C.P. No. 387
(18.084)
A.R.C. Technical Report

AERONAUTICAL RESEARCH COUNCIL

 CURRENT PAPERS
HIGH REYNOLDS NUMBER TESTS ON

A 70° L.E. SWEEPBACK DELTA WING AND BODY (H.P. IOO) IN THE COMPRESSED AIR TUNNEL

By
R. W. F. Gould, B.Sc, A.F.R.Ae.S., and C. F. Cowdrey, B.Sc., of the Aerodynamics Division, N.P.L.

High Reynolus Numbor Tosts on a 70° L.E. Sweepback
Delta Wing and Body (H.P. 100) in the Compressed
Are Tumnel

- By -
R. W. F. Gould, B.Sc., A.F.R.Ae.S., and C. F. Cowdrey, B.Sc., of the Aerodynamics Division, IV.D.I.

December, 1955

STMMARY

Veluos of lift, drag and pitching moment coofficients are given for a modol of the H.P. 100 delta wing with sharp leading edges and with a body att chod, over a range of Reynolids numbers from 1×10^{6} to 12×10^{6} and at moiacnces up to 42°. Photographs of the traces of an oil/titanium oxido maxturo, on the surfaco, indicating flow directions, are included. The results skow no appreciablo scalo effect.

Introduction

A larger model of the H.P. 100 wnge, with a suitable body attached, had already boon tested to a Roynolds number of 0.9×10^{6} in the Handley Page wind tunnel. Sumilar tosts to a high Roynolds number wose rade in tho Compressed Air Tunnel wath corresponding visual tosts, in an attempt to link any scale cffocts whth flow patterns. The ancidonce rarge covered was 45° starting from a small nogative value.

The Modol

The whe plan was a delta whth 70 leading edge swoepback. The soction was biconvox, gonerated by circular ares and having a maximum thicknoss of 4% of the local chord. The wing was set along the centroIne of a body of finonoss ratio 20.7 as shown in Fig. 1 ,

Consuderations of tunnel blockago at the highest incidence and of the wind forcos on tho model led to the span beang limitod to 18 ". The maximum lift and drag forces exporienced were 300 Ib and 360 lb rospectively.

The wing was formod of selected plywood bonded to a substantial stocl coro and phenoglazed. The body was of woodon construction.

The Noed for Spocjal Suprort Arranmemonts

Modcls in the Comprcssod Alx Tunnel are gencrally supported from above, by tro struaminod rods, pin jointed to tho wings, with a third streamlinud rod, pin jcintod to the fusolago, farther astorn. The third rod can be ôryvon up aud down for change of incidence and its position relative to the main support is largoly detormined by the incidonco range to be covered. In most models the front supports can be placed in regions of substantial wing thickncss, at tia samo time positioning the rear rod so that it never comos under compression (which would load to znczdence changes from buckling of the rod). In the case of the H.P. 100 model it was cloar that the wing was too thin to pormit adequately spaced front supports and, in ony case, tho suvere sweepback would have placed those supports so far astern that buckling of tho rear support would heve beon inevitablc. Moreover such make-shift expedients as were possible to overcome this difficulty would have rosulted in undesirably largc wing/support inturferonco and this would tave throm doubt on any conclusions drawn from the work.

The/
Published with pormission of the Diroctor, National Physical Laboratory, and of Handloy Page, Limitod.

Tho support arrancmont dovisod. is shown in Fig. 2. A pair of ovorhcad front members, attached to the balance and samilar to those normally used, though shorter, supported a horizontal beam, into the contre of which a sweptback strut was faxod. An inclined tio bar, from the centre of the beam direct to the balance framework, took most of the resultant loading on the strut. This roduced the displacoment of the model under load to reasonable proportions, with a correspondang reduction in tno magnatude of the corrections from this cause. The design problern was then ruduced largely to ono of onsuring that the pins anchoring the boam at onch end, and thoso holding tho strut to the beam could whithand the shoar forcos arising fron tho oorsion loads on tho boam. There remaned strangent requaxcmenis of manufacture, partaculaxly in fitting these pans, so that no backlash was proscnt.

The rigleity in yaw and role common to the nornal throe point suspension having boon romovod, adequato componsation was obtained by makng the lower crd of the strut in the form of a flat tongue of substantial surface area, fitting closely into a slot machined in the central steel cure of the modol. The cheoks of the tongue were of phosphor bronze. Inztially a steel to steel bearing had scized up, probably due to molocular adhesion botween the similar faces. Graphite grcase was used as a lubricant and the modified bearang bohaved porfectly.

Tho support gear was well shzelded from tho wind wh th streamInod guardi down to the lovel indicated in Fig. 2.

