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Sumig"/aYy. 
A method is described of performing a numerical integration to solve the integral equation connecting 

downwash an d velocity potential in linearised unsteady supersonic flow. Supersonic and subsonic leading 
edges and wakes are dealt with, and some practical results are given. By using this approach, a sufficiently 
general computer programme could deal accurately with kinked and curved edges. 

Sec t ion  

1. 

2. 

3. 

. 

. 

LIST OF CONTENTS 

Introduction 

The Basic Integral Equation 

Solution of Integral Equation Using a Characteristic Mesh 

3.1 Conversion of the double integrals into weighted sums of the potentials 

3.2 Solution of the basic integral equations for the pivotal ~R' and ~b z' 

3.3 Determination of the potential in the wake 

Regular Pivotal Weights 

4.1 Parabolic interpolation weights 

4.2 The regular parabolic interpolation weights for a linear variation of potential 

4.3 Regular parabolic interpolation weights for a variation of potential 
d? = a + by + cy~ + dx  

4.4 Regular linear interpolation weights 

Irregular Rhombus Weights 

5.1 Formation of irregular weights when one or more of the A, B, C or D rhom- 
buses is irregular 

5.2 The pivotal weights Woo and Woo for an irregular rhombus adjacent to a 
subsonic leading edge 

5.3 Pivotal weights Woo and Woo for an irregular rhombus adjacent to a super- 
sonic leading edge 

5.4 Further remarks for the supersonic leading edge: one vertex case 

5.5 Some comments on the treatment of irregular rhombuses 

* Replaces A.R.C. 25 108 and 25 109. 



Section 
6. 

LIST OF CONTENTS--continued 

. 

9. 

10. 

Choice of Mesh Size 

6.1 Limitations on v' 

6.2 Some considerations concerning choice mesh size and type of weights 

6.3 Integration errors and their propagation 

6.4 The use of parabolic interpolation to reduce the number of points at which 
the potential must be computed 

7. The Evaluation of the Lift and Pitching-Moment Coefficients Due to a Given 
Mode of Oscillation for an Arbitrary Wing Planform 

Formulae for Pitching and Plunging Derivatives 

Results 

Conclusions 

Notation 

References 

Tables 1 to 3 

Appendices A and B 

Illustrations--Figs. 1 to 9 

Detachable Abstract Cards 

Appendix 

A.1 

A.2 

A.3 

B.1 

B.2 

LIST OF APPENDICES 

The derivation of %v(r, s), %o(r, s), for an irregular rhombus adjacent to a subsonic 
leading edge 

The derivation of 3~,v(r, s), g~v(r, s), for an irregular rhombus adjacent to a subsonic 
leading edge 

Derivation of ,,~, %~, 3~, g~,  for an irregular rhombus adjacent to a transonic 
leading edge 

The derivation 
leading edge 

The derivation 
edge 

of %v(r, s), euv(r, s) for an irregular rhombus adjacent to a supersonic 

of 3~,v(r, s), g~v(r, s) for an irregular rhombus adjacent to a supersonic 

1. Introduction. 
Due to the complexity of the integral equations relating downwash and potential, it is clear that 

for arbitrary Mach numbers, planforms and frequency parameters no analytical solution will be 
possible. Because of this a numerical approach to the problem had to be made. The three possibilities 
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considered are listed below. In making a choice of method, it was borne in mind that, for some of 
the planforms for which results were required by the National Physical Laboratory, Mach numbers 
as low as 1.01 combined with frequency parameters of order unity would be involved. 

(i) Richardson' s Collocation Method ( Ref . 1). 

This method uses the equation which gives the downwash at any given point as an integral 
involving the loading taken over the fore-cone of the point concerned. If one assumes a certain 

family of loadings then the downwash at a certain set of Control points due to each member of the 
family can be determined. By inverting the matrix relating the basic loadings to the downwash it is 

possible to obtain, once and for all, a matrix which will give the loading corresponding to any given 

downwash distribution at the control points. 
Although this method has the desirable quality of only requiring one matrix inversion to deal 

with any number of downwash vectors, there are other factors which milita::e against it. In the first 

place the loading is normally discontinuous across the shocks which emanate from kinks in the leading 

edge. This is not allowed for by Richardson in his formulation. Secondly for transonic Mach 
numbers and high frequency parameters the chordwise variation in the potential will probably be 
rather oscillatory and is not likely to be represented very well by the interpolation functions envisaged 

by Richardson. 

(ii) The Integrated Downwash Method. 

This method uses the equation which gives the potential at any point as an integral involving the 
downwash taken over the fore-cone of the point concerned. Since initially one only knows the 
downwash on the wing planform it is necessary in general to compute the downwash over certain 
regions forward of the leading edge and in the wake to obtain the potential all over the planform. 

For a wing with a sharply swept leading edge at transonic Mach numbers the region forward of 
the leading edge over which values of the downwash have to be calculated and stored can become 
very extensive. From the digital computer point of view it is clear that such cases will take a long 

time to compute and will require a large storage space. 

(iii) The Integrated Potential Method. 

This is the method described in this report. It uses the equation which gives the downwash at 
any given point as an integral involving the potential taken over the fore-cone of the point concerned. 

Since the potential is zero forward of the planform leading edge the integrations involve only values 

of the potential on the planform (except for the wake region) which makes it superior to method (ii) 

both as regards speed and the storage required. 
A characteristic mesh is constructed and the potential is determined first for the most upstream 

rhombus. Successive potentials can be determined working down each row of characteristics. Each 

potential determined depends on those potentials upstream in its fore-cone. Thus if any given 
potential is slightly in error this produces further errors downstream. It will be clear that to keep 
this 'propagation error' small, each potential should be determined as accurately as possible. 

2. The Basic Integral Equation. 

Let the vertex of ' the wing be the origin of co-ordinates and let the x-axis coincide with the 
direction of the free-stream velocity which is assumed to be horizontal. The z-axis is taken vertically 
upwards and the y-axis as positive to starboard. The wing is regarded as infinitely thin and as lying 
effectively in the plane z = 0, the camber and twist therefore are understood to be small. 
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T h e  basic integral  equa t ion  as obta ined by W. P. Jones (Ref. 2) is 

1 O 2 iM~w(x-E)} [Mcon~ 1 

z ' r? 

where  ~ ×. 
R = [ ( x -  ~)~ - / 3 2 ( y -  V) 2 - fi2z~]l/~ 

S '  is that  par t  of  the  plane z = 0 cut  off by the  cone R = 0 for  wh ich  ~ < x 
a¢ 

w = 8--z = upwash  

M = f ree-s t ream Mach  n u m b e r  

~o = circular f r equency  of ha rmonic  oscillation 

¢ = velocity potent ial  

fi = ( M  2 -  1)1t 2 

U = f ree-s t ream velocity.  

Put t ing  )t = x - ~ and/~ = y - ~7 and ~ = co/Ufi ~, we get 

w(x, y)  = ~- s' ¢(;~'/z) exp { - iM2E,2~} x 

FCos {M~(;~-]~e/,~) 1/~} MN sin {M~(A~-  fi~/~)~l~}~ 
X 

( a ~ - / ~ p  + >-_- 5~ 7 j d~ d~. 

Let  the  equat ion  of  the  oscillating lifting surface be 

z = g(x, y)d ~, 

t hen  the l inearised tangential  f low condi t ion  is 

U Ox + w ~z {z-g(x ,  y)d °~} = 0t {g( ' Y)d~t} 

and hence  
oe 

w(x; y) = U ~x + i~g. 

Subst i tu t ing  (4) into (2) and expanding  out  into real and imaginary  parts, using 

we obta in  
vae 

ax ff (, cos MZ~)~+¢zsinMZ~A)x 
77" ~ ,  

i cos { M ~ ( ~ - / 3 ~ p }  M~ sin {M~(~-  ~ t ~ p }  -1 x ( a ~ - ~ p  + ~ - > - S  .j d~ d~ 

(og = 7 s' (¢± cos M ~ ) t -  ¢i~ sin M2~)~) x 

cos {MN(A 2 - fi~/,~)lt~} MN sin (M_N(_)t ~ -fi~t,~)112} 7 dh dt*. 
x ( ; ~ _ / ~ p  + ;~,~ _ / ~  J 
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We now introduce characteristic co-ordinates p and ~ having an origin at the pivotal point 
(x, y), as shown below. 

t~ 
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If l is the side of a basic rhombus in the 
characteristic mesh, we have 

= x plfl ~lfi (7a) 
M M 

pl ~l (7b) = y - ~ + ~ .  

Hence 

and 

zZ 
k = (p+,~) ~ ,  

3(p, ~) M s" 

l 
= ( p -  o-) .~. 

We now introduce 

¢ 

¢'=UL (8) 

where L is an arbitrary reference length 
and 

/~v (9) 

so that equations (6a) and (6b) become 

where 

=l f f  - [¢R' cos {Mv'(p + or)} + 4 / s i n  {Mv'(p + ¢)}] 

X 

I sin 2v'(pcr) I/2- 
cos 2~,(p~)1~= 2¢(p~)1~2 

dp &r 

~Z~,g f f  ML U = [¢z' cos {Mv'(p + cO} - ¢~ '  s in {Mv'(p  + ¢)}] 

sin 2v'(pe) 1/>] 
COS 2v'(po') 1/~ ~ / x } (PCF ~ +~'~ ~ d & &  

Og 
a(x, y) = ax" 

X 

(lOa) 

(lOb) 



In a more compact form these equations can be writ ten 

~ l  i" ( [¢~'z~1  ¢~'K~ ¢~'Z,~ ¢,'Z,~- I 
ML = d J  L 4 ~  ~ + 4(po.)~ + ~ + ~p-~)~J dp do. 

~Z~g ( I'F ¢ ;G  ¢ ; G  ¢/L~ ¢~'L~- I 
MLU - J J L 4 ( ~  ~ 4(po.)~,~ + (po.) ' ~  ~ j  dp do. 

where 

K• 
G =  

L I =  

cos {M.'(p + 0.)} cos 2.'(p¢)'~= 

sin {M.'(p + 0.)} cos 2¢(po.p 

sin 2v'(po.) 1/~ 
cos {M¢(p + 0.)} ~'~ 2~'(po.)l/~ 

sin 2v'(po.) 112 
L 2 = sin {Mv'(p + 0.)} v '~ 

2¢(p0.)*I~ 

(11a) 

(11b) 

(12a) 

(12b) 

(13a) 

(13b) 

I t  will be noted that the right-hand side of ( l i b )  can be obtained from that of ( l l a )  by replacing 

~ '  by ez' and ex' by - eR'. 

3. Solution of Integral Equation Using a Characteristic Mesh. 

3.1. Conversion of the Double Integrals into Weighted Sums of the Potentials. 

Let us consider how the double integration for the first t e rm on the r ight-hand side of ( l l a )  can 

be carried out. I f  we assume initially that only full rhombuses occur in the fore-cone of the pivotal 

point concerned, then we can write 

f f  t fr+l ~8+1 err (]0, O.)KI(p, o. ) 
(~a (O, O.)KI(p, ¢) do do. = Z Z 4(,oo.)al, d o do.. (14) 

. 4 ( p o ' )  a/~ , ,=0  ~ = 0  ~ , '  u s  

Consider now the contribution to the integral of the rhombus with base-point r, s. To  make the 

integration possible some assumption has to be made about the variation of ¢~'(O, 0.) over the 

rhombus.  I f  we introduce variables 

t]=l, V=[ i 
~)n r+l ,  s+ l  

' ~ - u :  O , v  =1 
u = l , V  =0 

u = 0 ,  v = 0 

it will be seen that we can represent eR'(P, 0.) as 

CR'(p, 0.) = ~,oo(p', 0.')¢~',.,~ + ,~lo(P', 0.')¢d,.+1,~ + ;~o,(p', o-')¢d,.,s+, + >,~(Y, o.')¢d,.+l,~+,. (16) 

where ~tuv(p' , 0.') is an interpolation function such that Au~(p' , 0.') = 1 at the vertex p' = u, 0.' = v 

and equals zero at the other vertices of the rhombus.  Thus  the contribution of rhombus r, s can be 

written, 

'a,=O ~=0 
o 0 4 ( o ' + , ) ~ ( o . ' + s )  ~ do' do.'. 



However ,  even with the simplest choice of the )~u~(P', ~') functions, the complexi D of K 1 precludes 
an integration in closed form and because of this a somewhat  different approach is made. 

The  alternative approach is to assume that along lines or' = constant or p' = constant, the 
product  CR'K1 varies parabolically with the other variable, fitting exactly at the 9 points: 

p' = 0,½, 1 ; #  = 0 , ½ , 1 .  
We introduce therefore a system of parabolic interpolation functions g~(p'), i = 0, ½, 1 having 

the properties 

g~(p') = 1, if p' = i; g~(p') = 0, if p' 4= i. 
Thus  

CR'K1 can now be writ ten as 

¢ d G  = E E 
/=o, 1/2, 1 i=o, 1/2,1 

go(P') = 2(p' - ½) (p' - 1) ] 

g~/2(P') = - 4p ' (p ' -  1) 

g l ( / )  = 2 / ( / - ½ ) .  

CR'(r + i, s + j ) K , ( r  + i ,s  +j)g~(p')gj(a'), 

giving the correct values at the 9 points shown below. 

r+ l ,s+ l  

r + l  + l  

r , s + l  
r+IIS I 

r~S 

We now introduce the representation for CR' introduced earlier, and obtain finally 

E 1 CR'K1 = Z E E E ~(i,J)¢R'(r+u, s+v) Kdr+ 
i = 0 , 1 / 2 , 1 j = 0 , 1 / 2 , 1  u = 0  v = 0  

If  we now write the contribution of rhombus r, s as 

f i  f~ ¢d(p,, , )G(/ ,  , ) , 1 o o 4(p'+r)3~2(~'+s)~ do' d~' = ~=o ~ ~=o y~ G+~,~+~¢d(r+~, s+~)  

t t I C t = c, . , .&~ , .~ + c,.+1, ~¢~ ,.+1,~ + c,., ~+1¢~ ,., ~+1 + ,.+1, s+14~ ,.+1, ~+,_ 

we see that 

f i  gi(P') f l  gj(#) C~,+,, ~+~ = E E A~(i, j )Kl(r+i ,  s+j )  dp' 2 ( #  +s)a/e , " 2 ( / +  r )  312 0 
i = 0 ,  1/2,1 i = 0 ,  i f 2 , 1  o 

Thus,  if we write 

we have 
f ~ gi(P') G~(r) 

o 2 ( / +  r) al2 dp' = 

G+~,,+~ : Z X 
/ = 0 ,  1/2, 1 i = 0 ,  1/2, 1 

i, s + j )g i ( / )g j (  # )  . 

d(T  I ° 

;~,,~(i, j)K~(r + i, s +j)Gi(r)Gs(s ) . 

(17) 

(18) 

(19) 

(20) 

(21) 



Al though  there  appear  to be 9 te rms  in this sum, there  are in fact only  6, due to the propert ies  

of  )~,v(i, j )  which  for  a given u, v (i.e. given vertex of  the r h o m b u s )  mus t  vanish at the o ther  3 vertices. 

If, fu r the rmore ,  we  take the simplest  possible variat ion for CR', i.e. a linear variat ion in p, t imes a 

linear variat ion in ~, the n u m b e r  of  t e rms  reduces  to 4. T h e  non-ze ro  te rms  for u = 0, v = 0 are 

i l lustrated below. 

r ~ 1  I. +1 

P~S 

General  variat ion for ¢• ' :  u = 0, v = 0 .  

P~S 

Double  linear variat ion for CR': u = 0, v = 0.  

At  this stage we  have obta ined  the cont r ibu t ion  to the integral  f rom r h o m b u s  r, s. O u r  next  task 

is to obtain  the  net  coefficient of  ¢i~'r,, by  consider ing the cont r ibut ions  f r o m  all those rhombuses  

wh ich  involve CR'r, s. 

I n  general  only  4 rhombuses  at mos t  can cont r ibute  to the  net  coefficient of  CR',.,s. These  are the 

rhombuses  having base points :  

r,s; r - l , s ;  r , s - 1 ;  r - l , s - 1 .  

r - I~s  - t  

T h e  cont r ibut ion  to the net  coefficient o f  CR'~,~ will be 

Cr+~,~+~ for u = 0,  v = 0 f rom r h o m b u s  A 

C~+~,s_x+ o for u = 0,  v = 1 f rom r h o m b u s  B 

C~-1+~,8+v for u = 1, v = 0 f rom r h o m b u s  C 

Cr-l+,,,~-l+v for  u = 1, v = 1 t rom r h o m b u s  D .  

