integral from 1 to $\eta_{A}$ is integrated by parts: $1 /\left(\eta_{1}-1\right)$ times the inner integral at $\eta_{1}$ equal to $\eta_{A}$ is $\mathrm{O}(\nu) ; 1 /\left(\eta_{1}-1\right)$ times the inner integral vanishes as $\eta_{1} \rightarrow 1$, exactly as in the proof of equation (82). The remaining term is $\nu$ times a double integral. This double integral is less than $C \int_{\theta}^{2 \pi+\theta} d \theta_{1} /\left(\eta_{1}-1\right)$, where $C$ is $\mathrm{O}(1)$; as in the proof of equation (111), this can be shown to be $O(\log \nu)$. Hence, equation (112) is true. A similar argument holds for equation (113); here, the inner integrals are known to be $\mathrm{O}(1)$ from equations (89), (90) and (52). Since equations (112) and (113) are both true, it follows that equation (108) is also true.

All four relations of equations (105) to (108) have now been verified, so that $A_{0}(\theta)$ is indeed given by equation (101), the error being $\mathrm{O}\left[(\nu \log \nu)^{2}\right]$.

## 5. Results and Discussion.

From the analysis in the preceding three sections, approximate expressions can be obtained for $C_{L}$, the lift coefficient, and $C_{m}$, the moment coefficient referred to the leading edge. From equations (35) and (37),

$$
\begin{equation*}
C_{L}=\frac{\pi\left(a_{0}+a_{1}\right)}{U_{0}^{2}(1+\Upsilon \cos \omega t)^{2}} ; \tag{114}
\end{equation*}
$$

from equations (36) and (37)

$$
\begin{equation*}
C_{m}=\frac{\pi\left(a_{0}+2 a_{1}+a_{2}\right)}{4 U_{0}^{2}(1+\Upsilon \cos \omega t)^{2}} . \tag{115}
\end{equation*}
$$

Here, from equation (45),

$$
\begin{equation*}
\frac{a_{1}}{\alpha U_{0}^{2}}=-\frac{\nu}{2}\{\Upsilon \sin \omega t[1+a \cos (\omega t+\epsilon)]+2 a(1+\Upsilon \cos \omega t) \sin (\omega t+\epsilon)\}+\mathrm{O}\left(\nu^{2}\right) ; \tag{116a}
\end{equation*}
$$

from equation (46),

$$
\begin{equation*}
\frac{a_{2}}{\alpha U_{0}^{2}}=\mathrm{O}\left(\nu^{2}\right) ; \tag{116b}
\end{equation*}
$$

and, from equation (47c),

$$
\begin{equation*}
\frac{a_{0}}{\alpha U_{0}^{2}}=(1+\Upsilon \cos \omega t) A_{0} . \tag{117a}
\end{equation*}
$$

From equations (101) and (47a),

$$
\begin{align*}
A_{0}= & 2(1+\Upsilon \cos \omega t)\{1+a \cos (\omega t+\epsilon)\}- \\
& -\nu \log \nu \frac{\{\Upsilon \sin \omega t+a \sin (\omega t+\epsilon)+a \Upsilon \sin (2 \omega t+\epsilon)\}}{(1+\Upsilon \cos \omega t)}- \\
& -\nu\left[2 a \sin (\omega t+\epsilon)+\frac{\Upsilon \sin \omega t\{1+a \cos (\omega t+\epsilon)\}}{(1+\Upsilon \cos \omega t)}+\Upsilon K(1,0)+a K(1, \epsilon)+\right. \\
& +a \Upsilon K(2, \epsilon)]+\mathrm{O}\left[(\nu \log \nu)^{2}\right] \tag{117b}
\end{align*}
$$

here, from equations (47a) and (98) (with $\gamma$ written for $-\chi$ ),

$$
\begin{aligned}
K(n, \delta)= & -(\log 8 \pi+1) \frac{\sin (n \omega t+\delta)}{(1+\Upsilon \cos \omega t)}+ \\
& +\int_{(\omega t-2 \pi)}^{\omega t}\left[\frac{\sin (n \omega t+\delta)}{(1+\Upsilon \cos \omega t)}-\frac{\sin (n \gamma+\delta)}{(1+\Upsilon \cos \gamma)}\right] \frac{(1+\Upsilon \cos \gamma) d \gamma}{R}-\int_{-\infty}^{(\omega t-2 \pi)} \sin (n \gamma+\delta) \frac{d \gamma}{R}
\end{aligned}
$$

