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Summa~'y. 
The statistical nature of the input to a guided-weapon system (target information and noise) requires that 

the criterion of weapon performance be itself a statistical quantity. The criterion used in this paper is the 

mean square miss distance, the mean being taken over a large number of engagements, such that all,probable 
target and noise inputs are encountered, and it is shown that there exists an optimum realisable system for 

which this mean square miss distance is a minimum. 
For the derivation of the optimum system it is necessary to assume that the target and noise inputs, or 

appropriate functions of these inputs, may be considered to form a stationary (but not necessarily ergodic) 
ensemble for a short interval prior to collision. Account is taken of the fact that the system must include a 
missile, with its aerodynamic characteristics and limited available acceleration, and this leads to a number of 
optimum systems depending on these factors. 

The beam-riding system is shown to satisfy the main requirements of the analytical framework, so that this 
system may be identified with the optimum system. From this identification follows the definition of certain 
components of the beam-rider, and the optimisation of the latter requires the insertion of electrical networks 
in the ground tracker or in the missile, or both, depending on the sources of noise. 

Explicit formulae are derived for cases in which the noise spectral density is assumed to be constant with 
frequency, and the target manoeuvres to be such that their lateral accelerations form a stationary ensemble over 
the necessary interval. The examples give n show that a definite improvement results from the use of the 
optimum system, in that both the miss distance and the acceleration requirement are reduced. 

The realisation of networks defined by their transfer functions is discussed in Appendix IV, and examples 

are given of optimum networks for the beam-riding system. One such example has been the subject of simulator 
tests, in which it is compared with the 'phase-advance' system. 

I t  is concluded that the missile accelerations required to achieve a given miss distance are considerably less 
than those hitherto considered necessary, and that the results of the paper warrant a further programme of 
analysis, simulation and flight trials. Such work might well lead to a significant advance in the efficiency of 
missile design. 
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1. Introduction. 

1.1. The Guided- Weapon and Servomechanism Theory. 

The nature of the information available as the input to a Guided-Weapon system plays a dominant 

role in determining the required characteristics of the system. Such information will be a more or 

less accurate description of the motion of the target, depending on the quality of the apparatus used 
to detect and follow the target. That this motion is variable--that it is, to some extent, unpredictable 
--emphasises the need for a guided weapon, a device capable of correcting its error with the aid of 

up-to-date information concerning the target. In this sense the guided weapon is a servomechanism, 
a 'closed-loop' system which compares the actual and desired situations and takes appropriate 

action to minimise the difference between them. 
This concept of the guided weapon as a servomechanism has proved a useful one, in that much of 

the theory of servos is directly applicable to the guided weapon, That this theory is so well developed 
owes much to the fields of communication engineering and filter theory, with which it is intimately 

associated. 
Recent advances in these latter fields have 

message, or signal, and the noise with which it 

by a telephone-line, for example, differ in detail 

been concerned with the statistical nature of the 

is invariably accompanied. The messages accepted 

on each occasion, but nevertheless the ensemble of 

all possible messages will have properties which characterise the fundamental similarity of messages 

in general; and it is these statistical properties which influence the design of the system. Noise is 

also a statistical phenomenon--its precise value on a given occasion is unknown, and its description 

must be confined to average properties, such as the mean square value. 
This communications terminology has been taken over to the field of servomechanisms, and in 

this context the term noise refers to that part of the input to the system which does not contribute 

to the desired information. It is clearly desirable to suppress this part of the signal, and this can often 

be done by filtering, in which use is made of known differences in the frequency content of informa- 

tion and noise; in this situation Wiener 1 has shown that there exists an optimum filter which will 

separate the message from the noise to the fullest possible extent. 
The word optimum in this context requires clarification. The merit of the filter must be judged 

on the success with which it handles all the possible situations--weighted according to their 
frequency of occurrence--and not merely on its performance with one or two specific examples of 
message and noise. Since our knowledge of the latter is confined to their statistical properties, the 

criterion of merit must itself be statistical in character, describing the 'average' behaviour of the 
filter. One such criterion is the mean square error existing between the filtered signal and the 
original message, the mean being taken over all possible messages and noise. In this sense the 
optimum filter is that network for which the mean square error is a minimum, but other measures 

of the error are possible, and on occasion preferable. 
In view of the fundamental accord which exists between the fields of communications and servo- 

mechanisms, it may be expected that the above concepts have significance in the theory of the 
guided weapon, not only for the various servo-mechanisms included in the system, but also for the 
system as a whole. In fact, it is found that the statistical theory provides a powerful means not only for 
assessing the performance of a given system, but for choosing that system having the best 

performance. 
It is the purpose of this paper to develop the theory, taking into account the physical constraints 

within which the system must operate--limitations imposed, for example, by the aerodynamic 



behaviour of the missile which forms part' of the system: and to derive the best physically realisable 
system for a given set of conditions and a given criterion--the minimisation of the mean square miss 

distance. 

1.2. The Target Motion. 
The motion of the target, which provides the useful part of the input to a guided-weapon system, 

is not entirely random. It is known, for example, that the forward velocity will not undergo rap!d 
variations, and that the lateral acceleration is confined Within certain limits, so that although the 

future position of the target cannot be predicted with certainty from a knowledge of its present and 
past positions, we can nevertheless eliminate certain positions as unlikely. This leads to the con- 

sideration of the statistical properties of a whole set of possible target courses any one of which may 
provide the input on a particular occasion. Clearly the system should be so designed that it is 

reasonably effective against any of these targets, with the emphasis on those courses which are most 

probable. 
The mechanism underlying the target motion (i.e. the aircraft, the pilot, the location of objectives 

in relation to the guided-weapon site, etc.) does not change with time (at least for the period of time 

over which we are concerned), and it seems reasonable to conclude that the probability distributions 

which characterize the set of target courses are invariant with respect to time, over a limited region. 
Such a set is said to be stationary, and it is with the properties of stationary series that the theory of 

the present paper is mainly concerned. 

1.3. Sources of Error--Noise. 
The information acquired by the guided-weapon system will not be a true record of the target's 

behaviour: it will include spurious information arising from imperfections in the unit used to detect 
and follow the target. We are concerned mainly with those systems in which the information is 

derived from a radar beam which automatically tracks the target, and this type of radar auto-follow 
is subject to a variety of errors, among which may be cited the so-called 'beam jitter'. This is due 
to random variations in the radar-reflecting properties of the target, and its effect is to induce 
random fluctuations in the beam which do not correspond to the t rue motion of the target. Other 

errors of a more or less random nature are thermionic noise in the receiver, fading at long range due 
to lack of transmitted power, and at short ranges the phenomenon of glint--random movements of 

the point of reflection. In addition errors may be introduced in the tracking servo itself. 
For the moment we need not distinguish between these sources of error, and all may be con- 

sidered as noise. Thus, if OT(t), O(t) are measures, in a suitable co-ordinate system, of the true position 

of the target and the input to the target following system, then 

O(t) = OT(t i + O,4(t), 

and the noise 0N(t ) is that part of the input which does not contribute information about the target. 
It is clear that noise is in the same category as the target motion, in that the future values of the 

noise cannot be predicted with certainty from a knowledge of past values. If, on the contrary, the 
noise is known as a function of time, it ceases to have any significance, since it can be removed in 
effect by subtraction from the input signal. On the other hand, if the target motion is completely 
pre-determined (from the stand-point of the observer), the noise is again irrelevant: all the required 



target information is available, and no new information is possible. It is only when both the message 

and the noise are to some extent unpredictable that the problem of their separation becomes other 
than trivial. 

The underlying processes which generate the noise do not vary from day to day, and it may be 

expected that the statistical properties derived from the analysis of a large number of records will 

hold good for similar situations in the future--i.e, the ensemble of noise functions constitutes a 
stationary series. Any theory which includes the effect of noise must deal with the ensemble rather 

than with individual functions: the precise statistical quantities required will appear later. 

1.4. The Nature of the Input. 

The two quantities which form the input to the guided-weapon system--target information and 

noise--are each statistical in character. The uncertainty concerning the target stems from the fact 

that it is independent of the guided weapon, and is reluctant to supply information leading to its own 

destruction. This fact means that, as far as the observer is concerned, some element of uncertainty 
will exist even when all available information is taken into account. 

Noise, on the other hand, arises within the system, and is therefore to some extent controllable. 

The system should clearly be designed to reduce the noise as far as possible, provided that the 

increased complexity leads to a worthwhile improvement in performance, but again some noise 
will remain. 

Having used all possible target information and having reduced the noise as far as is economically 

possible, the problem is then so to use the available equipment that the guided-weapon system has 
the maximum efficiency. 

2. Criteria Governing the Choice of System. 

2.1. The Mean Square Miss Distance. 

The motion of the missile is governed by the input to the system; symbolically we may write 

011~(t) = F{ST(t) + ON(t)} = PS(t), (2.1-1) 

where F is an operator (not necessarily linear) which describes the system. Here 'system' connotes 
the whole chain of events which starts with the motion of the target and ends with a motion of the 
missile: it therefore includes the aerodynamics and control system of the missile, and the character- 
istics of the tracking or error-detecting device. 

Consider now a large number of attempts against different targets, all of which are engaged at 

roughly the same range. The target motion and the noise, and therefore the motion of the missile, 
will in general be different on each occasion. For the rth attempt, 

OMT(t ) = P{OTT(t ) + Ore(t)} = FSr(t), (2.1-2) 

and if T is the instant of nearest approach of the missile to the target, the difference 

G ( T )  - O~T (T) (2.1-3) 

is a measure of the accuracy of the system. If, for example, the O's refer to angular positions from a 
datum line, and R is the range of engagement, the miss distance s r is given by 

sT = R[OTT (T) -- OMT (T)] 

= R[(1-P)0~pT(T ) - r0~w(T)] , (2.1-4) 
assuming that the operator P is associative. 



It is assumed in this equation that no a priori information is available to distinguish one attack 
from another, so that the system remains unchanged--i.e. F is not a function of r. 

The criterion by which the system is judged must take into account the performance against all 
targets. The criterion used in this paper is the mean square miss distance, the mean being taken over 

all possible engagements: 

1,~ 1 ~ 
<srb = 7~ ,X 1.= s'2 = -n,.=lE n~[( 1 -F)0Tr(T) - FON,'(T)] ~ , (2.1-5) 

from (2.1-4). 
The ultimate object is to obtain the highest lethality, but the relation between miss distance and 

lethality is a function of the warhead-fuse combination, and not readily expressible. To the extent 

that this relation can be encompassed by a single number, the most appropriate number appears to 
be the mean square miss distance. We shall therefore consider the optimum system to be that system 
for which the mean square miss distance is a minimum. The system is defined by the operator F, 

so that the problem is to select P such that (s~ ~) is a minimum. 