Displacement of Model

In assombling tho support gear it is possible to arrange for the axis of the man boaring support to councade wath thy pitching momont axis of tho balance. If, on lowing in a wind, the model position changes, It is necessery to corrcet the belance momont readings to the now position of the model bcaring and also to correct the incidence in the light of the relative movements of the bcaring axes of the front and ruar supports. The rear support rod will swirg in an arc struck from its upper pavot, as compelled by the faxcd apacing betwoen the two bearings in tho model.

Tho loading also causes a swing of the model in an arc controd roughly in tho Lorizontal boam so that lift and drag loadjngs cach produce both horizontal and vertical deflecticns at the front support bowing.

On this account, horizontal and vortical loadings worc applied, in turn, to tho front support strut at the boaring position and dial gauges woro used to mensure the resulting horizontal and vertical doflootzons.

As would be cxpucted, it was found that combinod horizontal and vertical loads producod defloctions which woro sample addations of thoso obtanod by sepanato lorizontal and vurtical loading.

The standard of craftsmanship in the manufacture and fatting of the modol and support gear was excellent and as a rosult only nogligible backlash was oncountered on loading and unloading the suoport. Thus in spite of appreciable dufloctions in actual running conditions, corrections for these deflections wore applied with confidence. Tho maximum shifts oncountered under running conditions amounted to almost 0.2 In. horlzontally and 0.05 in . virtically, which resulted in a moximum corrcction on $C m$ of noarly 0.07 and on ancidonce of 0.7°.

Inztial Difficulties

During the first fow tests the mann support bearing gave trouble, as mentioned earlicr, and ceventually jammed altogether. This prolongod the running tame and although the wing taps had startod as paper-thin points, by the time the highest Reynolds number tests wore attemptod, onc of the tips had slightiy deteriorated and a severe oscillation developod noar the stall. It 1 s probablo that the slight asymmetry betwoon the wing tips gave rise to phase and magnitude changes botwoon the vorticos from each wing and the rosulting instantancous forces might woll have produced rolling and yawing moments large enough to account for tho oscillation experiencod. The intact wing tap was trimmed with a pair of scissors to correspond with the damagu tip and although the oscillation was grcatly reduced, it was styll not possible to proceed to the highest incidence at the highost Rof.

A slight ruduction of R onabled a satisfactory rur to bo completed and, in viow of the inslemificant scalc effcct between any rosults obtaned up to that stage, $2 t$ was not considcrod necessary to rcpane the whing tips in ordor to complete the highest run.

Pitohing Momunt Axos

Tho tests in tho Handley Page wand tunnel were undertakon wath reforunce to a patching moment axis on the modol controline and 0.8403 c from the trajinn odge, the position being shown in Fig. 1 as the spocified contre of gravity linc. In tho presont tosts compression in the rear support could only bo avozdod by using a pramary patching moriont axis further upstream, on the centreline but $1.030, \bar{c}$ from the trailing edge. In addition to prosenting rosults relative to this latter exis, momonts have also beon convortod to the proferrod axis.

Rosults

Table 1 shows the valucs of the various coefficients obtaned in the tosts at four Roynolds numbors, from 1×10^{6} to 12×10^{6}, undertaken at pressures of 2 to 25 atmospheres approximately. The incudence and moment coefficient values have boen corrected for the displacoment of the model undor load as montionod carlier. An cstinato was mado of tho drag of the exposcd portion of the front support, (that of the rear support rod boind known). The total corroction was small and was usod in computing the valuos of C_{D}. No attompt was made to measure the interference betweon the supports and body, since the provision of a dummy model would hove taken too long and, in any case, only coraparative rosults ware called for. The valuos of C_{L} and Cm at zero ancldonce show that the interforence was small and qualitatively as expected - the loss of pressure behind tho supports producing a small nogative lift and positive patchang moment - it being romenbered that positive lift acts downards in the Compressed Air Tunnel.

The Graphs

The results are plottod $2 n$ Fics. 3 to 8. It will bo scen that scalc offucts on C_{L} and C_{D} nowhoro excoud 2.5% of the maximum valuos, and are ginifally much less, the effect on Cm being correspondingly small. There is a marked concavity in the curvo of lift against ancidence, (Flg. 3), over the working range up to a point of inflexion at about 23°, (CL \# 1.0), and Cimax. would apporer to be about 1.26.

This concavzty, (ancroaso of slope with increasang incidonec) has boun accounted for theoretically, in torms of the part span vortex shoets, by Küchomann (Ref. 1). With vcry highly swopt wings, tho vortox shocts cxist from the lowost incidonces and continually increasing
extra lift, on this account, is evident over most of the working range. In less swept whiss, the part-span vortex sheets develop and begin to move inboard at an appreciable incldence and the concavity of the lift curve only appears above this value.