T h u s  the  net  coefficient of  c}i@, ~ will be 

u=O v=O i=O, 112,1j=O, 112,1 
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where the contributions from rhombuses A, B, C, D can be obtained by considering the combinations 

of u and v indicated above. 
If  we now return to the other terms on the right-hand side of ( l la) ,  we see that ultimately the 

equation can be written as a weighted sum of the potentials in the form 

awl 
E E [WrsCR'r,~ + Wrs¢±',.,~] (23) 

M L  ~=o s=o 
where 

u=O v=O i = 0 ,  1/2, 1 j=O,  1/2, 1 

+ La(r + i -  u, s + j -  v)ai*(r - u)G~e(s- v)} / (24) 11[ 
~/~ = 5 0  5 0  ~ 5", )~uv(i,j){K2(r+i-u, s + j - v ) O { ( r - u ) a ~ ( s - v )  + 

i = o ,  1/2, 1 1=0,  1/2,1 

+ n~(r + i -  u, s + j -  v)Gi°(r - u)G~°(s- v)} / (2S) 
and .J 

G~V(r) = (~ g~(P') dp' (26) 
0 ( o '  + r) /2 " 

When r = 0, the C and D rhombuses lie outside the pivotal fore-cone and the contributions from 

these rhombuses do not occur. Similarly when s = 0 there are no contributions from the B and D 

rhombuses. These effects are allowed for by taking the functions G and G ° as zero if the argument 

is negative. Explicit forms for A~v(i,j) and G~(r), G~e(r) will be given later. 

Similarly equation ( ! lb)  becomes 

r&og , - , 
ML~- E Z [W~¢z~ , s -  WrsCR~,~]. (27) 

r=O s=O 

Since K1, /£2 ,  L I, L~ are symmetric functions of r and s, in the sense that Kl(r , s) = Kl(S, r), etc., 

it will be seen from (24) and (25) that the regular weights are also symmetric, i.e. W~ = W,~, 
I ~  = Ws~. Thus  it is sufficient to hold only the right-hand half of the weight array for which 

s~>t.  
I t  is not difficult to see that, even when irregular rhombuses are present, equations (23) and (27) 

are still of the same form, except that the expressions for IYrs and Wrs will be somewhat modified. 

Before going on to discuss the treatment of irregular rhombuses, we first indicate the technique for 

solving equations (23) and (27). 

.3.2. Solution of the Basic Integral Equations for the Pivotal ¢~' and Cz'. 

As an example of the method of solution let us consider the simple planform shown, which is 
symmetric about an axis in the free-stream direction. We assume that CR' and Cz' are either 
symmetric or anti-symmetric functions of y, so that the potentials need only be computed on the 

starboard side of the wing. 
We first find that row of rhombuses on the starboard side of the planform which has the greatest 

a co-ordinate. In this row we start with that rhombus on the starboard side of the wing (including 
the centre-line) which has the greatest p co-ordinate. After computing the first CR' and Cz' we work 
down this row ~ = const, decreasing p each time. At each stage, if the current rhombus is on the 
planform, we compute ~R' and 6z'. I f  it is not on the planform, i.e. if it is forward of the leading 
edge, we jump down the row until a rhombus is encountered which is on the planform. This 
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procedure is continued until the row is finished. It  will be noted that, as shown in the diagram, 

when the row is finished the symmetric row on the port  side of the wing can be filled in. Th e  same 

Nose ~ y  

x x  / x 

,x 

procedure is now followed for the next downstream row • = const, and it will be seen that the 

rhombuses will be dealt with in the order shown on the diagram. Proceeding in this way it can be 

seen that, at any given stage, all the upstream potentials in the fore-cone are known and it remains 

each t ime to determine the pivotal Ce' and ¢ / .  

Equations (23) and (27) can be writ ten 

# - -  1 

, ' - ' - X 2 '  [ ~ . , ¢ R , . , ,  + w , . # z , . , ]  Wo 07_~ o, o + Woo~'s o, o ML 

~lcog 
W ,  t = - -  , 

- Woo,dR'o,o + ooCzo, o M L U  

and hence 
C R ' o ,  o = k l A  - k2B 

Cs'o,o = k~A + klB,  
where 

- - -  ' - w ~ ¢ ~  ~,,] ! ]Z ' [w ,~¢ l , . , ~  - ' 

(28a) 

(28b) 

kl - W°°_ (29a) 
Woo ~ + Woo ~ 

k~, = W o o _  ( 2 9 b )  

Woo ~ + WoJ 

~Trl y ,  ' - ' (30a) 
n - M L  2; [W,.#/~,.,~ + W~.~¢z,.,~] 

zrl ,vg y ,  , (30b) 
B - M L U  Z [ w ~ ¢ ~ . ~ -  W~s¢~'~,~]. 

The  dash on the double summation indicates that the pivotal rhombus is not to be included in 

the summation. 
This  procedure applies generally, even if irregular rhombuses are present, provided the appro- 

priate W~s and W~.s are taken. 
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3.3. Determination of the Potential in the Wahe. 
For wings with subsonic trailing edges, to determine the potential over certain regions of the 

planform, it will be necessary to know the potential over parts of the wake region. 

D 

This is illustrated in the diagram shown, where it is clear that for any point on the planform in 

the region ABD the fore-cone always contains part of the wake region BCD. By making use of 

the fact that no pressure difference can be sustained between the upper and lower surfaces of the 

waive, which is assumed to lie in the plane z = 0, the potential at any point in the wake can be 

related to the value of the potential directly upstream at the trailing edge. 

The Euler equations of motion are: 

1 DV 
- - g radp  = - ~ .  

P 

Thus  taking the x component of this equation and the linearised form of D/Dt, we get 

l ~ p  ( U  ~ ~ ) ~ ¢  
pox- ~+~/ ~" 

Integrating with respect to x, we obtain 

Since ¢ is an anti-symmetric function of z and no pressure difference can be sustained between 

the upper and lower surfaces of the wake, we have 

v = - -  i o¢ 
~x 

and hence 
= CW.~,. eXp { -  leo(x--x~.E.)/U). 

If  we now write ¢ = ¢~ + i¢i  and put ~o(x-xT.~.)/U = ~' we get 

JR + iCz = (¢T.~.R + iCT.E.Z) (COS a ' - - i  sin ~') 
and hence 

CR = CT.~. R COS ~' + CT.E. Z sin c~' 

Cz -- - CT.~.~ sin a' + CT.~,. Z COS c/.  

(31a) 

(31b) 

11 



Thus,  if at any stage q~R and ~z are required for a rhombus 'in the wake, they can always be 
computed from the trailing-edge values directly upstream, which will have been computed at some 
earlier stage. 

It is assumed that the actual trailing edge will be replaced by an indented version which approxi- 

mates to it but  fits exactly on the characteristic mesh. In this case, if ~bT.~. is in row nT.~. and 4wako 
is in row n, where n > nTja., we have 

, w(x - XT. E.) 215o) 
- u = M - - ~ ( n - n T . ~ . )  ( 3 2 )  

since 21I~/M is the length of the streamwise diagonal of a basic rhombus. 

W~ ¢£  0 

I 

2~ q 
M 

4. Regular Pivotal  Weights. 

4.1. Parabolic Interpolation Weights. 

From equations (20) and (17), we have 

f (p ' -  ½) (o' - 1) 
Go(r )  = o (p, + r)a/z dp' 

(~ 2p'(C' 7,1) 
G/~(r) = - d o  (p + r p  gP' 

/ 1 / ( p ,  _ ½) 
Gl(r ) = d e' 

o (O' + r) a12 

I ] 

(33) 

2r= + 2r + ~ -I 
r 112 -I- (r -]- 1) 1/2 -- (r + ~)aN-~-r~T2j r > 1 

2r 2 + 2r + 
(r + 1) a/2 + r al2 

r > l  

2r 2 + 2r + 
( r+  1) a/2 + r a12 

r > l  

(34) 

2(r + 1) (r + ½) 4r + 3 
G°( r )  = rl]2(r + 1)1/2{(r + 1) 112 + r 1/2} - r 1]2 + ( r +  1) 1/2 + 

10 
G o ( 0 )  = 3 

- 2r ( r+  1) 2(2r+ 1) 
Gift(r) = 2 rll2(r + 1TilQ(r +-I~ , ,  _ _ _ _  -I- ,112} + 

8 
G l a ( O )  = 

r (2r+ 1) 4r + 1 
GI(r) = r l /2(r+ 1)1/2{(r + 1) 1/2 + r 1/2} - r 1 / 2  -1- ( r +  1) 1/2 + 

1 
G ( 0 )  = - - 

3" 
12 

Performing the integrations, we get answers in which initially each term appearing is of order 
r 3/2, although the final answer is of order r-a,'% To  avoid heavy cancellation with consequent loss of 
accuracy for the larger values of r, the answers were manipulated into the better conditioned forms 

shown below, in which each term is of order rl/< 



For the case r = 0 the integrated forms are singular at the lower limit and, in accordance with 
the usual rules for manipulating integrals of this type in supersonic aerodynamics, the singular parts 

are ignored. 
In a similar manner f rom equations (26) and (17), we have 

2(p' _½) ( p ' -  1) 

ao(~)~= do ( 7 ¥ ~  ~ + '  

f l 4p'(p'-- 1) 
Gll2(r)* = - -  

o ( P '  + r) 112 dp' 

f ~ 2p'(p'- ½) 
a ~ ( r ) * =  o (p,+r)ll  2 dp'.  (35) 

Performing the integrations, we get answers in which !nitially each term appearing is of order 
r 512, although the final answer is of order r -~I~. As before the answers were manipulated into the 

better conditioned forms shown below, in which each term is of order r 112. 

4r(72r + 121) 4 
+ ~ (r +. 1) 112 - 2r 1I~ r >1 0 

15 {(8r + 11) (r + 1) *!~ + (8r + 15)r *tu} 
G(r)* = 

4 
G0(0)* =,g 

1 6 [  r (Sr+9)  ] 

G/2(")* = i-g (r + 1)1~2 _ (4r + 3) (r + 1 F  ~ + (4r + 5)r1~2 
16 

Gw(0)~ = 1-5 

G(r)*  = (,'+ 1 )~  + (8r4  1) ( r + l F  ~ + (8r +5)r~'2 
2 

G(o)* = 1~" 

These integrated forms are regular at the lower limit for r = 0. 

r > 0  

r > 0  

(36) 

4.2. The Regular Parabolic Interpolation Weights for a Linear Variation of Potential. 

We assume that along lines a = const, or p = const., ~ varies linearly in the other variable. 
Thus  in (16) we must take 

k~Jp', ¢') = fu(p ' ) fv(#)  
where 

fu(P') , 
is such that 

Thus  

u = O  or 

fu(P') = 17 for 

= 0, for 

fo(p') = I - p' 

A(P') = p' 
Hence 

aoo(¢, ~') = ( l - y ) ( 1 - ~ ' )  

alo(p', ~') = p ' ( a -~ ' )  

a01(p', ~') = ( 1 - y ) ~ '  

AII(P' , c ')  = p' ~'. 

17 

t p = U  

p' + U .  

[ 
J 

(37) 

13 



We can now obtain the requisite values for i = O' = 0, ½, 1 ; j  = ~' = 0, ½, 1. 

~oo klo ko~ kll 

J = ~  0 

0 1 

X 1 
2 2 

1 0 

1 1 
2 

2 

J- 0 4= 

o l o  

0 

X 
2 

1 

2 

0 0 

] 0 

! 0 2 

1 1 
2 

2 

1 X 
2 

0 0 

1 1 

0 0 

3_ 1 
4 ~g 

1 2 

Let us consider first the K 1 G i G  j terms in (24), taking the A, B, C, D contributions in turn, then 

3W,. s = K l ( r  , s)Go(r)Go(s) + ½Kl(r  + ½, s)Gll2(r)Go(s) + ½Kl(r,  s + ½)Go(r)Glf~(s) + 

+ 1 K l ( r  + ½, s + 1)Glj2(r)Gv,.(s ) + K l ( r ,  s )Go ( r )Gds -  1) + ½Kl(r,  s -  ½)Go(r)G11~(s- 1) + 
1 1 + ½-Kl(r + ½, s )Gl l~(r)Gl(s  - 1) + K K l ( r  + ~, s - ½-)G1/~(r)Gli2(s - 1) + -  

+ K~(r, s)Gl(r  - 1)Go(s ) + ½Kx(r - ½, ,,e)Gll2(r - 1)Go($ ) -}- ½ K l ( r  , S-}- ½)Gl ( r  - 1)G112($ ) -F 

JC 1KI (g - -1 ,  ,e_}_ 1)Gl12( r _  1)G1/~(s) + K l ( r ,  s ) a l ( r - 1 ) G l ( s - 1 )  + 

+ ½Kl(r  , s - ½)GI(r - 1)Glt~(s - l) + ½K~(r - ½, s)G1/z(r - 1)Gl(s - 1).:t- 

+ ~ K l ( r  - ½, s - ½)at l~(r  - 1 ) G 1 / 2 ( s  - 1). (38) 

Collecting up terms we get 

31/V,. s = K l ( r  , s) [Go(r)Go(s ) + G o ( r ) G ~ ( s -  l) + G ~ ( r -  l)Go(s ) + G ~ ( r -  1)Gl(S- 1)] + 

Jr- 1-K1(/" -F ½, ,,e) [Gl l2( r )Go(s ) -I- a l / 2 ( r ) a l ( S  - 1)] -]- 

+ ½K~(r, s + ½) [Go(r)Gll~(S ) + G ~ ( r -  1)Gxl~(s)] + 

+ ½Kx(r - ½, s) [a l l~(r  - 1)Go(s ) + alt~(r - 1)ax(s - 1)] + 

+ ½Kl ( r  , s - ½) [Go(r)G1/~(s - 1) + Gl( r  - 1)Ga/z(s - 1)] + 

-}- 1/~1(/" q- ½, $ JC 1)a112(r)alig~($ ) -~ } K l ( r  -F ½, $ - -  1)G1tg,(r)a112($ - -  1 )  q- 
+ l  1 • G ( ' - -  ~, ~ -  ½)G~(r  - 1 ) G / . ( s -  1) KKt ( r  - ~, s + 1)G1/2(r - 1)G1/2(s) + 1 1 (39) 

If  we now introduce 

I (r )  = Go(r ) + G , ( r - 1 ) ,  

we get 

3W~, = G ( r ,  ,;)I(r)~(s) + ½ G ( r +  ~, s)I(s)G~(r ) + 

+ ½G(*, *+ ½)I( ' )G/&) + ½K,( , -½,  * ) I ( ' ) G / ~ ( ' - l )  + 

+ ½ G ( " ,  ~ -  ½ ) I ( , ) G / & -  l) + 

+ I G ( "  + ~, ' + ½)G/~( ')G/&) + ~ G ( '  + ½, * -  ½)G/~(')G/~(*- 1) + 

+ I G ( ' -  ½, * + ½)C,/~(~- 1)G/&)  + I G ( ' -  ½, * -  ½)G/=(¢- 1)G/~(*- 1). 

14 
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The final expression for Wrs is 

N~8 = SWr, + a similar expression with L 1 replacing K 1 and G e replacing G. (42) 

From (25) and (12a), (12b), (13a), (13b) it will be seen that l~,. s can be obtained from the 

expression for W~. s by replacing cos {Mv'(p + ~)} terms by sin {Mv'(p + or)} throughout.  
A computer programme has been written for use with the Ferranti Pegasus to evaluate the array 

of weights according to the formulae given above. Apart from the choice of the array geometry, the 

only other parameters entering are M and v'. 
By substituting in the values r = 0, s = 0 in the expressions given above, it can be shown that 

1 [100 - 80 cos (½My') + 16 cos (My')  cos v'] + Woo -- 

+ 2 ~  144 + 192 cos (½My') + 64 cos (My') si 

Wo 0-  = 91 [16 cos v' sin (My')  - 80 sin (½Mv')] + 

v ' 2 [  ; ,v ' ]  . (44) + 2-~ 192 sin (½My') + 64 sin (My')  si 

These quantities are needed to evaluate k 1 and k~., see (29a), (29b), when the pivotal rhombus is 

regular. Also Woo is normally used to non-dimensionalise and scale the weight array. 

4.3. The Regular Parabolic Interpolation Weights for a Variation of Potential ~o = a + by + 
cy ~ + dx. 

This variatiov of potential was introduced in dealing with delta wings of low aspect ratio, where 

it seems desirable ~o allow the potential to have some curvature in the spanwise direction. 
We introduce an x, y system which has a different origin and scale from the usual one. The x, y 

co-ordinates and their relation to the points i = O, ½, 1 ; j  = O, ½, 1 are illustrated in the diagram 

below. 

_ I x - - g ,  y = O  

_ I I ~ I 

~ r + l , s  x =  O , y = -  I / 

' = ± .  = O ~  , ~ ~_  . _ i : : o , j  : • 

i = O , j = O  q i,, 
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A suitable representat ion for ¢' is 

t 1 * ¢' = 2¢ ~+~, s Y ( Y  - 1) _ 4(~¢ ,+1, ~+1 + ½¢'~, ~) (Y - I)  (Y + ½) + 

i ! ! . 

+ ¢ ~,~+~2(y + ½) + ~(¢ ~,~ - ¢ ~+~,~+~) 
Hence  

;~oo( x, Y) = - 2 ( y -  ½) (y  + ½) + x ,~ 

~tlO(X , y )  2 y ( y  - ½) 

Aol(x, y )  22(  2 + ½) 

A~,(x, y) 2 ( y -  ½) (y + ½) - x .  