2.2. The Admissible Class of Operators. 

The value of the result will clearly depend on the generality allowed in the formulation of the 
problem, and the population of possible systems from which the optimum is chosen should be as 

comprehensive as possible; if the problem is restricted to the study of a particular class of operators 
by arbitrarily excluding all other systems, the value of the result is correspondingly diminished. 
Nevertheless certain restrictions must be imposed on the operator: in particular, it is necessary to 
exclude non-linear operators, since no adequate theoretical treatment exists at present. Further, the 
operator must lead to a physically realisable system, which implies that the operator can only act on 
past values of the operand. It is also desirable that the resulting system shall have fixed components 
(at any rate over a sufficiently long interval), and this imposes the further requirement that the 

operator shall be invariant under translation in time. 
From this admissible class of operators, acting only in the past and invariant with time, we wish 

to select that operator which minimises the mean square miss distance. Even this restricted class 
includes a wide variety of operators--in electrical terms, any combination of active and passive 

networks having lumped components can be represented by such an operator. 

2.3. Optimum Considerations. 

The method of optimising the parameters of an arbitrarily chosen system from this class does not 
ensure that no better system exists; for example, it may be decided from experience and certain 

criteria that for a particular problem the relation between input and output should be of the form 

ao + a i d  + a~D 2 
bo + biD + b~D 2 + bsD 3' 

where D - d/dt. 

It is then possible to select some or all of the coefficients a0, b0, etc., such that the optimum 
performance is obtained for a chosen criterion. This result applies only to this particular form of 
operator, and gives no indication of the performance of other possible systems. The same technique 
can of course be carried out for a number of assumed forms, and the results compared. We might 
enquire, for example, whether an additional term b4D ~ might not provide some improvement, and 
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this hypothesis could be tested by repeating the calculation for this configuration; such a procedure 

however quickly becomes impossible to handle analytically, and still does not ensure that the best 
system has been investigated. 

Where the form of the operator has been chosen for other reasons, or if the system cannot readily 
be altered, this method is satisfactory, although the criterion adopted should relate to the performance 

with the type of inputs expected, rather than the response to a step or the sinusoidal response, unless 

the latter inputs occur frequently. In many cases however there is some latitude in the choice of 

operational forms; in the guided-weapon case part of the system is fixed by the characteristics of the 

missile, but considerable freedom exists in choosing other parts of the system, such as the control 

system and the properties of the target seeker. In order to determine the best characteristics for these 

components, a more general approach is necessary--a theory Which defines the best operator from 

the widest possible class of operators. 

Such a theory, based on linearity, would be of little value if the actual situation were not repre- 

sented, at least approximately, by a linear system; and it is necessary to show that the mathematical 

framework will accommodate the more important properties of the system. 

3. Non-linearities in the Guided-Weapon System. 

Non-linearity in a guided weapon may arise in three distinct ways: 

(a) The non-linear aerodynamic behaviour of the missile. 

(b) Non-linearities resulting from the geometry of the situation. 

(c) The effects of saturation in any element of the system. 

These three sources are discussed below. 

3.1. Aerodynamic Non-Linearities. 

The motion of the missile is not a linear function of the deflection of the control surfaces. In a 

fixed-wing vehicle having rear control surfaces, for example, the downwash from the main wings 
onto the control surfaces results in an effective shift of the centre of pressure with incidence, so that 
the acceleration produced by a given fin angle is a function of incidence. 

The effects of this and other non-linearities can be greatly reduced by the use of negative feedback: 

this does not of course affect the aerodynamics of the missile, but it does alter the relation between 
the control signal and the acceleration it produces. The greater the degree of feedback, the more 
nearly linear does this relation become. The type of feedback used depends on the missile: for the 
fixed-wing, rear-control-surface vehicle, high acceleration feedback can lead to instability, and 

additional feedbacks are necessary to overcome this condition. 
Other effects--such as those due to the variation of aerodynamic derivatives with changing height 

and speed--are also reduced by feedback: in effect tl~e missile forms part of a servo system, the 
performance of which becomes less dependent on the missile as the feedback is increased. 

Although the missile system may be made more nearly linear by these methods, it is not 
immediately obvious that this is beneficial. It will be shown later (Section 7.3) that in fact the best 

transfer function of the modified missile is unity over the significant frequency band; and although 

this ideal cannot be attained, it is approached by increasing the feedback, which also reduces the 

non-linear effects. The application of such feedback is therefore desirable, and at the same time 

justifies the linear representation. 
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On these grounds it will be assumed in this paper that the relation between the demanded and 

achieved missile accelerations, as modified by internal feedback, can be represented by a linear, 

constant coefficient differential equation: that is 

fM(t) = A(D)fD(t  ) (3.1-1) 

where fM is the lateral acceleration, andfD(t ) a measure of the demanded acceleration. The operator 
A(D)  includes the control-surface actuator characteristics, a n d  those of any ins t ruments--such as 

accelerometers--from which the feedback is derived. The relation holds over a limited range of 

fD(t), as discussed in Section 3.3. 

3.2. Geometrical Non-Linearities. 

3.2.1. The beam-riding sys tem.- -The  influence of the coordinate system can be illustrated 

by taking the beam-riding system as an example. In this system the angular error (0 B - 0M) (Fig. 1) 
existing between the target-tracking beam and the missile is detected by the missile receiver and 

multiplied by the range rlv±, giving a measure of the linear displacement between the missile and the 

centre of the beam. 

for acceleration is 

so that from (3.1-1) 

If  the subsequent operations on this signal are denoted by S(D), the demand 

(3.2-1) 

(3.2-2) 

fz)(t) = S(D)rM(t ) [0B(t) - 0M(t)] , 

fM = A ( D ) S ( D ) r M ( O z -  OM). 

(In this and subsequent equations the argument t is omitted where there is no ambiguity.) 

The operator S(D) includes the receiver characteristics and those of any additional networks 

included for the purposes of stability, etc. 

From Fig. 1, 
rll,0"~ + 2 G 0 ~  = f~,~ cos (0~--¢M) 

and (3.2-3) 
i;~l I - r MO ~,X 2 = f ~¢ sin (011~ z -  ¢~1~), 

giving 
A ( D ) S ( D ) r ~ ( O B -  0M) = [(rM0~'Z + 2~MOM) 2 + (fM--r~zO~,x2)2] ~/"~ (3.2-4) 

so that although the system consists of linear elements, the geometry of the situation leads neverthe- 

less to a non-linear equation in 0~z. 

3.2.2. A linear approximation.--The angle (0M--¢M) will normally be small, and may, 

without  great error, be assumed to be zero; the missile axis then lies parallel to the radius vector rM, 
and 

A(D)S(D)rM(O B -  OM) = rMO M + 2¢~r02 u (3.2-5) 

from (3.2-3) and (3.2-4). 

This equation is now linear, but has variable coefficients. The assumption of constant missile 
range removes the variation, but appears at first sight to be a rather sweeping assumption. As an 
alternative and closer approximation, consider the range to increase exponentially: 

r M = K exp (c~ut) 
Then 

eM 
- c M, a constant. 

r2kI 
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Equation (3.2-5) then becomes 

o r  

K exp (ciwt)A(D + CM)S(D + CM) (0 B -  0~) = K exp (cMt)DZOM + 2KcM exp (CMt)DOM, 

A ( D  + CM)S(D + c~,z) (OB -- OM) = D(D + 2cM) O M (3.2-6) 

- - a  linear equation with constant coefficients. 

The actual increase in missile range is more nearly linear than exponential, since ~,z is practically 

constant and equal to Vlv±: 
r~i  = g d l f t .  

If the constants of the exponential approximation are chosen to give the true range and velocity 

at time to, then 

V ~ t  o = K exp (c~,~to), and V M = Kc  M exp (c~ito) 
giving 

r M = VMt o exp (t/t o -  1) 
as the approximation, with e M = 1)o.  

This function is compared with the true range in Fig. 2, from which it may be seen that the 

approximation is correct to within 5 o/0 in the interval 

0-8 t 0<  t < 1 . 2 t  o . 

If  t o is chosen such that 1.2 t o = T, the time of interception reckoned from launch, this interval 
becomes 

2 
- T < t <  T ,  
3 

so that over the final third of the flight the approximation for range is in error by less than 5o/0 . 

For the purposes of the theory which follows, the representation need only be correct over an 
interval immediately prior to interception, provided that this interval is long compared with the 

time constants of the system, which will not amount to more than a few seconds (Section 7.3). The 
flight times of interest for a ground-launched vehicle will not normally be less than 20 seconds, and 

more often 50 to 60 seconds, so that (3.2-6) is valid over a sufficiently long interval. The precise 

behaviour of the missile before this time is of little consequence, provided that it flies within the 
beam in a stable manner. 

3.2.3. The overall linear operator with constant coefficients.--Equation (3.2-6) relates the 

beam and missile positions: the system is completed by the dependence of the beam position 0 E on 

the input to the system, which is 0 T + 0~. This relationship is governed by the radar tracking 

system, whose properties we may denote by the operator T(D) acting on the error as measured by 
the ground radar set (Fig. 3a): 

0 B = T(D)[O T + O  x -  OBJ , 
o r  

T(D) (0 2 + 0iv) (3.2-7) 
O B -  1 + T(D) 

The operator T(D) may be assumed linear, except for the effects of mechanical hysteresis and 
friction, which will be discussed later (Section 6.2.2). 
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The combination of (3.2-6) and (3.2-7) yields 

T(D) A(D + CM)S(D + CM) (0 T + 01,, ) (3.2-8) 
OM -- 1 + T(D) A(D + cM)S(D + cM) + D(D + 2cM) 

which may be written as 

Oi~.x = H(D) (Of + 0iv), (3.2-9) 

where H(D) is a linear operator with constant coefficients. Thus the whole system can be represented, 
with the above reservations, by an operator of the class discussed in Section 2.2. 

If OM(p) denotes the Laplace Transform of 0M(t)--i.e. if 

OM(p) = e #0  t d - t ,  

0 

with similar symbols for OT, ON, we have from (3.2=8) and (3.2-9) 

OM(p) T(p) A(p  + c~)S(p + c~i ) 
= = H(p) (3.2-10) 

OT(p) + 0N(p) 1 + T(p) A(p + CM)S(p + CM) + p(p + 2C~) 

and this is the system transfer function, where T(p), A(p) and S(p) are the transfer functions of the 
elements defined above. These relations are shown diagrammatically in Figs. 3a, and b. The whole 
system is equivalent to a filter having the transfer function H(p), although the components of the 
filter do not correspond to those of the guided-weapon system. 

3.3. Saturation Effects. 

3.3.1. Limiting.--The third type of non-linearity is that due to saturation of the various 

elements composing the system: the linear representation is only valid over the range for which 
each unit (with feedback if necessary) can be considered linear. In most cases the linear range of the 

components can be adjusted to meet the requirements without difficulty, but the range of lateral 
acceleration which the missile can achieve presents a special problem. Here negative feedback is of 

no assistance, since beyond a certain range a demand for acceleration, augmented by feedback to 
counter the failing efficiency of the control surfaces, results not in greater acceleration but in disinte- 
gration of the missile. It is therefore necessary to limit the demand for acceleration to a level 
consistent with the structural strength of the vehicle; moreover, this level cannot readily be altered 
without re-designing the missile. 