where, from equations (99) and (47a),

$$
R=(\omega t-\gamma)+\Upsilon(\sin \omega t-\sin \gamma)
$$

These formulas give $C_{L}$ and $C_{m}$ as terms $\mathrm{O}(1)$ plus terms $\mathrm{O}(\nu \log \nu)$ and $\mathrm{O}(\nu)$; terms $\mathrm{O}\left[(\nu \log \nu)^{2}\right]$ and higher-order terms are neglected. When $\nu$ is put equal to zero, the formulas give the 'quasisteady' results, $C_{L}=2 \pi \alpha_{0}(1+a \cos (\omega t+\epsilon)], C_{m}=(\pi / 2) \alpha_{0}[1+a \cos (\omega t+\epsilon)]$; here, from equation (2), $\alpha_{0}[1+a \cos (\omega t+\epsilon)]$ is the instantaneous incidence. Consequently, an idea of the error incurred by the use of quasi-steady theory can be obtained by comparing the terms $\mathrm{O}(\nu \log \nu)$ and $\mathrm{O}(\nu)$ in $C_{L}$ and $C_{m}$ with the terms $\mathrm{O}(1)$.
Now, the formulas for $C_{L}$ and $C_{m}$ may be written in the following form:

$$
\begin{align*}
\frac{C_{L}}{2 \pi \alpha_{0}}= & {[1+a \cos (\omega t+\epsilon)]+\nu\left[l_{1}+l_{2} \log \nu\right)+\left(m_{1}+m_{2} \log \nu\right) a \sin \epsilon+} \\
& \left.+\left(n_{1}+n_{2} \log \nu\right) a \cos \epsilon\right]+\mathrm{O}\left[(\nu \log \nu)^{2}\right]  \tag{118}\\
\frac{C_{m}}{\pi / 2 \alpha_{0}}= & {[1+a \cos (\omega t+\epsilon)]+\nu\left[\left(l_{3}+l_{2} \log \nu\right)+\left(m_{3}+m_{2} \log \nu\right) a \sin \epsilon+\right.} \\
& \left.+\left(n_{3}+n_{2} \log \nu\right) a \cos \epsilon\right]+\mathrm{O}\left[(\nu \log \nu)^{2}\right] \tag{119}
\end{align*}
$$

These follow from equations (114) to (117) inclusive. Table 1 gives values for $l_{1}, l_{2}$, etc: for each of five values of $\Upsilon(0,0.2,0 \cdot 4,0 \cdot 6,0 \cdot 8)$ the quantities are given for twelve values of $\omega t \cdot(0$ to $11 \pi / 6$ at intervals of $\pi / 6)$.

In Fig. 1; $L$ (non-dimensionalised by dividing by $2 \pi \alpha_{0} \frac{1}{2} \rho U_{0}{ }^{2} c$ ) is plotted against $\omega t$ for representative values (for a helicopter blade) of $\Upsilon, a, \nu$ and $\epsilon$; these are $\Upsilon=0 \cdot 6, a=0 \cdot 8, \nu=0 \cdot 1$, $\varepsilon=\pi$. The full line is the quasi-steady result,

$$
\frac{L}{2 \pi \alpha_{0} \frac{1}{2} \rho U_{0}{ }^{2} c}=(1+\Upsilon \cos \omega t)^{2}[1+a \cos (\omega t+\epsilon)] ;
$$

the crosses are the values obtained by using Table 1. It is seen that in this example retention of terms $\mathrm{O}(\nu \log \nu)$ and $\mathrm{O}(\nu)$ makes little change to the quasi-steady curve.