We can now obtain the requisite values for i = 0, ½, 1 ; j  = 0, ½, 1. 

Aoo ~1o Aol 

J 
l: 

0 

1 _1 
8 

1 0 

a 0 g 

1 _a_ 8 

1 0 

0 0 

_-81- -~- 

0 0 

z 1 2 

a 1 g 

3 0 ~- 

- ~  0 

0 

8 

0 

k l l  

(45) 

(46) 

Let  us consider first the K 1 G i G  j terms in (24), taking the A, B, C, D contr ibutions in turn,  then  

8Wrs  = K l ( r  ' s )Go( r )ao ( s )  + ~ K I (  r + 1, s ) a l t 2 ( r ) a o ( s )  + _~KI( r + ½, s + 1 )G1 / z ( r )a l ( s  ) + 

+ -~K~(r, s + ~)ao(r)%~(,)  + IKl(r + ½,, + ~ )G1/# )%4, )  + 

+ ~ K l ( r  + 1, s + ½)Gx(r)a,12(s  ) - ~ K , ( r  + I ,  s - 1 )Gv~(r )Go(s  - 1) + 

+ ~ K l ( r ,  s - ½)Oo(r)G~/2(s - 1) - ~K~(r  + 1, s - ½)G~(r)G,l~(s - 1) + 

+ I¢1(/e, 3 ) G o ( / ~ ) G I ( $ -  1) + ~KI(~" + I ,  3 ) a l [ 2 ( t e ) G l (  $ -  1) + 

+ a K x ( r  - ½, s)a~/~(r - 1)ao(s ) + K x ( r ,  s ) a x ( r  - 1)ao(s ) - 

- -  1 K l ( r  - 1 ,  3 + 1)Go(r - -  1)Gx/=(s) + aK~(r ,  s + ½)G~(r - 1)G,/2(s) - 

_ _  1 1 ~-KI( , -  ~ , ,  + 1 ) % ~ ( ~ -  1)C,(,)  + ~K4~ - ½, , -  1 ) % ~ ( ¢ -  1)Co(, - 1) + 

+ } K ~ ( r  - 1, s -  1 )Go(r  - 1)Gx/~(s - 1) + ½-Kl(r - ½, s - ½)G1/2(1" - 1)Gx/~(s - 1) + 

-t- - ~ K l ( r ,  s - 1 ) G i ( r  - 1)G~/~(s - 1) + ~ g l ( r  - I ,  s )Gl l2 (~"  - 1 ) G I ( s  - 1) + 

+ I Q ( r ,  s ) G , ( r  - 1 ) G , ( s -  1). (47) 
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Collecting up terms, the coefficients of K~(p, {7) can best be displayed in tabular form, as given 

below. 

{7 

p 

r + l  

r+½ 

r - - ½  

r - 1  

s-1 

-~C~l~(r)Go(S-1) 

l - G , # -  1 ) C o ( S -  1) 

! 
s-½ 

- kGI(,)G~I~(s- 1) 

~Go(r)G~l~(S-1) + 

½Gtl2(r- 1)G~l~(S- 1) 

~Co(r- a)C,~(s- 1) 

~al/~(,)Co(;) + 
~G~l~(r)C~(s-1) 

[Go(r)+C~(,-1)] 
[Go(s)+G~(s-1)] 

~Gzlz(r- 1)G~(s- 1) 

s+½ 

C~(r - 1) C~(s) 

- ~-Co(r- 1)C~(~) 

s + l  

The  final expression for W,.s is 

W~s = ~ W~s + a similar expression with L 1 replacing K 1 and G* replacing G. (48) 

Wrs can be obtained from the expression for I/V~. s by replacing cos {Mv'(p + {7)} by sin {Mv'(p + {7)} 

throughout.  
By substituting in the values r = 0, s = 0 in the expressions given above, it can be shown that 

Woo = ~ 50 - 50 cos My' + 16 cos v' cos (My') - cos (5/2 v') cos My' + 

+ ~ v  '2 1 8 + 3 0 c o s  My' + 1 6 s i n v '  v' cos (My') + 5/2 v' 

2 [  (~ ) / s i n ( M / )  cos(5/2v ' )s in(~Mv')]  I~00= ~ - 5 0 s i n  My' + 1 6 c o s  - + 

+ ~ v '~ 30 sin My' + v' s in(My' )  + ~ ,  sin My' (50) 

4.4. Regular Linear Interpolation Weights. 
As we have previously shown, the starting point in deriving the regular weights is equation (14). 

We have already discussed certain cases where CR'(P, {7)KI(P, {7) is allowed to vary parabolically 

along lines p = constant or {7 = constant, this variation being necessary when v' is large enough 

for the trigonometrical terms appearing in K I to have an appreciable curvature over a basic rhombus] 

However, when v' is small it may be sufficiently accurate to allow only a linear variation o f  the 
product CR'(P, {7)KI(p, {7). As we shall now show, this simplifies the formulae for the weights 

considerably. 

17 
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w h e r e  

W e  make  use of  the  func t ions  

fo(p') = 1 - .  ' ' = ' (51) ; , . f i (P )  ; .  

A suitable represen ta t ion  of ~R'(P, ~)KI(P,  ~), over  the  r h o m b u s  whose  base point  is r, s, is n o w  

seen to be  
1 1 

i , i K ¢~'K1 = Y, ~E fu(P )f~((r ) [4R 1],+u,s+v. (52) 
• '0, = 0 v = O  

T h e  con t r ibu t ion  of r h o m b u s  r, s can n o w  be wr i t t en  

F, E fu(o')f~(#) [4R ~]~+~,,~+~, 
u = O  v = O  

o 4(p '  + r)aI2(C + s)a/2 dp' da' 

1 1 

= Z E c,+~.~+v¢R'(,+u,,+~).  (53) 
u=O v = O  

W e  deduce  tha t  

Cr+,,, s+v = KI(r + u, s + v) f"(P )f~(a ) 
o o 4 ( p ' + r ) a / ~ ( # + s )  a/= dp' d #  

= Kl(r + u, s + v)F~(r)Fv(s), (54) 

1 t F,,(,.) = C .fu(p ) . ,  

do 2(777)a'~ "P '  u = 0 or 1. (55) 

T h e  con t r ibu t ions  to the  net  coefficient of  CR'r,s will  be  

C~+~,,+, for  u = 0 ,  v = 0 f r o m  r h o m b u s  A = Kl(r , s)Fo(r)Fo(s ) 

C,+~,,_I~, for  u = 0 ,  v = 1 from rhombus B = Kdr,  s)G(r)G(s- 1) 

c~_~+~,,+, for  u = 1, v = 0 f r o m  r h o m b u s  C = K,(r, s )Ft (r -  1)F0(s ) 

Cr_,+u,s_l+ v for  u = 1, v = 1 f r o m  r h o m b u s  D = K,(r, s )Ft (r -  1)F~(s -  1). 

T h u s  the  net  coefficient o f  CR'~,s will be  

K,(r, s) [Fo(r)Fo(s ) + Fo(r)F~(s- 1) + F , ( r -  1)F0(s ) + F t ( r -  1 )F~( s -  1)] (56) 

= K l ( r  , s)E(r)E(s), 
w h e r e  

E(r) = Fo(r ) + F~(r -1 ) .  (57) 

I f  w e  n o w  re tu rn  to the  o ther  t e r m s  on the  r i g h t - h a n d  side of  ( l l a ) ,  we  see tha t  u l t imate ly  the  

equa t ion  can again  be  wr i t t en  in the  f o r m  (23), w h e r e  

W~, s = Kl(r, s)E(r)E(s) + Ll(r , s)E*(r)E*(s) (58) 

~z~, 8 ' Ka(r, s)E(r)E(s) + L2(r, s)E*(r)E*(s) (59) 
and  

E*(r) = Fo*(r ) + F~*(r-  1) (60) 
w i t h  

G*(~) = L(o') 
o (P'+r)  ~l~ dp', u -- 0 or 1.  (61) 
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Making use of  equations (12) and (13), we obtain finally 

W~8 = cos {Mu'(r + s)} H(v', r, s) (62) 

W~8 = sin {Mv'(r+s)}H(v', r, s), (63) 
where  

sin {2v'(rs) 1/~} E*(r)E*(s) (64) H(v', r, s) = cos {2u'(rs) 1/~} E(r)E(s) + / 2  2v'(rs) 112 

As before we have the rule that,  for r = 0 or s = 0, the Fo, F 1 and Fo e, F1 ~ funct ions are taken 

zero for negative arguments .  

We now derive explicit forms for E(r) and E*(r). F r o m  (55) and (51), we have 

f 1 1 - p '  ( ~ + l l + r - P d P  I I - [ ( r +  - (65) Fo(r ) = 2 ( ~ , ~ 3 / 2  dp' = = - (1 + r )  t 1 . 
o ~,  2p~I~ ( , + i p  # 5  1 p  ,1~.1 

f l  p, ( r+ lp_ r I(r+-l) ~t~1 r TII211 F~(r) = o2(p'~r) a12 dp' = o,  2P 3t~--- dp = [ ( r + l ) m - r  1I~] + r  (66) 

Hence  

E(r)  = p ~ - ( , - 1 p ]  + ( , - 1 )  ,~ I~  ( , - - 1 p  - ( ' + 1 )  ( , + - I F  ~ , ~  - [ ( , + 1 p - , ~ t ~ ] ( 6 7 )  

E(0) = - 2 ,  E(1) = 4 - 2 V 2 .  (68) 

In  evaluating E(r), for r = 0 or 1, the rule is tha t  any singular terms mus t  be omitted.  For  r = 0, 

the terms s t emming  f rom F 1 mus t  also be omitted.  

In  a similar manner  

F : ( r )  = ( 1. 1 - - - /  ( " + 1 1 + ' -  ~ Jo (P'+ r) 1/2 dp' = or pm dp = 2(1 + r ) [ ( r  + 1) ~/~ - r 1/~] - § [(r + 1) 3/~ - r 8/2] (69) 

1 p, ,+1 p _ r 2 [(r + 1) aI2 - r 3/~] - 2r [(r + 1)1/2 _ ,1t2] (70) -PI*(,) = 0 (p,~-pdp' = ~,. ~p = 

Hence 

2 1)~.'~ ,~,'~] 2 [,~t~ _ ( , _  1)~.'~] E*(r) = 2(1 + r) [(r + 1) 1/2 -/,1i2] _ _  3" [(r-F - -  -1- ~ - - :  

- 2 ( r -  1) [r 1/~ - ( r -  1) '/~] (71)  

E*(0) = 4/3 omit t ing FI* terms. (72) 

By subst i tu t ing r = 0, s = 0 in equations (62), (63), (64), we obtain 

Woo = 4 + ~ v '2 (73) 

Woo = 0 .  (74) 

It  will be noted  that,  w h e n  using weights  of  this type, since Woo = 0, the equations for the pivotal 
potentials (28), s implify to 

1 F=~l  x ' w  ' - ' l CR'o,o = Wo~oo L M L -  Z ( ,8¢_~ ,..8 + W~.s¢Z ~.,8)_ (75) 

l [ 7 r k o g  E' ' - - ' ]  
Cz'o,o = ~ooo ML U Z (W~¢z ~,~ - W~., 84R ,., 8) • (76) 
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5. Irregular Rhombus Weights. 
5.1. Formation of Irregular Weights when One or More of the A, B, C or D Rhombuses is Irregular. 

In general, unless the planform edges are transonic, near the edges of the planform irregular 
rhombuses will occur in the integration mesh. These irregular rhombuses will be bounded, in 
general, by three characteristics and the planform edge. ̀  Two  typical cases, where three vertices lie 
inside the planform edge, are illustrated below for a subsonic and supersonic leading edge. 

r,s L , E .  

~ .E .  

I ' , S  

Subsonic L.E. Supersonic L.E 

If we return to equation (14) it will be seen that the contribution of an irregular rhombus, whose 
leading edge has the equation ~r = aL.~.(P), will be 

f r+ l  FI~.E.(p)~R'(P, G)Ki(p, 0.) ~. ~s 4(pe)~1z do de. (77) 

As previously we introduce p', 0: via equation (15). Assuming that there may be four vertices 
inside the leading edge, we can write equation (16) as 

1 1 
Ce'(P, ~) = Z Z ;~(p ' ,  #)¢R'~.,,,8+~. (78) 

u=0 v=0 
It will be noted that interpolation functions Auv(p', C) must be chosen which have the appropriate 

behaviour near the leading edge, i.e. buy must vary like (0.LE.--a) 1/2 near a subsonic edge but like 
a s . n . -  a near a supersonic edge. 

Substituting (78) in (77) and performing the requisite integrations, the contribution of the 
irregular rhombus whose base point is r, s can be written 

%o(r, s)¢R',, 8 + rlo(r, s)¢R',.+l,s + r01(r, s)¢n'~, s+1 + ~'11( r, s)¢R',.+l, ~+1 (79) 
where 

( r + l  fcrL.E.(p) ~tuv(P' ' G,)KI(p, G) 
• ~v(r, s) = dp do.. (80) 

or  ~ 4(P0.) ~I2 

Considering the other terms on the right-hand side of equation (11a), we get as the total contri- 
bution of the irregular rhombus with base point r, s 

I I I I 

Z Z p~(r ,  s) + ~.,(r, s)]¢d~+,,,.~+~ + Z Z [%(r, ~) + ~ ( r ,  s)]¢/.+..~+~ (81) 
u=0 v=0 u=0v=0 

where 
f r + l  ~¢rL.E.(p)~uv(P', °")K2(J°, o') 

%(r,  s) = dp d,~ (s2) 
4(p~) 312 i] ~' *) 8 

~,~(r, s) = dp do. (S3) 
,o'~' ,0"8 ( / 0 0 ' )  112 

~v(r, s) = ~,+1 f~,T,.]~.(p) 2tu~(p' cr')L2(P' 0.)d o d~. (84) 
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In  the summation (81), if any given vertex of the irregular rhombus is missing, t h e  appropriate 

combination of u, v is deleted from the expression. 
If  we now consider the way in which the regular weight is formed up from the A, B, C, D con- 

tributions, we arrive at the following formula for the weight at the point r, s, assuming any one or 

more of A, B, C, D to be irregular. 

Let 

then 
Wr~re ~ = W~(A) + W,~(B) + W,~(C) + W~(D), (85) 

W , . ~ i ~ r o ~  = W ~  r ~  - 

- W.~(A) + .o0(r, s) + 30o(r, s), if A irregular 

- W~(B) + ~-o~(r, s -  1) + 3a(r, s -  1), if B irregular 

- W~(C) + ~-~o(r- 1, s) + ~ o ( r -  1, s), if C irregular 

- Wr~(D ) + ~-ll(r- 1, s -  1) + ~ n ( r -  1, s -  1), if D irregular (86) 

A similar equation holds for W.~i~.eg, by replacing W, T, ~ by W, ~, ~ in equalion (86). 

5.2. 
Edge. 

From equation (86), putting r = 0, s = 0, we have 

Woo = 700(0, 0) + 3oo(0, 0) 

= C1(0, O) + u'2hl(O, 0), using (A.19), (A.35), (12a), (13a). 

From (A.20) and (A.9) to (A.15) 

cl(o, o) = ~/S/8, 

where any singular terms occurring are discarded. 

Similarly from (A.36), (A.33), (A.34) 

D 1 ( 0 ' 0 ) - 2  ~r I 1 K I  gl~ g + ~ " 

Hence 

In a similar manner 

The Pivotal Weights Woo and Woo for an Irregular Rhombus adjacent to a Subsonic Leading 

2( 1)1 WOO=g~ 1+~. '~  g + g K  . (87) 

Woo = %0(0, o) + 8oo(0, o) (88) 

= 0 ,  

in virtue of (A.21), (A.37), (12b), (13b). These results are valid for the 2 or 3 vertex cases. 
I t  is not difficult to see that, had the more rigorous equations (80), (82), (83), (84) for *u., ¢,,., 

3.v, g.v been used, leaving the explicit variation of K~ and L 2 in the integrals rather than applying 
interpolation to CK 2 , eL  2 , then W00 would not be zero, but  would be of order v'. 

Returning to equation ( l la)  and discarding terms of order v '" on the right-hand side the con- 
tribution of the pivotal rhombus is seen to be 

f C r ( 8a) r=o ~s=o L4(p~) 3t2 + 4(pa) a/~ J 
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The first term in this expression can be handled by the same technique as given earlier, using a 
variation (act + bp + c) (aL.E. -- cs) 11~ for ¢2(- Hence its contribution is 

for the 3 vertex case 

or  

for the 2 vertex case. 

Cd0, 0 ' 0 ' )¢R 0,0 2~_ C2(0 ' )¢R 1,o -~- C3(0, 0)¢Rt1,1 

C1'(0, 0 ' )4~ o,o + c¢(o, o)¢d~ ,o  

Using formulae similar to 

contribution as 
%04/(0, 

Consider now the second integral and assume a variation (aa+bp+c) (aI~.E.--cr) 112 for Cz', then 

f l  f~L.~.(p> ¢±'Mv'(p+,~) r=o vs=0 4(p~)a/~ dp d~ 

-~Kg-74g + ~ K + g  +b K + g -  + c ( K - g - 2 )  . (89) 

(A.16), (A.17), (A.18), for a, b, c in the 3 vertex case, we obtain the 

0) + q ,o¢/ (1 ,  0) + q,l¢z'(1, 1) (90) 

~rMv' I~ K -  2 g -  ~] (91) Coo- 4gll~. 