3.3.2. Further restrictions on the optimum operator.--The acceleration limitation cannot 
be ignored in the analysis: at the same time the analysis is only valid for linear systems. It is however 
possible to introduce constraints into the theory such that the limiting value is almost never exceeded, 
in which case the system can again be regarded as linear. This condition imposes a further restriction 
on the optimum operator--the problem is then to find that physically realisable operator, not 
demanding an acceleration in excess of a given level, which will minimise the mean square miss 
distance. The minimum miss distance will of course depend on the available acceleration, as will 
also the optimum operator with which this minimum is achieved. The optimum operator can be 
evaluated for various limits, and the resulting minimum miss distances as a function of allowable 
acceleration furnishes a design criterion for the structural strength of the missile. The absolute 
minimum is obtained with infinite acceleration, but it will be shown later (Section 7) that the 
relative gain in accuracy rapidly diminishes as the acceleration is increased. 

13 



Although emphasis has been laid on acceleration limking, it is--for the purposes of analysis-- 
equally necessary that the remaining components (e.g. the receiver) should operate within their 

linear regimes. It is possible to apply additional constraints to ensure linearity throughout, but this 
involves specifying much of the system in detail. However, we wish to arrive at the best system by 

analysis, rather than arbitrarily to specify parts of it in advance: it is therefore preferable to deal only 
with the most important non-linearity, and then to verify that the realisation of the subsequent 
operator does not require an unreasonable linear range for any particular component. 

4. The Derivation of the Optimum System without Constraints. 

It has been shown above that the beam-riding system can be characterised by a linear operator 

H(D) relating input and output. In this section an expression for the mean square miss distance is 
obtained in terms of the operator and the statistical properties of the target motion and of the noise. 

The minimisation of this expression leads to an integral equation, the solution of which yields the 
transfer function of the optimum system. To clarify the discussion the optimum is derived without 
regard to acceleration limiting, this being deferred to a later section (Section 5). 

4.1. The Minimisation of the Mean Square Miss Distance. 
4.1.1. The weighting function of the complete system.--The performance of a system 

characterise d by a linear set of differential equations can be described in a number of ways; since we 
are concerned with minimising the error at a particular instant (the time of nearest approach), it is 
convenient to represent the missile position at that time by means of the system weighting function. 
This is defined as the response of the system to a unit impulse; any input can be specified as a 
succession of impulses applied at different times, and if the system is linear the resulting output is 
the sum of the responses of each impulse. It is shown in Appendix I that this leads to 

OM(t) = fro h(x)O(t-x)dx, (4.1-1) 

where h(t) is the weighting function of the system, and OM(t ) the missile position at time t resulting 
from the input O(t)(= OT(t ) + O~(t)} 

The conditions implicit in this representation are 

(a) the system is linear, so that superposition holds. 

(b) It is physically realisable, since it depends only on past values of 0(t) (the range of x is from 
0 to t), but it is not necessarily stable. 

(c) The equations describing the system have constant coefficients, since the response is 
independent of the time at which it is applied. 

(d) The system is initially at rest. 

These conditions embrace the admissible class of operators discussed in Section 2.2. 
The transfer function H(p) is the Laplace Transform of the weighting function h(t) (Appendix I): 

H(p) = h(t)e-Vtdt. (4.1-2) 
0 
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4.1.2. The mean square miss distance in terms of the weighting function.--Consider a large 
number  of attacks against targets 0T1 , 0T~ , . . . 0T= , all of which are engaged at the same slant range 
R, and let T be the time of interception reckoned from launch. Then  the miss distance s r against 
the r th target is given by 

s~ = R [O~(T) - OM~ (T) ] ,  
o r  

= OT,.(T) - ( T  h(x) O,.( T -  x)dx, (4.1-3) 
R j o 

from (4.1-1). 

The  mean square angular miss distance, taken over n trials, is then- 

c r ~ = l  " - ~ , n ,  (R)  2=,,1 ,~11 f T  ]2 = Of,,(T) - h ( . )O, . (T- . )& 
' ~  ' ~  0 

= <[0T~(T)]~> - 2-1 Y~ 0 ~ ( T )  h(~)O,,(T-~)& + 
n r = l  0 

+ - h(x)O~( T -  x)dx h(y)O,.( T - y ) d y  
n v = l  0 0 

= ([0T~(T)] 2) - 2 o h(x) n Z.==l OT~(T)OT~(T-x)dx + 

f r  f z  1 ~  + h(x)dx h(y) - O~( T - x)O,.( T - y ) d y .  (4.1-4) 
0 0 n r = l  

Since o~(t) = o~(t) + ex,.(t), 

1 ,~  1 ,~  1 ,~  
= n Z OT~(T-x)O~,,.(T-y) + n ~ O"w(T-x)O~v"(T-Y) + n- ,.=,X O,,( T -  x)O~( T -  y) --r=l 

1 ~  1 ~ 
2~ ON,.(T-X)OT,.(T-y) (4.1-5) + n,.=~- y~ OT~(T-x)ON"(T-Y) + n ,.=~ 

If there is no correlation between the target motion and the noise, the last two terms of (4.1-5) 
are zero. In the absence of any evidence of correlation, it is convenient to make the assumption that 
none exisl;s; this involves no loss of generality, since if the correlation is known its effect can be 
included in the analysis. 

Let 
1 n 

vT(*) =-d ~ O~(T)O~,~(T-x), 
V = I  

and 

xT(x, y) = ; ,Z_l o~( T -  x)0~.,(T-y), f (4.1-6) 

n 

XN(X'Y) = n E ON,.(T-x)Olv,.(T-Y). 

Then  (4.1-4) becomes, on using (4.1-5) and (4.1-6), 

~2 = ~of(O) - 2 ~oT(x)h(x)dx + h(x)dx [xf(x, y) + xN(x, Y)] h(y)dy,  (4.1-7) 
o o o 

which gives the mean square miss distance in terms of h(x) and certain functions of the target 
motion and of the noise. 
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4.1.3. Conditions satisfied by the optimum weighting function.--Suppose now that the 
weighting function which minimises cre is h0(x), and consider a functional variation ~(x) such that 

h(x) = ho(x ) + e~?(x), where e is a quantity independent of x. Then  

~ = ~ ( o )  - 2 ~o~(~) [ho(X) + ~ ( x ) ] d .  + 
0 

+ [ho(X) + e~(x)]dx [xT(x, Y) + xlv(~, y)] [ho(y) + e~(y)]dy, 
0 0 

from (4.1-7), and ~2 is now a function of e. The values of e for which ~2 has stationary values satisfy 

the equation d~2/de = 0-- that  is 

de 2 ~T(x)a(x)dx + ~7(x)dx [XT(x, y) + XN(X, Y)] [ho(Y) + e~7(Y)]dY + 
0 0 0 

+ [ho(x ) + e~(x)]dx [XT(X, y) + Xlv(X, y)]~(y)dy = 0. (4.1-8) 
0 0 

If  ee is to have a stationary value when h(x) = ho(x ), then e = 0 must be a solution of this 

equation. Hence 

- 2 ~(x)~oT(x)dx + ,(x)dx [XT(x, y) + XN(X, y)]ho(y)dy + 
0 0 0 

+ ho(x)dx [x~(x, y) + Xlv(X, y)]'q(y)dy = O. 
0 0 

The second and third terms of this expression are equal, as can be seen by changing the order of 
integration in the third term and then interchanging x and y, since by definition X(X, y) = X(Y, x). 
Then 

(f: } o v(x) [Xw(x' y) + X,v(x, y)]ho(y)dy - ~w(x) dx = O. 

This must hold for any ~7(x), with T > x > 0; the condition is therefore 

f ~' = %.(x), T >  x > 0 (4.1-9) [x~(x, y) + XN( x, Y)]ho(y)dy 
0 

this is an integral equation defining the weighting function ho(x ) for which ~e has a stationary value. 

Whether this is a maximum or minimum depends on the sign of dZcre/de ~. From (4.1-8), and using 

the definitions of X~-, XN of (4.1-6), 

d~c~2 fa ,  f T  1 ,~ de e - 2 ~7(x)dx V ( y ) -  Y~ O~,,.(T-x)OT,.(T-y)dy + 
0 0 n r = l  

F + 2 ~7(x)dx a ( y ) -  Y~ Ox, . (T-x)Ou, . (T-y)dy ,  
0 0 n ~ , = l  

1 '~ T 
= 2 -  Z ~(x)Or , . (T-x)& ~(y)O~,,.(T-y)dy + 

n r = l  0 0 

f + 2 !  Z V(X)ONr(T--x) dx T ~I(Y)ON~(T-y)dy, 
n r = t ~  0 0 

21  Y~ V(x)OT,'(T-x) dx 2 1 ~ = + 2 n Z 71(X)Oy~(T-x)dx , 
n ';,' = 1 r = l  
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which is non-negative for all x and all ~7(x). The stationary value is therefore a minimum, and the 
function ho(x ) given-by (4.1-9) is the optimum weighting function with which this minimum miss 
distance is achieved, provided that a unique solution of (4.1-9) exists. 

4.2. The Optimum System when the Ensembles of Target and Noise Angles are Stationary. 

4.2.1. Ensemble averages.--The solution of (4.1-9) depends on the properties of %,(x), 

XT(x, y) and (x, y). The simplest solution is obtained when the inputs 0Tr (T) and 0.v~ (T) can be 
regarded as stationary (though not necessarily ergodic) series, at least over a sufficient interval of 

time; and this case will be treated first. Returning to the definitions of ~PT, Xce (4.1-6), 

1 
XT(X,Y) = ~ E OTr(T-x)OT,'(T-Y) 

1 n 

= -  Y. OT~[T--y--(x--y)]OTr(T--y).  
nr=l  

Assume now that Xz(x, y) is invariant for the shift y. Then 

• 1 9/, 

x (x,y) = Z % . [ T -  W-y)]%.(T) 

= ( 4 . 2 - 1 )  
since 

1 
opT(x) = n X 02~( T -  x)OT~( T) , 

~ " = l  

from (4.1-6). 
The assumption of invariance implies that q~,(x) is independent of T--that  is, the average product 

of the target angle at one instant and its value x seconds earlier depends only on the interval x, and 
not on the particular instant chosen for the evaluation. In other words, the series of target angles is 
stationary with regard to averages taken over the ensemble, and ~T(x) is the autocorrelation function 
of the ensemble. 

The supposition that the series is stationary does not imply that it is also ergodic: that is, the time 
average 

< O~(t) Oi(t -- x))t 

for any one target path 0 i is not necessarily equal to 92(x) as defined above. As an example of a 
stationary but non-ergodic series, consider a distribution of quantities a~, a,,, a ~ . . . ,  each of which 
is constant with time. Then 

1 ~ 
<ai~)t = ai~ + n y~ a~2, 

t ' = 1  

except for a particular choice of i. 
The validity of the stationary assumption is further discussed below (Section 4.2.2). 
If the noise is also stationary, the same argument leads to 

% r e  -Y) ,  (4.2-2) XN( x, Y) = 

where q~N(X) is defined as 

= -  ~ ON~.(r-x)Otvr(r), (4.2-3) n,=l 

the autocorrelation function of the noise ensemble. 
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Equation (4.1-9) can now be rewritten as 

where 

and 

-) 
[qoT(x--y) + qON(x-y)]ho(y)dy = cpz(x), T i> x/> 0, 

/ 
= ln,.=1 r -  x), , 

91, 

r, o,w( r)O,v ( r -  x). , 
,.) 