The special case where $a$ is unity and $\gamma^{\prime}$ is zero corresponds to constant forward speed and harmonic variation of incidence. Since $\Upsilon=0, \varepsilon$ may be chosen arbitrarily; it is taken to be zero. This case is treated in Ref. 1 (page 503), where an exact solution is obtained. For a reduced frequency of $0 \cdot 1$, the following results are obtained for the non-dimensionalised $L$.

| $\omega t$ | Quasi-steady | Present theory | Exact theory ${ }^{1}$ |
| :--- | :---: | :---: | :---: |
| 0 | 2 | 1.922 | 1.916 |
| $\pi / 2$ | 1 | 1.056 | 1.038 |
| $\pi$ | 0 | 0.078 | 0.084 |
| $3 \pi / 2$ | 1 | 0.944 | 0.962 |
| $2 \pi$ | 2 | 1.922 | 1.916 |

The terms $\mathrm{O}(\nu \log \nu)$ and $\mathrm{O}(\nu)$ produce the differences between the second and third columns; the terms $\mathrm{O}\left[(\nu \log \nu)^{2}\right]$ and higher-order terms produce the differences between the third and fourth columns.

After the present work had been completed, the author's attention was drawn to two papers by Issacs ${ }^{3,4}$. Isaacs considers the same problem as the one treated in this report. His method is to solve equation (48) by expanding it as a Fourier series in $\nu \theta$ (that is, in $\omega t$ ). The Fourier coefficients are complicated functions of Bessel functions; but, in principle, any number of them can be calculated. Isaacs gives results only for an example where there is constant incidence and harmonic variation of forward speed (see Ref. 3). He truncates the Fourier series at the terms in $\cos 4 \omega t$ and $\sin 4 \omega t$, because the coefficients of these are already small enough to be neglected. It seems likely that the same will be true for the general case (incidence and forward speed both varying); if so, Isaacs's method will be more satisfactory than the present one, since it effectively provides the exact solution. However, it is felt that the present analysis is of sufficient interest to warrant publication.

In Isaacs's example $a=0, \Upsilon=0.4$, and $\nu=0.0848$; since $a=0$, there is no need to specify $\epsilon$. The following results are obtained for the non-dimensionalised $L$.

| $\omega t$ | Quasi-steady | Present theory | Issacs's theory ${ }^{3}$ |
| :--- | :---: | :---: | :---: |
| 0 | 1.96 | 1.947 | 1.947 |
| $\pi / 2$ | 1 | 1.047 | 1.039 |
| $\pi$ | 0.36 | 0.430 | 0.427 |
| $3 \pi / 2$ | 1 | 0.954 | 0.963 |
| $2 \pi$ | 1.96 | 1.947 | 1.947 |

The terms $\mathrm{O}(\nu \log \nu)$ and $\mathrm{O}(\nu)$ produce the differences between the second and third columns; the terms $\mathrm{O}\left[(\nu \log \nu)^{2}\right]$ and higher-order terms effectively produce the differences between the third and fourth columns.

| A | Defined by equation (65) |
| :---: | :---: |
| $A_{0}$ | Defined by equation (47c) |
| $a$ | See equation (2) |
| $a_{s}$ | See equation (12) |
| $b_{s}$ | Defined after equation (15b) |
| Ci | Cosine integral (see page 3 of Ref. 2) |
| $C_{L}$ | Lift coefficient |
| $C_{m}$ | Coefficient of pitching moment about leading edge |
| $c$ | Aerofoil chord |
| $F$ | $y=F(x, t)$ is aerofoil equation |
| $G$ | Operator defined after equation (102) |
| $J$ | Defined after equation (80) |
| $K$ | Defined by equation (98) |
| $L$ | Lift acting on aerofoil |
| $l_{s}, m_{s}, n_{s}$ | See equations (118) and (119) |
| M | Pitching moment about the leading edge |
| $p$ | Pressure |
| $p_{\infty}$ | Free-stream pressure |
| $Q_{1}$ | Defined by equation (52) |
| $R$ | $(\chi-\nu \theta)+\Upsilon(\sin \chi+\sin \nu \theta)$ |
| $R_{1}$ | $\left(\chi-\nu \theta_{1}\right)+\Upsilon\left(\sin \chi-\sin \nu \theta_{1}\right)$ |
| $r$ | Length of blade |
| Si | Sine integral (see page 3 of Ref. 2) |
| T, $t$ | Time ( $T$ when space coordinates are $X$ and $Y, t$ when they are $x$ and $y$ ) |
| $T_{1}, t_{1}$ | Variable of integration |
| $U$ | Aerofoil speed |
| $U_{0}$ | See equation (1) |
| $X$ | Coordinate: origin fixed in space and lying on flight path, but otherwise immaterial; direction opposed to that of aerofoil motion |
| $X_{m}$ | $X$ coordinate of mid-point of aerofoil |
| $x$ | Coordinate: origin at $X=X_{m}$; direction the same as that of $X$ |
| $Y$ | Coordinate: origin same as that of $X$; direction perpendicular to that of $X$ |
| $y$ | Coordinate: origin same as that of $x$; direction perpendicular to that of x |