Fig. 4 is the graph of C_{D} against a and emphasizes the large values of $C D$ obtaned at the kigher incidences, In Fig. $5, C_{D}$ has been plotted against $C_{L}{ }^{2}$, and despite the fact that a small part of the laft and drag is due to the body, the range of incudence over which CD varzes linearly whth C_{L}^{2} is noteworthy. Departure from linearity of this graph also occurs at about 23°, the incidence at which the point of inflexion appeared on the lift curve.

Flg. 6 showi the variation of Cm wath a by direct measurement using the arbitrary patch axis of the model, and F1. 7 . 7 shows the curve computed for the preferred axis through the specified centre of gravity. The completely dufferent character of these two graphs for a modest change of axis position means that only where sudden changes of moment occur on both curves for the same incidence can a radical change of flow pattern be expected.

In Fig. $6 \mathrm{dCm} / \mathrm{d} \alpha$ is highly negatjve over the major working range (largely lue to the monent axis chosen), whereas in Fig. 7 there is a change from asightly negative value of $\mathrm{dCm} / \mathrm{da}$ below about 10° to a large positave value Irom 10° to the stall. In Fig. 6 the departure from linearity rear 25° corresponds with a pronounced reduction in the lift slope in Fig. 3, but at the same incidence in Fig. 7, elther there is no corrosponding feature, or else it is masked by the genoral steepness of the curve in that region. Also, the sudden change of slope in Flg. 7 at about 9° does not appear in Fig. 6. This rapid change of slope (referred to the speczfied centre of gravity) would seem to be due to the summation of separate small effects of lift and drag and not from a drastic change in the flow pattern at thas incidence. Fig. 8 shows the corresponding graph of Cm against C_{L}.

Comparison with Previous Results

Ref. 2 includes graphs of tests in the Handley Page wind-tunnel, of $7 \mathrm{ft} \times 5 \mathrm{ft}$ closed working section (compared with the 6 ft circular open jet C.A.P. section), on a model which was larger than that used in the C.A.T. tests. Up to about 20° tho C.A.T. and Handley Page curver are very simalar in character, but at higher incadences the latter results show lift coefficients up to 20% higher than those given in thas report. Thas difference might bo attributable to a blockace effect at high incidonces in the Handloy Page tosts.

Flow Visualisation

In thelr tests (Pef. 2), Messrs. Handley Page used an $0.11 / t i t a n z u n$ oxade maxture for surface flow vasual tests. To help interpect these surface pattorns, they also set up a lattice of wires carrying streamers above the modol in the tunnel. A simplified skotch of the flow pattorns in the outboard region as shown by the streamors, is compared with the corresponding tyo cal surface flow pattern in Fig. 9. The shortcomings of these surface flow patterns as clues to the complete flow pattern are obvious.

Inadequate viewng facilıtıes for studying streaners inside the Compressed Air Tunnel at prossure, precluded the convenient extension of this type of test to high Roynolds numbers and only the oll surface flow patterns wero recorded, at Reynolds numbers of 2×10^{6} and 5×106, and at angles up to the stall. Earlier, wool tufts had beon stuck at surtable stations on the wing for observations at atmospheric pressure. It was
soon obvious that the flow darections indicated were influenced by the presence of the tufts and these obscrvations were abandoned. In removing these tufts, the discoloration of the surface by the acetate base adhesive became noticeable and these blemishes on the photographs roproduced in this report should be discounted as the surface was in fact everywhere quate smooth.

The oil Technique

The oil maxture used for Roynolds numbers in the 1×10^{6} to 6×10^{6} range was the same as that nomally used in atmospheric pressure tunnels. Titanıum oxido powder was moistened with a few drops of diesel 011, then a few drops of oleic acid were added with thorough mixing to disperse the lumps. Finally more diesel oll was added and the mixture stirrod until the required consistency was obtained. Depending on the Reynolds number and incidence of the test in hand, the consistency of the mixture used had to be varied to permit flow due to the shear forces without undue flow under gravity. For tests at $R<1 \times 106$ improved flow was found whth a mixture in which the diesel 011 was replaced by ordinary paraffin. Since these tests, replacement of the diesel oll with onc of the commercial detorgent ols and some fractionated paraffin has given excellent flow plctures at evon higher Reynolds numbers. The amount and particular fraction of paraffin depends on the pressure and Reynolds number of the test. The aim should be for the paraffan to evaporate in a rasonable muning time leaving the maxture viscous enough to prevent flow under gravity. The mixture was applied with the wang surface horizontal, and then air was admitted to the tunnel from reservoir bottles, the wing set at incidence, the tunnel speed attaned quackly and mazntamed for a suitable time. After stopping the tunnel, the incidence was reset to zero and the tumel exhausted for inspection.