(4.2-4) 

4.2.2. The region in which the series are assumed stationary.--For the general solution of 

this equation it is convenient to write the upper limit of the integral as infinity instead of T; this 

is clearly justifiable if ho(t ) is small for t > T. The function ho(t ) is a measure of the memory of 

the system, and if h0(T) were significantly different from zero, it would imply that the system 

contained time constants of the order of the time of flight T, so that after this time the system would 

still be using information concerning the target's position at launch. Although the opt imum function 

ho(t ) is not yet known, it obviously must not contain lags of this order, since the targets can make 

significant manoeuvres during the interval between launch and strike. We may therefore write 

ho(t ) = O, t>  T, 
and equation (4.2-4) becomes 

+ % v ( . - y ) ] h o ( y ) d y  = . > 0.  (4.2-5) 
0 

The functions XT and XN were assumed to be invariant for a shift y:  since y now runs from zero 
to infinity, it appears at first sight that the functions should be stationary for this infinite shift. 

A comparison of (4.1-9) and (4.2-5) however shows that the equivalence of XT(x, y) and ~T(x-y) ,  
and of XN(X, y) and ~N(x-y) ,  need extend only over the range of y for which ho(y ) is significantly 
different from zero, since outside this range the integrand is zero for any X~", X~v. Thus  the theory 
holds provided that the series of target angles and noise can be considered stationary over an interval 

immediately prior to collision, this interval being long compared with the time constants of the 
beam-riding system. More precisely, the function 

n 

- • Ofr(t)OTr(t--x) 
n r = l  

should be independent of t for T 1 < t ~< T, where T 1 is such that the transient effects of an input 
applied to the system at time zero have virtually disappeared after a time T - Tl--i .e.  h( T -  T1) - 0. 

to be 

4.2.3. The soh~tion of equation (4.2-5).--In Appendix II  the solution of (4.2-5) is shown 

1 [ / q~z(ic°) / ] (4.2-6) 
H°(ic°) = {O~.(ico) + C)~v(ic~)}+ K + [{cbz(ico) + OA,(iw)}_l+_ ] . 
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In this equation, 

and K is a constant. Also 

f 
co 

Ho(iw ) = ho(x)e-~°~dx, (4.2-7) 
0 

cbT(i~o) = _ 1 f ~ q@(x)e_io,~dx, (4.2-8) 

1 co 
ON(i°~) = ~r f-~o %v(x)e-~dx '  (4.2-9) 

((I)T -[- O N ) +  ((I)T "~- (~N)-- = O T  -[- O N ,  

where (O T + ~I )N)+ and ((bT + (I)N)--' are functions having all singularities confined to the upper half 

plane and the lower half plane respectively. Here • T + ~N is considered as a function of a complex 
variable co. If for example 

1 
CbT+ON-- I+C0 ~' 

then 

and 

1 
((I)T -}- (~)N)+ = OJ - -  i 

1 
+ = 

 o+i" 

Similarly, the notation (F)+ and (F)_ indicates that the function F has been expressed as the 
sum of two functions, 

F(o0+ + F(~)_ = F(~o), 

where F(~)+ and F(w)_ have their poles and zeros in the upper and lower half planes respectively. 
Ho(ioJ), the Fourier Transform of the optimum weighting function, is the frequency response 

function of the system; and its Laplace Transform is Ho(p) (Appendix I). 

• ~ and ~lv are defined by (4.2-8) and (4.2-9) as the Fourier Transforms of the autocorrelation 
functions ~oT(X ) and ~u(X)---i.e. qb T and q~N are the spectral densities of the target angles and noise 
angles respectively. The spectral density and the autocorrelation function are equivalent ways of 
defining the same properties; we have used the autocorrelation function to formulate the problem 
and the spectral density to solve the ensuing equations. 

The minimum mean square miss distance in terms of the optimum weighting function can now 
be found from (4.1-7). As in Section 4.2.2 we may extend to infinity the upper limits of the integrals, 
at the same time substituting for XT, XN from (4.2-1) and (4.2-2). This gives 

O'min 2 = VT(O) - -  2 VT(X)ho(x')dx + ho(x)dx [qOT(X--y) + %v(X--y)] ho(y)dy. (4.2-10) 
0 0 0 

Since the solution of (4.2-5) is obtained in terms of the frequency response function Ho(i~o ) 
{or the transfer function H0(p) } rather than the weighting function, it is convenient to rewrite 
(4.2-10) in terms of Ho(£O), and the spectral densities @T(£o) and ~N(i~o). It is shown in Appendix II 
that this transformation leads to 

~m~n ~ = I 1 - Ho(hO)l~r(i~o)do, + IHo(i~o)[2(~N(iw)&o, (4.2-11) 
0 0 

the first term being the miss due to target motion, and the second that due to noise. 
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The equation for Ho(p) gives the optimum transfer function of the filter or servomechanism in 

terms of the spectral densities of the true signal and of the noise. Although the equation has been 

derived with reference to a guided-weapon system, it is perfectly general, and applies to any system 

in which it is desired to extract the maximum amount of information from a signal contaminated 

with noise. 

In the guided-weapon case we have considered a large number of trials against different targets 

with different noise. We have derived a system transfer function for which the r.m.s, miss distance 

taken over all these trials is less than that for any other linear system. The optimum system Ho(p) 
depends on the statistical properties of the target motion and of the noise, and not on the individual 
time functions which occur in each attempt. 

4.3. Non-Stationary Target Motion with Stationary Derivatives. 

4.3.1. Trends in the target motion.--The solution (4.2-6) of (4.1-9)has been derived on 

the assumption that the target angles form a stationary ensemble over an interval before interception. 

It is often the case that the derivatives of a set of functions constitute a stationary ensemble, while 
the functions themselves do not. Suppose for example that the target angle OT,(t ) consists of a random 

part f,.(t), together with a trend represented by a polynomial in t: 

70, - -1  

OT~(t ) = f~(t) + E ai t~, (4.3-1) 
i = 0  

and suppose further that fi(t) is stationary with zero mean, having the autocorrelation function 

pi(x). Then 
1 

xT(x, y) = 7, ,.Z=l 

o r  

OT,( T -  x) OT,.( T -  y) 

= - E T -  ~) + 2; a ~ ( T -  ~)' .(T-y) + Z a t ( T - y y  
n r =  i = 0  i = 0  

] n m--i m--I 

= - Z f , . ( T - x ) f , ( T - y )  + y, a i ( T - x )  ~ Z a i (T -Y )  i, 
n r = l  • ' i = 0  i = O  

m - - 1  m - - 1  

XT(x, y) = p i (x -y )  + E a i ( T -  x) ~ E a~(T-y)  ~ , (4.3-2) 
i = 0  i = 0  

which is a function of T and therefore not stationary. On differentiating (4.3-2) m times with respect 
to ( T - x )  and m times with respect to ( T - y ) ,  

1 n 

- Z 0 T 2 " ) ( T -  x)OT,("~)(T-y) = ( - 1 )mppm) (x -y ) ,  (4.3-3) 
n r = l  

and this is independent of T. The ruth derivatives of the target angles therefore form a stationary set; 

we may denote its autocorrelation function by q~T(,,)(x), SO that 

q~z("')(x) = nl ~ OT,.(m)(T)Oz(m) ( T -  x)  = ( - ] )mp,(2~)(x)  (4 .3 -4 )  
r = l  

4.3.2. The solution when the ruth derivatives of the target angles form a stationary s e t . -  
Suppose now that the ruth derivatives of the target angles can be considered to form a stationary set, 

while derivatives of order less than m do not. In accordance with experimental evidence, it will be 

assumed that the noise angle itself is a stationary series, in the sense defined in Section 4.2.2. 
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Equation (4.1-9) still applies, and can be rewritten as 

" Ifo ] 1 ~=~ O T r ( T - x )  O r ~ ( T - y ) h o ( y ) d y  - OT,.(T ) + 

7% / *  co 

+ - ~ ONr(T--x)  J ON~(T-y )ho(y )dy  = O, x >i O, (4.3-5) 
n v = l  0 

by using the definitions of XT, XN and ~T given in (4.1-6). The upper limit of integration has been 
changed from T to infinity, on the grounds that ho(t ) = O, t > T, as discussed in Section 4.2.2. 

N o w  let 

and 

g(y) = f f f ho(x)a , i.e. g(~)(y) = ho(y),  

g(~)(oo) = 0 for i = 0, 1 , 2 . . .  m.  (4.3-6) 

Differentiate (4.3-5) m times with respect to ( T - x ) ,  and'integrate m times by parts, using the above 
definition of g(y) .  This leads to 

[fo _1 Y~ OT o,o ( T -  x) g(y)O:ef'o( T - y ) +  - g(O)OT~(m-~)( T )  - g(~)(0)0T,.(m-2)(T) - . . ,  

-- g(m-2;(O)O~,r(1)(T) - {1 + g(m-1)(0)} 0Tr ( T)I  + 

+ -  Z Om.<")( T -  x) g(y)ONr('~)( T -  y )dy  - g(O)OA,/"'-I)( T )  - . . . 
1l r = l  

- g(m-2)(0)0~:r(1)(T) - gO'~-l)(0)0N,.( T)]  = 0, x/> O, (4.3-7) 

where (m) denotes the mth derivative with respect to the indicated argument. 
We can attach no meaning to terms of the form 

- Z  
n r = l  

OTr('~)( T -  x)O2r(m-O( T )  

unless i = 0, since we have assumed that only the mth derivatives of the target angles form a 
stationary ensemble. It is therefore necegsary to eliminate these terms by postulating that the system 

has no displacement lag, no velocity lag, etc., up to no ( m -  1)th order lag, The  necessary conditions 
(Appendix I) are 

f o  h(x)& = a for no displacement lag 

f co h(x)dx  = 1 and xh(x)dx  = O, 
o 0 0 

for no velocity lag, 

f oo h(x)dx = 1 a n d  
0 f ~o x~h(x) dx = 0, r = 1, 2 . . .  i fo r  no ith order lag. 

0 
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Then 

f ~ g("*)(x)dx = 1, i.e. g~-~(0) = - 1, for no displacement lag. 
0 

For no velocity lag, 

so that 

(m) x = x - -  

0 0 

f ~gO,-~) (x)dx  = O, 
0 

f oo g(m-1)(x) dx = O, 
0 

from (4.3-6), or 
g(m-~)(O) = O. 

For no ith order lag, 

f ~ xigO'O(x)dx = O, i.e. g(m-i-*)(O) 
0 

for i =  1 , 2 , . . . m - 1 .  