## SYMBOLS-continued

$$
\begin{aligned}
& z=x+i y \\
& z_{1}=X-X_{m}\left(t_{1}\right)+i Y \text {; on the aerofoil, } X-X_{m}\left(t_{1}\right) \\
& \alpha \quad \text { Aerofoil incidence } \\
& \alpha_{0} \quad \text { See equation (2) } \\
& \gamma \quad \text { Variable of integration } \\
& \epsilon \quad \text { See equation (2) } \\
& \zeta \quad z=\frac{c}{4}\left(\zeta+\frac{1}{\zeta}\right) \\
& \zeta_{1} \quad z_{1}=\frac{c}{4}\left(\zeta_{1}+\frac{1}{\zeta_{1}}\right) \\
& \eta=-\zeta_{1} \\
& \eta_{\Delta}=\left(1+\frac{4 \pi}{\nu}\right)+2\left(\frac{2 \pi}{\nu}+\frac{4 \pi^{2}}{\nu^{2}}\right)^{1 / 2} \\
& \theta=-U_{0} t / c \\
& \theta_{1}=-U_{0} t_{1} / c \\
& \mu \quad \zeta=e^{i \mu} \\
& \nu \quad \text { Reduced frequency } \\
& \rho \quad \text { Density } \\
& \Upsilon \quad \text { See equation (1) } \\
& \phi \quad \text { Velocity potential } \\
& \chi=\nu \theta_{1} \\
& \psi \quad \Omega=\mathscr{R} \psi(z, t) \\
& \Omega \quad \text { Acceleration potential } \\
& \omega \quad \text { Circular frequency }
\end{aligned}
$$

## REFERENCES

Title, etc.
1 A. Robinson and J. A. Laurmann.
Wing theory. C.U.P. 1956.

2 E. Jahnke and F. Emde .. .. Tables of functions. Dover Publications. 1945.
3 R. Isaacs .. .. .. .. Airfoil theory for flows of variable velocity. J. Ae. Sci., Vol. 12, No. 1, p. 113. January, 1945.