Photography

The copying technique of photography was employed in which two photofloods are used, each at $45^{\prime \prime}$ to the span line and in a plano normal to the centre-line of the model, whth the camera halfway between the lemps. When the lamps and camera were ready for use the whe was set to a pre-determined incidence, just normal to the camera line of view. I. P. K. Hillman, A.R.P.S., of the Central Fhotographic Section, N.P.I., took the photographs. Copies of some of these are ancluded at the end of tho raport.

The Photographs

A photograph taken at 1.1° incidence showed surface flow everywherc parallel to the model axas and has therefore not been included. Leading odge separation begins very early and is well dofined by 4° (Plate 1). The most noticeable feature of the photographs reproduced is the inboard spread of the influence of the main rolled-up vortex sheets as incidence is increased to the stalling angle. This can be seen from the movement of the stagnation line (Flg. 9) and by regarding the flow direction at the trailing edge in the plates. By the time the stalling angle has been reached the region of influence of these vortices appears to have covered the whole wing. There seems to be no conspicuous change of surface flow assoclat,ed with the reversals in the Cm curves (Figs. 6, 7 and 8).

Conclusion
The tests confirmed the expectation that there would be no appreciablo scale effect on the force and moment coefficients over the range of Reynolds numbers 1×10^{6} to 12×10^{6}. The surface
flow patterns follow the changes generally assoclated wath hlghly swept wangs and do not reveal any sudden changes whth incidence likely to account for the particular shape of the patching moment curves show in Figs. 6, 7 and 8.

Acknowledgements

The authors wish to acknowledge the assistance of K. T. Wright of Handloy Page, Itd., and C. A. Culverhouse of Aerodynamics Division, N.P.L., who co-operated in the dosign of the support gear, which was largely constructed in tho Handloy Page workshop and finished and assembled by H. F. Lovesey of Acrodynamics Division, N.P.L. II. D. Timothy assisted in the observations and the authors wish to record that valuable advice was given by C. Salter throughout the tests.

Reforences

Nos.
Author (s)
Küchemann, D.

Lee, G. H.
(Handley Page, Ltd.) Note on the flow around delta wings with sharp leading edges.
R. \& M. 3070. September, 1955.

TABLE 1
H.P. 100 D.A.T. Test Results

$$
\frac{18.084}{F_{10}}
$$

wing t / c
Wing area
Wing section
Fuseiage cross section
Fuselage max dia.
5zanjard mean chord í
Pitching moment axis on $\Phi 1.0305 \bar{c}$ from $T E$. Nominal CG on $£ 0.8403$ é from $T E$.
$\frac{1}{35}$ scale HP 100 wing and body model
$\frac{18,034}{510 \quad 2}$

18,084
510.3

C_{L} for HP 100 wing and body plotted against a
$\frac{13,084}{104}$

C_{D} for HP 100 wing and body plotted against α.
$\frac{18.084}{510.5}$

C_{D} for HP 100 wing and body plotted against C_{L}^{2}

\subseteq_{m} for H.P. 100 wing and body_plotted against a

$\frac{18,034}{5168}$.

$\frac{18,084}{16.9}$

$$
\alpha=3.9^{\circ} \quad R=5.6 \times 10^{6}
$$

Plate 2.

$$
\alpha=9.3^{\circ} \quad R=2.2 \times 10^{6}
$$

Plate 3.

$$
\alpha=9.3^{0} \quad R=5.2 \times 10^{6}
$$

Plate 4

$$
\alpha=23.8^{\circ} \quad R=0.49 \times 10^{6}
$$

Plate 5.

$$
a=23.8^{\circ} \quad R=5.5 \times 10^{6}
$$

$$
\alpha=34.5^{\circ} \quad R=0.49 \times 10^{6}
$$

H.P. 100

Plate 7

$$
\alpha=34.5^{\circ} \quad R=5.2 \times 10^{6}
$$

C.P. No. 387
 (18.084)

A.R.C. Technical Report

(C) Crown copyright 1958
Printed and published by
Her Majesty's Stationery Oppice
To be purchased from
York House, Kingsway, London w.c. 2
423 Oxford Street, London W.I
${ }^{13 A}$ Castle Street, Ediaburgh 2
109 St Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol I
2 Edmund Street, Burmingham 3
80 Chichester Street, Belfast
or through any bookseller
Pronted in Great Brotain