Equation (4.3-7) then reduces to 

co 1 E Om.( T)Om.(m)( T -  x)  = O, x >1 O, o g ( y )  [XT(*~)(x' y )  + XN(~)(x' y)] dy  + n ,.=, 

where 

and 

~b 

XT(.,)(x, y) = - ~ O~o/"o( T -  x) Oz,.('o ( T -  y) 
hi,= I 

X":("~)(x' Y)  = n E Ou,.(~)( T -  x)Oz,~,.(m)(T-y). 

We may write this equation as 

f oo g(y)[~o~,(,~)(.-y) + ~(, , , )(~-y)] dy + ( -  1)%./-,)(.) = o , .  >/o, 
0 

(4.3-8) 

where q~T(~r~)(x) is the autocorrelation function of the ruth derivatives of the target angles, assumed 

stationary over the necessary interval. For the noise we have 

so that 

and 

- ~ O ~ w ( T - x ) O N ~ ( T - Y )  ~- c p ~ v ( x - y ) ,  
n r=l 

- E O , , ~ ( 1 ) ( T -  x ) O ~ , . ( T - y )  = - ~ , ( 1 ) ( x - y ) ,  
n ~ ' = 1  

,/~, 

q)#l)(x-y) = - Y, Ore.m( T -  x)O~v,.m ( T -  y )  = - q)ee(~)(x- y ) .  
nT=l 

By successive differentiation, 

~o:v(m)(x-y) = ( -  1)'~ON(~'~)(x--y). (4.3-9) 
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This is a particular case of a more general theorem which relates the covariance of two sets of 
functions Xr(x), Yr(y) and the covariance of functions derived from Xr(x), Y~,(y) by linear operations. 
Thus, if 

cov [ x ( x ) ;  Y(y)]  = p ( x - y ) ,  
then 

1 
- Z X~(x) Y,.(y) = p ( x - y ) ,  
n~,= I 

so that 
1 n 
- E  FI(Dx)X,(x)F~(Du) Y~(Y) = FI(Dx)F2(Dy)p(x-Y) ,  
n r = l  

where F~(Dx), F~(Du) are any two operators. 
Thus 

coy [FI(Dx)X(x); F2(Dv)Y(y)] = FI(Dx)F2(Dy ) coy [X(x); Y(y)], (4.3-10) 

provided that a meaning can be attach~ed to cov [X(x); Y(y)]. We have assumed that this proviso 
holds only for the noise and not for the target angles, so that there is no expression corresponding 
to (4.3-9) for ~oT(,a(x ). 

On using (4.3-8) and (4.3-9), 

f ~ g(y) [~T(m)(x--y) + ( -- 1)~Nmm)(x--y)] dy + - 1)mC?U(~)(X) = 0, 0, X >1 (4.3-11) 
0 

the solution of which is shown in Appendix II to be 

( %" l l  
H o --((1)T(.a (1)w~+} K+ ~/~T(,,,~-- L ~-~ I (4.3-12) 

+ )+A 

(The argument i~o of H o , qbT(;Va and • N has been omitted for brevity.) In this expression 

Ho(iCo ) = the optimum frequency-response function, 

q~T(~)(ko) = the spectral density of the ruth derivatives of the target angles, 

cbN(ico ) = the spectral density of the noise, 

and K = a constant, determined by the conditions imposed on ho(t ). 

We may note that (4.3-12) could be formally derived from (4.2-6) by writing 

= 

that is, by ascribing a spectral density to the target angles. This procedure however cannot be 
justified, since we have seen that the target angles may not form a stationary set, in which case the 
spectral density will have no meaning. The difficulty has been avoided by postulating that the system 
shall have no lags up to order (m-1) .  
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The  minimum mean square miss distance obtained with the opt imum operator can now be found 

from.(4.1-7) and (4.1-9). F rom these equations 

Cmi." = v T ( 0 )  - ~ T ( x ) h o ( x ) ~ x ,  
0 

1 2 [0~XT)]2 ho(x) 0~r(r)0,~xr-x)d~. 
IZ ~'=1 0 7/ r = l  

If  
m - -  1 

o~,,(t) = L( t )  + Z ~t~, 
i = 0  

as in equation (4.3-1), then 

i 0 0 i = 0  

o r  

¢~i~ 2 = p i ( O ) -  pj (x)ho(x)dx , (4.3-13) 
0 

since 

f ® ho(x)dx = 1 
0 

and 

f ~ x4ho(x)dx = 0 for i = 1, 2 . . .  m - 1. 
0 

Thus  no error arises due to trends in the target motion because the opt imum transfer function 

has no lag up to order (m - 1), the order of the polynomial associated with OTr(t ). 

Now define S(i~o) as 

s(i~)= l f ~_ p / ( x ) e - ~ z d x  

so that 

1 S(ico)do~z&o p l ( x )  = ~ _ ~  

l S(ico)e_i  &o, 
2 co 

since p1(x) is an even function. On substituting for p/(x) in (4.3-13), 

1 1 

Interchanging the order of integration and noting that 

Ho(i~o) = h o ( x ) e - i ~ d x ,  
0 

1 [1 - Ho(iw)] S ( iw )& o  O'min2 ~'~ 2 --o9 (4.3-14) 
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But 

o r  

s(i ) = lf_  pi(x)e_io~dx_l  1 f ~  

~r ~o TM ( -  1)mp/2m)(x)e-i'°~dx' 
cto 

from (4.3-4). 

Combining (4.3-14) and (4.3-15) gives 

O.min2 = 1 ~ ~o [1 H0(i~)] 
2 d-co 

(4.3-15) 

*T("')(iw) dc~ (4.3-16) 
CO 2 m  

as the minimum miss distance in terms of the optimum transfer function and the spectral density 

of the mth derivatives of the target angles. 
A more useful form for ¢min 2 can be found by using (4.3-2) in (4.1-7); this reduces to 

Crmin 2 = [1 -- Ho(kO) ~ ~T(~)(i°J) doJ + I Ho(ico)12q~2v(ioJ)dco, (4.3-17) 
t (09~m 

0 0 

in which the first term is the mean square miss distance due to target motion, and the second that 

due to the noise alone. 

4.4. Summary of the Theory without Constraints. 

Equations (4.3-12) and (4.3-17) summarise the theory for the cases in which no limit is placed 

on the lateral acceleration demanded of the missile. (4.3-12) gives the transfer function of the system 
for which the mean square miss distance against a large number of targets is a minimum, and this 

minimum miss distance is given by (4.3-17). 
In deriving these equations it has been assumed that the functions 

1 '~ 
= Z T -  x) 

r = l  

and 

= S O,v,( T)Our( T -  
r = l  

are independent of T over a l imited region prior to the instant of nearest approach; this means that 

the ensembles are stationary over this region, so that 9~(m)(X) and %¥(x) become autocorrelation 

functions, and the expression for Ho(ito ) is given i l l  terms of the Fourier Transforms of these 

quantit ies--i.e, their spectral densities. 

The equations show that for no noise Ho(i~ ) = 1, and ~min 2 = 0; i f  the incoming information is 
a true record of target motion, the missile should follow this input exactly. Such a system could not 
of course be realised within the framework of a guided-weapon system, even in the absence of noise. 
It is necessary to introduce further conditions in the formulation of the problem, expressing the fact 
that the system must contain a missile of given characteristics, with a limited available acceleration. 
Such constraints are introduced in Section 5. 
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5. The Optimum System Subject to Constraints. 
5.1. The Minimisation Subject to Constraints. 

Suppose that we wish to limit the mean square value of some quantity Oz(t ) which occurs at a 
specified point in the system, such that 0 L and 0 M are related by a given linear operator F(D) 
(Fig. 4). We shall normally choose F(D) such that 0 L is the demanded acceleration, so that F(D) 
will involve the aerodynamics of the vehicle; this however is not necessary, and in general F(D) may 

be any operator which serves to define OL, the mean square value of which it is desired to restrict. 
F rom Fig. 4 we have 

Oz(t ) = F(D)OM(t), (5.1-1) 

so that we wish to determine the opt imum H(D) subject to the condition that the mean square of 

[F(D) OM(t)]t=T 
shall be limited to a given value. 

It  is first necessary to express this quantity in terms of 0~,, O~v and h(t), the weighting function of 

the system. F rom (4.1-1), 

OM,.(t ) = h(x)O~.(t-x)dx {0,.(t) = O~,~(t) + 0ur(t)}. 
0 

On differentiating, 

DOMr(t ) = h(x)DOr(t-x)dx + h(t)O~(O), 
0 

so that 

f 
T 

DO~I,(T) = h(x)DO,.(T- x)d~, 
0 

since h (T)  = 0 (Section 4.2.2). 
This  may be generalised to give 

F(D)OM,. ( T) = h(x)F(D)O,.( T -  x)dx ; 
o 

thus, if ~L z denotes the mean square value of Or(T), we have 

1 '~ 
aL ~ =  - Z [F(D)OIl~x,.(T)] 2 

n~,~ I 

j 1 Z h (x )F(D)Or(r -x )dx  ~' = - h(y)F (D) 0,.( T -  y)cly (5.1-2) 
n r = l  0 0 

Since ~z 2 is to have a given constant value, the opt imum weighting function which minimises ~2, 
the mean square miss distance, must also minimise 

cr 2 + ~(rz~ , 

where ~ is any constant. But 

so that 
1 

~2 + ;~L~ = - E 0~,,(T)} 2 -  20r,.(T) ~h(x)Or(T-x)dx + 
n l , = l  o 

f + h(x)O,.(T- x)dx h(y)O~.(T-y)dy + 
0 0 
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On putt ing h(x) = ho(x ) + e~(x), and expressing the condition that  
e 

de /~=o ' 

it is found that  the op t imum weighting function ho(x ) must  satisfy 

n 

1 E 
T/ ";'=1 

fT 1 fT Or(T-x )  o h°(y)O~(T-y)dy + A ~ ~_~.= F(D)O, . (T-x)  o h°(y)F(D)O~(T-y)dy  

= - Z Orr (T)O, (T-x ) ,  for T >/x  i> 0 
n r = l  

(s.i-3) 

Differentiate this equation m times with respect  to x, writ ing 

T h e n  

d d 
D x =  ~x, D v =  ~y.  

f 1 ~E Dx~O,.(T- x) T - ho(y)O,. ( T - y ) d y  + 
n r = l  0 

j + A 1 ~ D x ~ F ( _ D ~ ) O r ( T _ x )  T - ho(y)F ( - Dy) O,( T - y ) d y  
nr=l 0 

X n 

= - Z 0~,,.( T )DJ~O, . (T-x ) .  
n~,= I 

N o w  write ho(y ) = Dying(y), so that 

g(y) = ( - 1 )  '~ . . .  ho(x)dx. 
, J  * J  y 

Integrat ing m times by parts yields 

1 Y~ D mOr(T_x) D v m _ k ( y ) O , ( T _ y  ) D,f'~-2g(y)DvO*(T-Y) + + - -  - -  . . . 

nv=l 0 

1 D x ~ F ( - D x ) O ~ ( T - x )  x + ( - 1 )  ~ g(y)Du~O~(T-y)dy + )t n 
0 r =  

+ ( _ 1 )  m g(y )DvmF(_Dv)Or(T_y)dy  = _1 P, OT,.(T)O,.(T-x), 
0 nr=l 

for x~> 0, 

where the upper  limit of integration has been raised f rom T to infinity. 