4 R. Isaacs .. .. .. .. Airfoil theory for rotary wing aircraft. J. Ae. Sci., Vol. 13, No. 4, p. 218. April, 1946.

TABLE 1
Coefficients for Determining Lift and Pitching Moment

|  | $\Upsilon=0$ |  |  | $\Upsilon=0 \cdot 2$ |  |  | $\mathrm{Y}=0.4$ |  |  | $\mathrm{Y}=0.6$ |  |  | $\Upsilon=0.8$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\omega t$ | $l_{1}$ | $l_{2}$ | $l_{3}$ |
| 0 | 0 | 0 | 0 | $-0.10833$ | 0 | $-0 \cdot 10833$ | -0.15479 | 0 | $-0 \cdot 15479$ | -0.17010 | 0 | $-0 \cdot 17010$ | $-0 \cdot 16827$ | 0 | -0.16827 |
| $\pi / 6$ | 0 | 0 | 0 | $-0.07917$ | $-0.03633$ | $-0.09733$ | $-0 \cdot 10704$ | $-0.05516$ | $-0.13462$ | -0.11046 | -0.06496 | $-0 \cdot 14294$ | -0.10168 | $-0.06979$ | -0.13658 |
| $\pi / 3$ | 0 | 0 | 0 | -0.03355 | $-0.07157$ | -0.06933 | $-0.04087$ | -0.12028 | $-0 \cdot 10101$ | $-0.03325$ | $-0.15373$ | $-0 \cdot 11011$ | $-0.01730$ | -0.17674 | -0.10566 |
| $\pi / 2$ | 0 | 0 | 0 | $+0.02988$ | $-0 \cdot 10000$ | $-0.02012$ | +0.05791 | $-0.20000$ | -0.04209 | $+0.08168$ | $-0 \cdot 30000$ | -0.06832 | $+0 \cdot 10051$ | -0.40000 | -0.09949 |
| $2 \pi / 3$ | 0 | 0 | 0 | $+0 \cdot 11237$ | $-0 \cdot 10692$ | +0.05891 | $+0.22879$ | $-0.27063$ | $+0.09347$ | $+0.31415$ | -0.53022 | $+0.04904$ | $+0.27305$ | -0.96225 | $-0.20809$ |
| $5 \pi / 6$ | 0 | 0 | 0 | +0.19924 | -0.07314 | +0.16268 | $+0.53351$ | $-0.23409$ | $+0.41646$ | $+1.06083$ | -0.65000 | $+0.73583$ | $+1.32581$ | $-2 \cdot 11956$ | $+0.26603$ |
| $\pi$ | 0 | 0 | 0 | $+0.24241$ | 0 | $+0.24241$ | +0.83033 | 0 | $+0.83033$ | $+2 \cdot 57775$ | 0 | $+2.57775$ | +11.33460 | 0 | $+11.33460$ |
| $7 \pi / 6$ | 0 | 0 | 0 | +0.19385 | $+0.07314$ | +0.23042 | +0.68077 | $+0.23409$ | +0.79782 | $+2 \cdot 08138$ | $+0.65000$ | $+2.40638$ | $+7 \cdot 60139$ | $+2 \cdot 11956$ | $+8.66117$ |
| $4 \pi / 3$ | 0 | 0 | 0 | $+0.07890$ | $+0 \cdot 10692$ | $+0.13236$ | +0.24354 | $+0.27063$ | $+0.37886$ | $+0.57951$ | $+0.53022$ | $+0.84462$ | +1.31715 | $+0.96225$ | $+1.79828$ |
| $3 \pi / 2$ | 0 | 0 | 0 | $+0.03032$ | $+0 \cdot 10000$ | $+0.01968$ | -0.05499 | $+0 \cdot 20000$ | $+0.04501$ | $-0.06200$ | $+0 \cdot 30000$ | $+0.08802$ | $-0.02243$ | $+0 \cdot 40000$ | $+0 \cdot 17757$ |
| $5 \pi / 3$ | 0 | 0 | 0 | -0.09563 | $+0.07157$ | $-0.05984$ | $-0 \cdot 16822$ | $+0 \cdot 12028$ | $-0 \cdot 10808$ | -0.21487 | $+0 \cdot 15373$ | $-0.13801$ | -0.23189 | $+0.17674$ | $-0.14352$ |
| $11 \pi / 6$ | 0 | 0 | 0 | -0.11706 | +0.03633 | -0.09890 | $-0 \cdot 18346$ | $+0.05516$ | $-0 \cdot 15588$ | -0.21396 | $+0.06496$ | $-0.18148$ | -0.22184 | $+0.06979$ | $-0 \cdot 18694$ |