~1o = 4(g + K F  ~ + + -2 K g  - ~ g (92) 

~ M ¢  K~ + K g  - ~ g + K + g . (93) 
4(g + K -  1) 1/~ 2 

(A.23), (A.24), (A.25) for the 2 vertex case, we obtain the contri- 

eoo'~z'(0, 0) + eo, l'¢z'(1, 0) (94) 

%0' = %0 (95) 

~Mu' (~ K + g - ~) . (96) 
q0' - 4(g + K) 11~ 

Thus  neglecting terms of order v '~, we get, in either the 2 or 3 vertex cases, 

7/" 
Woo = C1(0, 0) glt2 (97) 

Woo = %0 = 4 - ~  K -  2 g -  (98) 

where 

Gll = 

Using formulae similar to 
bution as 

where 

5.3. The Pivotal Weights Woo and Woo for an Irregular Rhombus adjacent to a Supersonic Leading 
Edge. 

From equation (86) putting r = 0, s = 0 we have 

Woo = Too(0, 0) + 3oo(0, 0), 
i.e. 

Woo = CI (0  , 0) -4- v'2Dl(O, 0), 

= G'(o, o) + v'~Dl'(0, 0), 

= G"(O, 0) + ¢~W'(0, 0), 

for 3 vertex case 

for 2 vertex case 

for 1 vertex case 

(99) 
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From (B.10), (B.16), (B.20), (B.29), (B.31), (B.34), respectively, we have 

1 
C1(0, O) = ~ [ -  L(O, O) - M(O, O) + N(O, 0)], 

1 [_  L(O, O) - a~(O, O) + ~V(O, 0)] DI(O , O) = ~a 

1 
C1'(0, O) = - [ -  M(O, O) 

g 

-N(O, O) 
C "/O 0 ) = - - -  lk ~ g 

+ N(0,  0)], 

D; ' (0 ,  0) = - -  

1 
D~'(0, 0) = ~ [ -  _~r(0, 0) + 2V(0, 0)] 

Jr(o, o) 
g 

3 vertex 

2 vertex 

1 vertex 

From (B.2), (B.3), (B.4): (B.23), (B.24), (B.25), we have 

L(O, O) = - 

g sin-1 + (g + K) 1/2 m(0,0)  = -  (_K)I/~ 

N(O, O) = 2 [(-K)l/2 sin-t (~gK) ~t2 + (g + K)a/~ 1 

[,(0, O) = (g + K) 512 - -~ Kja(O) 

4 
~r(O, O) = ~k(O) 

where 

Hence 

4 
_g(O, O) = ~h(O), 

ga ( ~ )  ~/2 (g2 7 1 ) 
jl(0) = 8 ( -  K) a/2 sin-1 + (g + K)I/~ ~ + i2  g + 3 K 

j~(0) - 4 ( -  K) ~/= sin-1 + (g + K)I/2 sg+~2K5 1 . 

} Woo= ~ (g+K)l/2 g - ~ K + 3  + (_K)I /~+ sin + 

8 4 (K_1) j l (0  ) + + ~_v'2 _ (g + K)5/z + -j 

1[ 
woo = ~ (_K)~2 

Woo = ~ ( - K )  112 

-- K]  1/2 
sin -1 \--~--j 

sin -1 \ ~ - - !  

+ (g + K) 11~] 

+ (g + K)*I21 

j2(0) 

v '~ 4 
+ -~- ~ [j2(0) -j~(0)],  

~,'~ 4 
+ 7 ~j2(o) ,  

3 vertex case (100) 

2 vertex case (101) 

1 vertex case. (102) 
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Due to (12b), (13b) 

D 

Woo = O, in all cases. (103) 

As in the subsonic leading-edge case, we can develop an expression correct to first power in v' in 
which l~00 is not zero. As shown earlier, the contribution of the pivotal rhombus is the expression 
given in (88a). It is not difficult to see that the first term in this expression will lead to expressions 
for Woo as given in (100), (101), (102), but with the v '~ term omitted. 

Consider now the second integral in (88a) and assume a variation (ae+bp+c)(%.E.-e) for 
Cz', then 

f l  fo-j~.~.{p) ¢z,Mv,(p+ c~) 
,.=0 ~s=0 4(pe)alz - dp de 

where 
= Mv'[aP+bQ+cR], 

p = 2 g~{ 1 . } ( @ ) 1 1 2  
15 (g+K)5/2 + 4 ( -K)  1/~ (-K)lI2 sin-1 + 

(104) 

1 
+ ]~ (1 + K )  (g+K)l/2(5g+2K) (lO5) 

g 2  

Q = ¥  

Using the appropriate 

(__ 1 

K)I/~ 

4~(g + 2K) (g + K)I~ 

(g + K)llZ Il + ~ g - ~ K 1 

(_ K)al=l sin-l (~gK) ll~ + l (g + K)ll~(sg + 2K) - 

g sin-1 
( - K)~t~ 

E_:_ 1 . 
formulae for the 3, 2, and 1 vertex cases the contribution becomes 

(106) 

(107) 

%0¢/(0, 0) + qo¢/(1,  0) + eo~¢z'(0 , 1), 3 vertex (lo8) 

eoo'¢z'(0, 0) + qo'¢z'(1, 0), 2 v e r t e x  (109) 

where 
%0"4z'(0, 0), 1 vertex 

My' My' Q Mv'P 
%0 = ~ [ -  P - Q + R ] ,  q o  - -  g @.~, C01 -- g -- 1 

M~,' M~,' Q 
Coo'- ~ [- Q+R],  q O ' - g + K  

Mv'R 
6 0 0  u - -  g 

D 

Woo is given by %0, %0' or %0" as appropriate. 

(110) 

(111) 

(112) 

(113) 

24 



5.4. Further Remarks for the Supersonic Leading Edge: One Vertex Case. 

The results given earlier for the 1 vertex case, are only valid for the case g = - K.  This is because 

in equation (81) the limits for the p integration were assumed to be r to r + 1. As we see from the 

diagram below, in the 1 vertex case, these limits are more generally r to r - g/K.  

= ( p - r ) K + s +  GL.E. g. 

[_.E. 

In this case equation (B.20) still holds, i.e. 01" = N/g, except that N is now given by 

(E .-~- f~"p I 1[27 r-g/K r -  J~) 112 r ~[2JF 

K 

Similarly in equation (B.34), DI" = _N/g, N is now given by 

_N = sin-1 + {p(E+Kp)}II2(5E+2Kp)Jr + 

+ [~ s~I2 - 4EsiI~] [ (r - g) l'~ - riI~] - @ sl/~K [ (r - g ) ~/2 - r3'~] , 
where 

E = s + g - r K .  

Putting ~ = 0, s = 0 we obtain 

Woo = C1"(0, O) + v'2Dl"(O, O) = 
~( - K)I/~ ~-g 

+ v '~ (112a) 
g 2( - K )  1/2" 

Using the same principles as earlier, we obtain for l~00 

1 = 4g ~;=0 p~/2 LJ~=0 ~8/2 d~ dp (l13a) 

~r m u  t 

- 2 ( - K ) I ~  [1 - K ] .  

5.5. Some Comments on the Treatment of Irregular Rhombuses. 

The main problem in computing the irregular A, B, C or D contributions, is the computation 
of the C1, C~, C~ ; D 1, D~, D 3 coefficients, etc. Inspection of the equations giving these, shows 
that they are complicated functions of four variables r, s, g, K. Because of the complexity of the 
functions their computation is t ime-consuming and hence a once and for all tabulation would be 
desirable. However, the dependence on four variables obviously precludes this. 

In order to keep the computation down to practicable proportions the approach shown below 

was made. 

(i) In the main programme, which computes CR', ¢±' from the basic integral equation, the correct 

irregular weights are only formed when r + s ~< 5. I f  r + s/> 6, the corresponding regular weight 
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is taken. This can be justified because the weights fall off rapidly as one moves away from the 

pivotal point. Beyond r + s >i 6, the use of regular weights instead of irregular ones will produce 

only very small errors in the potentials. 

(ii) For each given value of K (i.e. for a given Mach number and for each kinked portion of the 

leading edge), the functions C1, Ca, Ca; D1, D~, D a (or C1', Ca'; DI', D2', or C1" , DI" as appro- 
priate) are tabulated against g for each combination of r, s such that r + s ~ 5. The range of g is 
taken large enough to cover all the irregular rhombuses of that particular type. The condition 

g > r K  - s helps to reduce the number of combinations of r, s required. If gorit is greater than the 
largest g occurring, this case need not be computed. A parabola is now fitted over the appropriate 

range of g by the least squares method and we obtain, for instance, for the given K 

Cl(r, s, g) = ClZ(r, ,)g2 + e l l (r ,  s)g + Cl°(r, s) . 

In the main programme a table of Cl~(r, s), (p = 0, 1, 2), is provided for r + s ~< 5 for each 
value of K occurring. Thus, when any given rhombus of this type is encountered, once g is known, 
the appropriate C and D coefficients for any combination of r, s can be determined very rapidly. 

This method has the merit that it does not slow down the main programme with lengthy calcu- 
lations of the C's and D's  from the original formulae. However, it does imply that a considerable 
amount of computation has to be done in forming the tables of Cl~(r, s), C~(r ,  s), etc., prior to 
the main programme. Furthermore, in fitting a parabola to the values originally computed, some 
accuracy will be lost, in general. 

(iii) In effect, tables are provided as data for K1,  K~,  L1, L 2 for r + s ~< 5, for the given M and 
v'. This again saves time in the programme by avoiding the repeated computation of the trigono- 
metrical functions involved. 

It may be remarked that, although in principle the formulae for ~', ¢, 3, ~ are more correctly 
given by equations (80), (82), (83), (84), in practice, the formulae derived later, of the type 

-c = Kl ( r  , s, M ,  v')C(r, s, g, K),  etc., 

have a distinct advantage in that the C's and D's do not depend on v'. Thus, if the same planform 
at a given Mach number is to be done for several frequencies, step (ii) above need only be done once. 

The preparation of the tables in step (iii) for given M and v' is a comparatively simple task. 

(iv) In the formulae for the total irregular weight, it will be seen that, if we start with the regular 

weight, not only must we add to it the appropriate irregular A, B, C or D contribution, but we 
must also subtract from it the appropriate regular A, B, C, D contribution. 
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With a view to again making the treatment frequency decoupled as far as possible, the subtractions 
are normally performed using the A, B, C or D contributions as derived for the regular linear 
interpolation weights, for which the appropriate equations are given following equation (55). 

It will be seen that, in effect, the appropriate subtractions can be carried out by replacing: 

C~°(r, s) by C~°(r, s) - Fo(r)Fo(s), if A is irregular 

C2°(r- 1, s) by C2°(r -  1, s) - F l ( r -  1)F0(s), if C is irregular 

C3°(r - 1, s -  1) by C3°(r- 1, s -  1) - F l ( r -  1)F~(s- 1), if D is irregular 

C~°(r, s -  1) by C~°(r, s -  1) - Fo(r)F~(s-  1), if B is irregular 

Similar combinations are used with the D's with F replaced by F e. 
In practice making use of symmetry, we need only consider irregular rhombuses on the starboard 

wing, and hence the case where B is irregular never occurs on swept-back wings. Furthermore, 
when the D rhombus is irregular, it can be assumed that the irregular C rhombus part is included 

already as part of the irregular D contribution. 

Hence when D is irregular replace 

C3°(r 7 1, s -  1) by C3°(r - 1, s -  1) - F l ( r -  1)F0(s ) - F ~ ( r -  1)F~(s- 1). 

The approach described above is strictly only consistent when used with regular linear inter- 
polation weights. When used with regular parabolic interpolation weights, the parts subtracted out 
are not strictly equal to the regular A, B, C or D contributions and therefore small errors occur. 
It has been found that, at least on certain types of wings (e.g. the rectangular wing), this procedure 
produces only small errors in the potentials. The smaller v' the more accurate it is likely to be. 

6. Choice of Mesh Size.  

6.1. Limitations on v'. 

A rigorous discussion of the accuracy to be expected in determining ¢:e' and Cx' in any given case, 
is not possible. The treatment given here is intended to be a guide to the choice of a suitable value 
of v'. It is assumed that the variation in ¢~' and ¢i' is small over the pivotal rhombus and that 
conditions in the pivotal rhombus will be the most critical. 

Let us consider the right-hand side of (lla), assuming that CR' and Cz' take some constant mean 
value over the pivotal rhombus. The contribution of this rhombus becomes 

err f] fl 0 I4(~))3]2 @ ~ 1  dD dq-~-¢1'~f2 fl [4(~) 3/2 -~ & l .  dD do', (114) 
¢ 
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Using equations (12a), (12b), (13a), (13b) and expanding out in powers of v', it can be shown that 

f f 104 1M4v, 4 ~7 28 M2v, 4 0 ( v , 6 )  (115) 1 1 K1 2M2v, 2_  2v,~ + + v '4 + 
o o 4 ( p ~ p  dp de = 1 - ~ ~6~ ~2 + 

1 ( 1  L1 dp d e = 4 v  '2 [1 _ 1 4  M%,2 - 2 V~]+ O(v,6) (116) 
f0 do ~ 

f l F G  4 4 
0 0 4(Pc) sl~ dp de = - 2My' - May '3 - ~ My 's + O(v'5). (117) 

o o ~ d p d e  = ~ M v  +O(v'~). (118) 

These results can be used to estimate the accuracy of the various integration techniques. 
Using parabolic interpolation, we obtain for the same integrals 

o 2o 4 ( ~  3/~ dp de = 

f l  f l  L1 

Z Y~ KI(i,j)Gi(O)Gj(O ) (119) 
i=0, 112, I j=O, 112, 1 

Z • LI(i,j)G~'*(O)Gj*(O), 
i=0,1/2, 1 ./=0,1/2, 1 

(12o) 

with similar equations for the K 2 and L 2 integrals. If now equations (12a), (12b), (13a), (136), (34), 
(36) are used and the results are expanded in powers of v', we obtain 

f f 1 2 2 M 2 v ' 4 0 ( V  ~) (121) 1 1 K1 2M~v, 2_  2v,2 + M4v, 4 + v, 4 + 
0 o 4(PG) ~/9' do dG= 1 - -~ + 

f l  f l  L1 I 14 M2v,~ _ 2 v,2] O(v,6) (122) o o ~  dOde= 4v '2 1 - ~  + 

flf K  l M 3 v , 3 _ 4  o o 4(P¢) ~Iz dp de = - 2My' - ~ ~ M,  '3 + 0 ( ,  '5) (123) 

flflL~ 8 o o ~ dp de = ~ Mv '~ + O(v'5). (124) 

Comparing the exact expanded answer with the expanded form of the parabolic interpolation 
answer, we see that the error in the coefficient of CR' is 

- M%'~ [~ + ~ M~I + O(v"), (125) 

replacing (104)/(105) in (115) by unity. The error in the coefficient of Cz' is 

1 
- . - -  M %  'a + O ( v ' 5 ) .  (126) 

15 
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Thus  to make the error in these coefficients less than 1%, we must have 

/ M ~ + M 2 

1 
v' < ~ "v'(O'O1 x 30) = v2'. 

(127) 

(128) 

M 

0"39 

0"55 

1"5 

0"31 

0"37 

0.26 

0"27 

From the table displayed it will be seen that between M = 1 and M = 2 it is (127) which is the 
more critical condition. 

Using linear interpolation, we obtain 

o 0 4(P~) 3/2 dp de = ~=o ~ ,=0 ~ Kl(u ,  v)F~(O)Fv(O) (129) 

o o ~ dp da = ~=o2 v=oE L~(u, v)F~*(0)F~*(0), (130) 

with similar equations for the K~ and L~ integrals. If  now equations (12a), (12b), (13a), (13b), (65), 

(66), (69), (70) are used and the results are expanded in powers of v', we obtain 

o o 4(Per) 8/~ dp d~ = 1 - 2v '~ + 0 ( / 4 )  (131) 

L1 
o 0 dp = + (132)  

f ~ 1"1 /£2 d 2M3v, 3 4My, 8 
o J o 4 ( ~ 3 1 2  p d~r = - 2 M v '  - ~- 

+ O(v '5) (133) 

o o ( ~  dp dcr = ~ M y ' 3 +  O(v'5). (134) 

Comparing the exact expanded answer with the expanded form of the linear interpolation answer, 

we see that the error in the coefficient of $~' is 

2 
- M 2 v  '~ + 0 ( / 4 ) .  (135) 
3 

The error in the coefficient of ~z' is 

2 May, 3 _ 8 
- ~ ~ My '3 + 0(/5). (136) 
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Thus to make the error in these coefficients less than 1% of the Cn' coefficient, we must have 

1 ~ ( ~ )  (137) ~ ' < ~ r  0"01 x = v 1' 

~ / ( ~  0 " 0 i )  (138) y / . <  = "V2 z . 