If, as in Section (4.3.2) the system has no lags up to order ( m - 1 ) ,  then 

Dum-~g(O ) = - 1, and Dym-~-lg(0) = 0 for i = 1, 2 . . .  m - 1. 

Also 

(5.1-4) 

Dvig(oo) = 0 for i = O, 1, 2 . . .  m .  
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With these conditions (5.1-4) reduces to 
© 

1 ~E D ,  mO,.(T-x)O~(T) + a ~E D x m F ( - D x ) O r ( T - x ) F ( - D u ) O r ( T - Y  + 
n r = l  v = l  y = 0  

1 
T ~1 DxmOr( - X) g(y)Dv'*O,( T -  y )dy  + + ( -1)~7'~= o 

+ ~ ( -  1)~ n E D . ~ F ( - D . ) O ~ ( T - x )  g(y)D~,mF(-D~,)O.(T-y)dy 
r = l  0 

1 
= - Y, O f ~ ( T ) O = m O r ( T -  x ) ,  x > 1 0 .  

n v : - I  

But 

1 ~ 1 ,~ 1 ~ 
- = Z D.mO2r(T-x)OTr(T) + n ,~"=1 D~mON*(T-x)ON~(T)' n ,,=1 ~ DxmOr(T-x)Or(T) ? / r = l  '= 

and 

- E D~mOr,(T)O,(T-x)=- E D~'%,,(T)OTXT-~), 
n r = l  n r = l  

assuming no cross-correlation. Thus 

q~ 

- X DxmONr(T--X)ONr(T) + 
n r = l  

+ ( -  1),-z !] D,~F(-Dx)O,.(T-x)D,~FI(-D~,)O~(T-y) + 
~ ' = 1  y = O  

+ ( -  1)" g(y) D~'"O,.(T-x)DvmO,,(T-y)dy + 
o ~ E ,= 

+ A(-  1)~ o g(Y) ~Z ,~--1'= DxmF(-D~)O~(T-x )Dv '+F( -Dv)O~(T-y )dy  = O, 

for x i> 0, 
where 

(5.1-5) 

F(Dv) = DvmFI(D~) 

Equation (5.1-5) may be written as 

(5.1-6) 

(_ 1)m r~l 0N~(T)0N/m~(T--x) + 

[ " '1 
+ a(-1)m F(-Dx)FI(-D~)-I  N O~Cm>(T-x)O/m~(T-y + 

?/  ?'=1 y = O  

+ (_1) m g(y) _1 O,(m)(T_~)O/~)(T_y)dy + 
0 nr= 

f 1 O~(~)(T-x)O~(m)(T-y)dy = O, + ~( - 1) m g(y)F(  - Dx)F ( - Dr) n 

x > O .  (5.1-7) 
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But 

and 

where 

% 

- F, ON,(T)ONr(m)(T--x) = ( -  l)m(pN(m)(X), 
n ~'=1 

- ?E O, (~ ) (T -x )O, . ( ' ° (T -y )  = ~o(,~)(x-y), 
n r=l 

and 9T(m)(x), 9N(m)(x) denote the autocorrelation functions of the mth derivatives of the target and 
noise angles, assumed stationary, as in Section 4.3.1. Substituting these relations in (5.1-7), one 
obtains 

( - ~)~%4~)(~) + ~ [F( - D~)F~( - h~),(.~)(~-y)],~=o + 

+ g(y) [1 + ) tF( -D~)F(-Dv)]q) (m)(x -y )dy  = O, x >>. O. (5.1-8) 
0 

Equation (5.1-8) is solved in Appendix II; its solution is 

1 / ~ E  

H° = {q~T('~) + q)N) + K + - _ , (5.1-9) 

(1 + ,~FF) + \ o5~ / [(1 + A F F ) -  + q)N] + 

where  F = F q ~ ) ,  F = F ( - i ~ )  

Equations (4.3-16) and (4.3-17) still apply for the minimum mean square miss distance Zm~; and 
aL ~ may be obtained from (5.1-2) as 

f ~  (~(m)+%(,,~))d~. (5. 0) 
i//oFi 

O'L2 ~ ¢.O2 m 1- 1 
0 

In these equations F(D) is the operator which describes the fixed part of the system, the input to 
which it is desired to limit to a given mean square value GL ~. In the beam-riding case we wish to 
limit the demanded acceleration, and this is related to 0 M by (3.1-1): 

o r  

= rMO, u + 2 ~ i O i  = A(D)fD, f ~  

fD D(D+ 2cM) 
- 0M, ( 5 . 1 - 1 1 )  

r M A(D + c i )  

where f ir M = CM, as in Section (3.2.2), and A(D) is the operator relating demanded and achieved 
accelerations, modified by internal feedbacks. Thus, if A'(D) describes the unmodified aerodynamic 
behaviour, and M(D) the feedback of lateral acceleration, etc., then 

A'(D) 
A(D) = 1 + M(D)A'(D)"  

Comparing (5.1-11) and (5.1-1), it is seen that in order to limit the demanded acceleration we 
must have 

F(D) - D(D + 2CM) (5.1-12) 
A( D + c~1±) ' 
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and aL ~ is then a measure of the mean square acceleration demanded at the range r M. If  for the 

moment  we assume c M = 0 (i.e. constant range), then 

D = 
F(D)  - A ( D ) '  

so that 
0) 2 

F(i0)) = A(£o) ; 

substituting this in (5.]-9) and (5.1-10), 

1 0)e~ 
H 0 =  ( }0)~]+(qbT(~') )+ K +  ( A ¢ ] - ( q b ~ . < , , a ) _  , (5.1-13) 

I + A A /  \ 0)e~ + con I + A A /  \0)era + (I)N 
+ 

and 

f ~  H___o e 1 [*r( , , , '+*#~,)]d0),  (5.1-14) O-Le = 

0 

where A = A(i0)), _d = A ( -  i0)). 

(5.]-13) gives the opt imum transfer function of a system which includes a missile described by 
the operator A(D), the mean square demanded acceleration being limited to r~±eaL e. In order to find 
this value it is necessary to determine H o from (5.1-13) for a number of trial values of 2, and then to 

evaluate aL e from (5.]-14). In this way the value of A which corresponds to a desired mean square 
acceleration can be determined. 

5.2. The Max imum and Mean Square Acceleration Demands. 

Suppose now that the maximum demand for acceleration must be limited to f~a.~, this being 

determined by the structural strength of the vehicle. To preserve the validity of the linear analysis, 
we must ensure that the r.m.s, acceleration demand rMa L is such that this limiting acceleration is 

rarely called for. If  the acceleration distribution is assumed to be Gaussian, the chance of the 

demanded acceleration exceeding the limits is 

1 exp 2r~Y~ze dx 
rM~LC(2~) im~x 

= - exp 

hr~zaL~v/2J ' 

2 ~1m~x/rl~aL~/2 exp ( - y e ) d y  
dx = 1 - - @ 7 ~ o  

(5.2-1) 

if for a given fm~x--i.e, a given vehicle--a  z is chosen such that the chance of limiting is small--  
say 5%- - i t  follows that the system is operating as a virtually linear system, and the analysis holds. 

The relation between the miss distance and the available missile acceleration fm~.~ is discussed in 
Section 7.3, where a number of optimum operators are evaluated for particular forms of 0)T(,,,) and (I) y . 
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5.3. The Optimum System when the Target Lateral Accelerations are Stationary. 

5.3.1. Statistical properties of the target motion.--The derivation of the optimum operator 
depends on the function 

1 
~T(m)(x) = - -  Z OTr(m)( T)OT'/m)( T -  x),  

n ~.=1 

where the order of the derivative m is such that 9T(m)(x) is independent of Tover the interval defined 

in Section 4.2.2. This quantity clearly depends on a large number of factors, such as the type of 

aircraft, the nature and location of enemy objectives in relation to the weapon site, and the enemy's 

concept of the most effective avoiding action. In a given tactical situation some of these factors will 

be known beforehand, leading to a value of 9T(,,)(x)--and therefore to an optimum system--appro- 

priate to that particular situation. The effects of unknown factors must be estimated, and 9T(~,,>(x) 

will then reflect the average influence of these effects, weighted according to their importance. The 

'optimum system' is therefore a subjective concept, depending on the information available to the 

weapon designer concerning the likely target motion. If for example in a long series of engagements 

there is no a priori information to distinguish one series of attacks from another, there is just one 

optimum system for the whole series; if, on the other hand, distinguishing features are known to 

exist, advantage can be taken of this knowledge to construct a number of systems, each of which is 
the optimum for a particular series of attacks. 

A detailed study of target motion has not yet been made; on general grounds however we may 
note that the lateral acceleration of the target is bounded, and is likely to vary about a mean value 

of zero, if we suppose that the mean target path is a straight line with random deviations about this 
path. It therefore appears reasonable to assume that the target lateral accelerations form a stationary 

ensemble over the necessary interval. If in addition the target path is directed towards the ground 

radar site--i.e, if the objectives are in this area--the lateral acceleration of the target will also be its 
acceleration normal to the line of sight: 

fT = rTaT + 2iTOT. 

If we make the same assumption for r T as for r M in Section 3.2.2, then 

i f  
fT__ = D(D + 2CT)OT, where c T = - - .  (5.3-1) 
rT r~, 

Denote by ~T(x) the autocorrelation function offT/r  T ; this may be taken to be the autocorrelation 

function of f~,  divided by the square of the range rT, since this varies only slowly over the short 
range of interest. 

Then 

1 1  ~ 
¢T(x - y )  = Y~ fTr( T -  x)fTr ( T - y )  

iv'Z ') n ~ '=1  

n 

= -  
n r = l  

1 n 

n r = l  

- Dx( - Dx + 2cT) 0T,. ( T -  x) -- Dr( - D v + 2CT) 0T,. ( T - y ) ,  

(Dx 2 - 2CTDx)OT,. ( T -  x) (Dr2 - 2eTDv)OTr ( T -  y ) ,  

from (5.3-1). 