| $\omega t$ | $m_{1}$ | $m_{2}$ | $m_{3}$ |
| 0 | -0.59546 | $-0 \cdot 50000$ | $-1.09546$ | -0.49061 | -0.41667 | -0.90728 | -0.40943 | -0.35714 | $-0.76658$ | $-0 \cdot 34603$ | -0.31250 | -0.65853 | -0.29584 | -0.27778 | -0.57362 |
| $\pi / 6$ | -0.12299 | $-0.43301$ | $-0.55600$ | $-0.05826$ | $-0.35092$ | -0.41827 | $-0.01708$ | -0.29402 | $-0.32490$ | $+0 \cdot 01058$ | -0.25247 | $-0 \cdot 25813$ | $+0.02930$ | $-0.22090$ | -0.20904 |
| $\pi / 3$ | +0.38244 | $-0 \cdot 25000$ | $+0.13244$ | $+0.38354$ | -0.16529 | +0.18726 | +0.37648 | $-0 \cdot 10417$ | $+0.22023$ | +0.36290 | -0.05917 | $+0.23715$ | +0.34694 | -0.02551 | +0.24489 |
| $\pi / 2$ | +0.78540 | 0 | +0.78540 | $+0.76178$ | $+0.10000$ | +0.81178 | $+0.75106$ | $+0 \cdot 20000$ | $+0.85106$ | $+0.75120$ | $+0 \cdot 30000$ | $+0.90120$ | +0.76109 | $+0 \cdot 40000$ | +0.96109 |
| $2 \pi / 3$ | $+0.97791$ | $+0 \cdot 25000$ | +1.22791 | $+0.99374$ | $+0.37037$ | +1.31782 | +1.03939 | $+0 \cdot 54688$ | $+1.46908$ | +1.16098 | +0.81633 | +1.74772 | $+1.45578$ | $+1.25000$ | $+2 \cdot 28910$ |
| $5 \pi / 6$ | $+0.90839$ | $+0.43301$ | $+1 \cdot 34140$ | $+0.99497$ | +0.56030 | $+1.53679$ | +1.09597 | +0.77956 | +1.81701 | $+1.22566$ | $+1.22639$ | $+2 \cdot 28955$ | $+1.69904$ | $+2.46942$ | $+3 \cdot 63857$ |
| $\pi$ | +0.59546 | $+0.50000$ | +1.09546 | +0.73126 | $+0.62500$ | $+1.35626$ | +0.89936 | $+0.83333$ | $+1.73270$ | $+1.03224$ | +1.25000 | $+2.28224$ | $+0 \cdot 16022$ | $+2 \cdot 50000$ | $+2 \cdot 66022$ |
| $7 \pi / 6$ | +0.12299 | $+0.43301$ | $+0.55600$ | $+0.23106$ | +0.56030 | $+0.77307$ | +0.42924 | $+0.77956$ | +1.15027 | $+0.87485$ | $+1.22639$ | $+1.93873$ | $+2 \cdot 23415$ | $+2.46942$ | $+4 \cdot 17367$ |
| $4 \pi / 3$ | -0.38244 | $+0 \cdot 25000$ | $-0.13244$ | $-0.36892$ | $+0.37037$ | -0.04485 | $-0.33471$ | $+0.54688$ | $+0.09497$ | -0.28647 | +0.81633 | $+0 \cdot 30026$ | -0.27757 | $+1.25000$ | $+0.55576$ |
| $3 \pi / 2$ | $-0.78540$ | 0 | $-0.78540$ | -0.82487 | +0.10000 | $-0.77487$ | -0.88515 | +0.20000 | $-0.78515$ | $-0.97503$ | $+0 \cdot 30000$ | $-0.82503$ | -1.11418 | $+0.40000$ | -0.91418 |
| 5 $\pi / 3$ | $-0.97791$ | $-0.25000$ | $-1 \cdot 27791$ | $-0.97598$ | $-0.16529$ | $-1.17226$ | -0.98233 | -0.10417 | $-1 \cdot 13858$ | -0.99016 | $-0.05917$ | $-1.11589$ | -1.00458 | -0.02551 | $-1 \cdot 10662$ |
| $11 \pi / 6$ | $-0.90839$ | $-0.43301$ | $-1 \cdot 34140$ | $-0.83166$ | $-0 \cdot 35092$ | $-1 \cdot 19166$ | $-0.76614$ | -0.29402 | $-1 \cdot 07395$ | -0.70649 | $-0.25247$ | $-0.97520$ | -0.67511 | -0.22090 | $-0.89546$ |