M ~ + M 

M 1 1.5 2 

vl' 0. 122 0.081 0.061 

v~' 0.148 0.123 0.105 

Between M = 1 and M = 2 we see that (137) is the more critical condition. 
It will be noted that by satisfying the inequalities given above, the error in certain coefficients 

can be kept less than 1%. This does not necessarily imply that the pivotal potentials will be 
determined to the same accuracy. The errors to be expected in the final potentials can only be found 

from experience in applying the method to actual examples and comparing the results with exact 

analytical answers, where known, or alternative methods of computation. 
It should not be forgotten that the inequalities on v' derived above have only been obtained by 

considering the contribution of the pivotal rhombus. The contributions from the other rhombuses 
will be smaller and hence larger percentage errors in their weights can be tolerated. However, care 
should be taken to see that even in the more remote rhombuses the weights are not too seriously in 
error. Consider, for instance, the trigonometrical functions which appear in the integrand with 
argument 2v'(pa) 112. This argument exhibits its greatest variation over a rhombus in the pivotal 
bands p = 0 or ~ = 0. The change in argument from ~ = 0 to a = 1, will be 2v'p 112, i.e. in the 
rhombus p = 25, cr = 0 the change in argument will be 10v'. Thus for the critical v' at M = 1 
using parabolic interpolation weights, the change in argument would be 3.9 = 1.2 7r, which could 
be represented with rough but adequate accuracy using parabolic interpolation. Similarly for the 
critical v' at M = 1 using linear interpolation weights, the change in argument would be 1.22 = 
0.39 ~r, which could be represented with rough but adequate accuracy using linear interpolation. 
It will be seen that in the band a = 0 the weights will become increasingly inaccurate beyond 
p = 25. However, these weights are very small anyway and experience indicates that these 

inaccuracies produce only a small error in determining the pivotal CR' and ~x'. 

6.2. Some Considerations Concerning Choice qf Mesh Size and Type of Weights. 

There' are three main considerations in determining mesh size. 

(i) Adequate coverage of the pIanform area.--The mesh must always be taken small enough so 
that ~R' and Cz' are obtained at enough points chordwise and spanwise to define the variation of 

the potentials with reasonable accuracy, bearing in mind that ~' is assumed to vary linearly with 
p and e in deriving the weights. If the choice of mesh size were based on the critical v' condition 
alone, one would be led to l = vln t x fiU/oJ which for small frequencies could lead to ridiculously 

large mesh sizes. 

(ii) Critical conditions on v' for required accuracy.--The inequality (127) for parabolic interpolation 
weights, or (137) for linear interpolation weights, must be satisfied by taking l sufficiently small. 
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If more accuracy is required than that given by the 1% condigions, then even smaller values of l will 
be necessary. It must be remembered that, as explained below, the time taken by the main programme 

to compute the potentials increases rapidly with the number of rhombuses on the planform. Thus 
very high accuracies may require a prohibitive computation time. 

(iii) Time taken by the programme for computing the potentials.--It is intended here to give some 
broad outline of the way in which the computation time increases as the number of rhombuses on 
the planform increases. To do this let us consider the effect of halving the mesh size. It will be clear 
that there are now four times as many rhombuses on the planform and that each of these rhombuses 
has four times as many rhombuses in its fore-cone as before. Thus, when we halve the mesh size 

we might expect the computation time to increase by a factor of sixteen. In practice due to the way 
the programme is organised the time does not increase quite as rapidly as this. However, the simple 

argument given does show how computation times increase very rapidly with the number of 
rhombuses on the planform. 

As regards whether linear or parabolic interpolation weights are used there are two main 
considerations. 

(i) Time taken to compute weight array.--Since the formulae for the linear interpolation weights 
are simpler than those for theParabolic interpolation weights the time taken to compute a given 
array is shorter for linear weights than for the parabolic weights. 

However, in comparing times for computing weight arrays it must be remembered that with 
parabolic weights, since a larger value of v' is permitted (i.e. a larger mesh size), the weight array 
will have smaller dimensions. 

(ii) Time taken by main programme.--As regards computation time, one will normally prefer 
parabolic interpolation weights because these allow the use of larger values of v' (i.e. larger mesh 
size) than the linear weights, for the same accuracy. 

From the considerations given above it will be seen that in most cases parabolic interpolation 
weights will be used. The exceptional cases would be those low-frequency cases where l is deter- 

mined solely by the desire to obtain an adequate coverage of the planform. Even for these cases 
better accuracy would be obtained if the parabolic weights for the same v' were used. 

6.3. Integration Errors and their Propagation. 

Consider a steady one-dimensional case. If we solve for the potential at the most upstream 
rhombus, we obtain an answer which, due to errors in the integration technique, we can express as 
~o'ex + 350', where ~o'ox is the exact answer and ~ o '  is the integration error. 

O~ I 

C~ 2 
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Let us consider now how the 54) 0 ' error propagates downstream. If  we take ¢ 0 ' =  1, 

al = a2 = a3 = a4 = 0 and solve for the downstream ¢', we obtain ¢ 1 ' =  K1, ¢ 2 ' =  K s . . .  
¢~' = K~, say. Thus  in the original problem we see that 5¢0' contributes K~3¢o' to Cr' downstream. 

Since we have already obtained the contribution of 5¢0' to ~1' as K13¢o', to obtain the remaining 

part of ¢1' we mus t  compute ¢1' using ¢0'ox upstream, we then obtain ¢1' = ¢1'0~ + 3¢1'. The  
total ¢~' is thus ~'o~ + 5¢1' + K~3¢o'. Similarly for ¢2' we obtain ¢~'ox + 3¢2' + K~3¢~' + K~3¢0', 

and so on. 
It is easy to see that the general result is 

Cr' + 3 ¢ / +  2: (139) 
~ Z = I  

where ¢,. '~ + 3¢~' is the answer obtained using the exact values of ~' upstream in the fore-cone, 

so that ~¢r' is the pivotal integration error and the summation is the propagation error due to the 

pivotal integration errors upstream. 
The corresponding two-dimensional theory for the unsteady case is now fairly obvious. If  we 

start with rhombus r = O, s = 0 for which CR' = O, Cz' = 1 and take ~(x,y) and g(x,y) zero 

everywhere downstream, a two-dimensional array Rr8 + iK~s can be computed to give the ¢' 

downstream. Similarly for Cn' = 1, ¢~' = 0 we obtain an array Krs -  iKrs. These arrays are 

symmetric with respect to r and s, of course. 
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Reverting to the usual r and s measured positive upstream from the current pivotal point, it will 

be seen that the propagation error due to upstream pivotal integration errors is 

Y~ Y/(Kr8 - iK~8)8¢R'(r, s) + 2 Y~' (K,.8 + iK,.,)8¢x'(r, ').  (140) 

Thus  the pivotal ¢•' and Ce' can be written 

' 0  = ' 0  ' ' ¢~ ( , 0) ¢;~ ( , 0)o x + 8¢n'(0, 0) + 2 Y/[K~SCR (r, ,) + K~fl¢~ (r, s)] (141) 

! O ~ i . Cz ( , 0) Cz'(0, 0)~x + 3¢z'(0, 0) + E E '  [ -  K~flCn'( r, s) + KrflCz (r, s)] (142) 

It  is difficult to make any generalisations from these equations. The only case examined in any 
detail was the rectangular wing of aspect ratio 2 for M = ~/2 and v = oJc/U = 0.6, for the mode 
g = - x. For this planform and Mach number the analytical solution is known all over the planform 
and hence it is possible_ to obtain 3¢R' and SCz'. Attention was confined to the region in which the 
flow is two-dimensional and it was found that in this region the 3¢R' were negative while the 8¢±' 
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were positive. Since the Krs and Krs arrays were both positive this meant that the errors tended to 
cancel in the equation for eR' and to reinforce in the equation for ez'. This explained why the 
accuracy obtained for eR' was much better than that obtained for ez'. 

The only general deduction seems to be that it will pay to keep integration errors as small as 
possible. This indicates that for a given mesh size parabolic interpolation weights will be preferable 

to linear interpolation weights. For irregular rhombuses it was found that accuracy was improved 

when the non-zero Woo was included. 

6.4. The Use of Parabolic Interpolation to Reduce the Number of Points at Which the Potential 
Must be Computed. 

As stated earlier, whenever the mesh size is reduced by a half, the number of rhombuses at which 

eR', 4~z ' have to be computed becomes four times as great. To reduce computation times a method 
was evolved in which the potentials do not have to be computed at all points of the mesh. Investiga- 

tion of the potentials obtained using the normal method suggested that, in the regions where no 
discontinuities in slope occur, e.g. due to shocks, a locally parabolic representation for 6' should 
be quite accurate, except possibly near the tips. 

The basic idea is that eR', ez' are only computed for alternate rows and that in these rows they 
are only computed for alternate rhombuses. The values at the other mesh points are filled in using 

parabolic interpolation. As an illustration of the method consider the example shown below. 

< 

~Planform c e n t r e - l i n e  

At any given stage we can assume that at least two upstream rows are known i.e. 1 to 6, 7 to 11. 
The rhombuses in the next row i.e. 12 to 15 are now hopped over and computation begins at 
rhombus 16 in the following row. ¢~', ~z' are now computed for rhombus 16 using the equations 
given below, which do not involve the potentials for the three rhombuses adjacent to the pivotal one. 
Once ~R', ez' are known at 16 the values at 12 can be interpolated using 1,7,16 and the values at 13 
can be interpolated using 4, 9, 16. Rhombus 17 is now hopped over and eR', ez' are computed 
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for rhombus 18 using the equations given below. The values at 17, 14, 15 are now obtained by 
interpolating on 13', 16, 18; 3, 9, 18; 6, 11, 18, respectively. It is clear that this procedure can be 
continued down the row and that when finished two successive rows will be known. Thus  the 
downstream rows can be dealt with similarly. 

We now discuss the solution for the pivotal Cze', ¢1' assuming that the values at 1, 0; 1, 1; 0, 1 
are obtained using parabolic interpolation. 

/ N / 0 , 3  
2 , o \  / <'fro,2 

I, 0"~ ,10,1 

0,0 

k 

Along the line ~ = 0 the variation of ¢' can be written, using 
Lagrangian interpolation, 

¢, (p-2)p ¢% o) + (p~s)p ¢% o) + (p-3)(0-2) 
- 1 × 3 - × 2  - 3  x - 2  ¢ ' ( 0 , 0 ) .  (143) 

Thus  putting p = 1, we obtain 

¢' (1 ,  O) = - -} ¢ ' (3 ,  O) + ¢ ' (2 ,  O) + ~ 6 ' (0 ,  0 ) .  

¢'(0, 1) = - -~ ¢'(0, 3) + ¢'(0, 2) + ½ ¢'(0, 0). 
Similarly 

¢'(1, 1) = - ½ ¢'(3, 3) + # ( 2 ,  2) + -i- ¢'(0, 0). 

The first term on the right-hand side of equation (23) can be written 

E + • v , s = l ,  0; 1, 1; 0, 1 r ,  s : / : l ,  0; 1, 1; 0, 1-1 

Using the three equations (144) to (146) this becomes 

W~o[- ½ ¢n'(3, 0) + ¢R'(2, 0) + ½ CR'(0, 0)] + W~,[- ½ ¢R'(3, 3) + ¢R'(2, 2) + ½ CR'(0, 0)] + 

where 

' 0  ' 0  ' 0  + WoA- 1 ¢~ ( ,  3) + ¢~ ( ,  2) + 1 ¢~ ( ,  0)] + 

= ~. ~ W~.~e~'(r, s), say 
r = 0  8 = 0  

r ,  sv~l,  o; 1, 1; o, 1 

WoJ = Woo + ~ Wol + ~ wl~ ,  

W o 2  e = W 2 o  ~ = W o 2 - [ - [ ) V o l  , 

Wil ~ = 0 ,  

W3~ ~ = W3~ - -} W~i, 

Woi ~ = Wio ~ = 0 "~ 

W o 3 .  = W 3 o .  = H / ' 0 3 _  I W o  1 

" W ~ *  W ~  + Wi i  

W~,~ * W.,,~ for all other r, s. 

(144) 

(145) 

(146) 

(147) 

(148) 

By considering the second term on the right-hand side of (23) we obtain similar equations relating 
Wrs • and W~s. Thus  equation (23) becomes finally 

(XTT/ - -  - 
M L  - y' ~3 [W~*¢R'(r' s) + W~*¢z'(r, s)]. (149) 

~'=0 8 = 0  

Since this equation is formally the same as (23), and (27) produces a similar counterpart, the 
procedure for solution remains exactly as before, except that seven of the Wrs , ~],s adjacent to 

' 0  ' 0  the pivotal point must be modified. When Cn ( , 0) and Cz ( , 0) have been computed, the values 
at 1, 0; 1, 1; 0, 1 can be determined using equations (144) to (146). 
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This procedure seems so simple'that one might well ask why  it cannot be used exclusively. There 

are two main reasons. The  first reason is that on wings with kinked leading edges (including the 

wing vertex and streamwise tips) shocks usually emanate from the points where the sweep is 
discontinuous. These will imply discontinuities in the ¢' derivatives so that parabolic interpolation 

is no longer accurate. The  second reason is that near the edges of the planform not all of the potentials 

required adjacent to the pivotal point may exist, e.g. there may not be a 0, 3 rhombus. In this case 
the method fails. 

I t  is not difficult to see that a programme which uses the parabolic interpolation method where 

possible and reverts to the normal method elsewhere should be generally feasible. As yet no com- 

puter programme of general validity using this method has been written. 

A special programme using the method described above was written for the case of a rectangular 
wing. 

C 

2 

The method can only be applied to the region aft of both tip shocks, and to start two rows of 

¢ie', ¢~' are needed. Thus  down to the end of row 2 of the diagram the computation proceeds 
normally. Beyond this point the new technique is used. Thus row 3 is hopped over and computation 

starts with alternate rhombuses in row 4, i.e. numbering rhombuses from the centre-line, 1, 3, 5, 
7, 9, 11. Since for this particular case there were 14 rhombuses in each row in the region ABCD, 
it is clear that in row 4, rhombuses 12, 13, 14 cannot be done by parabolic interpolation because 

some of the relevant upstream potentials do not exist. Hence we now revert to the normal method 
and do rhombuses 3, 13; 3, 14; 4, 12; 4, 13; 4, 14 in the order shown. This completes rows 3 and 4. 

Rows 5 and 6 are now treated in the same way as 3 and 4, and so on. 

Although this procedure could have been applied to the whole of region ABCE, it was only applied 

over the region ABCD, where each row had a constant number of rhombuses in it. This  was to 

ease certain programming difficulties. The region CDE was completed by the normal method. 

For the particular case considered the method described above was about twice as fast as the 

normal one. 

7. The Evaluation of the Lift and Pitching-Moment Coefficients Due to a Given Mode of Oscillation 
for an Arbitrary Wing Planform. 

From Bernouilli 's equation we have 

P - P ®  = -P~o ( 

and hence 

p - p .  _ F I 
Lu 

\ 
+ ion) + 

L + 
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Since ¢ is an anti-symmetric function of z we have the lift per unit area as 

l(x, y) = - 2 ( p - p . ) ,  positive up. (151) 

From (150) we see that Czz and C~z can be obtained from the formulae for Cz• and C~R by 
replacing Cn by Cz and 6i by - 6R. 

Now 
~ R  1 

f f lR(x, y)dx dy, (152) CLR - -  }O U~S - ½P U2S s 

where S is the planform area. Using equations (150), (151) and (8) and integration by parts, we 
obtain 

f; 1 c ~  4L [a¢~' V ¢~ dx dy 
=W sLax 

4L f+~ 4L f f ¢ /dx  dy, (153) 

where a is the semi-span and using the fact that ¢' is zero along the leading edge. 

We now introduce co-ordinates 
x y 

= - ,  r/ = - ,  (154) 
C0 17 

where c o is 'the root chord, and the frequency parameter is 

°Jc° (155) 
]" - -  U " 

Equation (153) becomes finally 

CLR -- S o ¢,.~.R' dr~- ~ -  v o "JeL.~. ¢ /d~ dr~. (156) 

Similarly 

- C T . E . ± '  dr~ + -~-  ~ Cn'd~ dr~. (157) 
S o o ~L.~. 