(5.3-2) 
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5.3.2. The optimum solution.--The introduction of CT(x) requires a slight modification to 

the derivation of equations (5.1-9) and (5.1-10). 
If  (5.1-3) is multiplied by the operator (D~ ~-  2@D~), then 

1 
- E OT,(T)(D~-2@D.)Or(T-x)  
n r = l  

N o w  let 

Then  

1 Y, (D2 2cTDx)Or(T_x) ho(y)Or(T_y)dy + 
n r = l  0 

+ A -1 ~. (Dx~_2CTD~)F(_D,)O,,(T_x) ho(y)F(-Dv)O,.(T-y)dy,  x > O. (5.3-3) 
n r = l  0 

ho(y) = (Dv~ + 2@Dyk(y).  (5.3-4) 

g(~)(y)Or(T-y)dy = g(1)(y)Or(T-y) - g(y)DyOr(r-y) + g(y)D~%(T-y)dy,  
0 0 0 

and 

f ;  gm(y)Or( T -  y)dy = Ig(y)O~( T - Y ) ? ~  - f ; g(y)DvOr( T -  y)dy" 

H e n c e  

ho(y)Or( T -y )dy  = Or(7"-y) (Dy ~ + 2crD~,)g(y)dy 
0 0 

= g~l)(y) + 2c~g(y)} 0 r ( r - y )  - g(y)D~Or(T - y  + 
0 

+ g(y) ( D ~  - 2 c T D ~ ) 0 r ( r - y ) d y .  
0 

For no displacement lag, 

f ® (Dv~+2c~Dv)g(y)dy = 1, or (D~+2c~)g(O) = - 1 (5.3-5) 
0 

Thus  

f; ho(y)Or( T - y ) d y  = Or(T) + g(O) [D u Or( T-y)]v=o + g(y) (By ~ - 2cTDv)Or( r - y ) d y .  
o 

Substituting this last expression in (5.3-3) gives 

1 F, (D~2-2CTD~IOr(T-x)O,,(T) + 1 OT~(T) (nx ~ - 2cTnx)or( T -  x) n r=l _ = 

n r = l  

1 
+ - ~ (Dxz-ZcTD~)Or(T-x)g(O) [DvO~(T-y)]v=o + 

T/ r = l  

+ ~ Z (D~-2cTD.)F(-Dx)Or(T-x)F(-D~,)Or(T-y)  + 
r = l  y=O 

r = l  y=O 

+ -  E (D~-2crD~)Or(r-x)  g(y)(D~-2crDv)Or(r-y)dy + 
n r = l  0 

+ 11 1 E (D~Z-2CTD~)F(-D~)O~(T-x) g(y)(DuZ-2@Dv)F(-Dv)O~(T-y)dy 
nv= 1 0 

x > O. (5.3-6) 
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Now put 

¢ ( ~ - y )  = 

and let 

F(Du) = 

Then (5.3-6) 

= 

n y~ (D~ - 2%D~)0~( T -  x) (Dr2 - 2@Dr)Or(T-y) ,  (5.3-7) 
r = l  

( Du 2 + 2cTDv)Fz( Dy) . (5.3-8) 

becomes 
qb 

-- 2 (D~ ~ - 2CTDx)ON( T -  x)O~v (T)  + ?, [F( - D~)F~( - Dy)¢(x -Y)]v=o + 
n~,= I 

+ g(y) [1 + ) ~ F ( - D ~ ) F ( - D u ) ] ¢ ( x - y ) d y  + 
0 

+g(0)  ( I + Z F ( - D ~ ) F ( - G ) )  Z (G~-2c~D~)O~(T-~)D~O,.(T-Y) 
r=l Y=O 

x >/ 0, (5~3-9) 

the solution of which is given in Appendix II as 

H0 = 1 co~(~o ~ + 4cT 2) 
( I+) tFP)+  ( ~FT )+ K +  

co~(co~4@z ) + • N (1 +;~FP)- (- ~ T  \~o~(~ + 4cT ~) 

where ~F~, is the spectral density of the target lateral acceleration, divided by ~>z: 

"FT(i~o) = _1 ( cO Cr(x)e_~o~dx, 
J --cO 

CT(x) being the autocorrelation function defined in (5.3-2). 
If we wish to limit the mean square demanded acceleration, we again have 

F ( D )  D(D + 2c~±) 
A(D + CM) 

as in (5.1-12); and CrL2 is then given by 

f ~  ~o~ + aCM ~ Ho(ioO ~ 
~L~ = o ~o 2 + 4@ 2 A(ko + CM) [~T(i~°) + m~(~°2 + 4C:e~)~A'(A°)] &o, 

(5.3-10) 

(5.3-11) 

which reduces to (5.1-14) for c u = c T = 0 and m = 2, for then ~,(ico) = q)f(m)(io)). 

Finally, the minimum mean square miss distance, obtained from (4.1-4) and (5.3-2), is given by 

~mid = o [1 -- go(i~o)l" ~o~(~+4cT,) d~ + o [g°(i°~)[~q)N(i~)d~°" (5.3-12) 

6. The Optimum Transfer Function in Relation to the Beam-riding System. 

6.1. Necessary Conditions--the Choice of Networks. 

We have seen (Section 3.2.3) that with certain approximations the overall transfer function of the 
beam-riding system is 

T(p)  A(p  + cM)S(p + CM) 
1 + T(p)  A(p  + cM)S(p + CM) + pZ + 2cMp' 

33 
(92372) C 



where d(p) is the transfer function of the modified aerodynamics relating demanded and achieved 

acceleration, S(p) that of the missile receiver and any additional networks, and T(p) the open-loop 

transfer function of the target-tracking system. 
We have shown that in fact the optimum transfer function is Ho(p), so that A(p), S(p) and T(p) 

must satisfy 

T(p) A(p + cM)S(p + CM) = Ho(p). (6.1-1) 
1 + T(p) d(p + c2v~)S(p + clvs) + P~ + 2c~p 

where Ho(iw ) can be evaluated in terms of ~T(,,)(io)), ON(i~o ), A(io~) and errs, the limit imposed on 

the mean square demanded acceleration. In (6.1-1) we must regard A(p) as fixed, since Ho(p) is the 
optimum transfer function for a system which includes a missile whose transfer function is A(p). 
The realisation of the optimum then rests on the choice of the functions T(p) and S(p); equation 

(6.1-1) does not define each separately, but only the relation between them, so that the same overall 

system can be obtained in a number of different ways--i.e, a given system may be optimised by a 

correction network in the tracker or the missile, or both. 
If the missile-borne equipment S(p) is chosen independently, it is necessary to adjust the transfer 

function of the tracker to satisfy (6.1-1), provided that such a procedure is permissible (see Section 6.2). 

Rearrangement of (6.1-1) yields 

Ho(p) (6.1-2) T(pi 
A(p + clv±)S(p + CM) _ Ho(p ) ' 

J (p  + cM)S(p + CM) + pZ + 2cMp 

which gives the required transfer function of the tracker. 
This equation shows that as far as minimising the mean square miss distance is concerned, there 

is no particular requirement for the response of the missile system to beam movements: from other 
considerations however it is desirable that the missile loop should form a stable and reasonably 
well-behaved system, so that the missile can recover from disturbances which may arise in the early 
stages--gathering and initial dispersion. The precise nature of the response is immaterial, provided 

that T(p) is adjusted to satisfy (6.1-2). The conditions imposed on Ho(p) are such that it is stable 
and physically realisable, so that for any choice of S(p) for which the missile loop is stable, T(p) is 

also stable and physically realisable. 
Suppose now that a tracking system having the open-loop transfer function Y(p) exists, and we 

wish to convert this system to the optimum arrangement. This requires the addition of a network 

N(p) to the tracker, such that N(p) Y(p) = T(p), or 

1 Ho(p) (6.1-3) 
N(p) - y(p) A(p + c~,~)S(p + CM) _ Ho(p ) 

A(p + cM)S(p + cM) + p~ + 2cMp 

This equation is valid if the incoming noise O;~(t) is independent of the transfer function of the 

tracking servo: the treatment when this is not the case is given in Section 6.2 below. 

6.2. Sources of Noise. 
In the derivation of the optimum operator the effects of noise have been represented by the 

function ON(t ) applied as an input to the whole system. The fact that there may be several sources 
of noise acting at different points in the system does not invalidate this representation, since the 

effects of these noise sources can be referred to the input. 
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6.2.1. Linear noise sources.--Suppose that the radar tracking system consists of a number 

of elements denoted by the operators YI(D), Us(D ) . . . Y~(D) (Fig. 5), and that noise enters the 

system from various sources at the points indicated in Fig. 5a. Assuming that the system is linear, 

Y~(D)Ys(D) . . .  Y,~(D)(0 T -  0~+ 0N1 ) + Ys(D)Y3(D) . . .  Yn(D)O2v s + . . .  + Y,~(D)ONn = 013, 
or  

ONS Om O~v'~ I Y(D) = 0 B 
0~, - OB + Oa, , + ~ + yl(D)Y2(D) + . . .  + y~(D)Ys(i~_: " Y,~_a(D) 

Y(D) = Y~(D)Ys(D) . . .  Y~(D). 
where 

Thus 

Y(D) I ON2 ONa 
OB = 1 + Y(D) OT + ON~ + Y~I(D) + YI(D) Us(D ) + " "  + 

ONn -] 
Y~(D) Y2(D)) _ : .  Y,~_~(D)J 

Y(D) 
1 + Y(D) 

This is equivalent to a system having one source of noise 0Y at  the input Fig. 5b, where 

Om ONa Ox,~ 
ON = ON1 + - ~ f l ~  + Y~(D)Ys(D) + ' ' "  + Y~(D)Ys(D). . . Y,_~(D) (6.2-1) 

If the spectral densities of the various noise functions are denoted by ~Nt, q)NS • • • q)N,~, then 

from (6.2-1) 

ONs(i°°) ON3(i°J) (6.2-2) 
eN(i ) = + I r (i )ls + [ rdio,) y (i )ls + ' '  

where ¢blv is the spectral density to be used in the expressions for the optimum operator. It will be 

noted that dP~v , and therefore H0, is now a function of the elements 7111, Ys etc., so that any modi- 

fication to the tracking system for the purpose of realising the optimum system must leave these 

elements unchanged--otherwise H 0 is no longer the optimum transfer function. Further, the 

correcting network N(D) must be introduced beyond the point at which the last noise source 

appears--in Fig. 5a, after the element Y~. For then 

Y(D)N(D) ( ONS 
OB = 1 + Y(D)N(D) OT + ON~ + Y~ff)  + ' ' "  + 

and (6.1-3) gives the correcting network N(p). 

O N,,,z 

Y~(D) Ys(D) Y,~_~(D)) ' 

If N(p) is introduced at some intermediate point--after I71, say, in Fig. 5, we have 

Y(D)N(D) ( 0 m ~v_,~ 
OB = 1 + Y(D)N(D) OT + ON* + Y,(D)N(D) + ' ' "  + Y,(D) Y2(D) . . .  Y,~_I(D)N(D)]' 

so that the equivalent noise input 0 y is now different from that assumed in the evaluation of Ho(p) , 
and the equations are invalid. 

Thus for distributed noise sources the optimum system can still be derived by modifying the 
tracking servo system, provided that the elements YI(D), etc. remain unaltered, and the correcting 

network N(p) is placed so as to act on all the sources of noise. Since q)N depends on Owl , Og~ . . . .  
and on YI(D), Y2(D), etc., the optimum thus obtained applies only to a particular system whose 
tracking servo includes these elements and noise sources: a servo having different components would 
lead to a different optimmn system. 
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It is evident that the same treatment can be applied to sources of noise within the missile, in that 

they may be expressed as an equivalent noise to the input of the complete system. In this case the 

optimising network must be placed in the missile, beyond the sources of noise. 