| $\omega t$ | $n_{1}$ | $n_{2}$ | $n_{3}$ |
| 0 | -0.78540 | 0 | $-0.78540$ | -0.65080 | 0 | -0.65080 | -0.54763 | 0 | $-0.54763$ | -0.46864 | 0 | -0.46864 | -0.40662 | 0 | -0.40662 |
| $\pi / 6$ | -0.97791 | $-0.25000$ | $-1 \cdot 27791$ | $-0.78631$ | $-0.24455$ | $-1.01514$ | -0.64038 | $-0.23345$ | $-0.84995$ | -0.52849 | $-0 \cdot 22077$ | $-0.72113$ | $-0.44096$ | $-0.20813$ | -0.61886 |
| $\pi / 3$ | $-0.90839$ | $-0.43301$ | $-1 \cdot 34140$ | $-0.71605$ | $-0.42944$ | $-1.12760$ | -0.56536 | -0.42099 | -0.95628 | -0.44661 | -0.40996 | $-0.81813$ | $-0.35164$ | $-0.39766$ | $-0.70513$ |
| $\pi / 2$ | $-0.59546$ | $-0.50000$ | $-1.09546$ | . -0.44875 | $-0.50000$ | -0.94875 | $-0.31149$ | $-0.50000$ | -0.81149 | $-0.18753$ | $-0.50000$ | $-0.68753$ | -0.07485 | $-0.50000$ | $-0.57485$ |
| $2 \pi / 3$ | -0.12299 | -0.43301 | $-0.55600$ | $-0.01389$ | $-0.42766$ | $-0.46829$ | $+0.15299$ | -0.40595 | $-0.32061$ | $+0.42306$ | -0.35348 | $-0.06298$ | $+0.89308$ | -0.24056 | +0.41194 |
| $5 \pi / 6$ | +0.38244 | $-0.25000$ | $+0.13244$ | $+0.50185$ | $-0.23903$ | +0. 23114 | +0.73537 | $-0.17978$ | +0.45424 | $+1.33522$ | $+0.04250$ | $+1.09626$ | $+3.76832$ | $+1.02174$ | $+3.87227$ |
| $\pi$ | $+0.78540$ | 0 | $+0.78540$ | $+0.96671$ | 0 | $+0.96671$ | +1.20697 | 0 | $+1.20697$ | $+1.41378$ | 0 | $+1.41378$ | -0.16515 | 0 | -0.16515 |
| $7 \pi / 6$ | $+0.97791$ | $+0 \cdot 25000$ | $+1 \cdot 22791$ | $+1.23391$ | $+0.23903$ | +1.50462 | $+1.56939$ | $+0.17978$ | +1.85052 | +1.91347 | -0.04250 | +2.15243 | $+1 \cdot 28941$ | $-1.02174$ | $+1 \cdot 18547$ |
| $4 \pi / 3$ | +0.90839 | $+0.43301$ | +1.34140 | $+1 \cdot 16420$ | $+0.42766$ | +1.61859 | $+1.51910$ | $+0.40595$ | +1.99271 | $+2 \cdot 02717$ | +0.35348 | $+2 \cdot 51320$ | $+2 \cdot 78648$ | $+0.24056$ | $+3.26760$ |
| $3 \pi / 2$ | $+0.59546$ | +0.50000 | $+1.09546$ | +0.76064 | $+0 \cdot 50000$ | $+1.26064$ | $+0.94629$ | +0.50000 | $+1.44629$ | $+1 \cdot 15609$ | $+0 \cdot 50000$ | $+1.65609$ | $+1.39221$ | $+0 \cdot 50000$ | $+1.89221$ |
| 5 $\pi / 3$ | $+0.12299$ | $+0.43301$ | $+0.55600$ | $+0.19991$ | +0.42944 | $+0.61144$ | $+0.25993$ | $+0.42099$ | $+0.65085$ | $+0.30738$ | $+0.40996$ | $+0.67890$ | $+0 \cdot 34685$ | $+0 \cdot 39766$ | $+0 \cdot 70033$ |
| $11 \pi / 6$ | $-0 \cdot 38244$ | +0.25000 | $-0.13244$ | $-0 \cdot 30901$ | $+0.24455$ | $-0.08019$ | $-0.25987$ | $+0.23345$ | $-0.05031$ | $-0.21890$ | $+0 \cdot 22077$ | $-0.02626$ | $-0 \cdot 18919$ | $+0.20813$ | $-0.01129$ |