The pitching-moment coefficient, positive nose up, about an axis through the wing vertex is 

l f f x l R ( x , y ) d x d y ,  (158) CmR = ½p U2Sg z 

where g is the mean chord. Using equations (150), (151), (8), (154), (155) and integration by parts, 
we obtain 

- Sg o T,.~. CR'd~-  ~T.~.¢T.E.R' dr~ + ~ v o L.~,. ~¢/d~ dr~. (159) 

Similarly 

Cruz 8~Lc ° ~ ~fT.E. 8aLc ° I~fTE 
- S ~  f : ~  L.~. C°/des- SeT'E'¢T'E'Z'I dr~- S ~ V  f o  L L E: s~¢'q'd¢] dr/. , (160) 

It will be seen that all of the spanwise integrations which occur, are of the same type, i.e. 

j x(r/)dr/. We begin by discussing a method for evaluating this of integral. It is assumed type 
0 

initially that the same mesh used in obtaining the potentials is also used in obtaining the relevant 
integrals. 
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I 2 3 4 5 6 7 8 

T h e  diagram shows that the characteristic mesh can be used to define a set of equally spaced 

spanwise stations. Beginning at the planform centre-line these can be labelled 0, 1, 2, . . . n, where 

n is the last station inboard of the tip and can be odd or even. In evaluating the spanwise integral 

f l X(rl)d~l, Simpson's  rule is used over the range ~ = 0 to ~ = % and an elliptic fall off to zero 
0 

is assumed between ~/ = % and ~? = 1. We obtain 

j XO2)d~2 = ½ A~? [22o + 22¢~ + 4x~. + 223 + • • • + 4x~_1 + ;g~] + a~x~, n odd (161) 
0 

where 
= ½ A~? [Xo + 4X1 + 2X2 + 4X3 + • • • 4X~-1 + X~] + a~x~, 

a~ = 1 L (1--,2,~z) ~/~ "% (163) 

n even (162) 

and A T is the interval between the regularly spaced stations. 

I f  we use values of the potential hatred on the centre-line the equations above can be writ ten in 

the more homogeneous form 

A,q 
xo ( 3a.  

- 2 x ~ - + X l + 2 X 2 + X 3 + . . . + 2 X ~ _ l +  ½+2A-q] )¢~ '  

xo ( 
= ~ + 2 X l + X 2 + 2 X 3 + . . . 2 X ~ - x +  ½+2Ar/]  X~,., 

n odd (164a) 

n even.  (164b) 

Thus  we see that the spanwise weighting factors consist of a succession of alternating l ' s  and 

2's, beginning with 2 if n is odd and 1 if n is even, except for station n which has a weight 

(½ + 3a~/2A~7) in all cases. 

We now consider the various chordwise integrations involved. We start with X(~) = CT.E.'. For  

this case there is no integration, but  due to the fact that in general the characteristic mesh does not 

fit exactly on the planform, it will be necessary to obtain 6T.~.' by interpolation or extrapolation. 

In  the diagram shown above, for instance, at spanwise station 4 extrapolation would be necessary 

whereas at station 5 interpolation would be used. 
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m - I .  
m • 

m + l .  

At any given spanwise station let the chordwise stations be numbered so that 1 is the first aft of 
the leading edge and let m be that station just on or forward of the trailing edge. These stations 

will be equally spaced, the interval between them being designated A~. It is assumed initially that 
these stations are just the base-points of the system of rhombuses used in obtaining the potentials. 

If there is no station at m + 1, then linear extrapolation is used to obtain 75T.E.' and we obtain 

= G / +  - 4 m - 1 '  
A~ (~T.E.- ~ ) "  (165) 

Similarly, if there is a station at m + 1, then linear interpolation is used and we obtain 

A~ (~T.E.- ~ ) .  (166) 

Thus for the extrapolation case the appropriate chordwise weighting factors are given by 

O x 751, + O x 75, + . . .  + O x 75~_2, SeT.E. -- ~:~ , ( ~T.F~ ~ )  A~ 75m-1 + 1 + 75,/. (167) 

For the interpolation case the chordwise weighting factors are given by 

O x 7 5 1 ' + O x 7 5 g ' + . . . + O x 7 5 , , _ l ' +  (1 ~ T ' ~ m )  75m'+~T'E'--~m , A~ 75,,~,1 • (168) 

The case where m lies on the trailing edge can be regarded as a sub-case of (167). 
T . E .  

Consider next X0?) = 75'd~. This integral can be split up into three parts which we con- 
L.lil. 

sider separately. Consider first 75'ds e. The answer obtained for this depends on how 75' varies 
gL.E. 

from zero at the leading edge to its value 751' at station 1. If the variation is linear, as  is the case 
for supersonic leading edges or at the centre-line of a subsonic-leading-edge wing, the trapezium 
rule gives 

/ h. 75'd~ = ½ 4~ ' (~* - -~LE . ) "  (169) 
gL.E. 

For stations other than the centre-line of wings with subsonic leading edges, 75' is assumed to vary 
like %/(s e -  ~.E.), and we obtain 

f h 75'd~ = ~41 ~ ' ( ~ - G . E . ) .  (170) 
• ~ L . E .  ' . . . . .  " ' 
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Over the region ~1 to ~m we obtain in all cases 

f ~rn ¢ ' d ~  = [ 1  ¢ 1 '  2r- ¢ 2 '  -t- ¢ 3 '  -t- . . . -g A6 + ¢~_~ ; "l- 1 ¢~/~ t ]. (171) 

Over the region ~m to ~T.m we obtain 

f ~T.m ¢'d~ = ½(¢,/+ CT.m')(~T.m--~,~)" (172) 
gm 

Combining these results for the case where extrapolation is used at the trailing edge, we obtain 

1 / ~  ¢'d~ c1¢~' + ¢2' + ¢3' + .  • • + ¢.~-2' + 
hf 0 

+ [1_~ (%~ ~)~l ~ ~ + I ~+ 
and for the interpolation case 

1 f~ ¢'d~ q¢~' -}- ¢2 '  -~- ¢3 '  -}-" • • -{- C m - l '  -}- 
Af 0 

÷ I ~÷ ~'~ - ~ ~m)~l 
where 

= ½ + ~ h - ~.~,. 
X~ 

Consider next X(V)= 

polation case 

, l ~ f  TE" 

f 
T.E. 

L.E. 

~T.E. -- ~m 
A~ 

¢~+1 (174) 

for supersonic leading edge or centre-line of subsonic-leading- 
edge wing. (175) 

away from centre-line of subsonic-leading-edge wing. (176) 

¢ ' d ~ -  ~T.E.¢T.E.'" Using equation (165) we obtain for the extra- 

4'a~ - ~T.~.4T.~.'] = c1¢1' + ¢2' + ¢3' + ' . -  + ¢~-2' + 

~T.~.(~T.~.- ~ ) ]  
+ [1 1 ( ~ T . ~  ~m) 2 j r (A~) 2 j ¢m_1, + 

+ [½ + ~T.E.-  ~ 

Using equation (166) we obtain for the interpolation case 

1 T ~  1 l Ctd~ -- ~T.:Ig.¢T.N.t = £1¢1' + ¢2' + ¢8' + • • • + ¢n~-1' + 
L.E. 

(177) 

A~ ~T.%~ ¢,,+1' • (178) 

f 
T.E. 

Finally we have to consider X(~/) = ~¢'d~. The chordwise weights for this case can be 
L.:E. 

obtained by multiplying the coefficients in equations (173), (174) by the corresponding 6is. 
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To obtain the final system of weights we multiply the chordwise integration weights by the 
appropriate spanwise weighting factors. If we now multiply this system of weighting factors into 
the appropriate set of ¢'s we obtain a factored form of the integral required. The factored forms 
of the integrals obtained using (167) or (168); (173) or (174); (177) or (178) in combination with 
(163) or (164) are 

° --¢T.E.¢T.E.] dr / , '  (179) 

respectively. Similarly applying (173) or (174) in combination with (163) or (164) to ~q~'s instead 
of ~'s we obtain 

1 ~ T.~ .  fo (180, 

The setting up of the coefficients to obtain the three integrals (179) is comparatively simple, 
because over the bulk of the planform the coefficients are simple integers. It is only round the 
boundaries of the planform that the coefficients become more complicated. Furthermore it will be 
noted that (177) and (178) only differ from (173) and (174) near the trailing edge. 

It will be noted that the weighting coefficients described depend only on the planform geometry, 
the mesh size and the sweep of the characteristics, i.e. the Mach number. Thus, if the same mesh 
has been used to deal with several frequencies and several modes, the same sets of weighting 
coefficients apply unchanged. 

In the exposition of the theory given above it was assumed that the nodal points for obtaining 
the factored integrals were the same as those used in computing the potentials. This need not 
necessarily be so and if the original mesh is particularly fine, some coarser sub-mesh can be selected 
for obtaining the factored integrals. We merely have to use the appropriate A~ and A T i.e. 

21 1 (181) 21fl 1 AT = q M ~ '  
A~ = p  M c o' 

where p and q are integers, not necessarily equal. On the rectangular wing for instance, it was 
sometimes convenient to use q = 2, p = 1. 

Due to the presence of shocks, there may be discontinuities in slope in the potentials both span- 
wise and chordwise. In performing the spanwise integrations using Simpson's rule it is assumed 
that the spanwise discontinuities can be ignored without much loss of accuracy. If however the 
shocks are particularly strong, some alternative method of procedure is necessary. Since the 
trapezium rule is used for the chordwise integrations, discontinuities in slope are correctly allowed 
for unless these occur somewhere between nodal points of the integration mesh. This can normally 
be avoided by a judicious choice of mesh when initially obtaining the potentials. 

8. Formulae fo r  Pitching and Plunging Derivatives.  

The pitch angle 0 corresponds to a modal shape 

g = - Ox. 

The corresponding derivatives are defined by the equations: 

= p U ~ S  [l o + ivlo] Od °'~ 

= p U2Sg [m e + ivmo] Od °'t 

(182) 

(183) 

(184) 
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where .oqf is the oscillatory lift, positive up and d [  is the oscillatory pitching-moment coefficient, 
positive nose up, about an axis through the wing vertex. If we compare these equations with those 
in terms of the lift and pitching-moment coefficients, i.e. 

we obtain 

= ½ p U 2 S  [CLR + iCLz]¢=_ x x Oe i°~t 

JZ  = ½ oU2Se  [Cm~ + iC.~z]~=_~ x Oe ~°'~ 

1 
lo = ½ [C~]~=_~, l~ = G [Cs3o=-~ 

1 
mo = G [Cmfl~=_~. m o = ½ [Cmie]o=-x, 

Plunging corresponds to a modal shape 

(185) 

(186) 

(187) 

(188) 

g = z .  (189)  

The corresponding derivatives are defined by the equations 

= o g 2 s  [lo + iG]  5 e~o~ (190) 
CO 

= pU2S~  [m~ + irma] z ei~t (191) 
Co 

If we compare these equations with those in terms of the lift and pitching-moment coefficients, 

1 
l~ = ½ [CLR]g=~o, l~ = ~ [CLz]g=CO (192) 

1 
m z = ½ [C.~R]g=co, m~ = ~ [Cmz]o=co. (193) 

we obtain 

9. Results. 

As a check on the accuracy achieved in practice, velocity potentials were found by exact analytical 
methods for certain plardorms and Mach numbers. Thus for a rectangular wing, solutions can be 
obtained over that portion of the planform not affected by interaction of the tip downwashes 
(Ref. 1). For a frequency parameter of 0.6 and M = 1.05 the largest errors were 2~/o in CR' and 
5% in ¢i '  in a rigid pitching oscillation. On integrating the potentials to obtain the derivatives, 
smaller errors should result. As M ~ 1 the rectangular wing potentials show more and more chord- 
wise undulations, and from two-dimensional theory the wave-length should be ~rfl 2 U/co. The results 

conform to this prediction. 
Only quasi-steady results are available in analytic form for the delta wing, and agreement is good 

for small v. Using the linear approximation for the edge rhombuses as suggested previously, some 
inaccuracies do arise which are accentuated by the highly swept planform. This gives rise to a 
kinked distribution of Cz' in pitch or CR' in translation particularly at the lower frequencies. 
However, it is only for M -- 1.01 that the effect is very bad. Results for this case have been checked 
by performing the direct numerical integrations given by equations (80), (82), (83), (84) for the 
edge rhombus contributions. When this is done the potentials obtained vary smoothly and fit a 
mean line through the kinked values. 
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Checks on the tapered wing resuks were obtained from quasi-steady theory, and also using 
arbitrary-frequency-parameter theory valid for supersonic leading edges. 

Figs. 2 to 9 give samples of the results together with comparison theories where possible. 
Tables 1, 2, 3 give values of derivatives for the three wings shown in Fig. 1. The Mach numbers 
and frequency parameters were chosen to fit in with an investigation being carried out at the National 
Physical Laboratory. The delta-wing results show an insensitivity to frequency parameter for 

M near 1.0. 

10. Conclusions. 

The method is capable of almost unlimited accuracy but the amount of extra labour required to 
reduce the last 5% error as M - +  1 is very great. For normal Mach numbers say greater than 1.2 
for which linearized theory is usually applied, it is likely that the special treatment of edge rhombuses 
is not required. Then simple weights, say based on irregular rhombus area, might be sufficient. 
The process would then become very simple particularly for the linear interpolation weights case. 
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A, B 

A, B, C, D 

Cr+u, s+v 

C1, C2, C8 

C 1' C 2' 

C1 rt 

Cli°(i¢, s) (p = O, 1, 2) 

= 

e m = 

C o 

D1, D2, D8 

DI'  , D 2' 

D1 It 

E ( r )  = 

E~(r) = 

E = 

Fu(r) 

k , f 2 , f 3 , f 4  

NOTATION 

Coefficients used in the representation for ~'K or ¢'L over an irregular 
rhombus. See equations (A.6), (A.16) to (A.18), (A.23) to (A.25), 
(A.31), (89), (B.1), (B.6) to (B.8), (B.13) to (B.15), (B.18), (B.22) 

See (30a), (30b) 

Symbols used to label rhombuses relative to point r, s. See figure 
preceding equation (22) 

See equations (18), (19), (21) 

Subsonic L.E.: equations (19), (21). Supersonic L.E.: equations 
(B.9) to (B.11) 

Subsonic L.E.: equations (26) to (29). Supersonic L.E.: equations 
(B.16) to (B.17) 

Supersonic L.E.: equations (B.19), (B.20) 

Coefficient in parabolic fitting to Cl(r , s, g). See Section 5.5 (ii) 

CLR + iCLI  , complex lift coefficient. See equations (152), (156), (157) 

Cmi ~ + iCmi ,  complex pitching-moment coefficient. See equations 
(158) to (160) 

Wing root chord 

Wing mean chord 

Subsonic L.E.: equations (35) to (37). Supersonic L.E.: equations 
(B.28) to (B.30) 

Subsonic L.E.: equations (38) to (41). Supersonic L.E.: equations 
(B.31), (B.32) 

Supersonic L.E.: equations (B.33), (B.34) 

Fo(r ) + F l ( r -  1). See equations (56), (57), (67), (68) 

Fo~(r) + F ~ ( r -  1). See equations (58) to (60), (71), (72) 

s + g - r K  >I O. See equation (A.11) 

Linear interpolation functions. See equation (51) 

See equations (55), (65), (66) 

See equations (61), (69), (70) 

See equations (A.12) to (A.15) or (A.12a) to (A.15a) for transonic 
L.E. case 
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A ' , A '  . • . L o '  

g(x, y)  

gi(P') 

G # )  

Gie(r) 

g J 

g t  

H(v',  r, s) 

i , j  

I(r) 

I1,I2 

Jl,J2 

hi, ks 

K 

K,. 

L 

l 

L I , L~ 

l(x, y) 

10,10, mo, m6 

N O T A T I O N - - c o n t i n u e d  

See equations following equation (A.34) 

Modal shape of oscillation. See equation (3) 

Parabolic interpolation functions. See equation (17) 

See equations (20), (33), (34) 

See equations (26), (35), (36) 

Side of an irregular rhombus expressed as a fraction of the side of a 
regular rhombus. See diagrams preceding equations (A.1), (A.23), 
(B.I), (B.13), (B.18) 

= g / K  

See equation (64) 

Suffixes which can take values 0, ½, 1 associated with parabolic 
interpolation weights. See equations (17) to (26) 

See equation (40) 

See equations (A.42), (A.43) 

See equations (B.26), (B.28) 

See equations (12@ (12b) 

See equations (29a), (29b) 

See equation (A.4). Subsonic L.E. 1 /> K > 0, Transonic K = 0, 
Supersonic L.E. 0 > K >1 - 1 

Coefficients associated with error propagation for a steady one- 
dimensional case. See equation (139) 

Coefficients associated with error propagation for oscillating 
3-dimensional flow. See equations (140) to (142) 

Reference length used in non-dimensionalising ~. See equation (8) 

Length of side of basic rhombus in the characteristic mesh. See 
figure preceding equation (7a) 

See equations (13a), (13b) 

= l R + ilx, complex lift per unit area 

= 2geR + i ~ z ,  total complex lift 

pitching derivatives defined by equations (183), (184) 
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NOTATION--continued 

plunging derivatives defined by equations (190), (191) 

Coefficients of a, b, c in contribution from an irregular rhombus. 
See equations (A.7) to (A.10); (B.1) to (B.4) 

Coefficients of a, b, c in contribution from an irregular rhombus. 
See equations (A.31) to (A.34); (A.32a) to (A.34a); (B.22) to (B.25) 

Free-stream Mach number 

= tan A, tangent of sweepback angle of L.E. 