Fig. 1. Quasi-steady and corrected lift for a representative aerofoil.

# Publications of the Aeronautical Research Council 

## ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)

1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (post 2s. 9d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (post 2s. 3d.)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (post 2s. 6d.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures.
90s. (post 2s. 9d.)
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (post 3s.)
Vol. II. Flutter and Vibration, Materials; Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (post 3s.)
1945 Vol. I. Aero and Hydrodynamics, Aerofoils. i3os. (post 3s, 6d.)
Vol. II. Aircraft, Airscrews, Controls. I3Os. (post 3s. 6d.)
Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion.
Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. 13os. (post 3s. 3d.)
1946 Vol. I. Accidents, Aerodynamics, Aerofoils and Hydrofoils. 168s. (post 3s. 9d.)
Vol. II. Airscrews, Cabin Cooling, Chemical Hazards, Controls, Flames, Flutter, Helicopters, Instruments and Instrumentation, Interference, Jets, Miscellaneous, Parachutes. 168s, (post 3s. $3^{\text {d. }}$.)
Vol. III. Performance, Propulsion, Seaplanes, Stability, Structures, Wind Tunnels. 168s. (post 3s. 6d.)
1947 Vol. I. Aerodynamics, Aerofoils, Aircraft. 168s. (post 3s. 9 d.)
Vol. II. Airscrews and Rotors, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Seaplanes, Stability, Structures, Take-off and Landing. 168s. (post 3s. 9d.)
1948 Vol. I. Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments, Propulsion, Seaplane, Stability, Structures, Wind Tunnels. r3os. (post 3s. 3d.)
Vol. II. Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments, Propulsion, Seaplane, Stability, Structures, Wind Tunnels. iros. (post 3s. 3d.)

## Special Volumes

Vol. I. Aero and Hydrodynamics, Aerofoils, Controls, Flutter, Kites, Parachutes, Performance, Propulsion, Stability. 126s. (post 3s.)
Vol. II. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Stability, Structures. 147s. (post 3s.)
Vol. III. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Kites, Miscellaneous, Parachutes, Propulsion, Seaplanes, Stability, Structures, Test Equipment. 189 s . (post 3s. 9d.)
Reviews of the Aeronautical Research Council
$1939-48 \quad 3$ s. (post $6 d$.) $\quad 1949-54 \quad 5 s$. (post $5 d$.)
Index to all Reports and Memoranda published in the Annual Technical Reports 1909-1947 R. \& M. 2600 (out of print)

Indexes to the Reports and Memoranda of the Aeronautical Research Council

Between Nos. 2351-2449
Between Nos. 245x-2549
Between Nos. $2551-2649$ Between Nos. 2651-2749
Between Nos. $2751-2849$
Between Nos. $2851-2949$
Between Nos. 2951-3049
Between Nos. 3051-3149
R. $\&$ M. No. $2450 \quad 2 s$. (post 3 d.)
R. \& M. No. 2550 2s. $6 d$. (post 3 d.)
R. 8 M. No. 2650 2s. 6 d. (post 3d.)
R. \& M. No. 2750 2s. 6d. (post 3d.)
R. \& M. No. 2850 2s. 6d. (post 3d.)
R. \& M. No. 2950 3s. (post $3^{d .}$ )
R. $\&$ M. No. 3050 3s. 6 d. (post 3 d.)
R. \& M. No. 3 I 50 3s. 6d. (post 3d.)

## HER MAJESTY'S STATIONERY OFFICE

## (C) Crown copyrighe 1965

Printed and published by Her Majesty's Stationery Office

To be purchased from
York House, Kingsway, London w.c. 2
423 Oxford Street, London w.r
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
50 Fairfax Street, Bristol I
35 Smallbrook, Ringway, Birmingham 5
80 Chichester Street, Belfast I
or through any bookseller
Printed in England


[^0]:    * Replaces R.A.E. Tech. Note No. Structures 357-A.R.C. 26190.