= ~ /~  + dd±, complex leading-edge pitching moment 

Local pressure 

Free-stream pressure 

See equations (105) to (107) 

Values of p, ~ the characteristic co-ordinates based at the pivotal point. 
See equations (7a), (7b) and adjacent diagram 

See definition following equation (1) 

Real part of 

Semi-span of wing 

Planform area 

Time 

Trailing edge 

Local system of characteristic co-ordinates such that base point of 
current rhombus is u = 0, v = 0. See diagram adjacent to 
equation (15) 

Free-stream velocity 

Local fluid velocity vector 

a¢ 
- 3z'  Upwash 

Integration weights. See equations (23) to (25), (27); (42); (48); (62), 
(63); (86) 

Modified regular weights for use with parabolic interpolation on ¢'. 
See equation (148) 
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Woo ~ Woo 

~W~s 

x, y, z 

x, y 

o~(x, y) 

1 (x 

~-~,~(r, ~) 

~uv(r, s) 

~(r ,  s) 

~uv(~', S) 

CO0, elO, Cll 

Coot~ ilO t 

£00 tt 

~,~ 

A 

0 

p or P~o 

p, o" 

NOTATION--cont inued  

Pivotal weights. See equations (43), (44); (49), (50); (73), (74) for 
regular values. For irregular values, see equations (97), (98); (100) 
to (102), (111) to (113) 

Part of weight stemming from KIGiG j terms in equation (24). See 
equations (41); (47) 

Rectangular co-ordinates. See definitions and diagram adjacent to 
equation (1) 

Local co-ordinate system defined in diagram adjacent to equation (45) 

3g(x, y) in-phase incidence 
0x ' 

See equation (32) 

(M ~ - 1)11 ~ 

Contributions to weights from irregular rhombuses. See equations 
(80); (A.19), (A.26); (B.9), (B.19) 

See equations (82); (A.21), (A.27); (B.11), (B.19) 

See equations (83); (A.35), (A.38); (B.28), (B.33) 

See equations (84); (A.37), (A.39); (B.30), (B.33) 

See equations (90) to (93); (108), (111) 

See equations (94) to (96); (109), (112) 

See equations (110), (113) 

The ~, ~ axes are coincident with the x, y axes shown in the diagram 
adjacent to equation (1) 

X 
= --, non-dimensional form ofx co-ordinate 

Co 

- Y, non-dimensional form ofy co-ordinate 

Sweepback angle of given portion of L.E. 

Pitch angle. See equation (182) 

Free-stream density 

See equation (154) 

Characteristic co-ordinates based at pivotal point. See equations (7a), 
(7b) and adjacent diagram 
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• ' G t  

P, 

O'L.E.(p) 

;~(p', ~') 

N O T A T I O N - - c o n t i n u e d  

pr = P _  r ,  G' = G - - S  

Equation of starboard L.E. is e = eL.E.(P). See equation (A.3) 

= SR + i~r, complex potential 

q~' - $ non-dimensional potential 
U L '  

co Circular frequency of oscillation 

co  

coC o 
v - U ' see equation (155). Frequency parameter based on root chord 

lco 
v' - f l U '  see equation (9) 

Interpolation functions. See equations (16), (37), (46) 

No. Author 

1 J .R.  Richardson 

2 W.P .  Jones .. 

R E F E R E N C E S  

Title, etc. 

A method of calculating the lifting forces on wings (unsteady subsonic 
and supersonic lifting-surface theory). 

A.R.C.R. & M. 3157. April, 1955. 

Supersonic theory for oscillating wings of any plan form. 
A.R.C.R. & M. 2655. June, 1948. 
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T A B L E  1 

Rectangular Wing, A = 2 

Oo 

M v=O.03 v=0 .1  v = 0 . 3  v = 0 . 6  

%/37 

6 
=1.014 

%/17 

4 
= 1.031 

1"05 

1.075 

lo= 1.54 

l o= 2"80 

m o = - 0.0252 

mo = -- 4.00 

~ =  0.00150 

~ = - 1 . 5 3  

m~= --0.00315 

m~= 0.0194 

~ =  1.60 

~ =  2.49 

mo= - 0 . 1 1 9  

m6= --3.38 

~ =  1.63 

~ =  2.86 

mo= - 0 . 1 7 5  

m6= --4.03 

~ =  0.0106 

~ = - 1 - 5 9  

m~= -0"0258 

m~= 0.116 

~ =  0.0143 

L =  - 1 . 6 1  

m~= -0-0323 

m~= 0.167 

lo= 1.80 

l o= 1.40 

m o = - O. 468 

too= - 1.88 

~ =  1.79 

~= 1.24 

mo= - 0 - 4 8 6  

m 6= - 1.75 

~ =  1.85 

~= 1.16 

mo= - 0 . 5 9 5  

m6= - 1.65 

~ =  1.69 

~ =  0.890 

mo= --0.475 

m~= - 1.42 

~ =  0.0117 

~ =  - 1 . 7 1  

mz= - 0 - 1 0 2  

m~= 0"433 

~ =  - 0 . 0 0 0 4  

~ =  - 1 . 7 0  

m~= - 0 . 0 9 1 7  

m~= 0.446 

~ =  -0 .00451 

~ = - 1 . 7 7  

mz= -0 .0841  

m~= 0"553 

~ =  --0.0258 

~ =  - 1 . 6 0  

m~= -0"0658 

m~= 0.424 

~ =  1.78 

~= 1.01 

mo= - 0 . 6 4 3  

m~= - 1.08 

~ =  1.79 

~= 0.888 

mo= - 0 . 6 8 9  

m6= - 0 . 9 8 7  

~ =  -0 .0140  

~ =  - 1 . 6 1  

mz= -0 -161  

m~= 0"567 

~ =  -0 .0460  

L=  - 1 . 6 1  

mz= - 0 . 1 3 4  

m~= 0.603 



1-1 

,~/5 

2 
= 1 . 1 1 8  

~/2 
- ~  = 1 . 4 1 4  

~ =  1.70 

~= 0.0880 

mo= --0.521 

m6= - 0 - 5 2 9  

~ =  - 0 . 0 9 1 9  

~= - 1 . 6 0  

m , =  0.0120 

m~= 0.452 

lo= 1 "71 

16= 0"836 

m o = -- O- 675 

m O= - O. 884 

lo= 1.36 

l 6= 0.422 

m o = - O. 578 

toO= - O" 330 

l~= - 0 . 0 5 5 4  

l~= - 1 . 5 5  

m . =  - 0 . 1 0 9  

m~= 0-595 

~ =  pU~SI(lo+ivlo)O+(l~+ivl~)~oleZ~°t 

~ = pU2Sg I(mo+ivmo)O + (m~+ivm~) ~o] eZ°'t 

K e = oscil latory lift, posi t ive up  

d {  = oscil latory p i t ch ing  m o m e n t ,  posi t ive nose  up ,  a bou t  an axis t h r o u g h  the  w i n g  ver tex 

c o = root chord  

g = m e a n  chord  

O 9 6 0  
j]  - -  

U 



TABLE 2 

8 
Del ta  Wing ,  t a n  A = 

O1 

M 

1 " 01  

1 "03 

1 .075 

1-15 

v = 0 - 0 3  

~ =  1.15 

~ =  0 .956  

mo= - 1 .54  

m o =  - 1 . 4 4  

1o= 1.15  

lo= 1.04 

*n o= --  1- 52 

too= - - 1 . 5 8  

v = 0 - 1  

lo= 1.13 

lo=  1-06 

too= - 1.51 

m 0 = - 1 .64  

lo= 1 .14  

/ o=  1 .06  

m o= - 1 . 5 2  

m o =  - 1 .60  

lo= 1 .14  

lo= 1.o5 

m o = - 1- 52 

m 0 = - 1 .59  

lo= 1.11 

zo= 1.Ol 

m o = - 1" 47 

m 0 = - 1 .53 

v = 0 - 3  

~ =  - 0 . 0 0 2 3 9  

6= -1.11 

m , =  - 0 " 0 0 1 7 6  

m~= 1"48 

~ =  - 0 . 0 0 2 4 4  

6 =  - - 1 . 1 2  

mz= 0 .00161  

m~=  1-49  

~ =  - 0 - 0 0 1 3 0  

6 = - - 1 - 1 2  

m z =  0 .000167  

m e =  1"49 

& =  0 . 0 0 0 1 0 6  

6= -1-1o 

m~= - 0 " 0 0 1 8 1  

m e =  1 .45  

lo= 1 . 1 4  

10= 1-06  

m o =  - 1 . 5 5  

m o =  - 1- 62 

~ =  1 .13  

~ =  1 . 0 6  

m e =  - 1 . 5 0  

m o =  -- 1 . 6 0  

~ =  1 . 1 4  

~= 1-o5 

mo= - 1-52  

mo= - 1-59  

v = 0 - 6  

& =  0 .0121  

6 = - 1 - o 8  

m z =  - 0 " 0 2 5 8  

m e =  1 -44  

l a =  0. 0108 

/ ~ = - - 1 . 1 0  

m,  = --  0" 0236 

m ~ =  1-46  

l z=  0 . 0 0 7 7 2  

6 =  - 1 . 0 9  

m ~ =  - -  0"  0191 

m s =  1 . 4 7  



go 

c o = lOft ,  

TABLE 3 

S y m m e t r i c a l  Tapered Wing,  

s = 13 .7f t ,  AL.~. = - A T . ~ .  = 15 ° 

M 

1.01 

1.0353i 

1.102 

1.0645 

v=0.03 

lo= 3.65 

lo= --7"41 

m o= -- 1.62 

mo= --2.45 

lo= 4.02 

~ =  -0 .00858 

~=  - 3 . 6 6  

m~= -0.00061~ 

m~= 1"64 

~ =  -0 .00984 

~ =  3.49 

~ = - 3 - 2 0  

mo= - 1.90 

mo= - 2 . 4 4  

lo= 3-60 

u=0.1  

~ =  -0 .0547  

~=  - 3 . 4 3  

mr= -0.00631 

me= 1"86 

~ =  2.96 

~ = - 1 . 3 7  

mo= - 1 . 8 8  

m6= - 0 - 5 0 9  

lo= 2.91 

v = 0 . 3  

~ =  - 0 . 2 7 5  

~ =  - 2 . 7 3  

mz= 0.0834 

m~= 1.72 

lo= 2.59 

~ =  - 9 . 0 1  

mo= - 2 . 3 6  

mo= 5.62 

L=  - 4 - 0 2  

mr= 0"00665 

me= 2.36 

16= - 6 . 6 6  

m o = - 2 . 0 2  

mo= 3"34 

~=  -0 .0894  

~ =  - 1.28 

mo= - 1.87 

mo= - 0 . 5 3 4  

lo= 2.89 

10= - 1.93 

m o= - 1- 87 

m O= 1-35 

~ =  2-79 

~=-2.Ol 

mo= - 1 - 6 4  

mo= 0-654 

~ =  - 0 . 2 6 6  

~ =  - 2 " 6 9  

mz= 0.0787 

me= 1.70 

~ =  --0.318 

~ =  - 2 . 7 4  

mr= 0"248 

me= 1"73 

lo= - 0 . 1 1 1  

too= - 1.79 

m 0 = - O. 561 

~=  - 3 . 5 5  

mr= 0.0528 

m~= 1.98 

~ =  --0.329 

~ =  - 2 . 6 0  

mr= 0.184 

me= 1.46 

v = 0 . 6  

lz= -0 -497  

l e = - 2 . 1 6  

m z= 0.208 

m~= 1.47 



APPENDIX A 

I. The Derivqtion of %v(r, s) and %v(r, s) for an Irregular Rhombus Adjacent to a Subsonic Leading 

Edge. 

F +  

\ 
P 

Let l be the side of a characteristic rhombus, then we have SR -- I. We define RQ to be lg. If 
the pivotal point is x, y, the current co-ordinates ~, ~ are related to p and e by equations (7a) and 
(7b). Thus, since Q has co-ordinates p = r, ~ = s + g, we have 

l ( s - r + g )  (A.1) lfi ( r+ s + g ) ,  ~Q = y + ~_ . 
x- r 

If the sweepback angle of the leading edge is 3. and tan A = m then the equation of the leading 

edge is 

- -  ~ = m .  (A.2) 
7~ - -  7~Q 

On substituting equations (7a), (7b) and (A.1) into equation (A.2), we obtain the equation of the 

leading edge as 

%.E.(P) = (P-r)K + s + g,  (A.3) 
where 

and 

1 - k  
K - 1 + k (A.4) 

k fi (A.5) 
m 

It will be noted that for a subsonic leading edge k < 1 and hence K > 0. 
An examination of the equations (80) and (82) for r and • quickly shows that due to the complexity 

of the functions K 1 and K~, it will be impossible to perform the integrations analytically. We 
proceed therefore in a slightly different manner. Returning to equation (77) we take as the repre- 

sentation for CR'K1, 

Cd(P, = (a +bp+c) (A.6) 

This representation gives the right variation at a subsonic leading edge and allows the fitting of 

Cze'K1 at up to 3 vertices inside the planform edge. 

52 



Thus the contribution from (77) will be 

fr+l (~L.~.(p, (a~ + bp + c)~v/( ~L~._ cr) 
o ,  4(pa)al~ d o d ~  

= aL(r, s, g, K) + bM(r, s, g, k) + cN(r, s, g, K),  (A.7) 
where 

L ( r , s , g , K ) -  Err{4 ( r+ l )  1/~1 r ~/21 } r r K  
+ _4_ {(r + 1)1/~ _ rl/~} _ ½sWl(r,g, K - 

E r K 2¢ f~( , s, g, K) - ~ fa(r, s, g, K) (A.8) 

77" 1 I", M(r, s, g, K) = - ~ {(r + 1) 1/2 - r l/z} + 2~27gf, ( g, K) + ½f~(r, s, g, K) (A.9) 

N ( r , s , g , K ) = ~ r {  1 1} ; (r+1)1~ 2 r ~  + k ( r ' g ' K ) + ½ f 2 ( r ' s ' g ' K )  (A.10) 

and 
E = s + g -  rK > O (A.11) 

f , ( r , g , K , = _ { g _ + K ~ l / 2  (g)112 [ 1)K}1/2 K'1'21 (A.12) \ r + l ]  + + K  */~log~ !(r+ + ( g +  ' (rK)ll2 + g112 

f 2 ( r ' s ' g ' K ) -  ( r + l )  1 / ~  s + g + K  + r  ~ sin-1 s +  - 

- [K--~ 1/2 log~ F {(r+ 1)sK}*t2 -- + {E(g + K)} I.'2 (rsK) 11~- (Eg) 112-] (A.13) 
L{(, + 1 ) , K F  2 {E(g + K)}1/2 (~ ,KF2 7 ( E g F ' q  

fa(r ,s ,g ,K)=Z(r+l) ,12sin_l  ( s )1/2 ( s  11I~ s + g  + K - 2rl/2 sin-1 \ s ~ /  + 

[ s~  112 [{(r+l)K}l/2+(g+K)l/2_l 
+ 2 \ K ]  log~ (rK)l/2 + gllZ - 

( E )  1!2 [{(r + I),K} la + {E(g + K)} 1/2 (rsK) 1/~- (Eg) 1/2-] 
- log~ [_{(r + 1)sK} 1t2 -- {E(g + K)} 1/2 (rsK) 1/2 + ~ 2 ]  (A.14) 

g Rig- Kr [{(r + 1)K} 1/2(rK)l/2+g (g+ K) 1t2-] f ~ ( r , g , K ) -  log e ] + {(r + l) (g + K)} 1/2 - ( rg)  */2. (A.15) 

To deduce %v(r, s) we must make use of equation (79), which means that we must first express 
a ,  b, c in terms of ~R~;s', ~R~+I.s', ¢R~+1,,+,'. Substituting the three pairs of co-ordinates into 
equation (A.6), we obtain three equations which, on solving a, b, c, give 

' ' K  [¢/~ K1]r+l, s [¢R 1]~,+1, s+l 
a = ( g + K ) l / 2  + (g+K_1)112  (A.16) 

' ~K [¢R K~],., [¢R 11,.+1,, (A.17) b = gl/2 + (g + K)I/~ 

c = ( s - r )  [¢~ 'Kd~+l, ,  
(g + K) 1/~ 

'K [¢R 1]~+,,,+, [¢~ K1]"* (A.18) s (g+K_1)l /2 + ( r + l )  gl/~ 
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Returning to equation (A.7) and picking out the coefficients of Cnl(r, s), ¢:e'(r + 1, s), CR'(r + 1, s + 1) 

in turn, we obtain 

~oo(r, 0 = Kl(r, 0 c~(~, ,) 

r,o(r , s) = K, ( r  + 1, s)Ca(r, s) (A. 19) 

r,~(r, s) = Kz(r  + 1, s+  1)Ca(r, s) 
where 

1 
C~(r, s) = -fi~ [ -  M(r ,  s, g, K )  + (r + l )N(r ,  s, g, K)] 

1 
C~(r, s) - (g + K)~I ~ [ -  L(r,  s, g, K )  + M(r ,  s, g, K )  + ( s -  ON(r ,  s, g, K)] (a.20) 

1 
Ca(r, s) - (g + K - 1 )  1t~ [L(r, s, g, K )  - sN(r,  ,, g, K)] .  

In a similar manner 

~oo(~, ~) = K~(r, 0 c~(~, 0 
~o(r,  s) = K,.(r + 1, s)C2(r, s) (A.21) 

el l(r ,  s) = K~(r + 1, s + 1) Ca(,', s). 

It is easily verified that for the three vertex case the length SP = (g + K ) I  must be greater than I. 

Hence the inequality 
g > l - K  

must be satisfied. 

5 P " 

r , s  R -~  k 

In a similar manner, we find for the two vertex case, 

a = 0  

/ K b - [¢~ d,,+~,~ [¢~ Kd~,~ 
(g + K)*;-~ g11~ 

' f  / [¢R 1]~+1, s [¢R K,],.,, 
c = - r  ( g + K ) , i z  + ( r + l )  g*IZ ' 

and hence 

where 

~,,o(r, ,) = Kl(r,  , )c , ' ( r ,  ,) 

rio(r, s) = X,(r  + 1, ~ ) C & ,  0 

%o(r, 0 : K~(r, 0c1'(~, 0 

%(~, 0 = K~(~+ 1, 0C;(~, ,) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

1 
Cl'(r, s) = ~T~ [ -  M(r ,  s, g, K )  + (r + 1)N(r, s, g, K)] = Cl(r, s) (A.28) 

1 ( ) 
C~'(r, s) - (g + K)l l  2 [M(r, s, g, K )  - rN(r ,  s, g, K)] = C~ + C a g + K - 1 1/~ ~ • 
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Clearly we must have 
g > 0, (A.30) 

for the 2 vertex case. 
For either the two vertex or three vertex cases, for given r, s and K we must always have 

g > r K -  s. (A.11a) 

If  this inequality is violated, it implies that the pivotal point would lie outside the leading edge 

for the given value of g. 

2 .  The Derivation of 8~(r, s) and 8~(r, s) for an Irregular Rhombus Adjacent to a Subsonic Leading 

Edge. 

The method of procedure is the  same as before with L 1 replacing K1, L., replacing K~. and 

1/(pa) ~/2 replacing l/4(p~)Z/L The counterpart of equation (A.7) becomes 

= aL(r, s, g, K) + b_M(r, s, g, K)  + cN(r, s, g, K) ,  
where 

/S(r, s, g, K )  = -~-0-- f~ (r) + g EKf~ (r) + 74 E2fa'(r) + f4'(r, g, K )  + 

K z K E  ' r, 
1 s~/2(E_2s)fs,(r,g ' K )  ~ f ( ( r ,  s,g, K)  - --~-f7 ( s,g, K)  - +~ 

+ 

+ 

e 2 

f8'(r, s, g, K )  - 

( K )  v'3K'~ ' E~ 1 L{-aYf9 (r, g') + 2 
2 

K ,  } 
~ f ~ l  (r, g', E) f,~'(r, g') + 

g6 k~'(r, g') + 

E 2 

" E 3  ~ t 

(A.31) 

t ] 
I 
I 
~. (A.32) 

- ~ r  2 K  ' r r: , sl/~ ' r K )  ~ -  f6 ( , s, M(r, s, g, K)  = -5 Kf~'(r) + ~ Ef2 (r) 4K~/~f ~ ( ,  g, - g, K)  - 

2E ' r 4 E a 
fv ( , s, g, K )  15 K ~f~6' - 

1 ~/~ Kf9'(r, g') - Ef~o'(r, g', KE)  + 5Irf + 2 

1 ,  } 
+ g f n  (r, g', E) f~2'(r, g) + 

2 K  , KE) } f~5 (., g )] . . . .  + 51Kfla'(r' g') + {~ E -  -5--fl 4 (r, g', ' ,  ' 
E 3  ~ ! 

(A.33) 
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2 Kfv , (r  ' s, g, K )  - _N(r, s, g, K )  = ~1 rrKf( (r )  + rrEfa'(r ) - sl/2fs'(r, g, K )  - 

4 E 2 
- 2 E f ( ( r ,  s, g, K )  + ~ ~ f16' - -  ('- (A.34) 

2 {2E - Kf~o'(r , g', KE)} f i2 ' ( r  , g') + ~ K f ~ ' ( r ,  g') 

and 
f , ' ( , )  = ( / +  1) 5.2 - PI2, f ( ( r )  = ( r +  1) a~ - r3/2, k , ( r  ) = ( r +  1 p  - rl/= 

f4'(r, g, K )  = {(r + 1)K(g + K)} ~t2 [(r + 2 ) K + g ]  - (rKg) 1/~ [,K+g] - 

- (g - Kr)  2 log~ [{(r + 1)K} 11~ +_ (g+  K)*1z~ 
(rK)l t2  + g112 _] 

' ,  K) g - ,K I{(r + 1 ) K p  +_ ( g + K p ~  
f5 ( , g, = K * I ~  log~ ( r X ) l a  + g,12 _] + {(r + 1) (g + K)} ~12 - (rg) 112 

' r  K )  = ( r +  sin-1 ( s )112 _ r 51~ sin -1 ( $ 1112 
f6 ( , s, g, 1)512 s + g + K \s  + g /  

, ,  ( ' t , 11 ,  fv ( , s, g, = sin -1 - r a12 sin -1 
s + g + K  \ s + g ]  

fs ( , s, g, = (r + sin -1 - r l/2 sin -1 
s + g + K \ s ~ /  

' r  1 , g, g f9 ( ,  g')  = -~ (g - r) 2 , = - 
K 1( 

flo' r ,g ' ,  =-~  g ' - r  + 2 ~  , f ~ , ' ( r , g ' , E )  = E ( g ' - r )  

' r [ } ( 2 + g ' + r ! + { ( r + l ) ( l + g ' ) } ~ ' 2 ~  

, r  , 1 1 f13 ( , g ) = ~ (2 +g '  + 7) {(r + 2) (1 +g')}~/z - ~ (g' + r) (rg') 

( f ~ '  r ,g ' ,  = ~ + g  - r ,  f ,5'  = { ( r + l ) ( l + g ' ) }  l l z - ( r g ' )  ~1~ 

,/~ 1 (K )  112 F{(/.,--I-1)sK}ll2+ {E(g Dr- K)}  1/'~ (/"3K) 1/2- (Eg) 112"] 
f16 ( , S, g, K,  E) = ff log, L{(, + 1),Kp - {E(g + K)} *~z ( rsK)  *~ 7 (Eg)~=J " 

Using equations similar to (A.16), (A.17), (A.18), we obtain f rom (A.31) for the three vertex case 

8oo(,, s) = L~(,, s)D,(r, s), alO(~', s) = L~(r + 1, s)D~(r, s), 

where 
811(r, s) = L~(r+ 1, s +  1)Da(r, s) (A.35) 

1 1 D~(,, s) = g ~  [ -  a3 + (~+ 1)2v] 

1 l 
D~(r, s) = (g+K)~i2 [ - / 7  + M + (s-r)_N] } (A.36) 

1 
(g + K -  1) ~I~ [/7 - s27]. J 
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Similarly 
goo(r, s) = L~(r, s)Dl(r, s), ~lo(r, s) = L2(r + 1, s)D2(r, s), 

gn(r,  s) = L~(r+ 1, s+ 1)D3(r, s). 

For the two vertex case, we have 

aoo(r, s) = Ll(r, s)Dl'(r, s), 

goo(r, s) = L~(r, s)Dl'(r, s), 
where 

alo(r , s) = Ll(r + 1, s)D2'(r, s) 

31o(r, s) = L2(r + 1, s)De'(r, s) 

1 
Dl ' ( r  , s) = (g)lm [ -  - ~  + ( r +  1)iV] = Dl(r ,  s) 

-- (g + K -  1)112 
D 2 ' ( r , s ) -  ( g + K ) l m [ M - r N ]  = D 2 + D  3 \ ~ _ K  " 

(A.37) 

(A.38) 

(A.39) 

(A.40) 

(A.41) 

3. Derivation of  "ru,, %v, 8~ ,  ~ for an Irregular Rhombus Adjacent to a Transonic Leading Edge. 

The  equations given earlier for the subsonic-leading-edge case remain Valid, except that we have 
to take the limit as K tends to zero. Thus  in equations (A.8), (A.9), (A.10) we take K = 0; with 

f~ = 2 sin -1 
ks + g ] r ~m (r --~ -]_)1/2 
( s ]  1'2 

fa = 2s in  - l \ ~ g !  [ ( r + l )  112-r  lm] 

f~ = 2gl~2[(r + 1 p  - r1~2]. 

(A.12a) 

(A.13a) 

(A.14a) 

(A.15~) 

To obtain the equations analogous to (A.32), (A.33), (A.34), it is simpler to perform the integrations 
again from first principles, using the fact that the equation of the leading edge is now 

aL.x. = s + g  independent  of p. 
We obtain 

L = 2 [ ( r +  1) t m -  H/21 I~ (A.32a) 

2~ = ~ [ ( r +  1) 3m - r a/~]/1 (A.33a) 

/Y = 2 [ ( r +  1) ~m - ,1/2] I1 • (A.34a) 
where 

F~ ( s 
I~ = ( s + g ) L ~ -  sin-~ t,%-~; J -(sgp (A.42) 

I2 = T~ ( s+g)2 - sin-1 k s+g /  J - # ( s - g )  (sg) lm. (A.43) 
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A P P E N D I X  B 

1. The Derivation of r,,~(r, s) and %v(r, s) for an Irregular Rhombus Adjacent to a Supersonic 
Leading Edge. 

r + i ,  S k.E.  

z  <UJJ ,g" 

The procedure is much the same as for the subsonic-leading-edge case, except that now the 

parameter K is negative and (aL.~," - a) lm is now replaced by %.E. -- a throughout. Equation (A.7) 
now becomes: 

fr+l fCrL.E.(p ) (a~ + bp + c) ( (;LE. -- cO 
r . , ~  4(p~)3/2  dp d~ 

= aL(r, s, g, K)  + bM(r, s, g, K)  + cN(r, s, g, K) ,  (B.1) 
where 

L(r, s, g, K )  = ~ 2E 3 E ( -  K)lm sin -1 E llz qr-[-1 
_ _ _  _ + {K2p(E+Kp)}ImJr + 

+ 

(=2) ( _ ~) lm sin-1 + {p(E + Kp)}lm + 
r 

+ s ~  + slm [(r + - r'm] + s~- [(r + 1)am - r3m] (B.3) 

N ( r , s , g , K )  = 2 [ ( -K) lms in - l  (-~EKP) + ( E +  KpIlml r+l 
-P 7 -Jr -- 

[ E l i  1 11 K - sam + s ~  (r+-l)Zm ri72 + s ~  [(r+ 1) l m -  rim]. (B.4) 

As before E is given by equation (A.11). 

To  deduce %~(r, s) we must make use of equation (79), so that we must  first express a, b, c in 
terms of CR'r,8, ¢i@+1, ~, ¢i@,~+z. Substituting the three pairs of co-ordinates into 

CRt(P, °')KI(p, o') = (a¢+bp+c) (¢L.m.- ~) (B.5) 

we obtain three equations which, on solving for a, b, c, give 

a - ( 8 . 6 )  g - 1  g 

b -  [4R'K1]r+l's [¢R'K1]r's (B.7) 
g + K  g 

t t t K 
c - [¢R K1]r,s ( r + s +  1) - r [¢R K1]r+l.8 [¢R 1]r,,+1 

g g + K - s ( B . 8 )  g - 1  
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Returning to equation (B.1) and picking out the coefficients of Cn'(r, s), CR'(r + 1, s), CR'(r, s+ 1) 
in turn, we obtain 

Similarly 

where 

~oo(~, ~) = 

~o(~, 0 

~o~(~, ~) 

Kl( f  , 3)C1(~ , s) ) 

K l ( r + l ,  s)C2(r, s) 

K l ( r  , s + l ) C a ( r ,  s) 

(B.9) 

1 
C~(r, s) = g [ -  L - M + (r + s  + l )N]  

1 
C~(r, s) - [ M  - r g ]  

g + K  

1 
C3(r, s) = - -  [L - s g ] .  

g - 1  

(B.10) 

¢oo(~, ,) = K~(~, ~)c,(~, ~) ] 

~o(r, s) = K~(r+l ,  s)C2(r, s) 

~01@, 3) = Ks(r  , 3-1-1)C3(r, s). 

(B.11) 

For the three vertex case it will be clear that the point Q must lie outboard of T and hence 

must be satisfied. 
g > l ,  (B.12) 

r~¢., 

k,E, 

In a similar manner we find for the 2 vertex ease 

a - =  0 (B.13) 

' ' K  b - [¢RKdr+l,s [¢R 1]r,s 
g + K  g 

' K  ' K  
c =  ( r + l ) [ ¢ R  :].,s r [ ¢a  d.+:,. 

g g + K  

Equations (A.26), (A.27) now hold good as before, where 

1 
c1'(,-, ,) = g [ -  M + (,-+ 1)N] = C~ + 

1 
C~'(r, s) = - -  [ M  - rN] = C2. 

g + K  

g - 1  C3 
g 

(B.1-4) 

(B.15) 

(B.16) 

(B.17) 
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Clearly for the two vertex case, we must have, 

- K < g < . l .  

l 

L.E. 

For the one vertex case we get 

a = 0 ,  b = 0 ,  

Hence 

where 

For the one vertex case 

*o0(r, s) = G ( ~ ,  ~)G"(~,  s), 

N 
C /t{r sj = -  i t , ,  . g 

¢ =  

g 

%o(r, ~) = G ( r ,  s)G"(~, s), 

(B.17a) 

(B.18)  

(B.19)  

(B.2o)  

0 < g ~< - K .  (B.21) 

2. The Derivation of 3~(r, s) and 3~v(r, s) for an Irregular Rhombus Adjacent to a Supersonic 
Leading Edge. 

The method of procedure is the same as above with L 1 replacing /£i, L 2 replacing K S and 
1/(p(r) 1/2 replacing 1/4(p~) am. 

The counterpart of equation (B.1) becomes 

f~+l f;l~.E-(P) (aa +bp+c) (~L.E.--(r ) (p~)lt~ dp d~ 

= a[.(r, s, g, K) + bM-(r, s, g, K) + cN(r, s, g, K) (B.22) 
where 

[,(r,s,g, K ) =  I8pV~(E+Kp)Smll +1 4 - ~jdr, E, K)  + 

+ s ~  - ~ E ~  [ ( r +  1 ) ~  - , ' ~ ]  - ~ K ~  [ ( r +  - ~ ]  ( K 2 3 )  

M(r, ~, g, K) = ~A(r, E, K )  + s ~  - g E ~  [(~+ 1 ) ~  - r~/~] - g s l ~ K  [(r + 1 ) ~  - "~1  (K24)  

_~(r, s, g, K )  = ~Jd~, E, K )  + ~ - 4Es l~  [(r + ~ ) ~  - r ~ ]  - 5 s ~ g [(r + 1 ) ~  - , '~ ]  (B.25)  

and 

I Ea {2 ( ~ ) ~ m }  E (E+ 2Kp){p(E+ Kp)}ll2+ j~(r, E, K) = 16(_K)am - 2 sin -1 + 

1 
p(E + Kp) {p(E + Kp)}lmll +1 (B.26) + 5  

I 

+ (SE+ 2K ) {o(E+ (B.27/ J # ,  E, K )  = . 4 ( - K ) 1 ~  ~ . 
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Using equations similar to (B.6), (B.7), (B.8) for the three vertex case, we obtain from (B.22) 

~oo(r, s) = Ll ( r  , s)D~(r, s) ,  8~o(r, s) = Lx(r + 1, s)D2(r, s ) ,  

where 

Similarly 

8o,(r , s) = Ll(r ,  s + 1)Da(r, s) (B.28) 

1 1 Dl(r ,  s) = ~ [ -  [, - M + (r + s + 1)/V] 

1 rN]  Ds(r, s) - 1 [[, - s N ] .  D~(r, s) = -g + K [ ~  - ' g - 1 

8oo(r, s) = L~(r, s)D~(r, s) ,  ~10(?, s) = L~(r + 1, s)D~(r, s) 

~ol(r, s) = L~(r, s + 1)Da(r, s) 

(B.29) 

(B.30) 

For the two vertex case, we have equations (A.38), (A.39), where 

1 1 g 
Dl ' ( r  , s) = - [ - / ~ r  + ( r +  1)N] = D~ + D3 

g g 
(B.31) 

1 
D ( ( r ,  s) = - -  [ M [ -  rN]  = D e . 

g + K  
(B.32) 

For the one vertex case, we have 

where 
8oo(r , s) = L~(r, s ) D f ( r ,  s) ,  

Dl"(r ,  s) = - - .  
g 

~oo(r, s) = L2(r, s)Dl"(r,  s) (B.33) 

(B.34) 
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Rectangular wing. A/p, = 2 

s =10 
c = 1 0  

Del ta wing. A/p, --I-5 

s = 3"75 

c = 1 0  

Tan .kL.E. = 813 

Tapered wing. A /R  = 4.33 

s = 13-7 

c :10 

A.L.E.= IS a 

FIG. 1. Planforms for which derivatives were evaluated. 
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