If all the noise sources ONe, O,V, ~ . . . 01w--i.e. noise arising in the servo itself--could be removed, 

~N would depend only on ON1, and Ho(p) would therefore be independent of the servo system, and 

would apparently give an absolute optimum. However, the function O~vl(t), which may be described 

as the primary radar noise, itself depends on the characteristics of the tracker--e.g, the transmitted 

power and size of dish--so that the optimum applies to that particular set of radar characteristics 

which gives rise to the noise function ONl(t ). 

6.2.2. Non-linear noise.--It has been assumed above that the sources of servo noise are 

such that the resultant behaviour of the system is still linear. A servo system however will nearly 

always contain non-linear sources of error, such as those due to hysteresis and static friction. In a 

well designed system the effects of such errors should be small, but they may nevertheless form a not 

insignificant proportion of the total noise. We may approximate to this situation by postulating a 

hypothetical linear servo, with a certain noise input spectral density, such that the output noise 

spectral density of this servo is the same as that observed with the actual system. When backlash and 

static friction are dominant, the equivalent noise input and the target input will be correlated; this 

causes no theoretical inconvenience, although it may be difficult to ascertain the degree of correlation 

from the data available. 
Thus the distribution of noise sources, linear or non-linear, serves to define an equivalent noise 

spectral density qO~.~-, from which the optimum transfer function Ho(p) is derived as before, and 
equation (6.1-1) applies. If the noise arises from non-linear effects, however, it is not permissible to 
realise the optimum system by a correcting network in the tracker, since the alteration in the noise 
output thus obtained would not be as predicted for a linear system; the efficacy of an additional filter 
is likely to be much less against backlash noise than against linear noise. It is therefore necessary to 

leave the whole tracking system unchanged, and to realise the optimum transfer function by adjusting 

S(p) to satisfy (6.1-1). On rearranging this equation, 

Ho(p) [1 + T(p)] [p~ + 2CMp ] 
S(p + %~) = A(p + c~) [ T(p) - Ho(p) (1 + T(p)] ' (6.2-3) 

and here T(p) is the transfer function of the tracking system with which the equivalent noise spectral 
density tI) g was obtained. Again, H 0 is a restricted optimum, giving the best system that can be 

achieved with this particular target-tracking system. 
It is probable that in a practical system the noise contributions from non-linear sources will be 

small enough to be regarded as emanating from linear sources, at least for small variations of the 
servo elements; so that a correcting network inserted in the servo may be deemed to have the same 
effect as on a linear system, provided that the alteration is small. In this case the optimum system 
would be achieved by modifying both T(p) and S(p) to satisfy (6.1-1). 

7. Optimum Transfer Functions for Particular Forms of Statistical Target and Noise Inputs. 

7.1. Data and Assumptions Used hz the Examples. 
In the following sections a number of examples of optimum beam-riding systems is given (for 

motion in one plane only), together with the r.m.s, miss distances attained, and the r.m.s, achieved 
and demanded accelerations. The data and conditions to which these examples refer are summarised 

below. 
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7.1.1. The autocorrelation function and spectral density of the target acceleration.--It is 
shown in Appendix I I I  that with certain assumptions {discussed in Section (5.3.1)} the autocorre- 

lation function of the target acceleration normal to the sight line, divided by rT, is of the form 

~bT(x ) = cr~2e-Nxl. (7.1-1) 

This function would result if the lateral acceleration of the target were as illustrated in Fig. 6. 

The acceleration is changed abruptly at random intervals, determined by a Poisson distribution of 
mean length 1/fi--i.e. the chance of finding an interval of duration y is fie-PV. The value of the 

acceleration varies randomly from interval to interval, with a distribution such that the r.m.s. 

acceleration is rT~r T . The length of the interval and the acceleration level during the interval 

are assumed to be uncorrelated. 

The spectral density associated with (7.1-1) is 

l f ~  CT(x)e_,o, xd x = ~T22 fi (7.1-2) 

In the calculations which follow fi = 0.1 rad/sec, and aT s = 12" 5 × 10 -8 rad s sec -4. Thus the 

mean duration of the steps in Fig. 6 is 10 sec, and the target r.m.s, acceleration is r:ee~,, which is lg 

at a range of 30 000 yards. 

7.1.2. The spectral density of the noise.--It has been assumed throughout that the noise 

angles form a stationary ensemble; experimental evidence supports this view and suggests that at 

medium and long ranges the noise spectral density is constant over the frequency band of interest--  

i.e. the bandwidth of the complete system. We may therefore write 

CN(ioJ) = k s, ~ (7.1-3) 

and the fact that this is in error for high frequencies does not invalidate the results, provided that 

the representation holds over the necessary frequency band. 
The values of the noise spectral density used in the examples are 

¢PN(i~o) = k s = 4 × 10 -8 radS/rad/sec, 0-5 × 10 -8 radS/rad/sec, 
and zero. 

The first two figures embrace the range of noise levels which may be expected in a typical tracking 
system; the actual value of k s depends on a number of factors, such as the transmitted power, dish 

size, scanning system and type of target being tracked, but it is probable that the figure of 0.5 × 10 -s 

radS/rad/sec is near the lower limit which can be achieved in a practical system, k s = 0 corresponds 

of course to a perfect tracking system. 

7.1.3. The missile.--The aerodynamic behaviour of the missile was represented in Section 

(3.1) by the operator A(D), where 

f2v±(t) = A(D)fv( t ) ,  (3.1-1) 

where A(D) includes the effects of internal feedbacks introduced to modify the response. We shall 

take A(D) to be of the form 
1 

A(D) - (1 + D T )  2' (7.1-4) 

i.e. the transfer function relating the demanded and achieved accelerations is 

1 
(1 +p T) 2' 
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so that the modified weathercock mode is critically damped with a frequency of 1/T rad/sec. This 

simplification of the situation is unnecessary as far as the derivation of H 0 is concerned: the full 

aerodynamics and feedback terms can be included in A(D) (provided that the feedbacks are sufficient 

to allow a linear representation), but the evaluation of H 0 is then more laborious. It is shown later 

however that provided the missile weathercock response is fairly rapid, the actual form of the 

response is of little consequence. 
Three values of T are used: 1 sec, 0.1 sec and zero, corresponding to weathercock frequencies of 

1 rad/sec, 10 rad/sec and infinity. In the latter case A(D) = l, representing an ideal missile with no 

time lags. 

7.1.4. The conditions of engagement.--The missile and target velocities are taken to be 

2000 and 1000 ft/sec respectively, the target being intercepted at a slant range of 100 000 fee t .Th is  

gives a time of flight of approximately 50 sec. 

7.2. Explicit formulae for optimum transfer functions "and miss distances 

The appropriate formula when the spectral density of the target acceleration is given is that of 

(5.3-10): 

H0= [ )+ K+ 
(1 + AFF) + + (I)~v + 

~s(co z + 4cT z) 

(1 + ~ F F ) -  [ tFT 
\o)2(co~+-+ 4cT 2 ) 

; (5 .3-1o)  

The opt imum operators are derived with various limits imposed on the r.m.s, demanded 

acceleration. This requires (Section 5.2.1) that 

F(D) = D(D+ 2CM), (5.2-12) 
A( D + c~i ) 

so that from (7.1-4) 

F(D) = D(D + 2CM) [1 + (D + CM) T] 2, 
o r  

FF = F(ico)F(-ico) = coz(co2 +4CM ~) [(1 +caIT) 2 + co2TZ] ~. (7.2-1) 

The mean square demanded acceleration is then R 2 eL 2, Where R is the range at interception and 

f~o [tFT(iw) + c°~( c°2+ 4CT~)O)lv(ic°)] (5.3-11) 
0) 3 + 4c~1~ 2 Ho( ico ) 2 

~r2 = o ~°2 + 4@ ~ A(ico + c~l~) do) 

and the minimum mean square miss distance is R2%,in 2 where 

° ' ra in2  = ] 1 - -  H 0 ( i ¢ o )  12 ~T(ic°) o~z(coZ+4cT2 ) &o + ]Ho(ico)[2(PN(ioJ)&o. (5.3-12) 
0 0 

It  has been found that when tFT, • w and A(D) have the forms given above (Section 7.1), the 

presence of the terms c~r, cT has a negligible effect on the opt imum transfer function Ho(p). With 
missile and target velocities of 2000 and 1000 ft/sec, and an interception range of 100 000 feet, we 
have c M = 0.02 see -~ and @ = 0.01 sec-1; and operators evaluated with these values are practically 
identical with those for c~i = @ = 0. This remains true for medium ranges, but for short ranges 
(<  20 000 feet) it is necessary to include the correct values of CM and CT--unless, of course, the 

velocities are correspondingly reduced. 
In what follows we may write c M = cT = 0, in order to ease the labour of computation, with the 

proviso that the results apply for ranges greater than about 20 000 feet. The assumption is that 
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iM = iT = 0, and therefore implies a constant range; it can only be justified by demonstrating that 

the results obtained do not differ appreciably from those obtained with a closer approximation to 

the true situation. This condition is satisfied for the cases under discussion. 
On putting c M = @ = 0, and substituting for ~ ,  qaN, A(ico) and F(ioo)F(-ico) from 7.1-2), 

(7.1-3), (7.1-4) and (7.2-1), equation (5.3-10) becomes 

1 

H° = {1 + A~o4(1 +~2T~)2}+ { 2fi~T~ )+ x 

rrc~4(fi2 + ~°2) . (7.2-2) 
x K +  ( 2fia~2 : )_  

(1+ao, ,(1 +o,~T~)=)- ~,~o,~(5~+~= ) + k 2 + 

Equations (5.3-12) and (5.3-11) become 

a~in2 = o [1 - Ho(ico)[ 2 ~r~o4(~22fiaT2+o~2) dog + o h~lHo(io~)12do), (7.2-3) 

and 

~ = ~o~(1 +~2T2)qHo(i~o)[2 L,~o~(~2+~o2) + h2 d~o. 
0 

We shall also be interested in the r.rn.s, acceleration achieved by the missile; since 

1 
fM = A(D)f2) - (I + DT)2 fD,  

we have from (7.2-4) 

(7.2-4) 

[y~o4(~o2+/72) + k ~ &o, (7.2-5) 
0 

where R2aM 2 = (fM~), the mean square achieved acceleration. 
Equations (7.2-2) to (7.2-5) are the formulae used in evaluating the optimum operators given below. 

Before dealing with the general case, it is instructive to consider a number of special cases in 

which either k 2, )~ or T is taken to be zero. 

7.2.1. Zero noise and no constrahzt.--Consider first the case when there is no noise and 

no limit imposed on the acceleration demanded of the missile, i.e. k 2 = A = 0. Then  from (7.2-2), 

K 
Uo(i~ ) = ( 2 ~  2 ~+ +1"  

~ ( ~  + ~)1 
The best value of K is clearly zero, for then Ho(iw ) = 1 and %ran 2 = 0, from (7.2-3). Also 

aL2 = (1 + ~o 2 T~) 2 2fi~T2 
0 ~ ( ~  + 52 ) d~ .  

This integral does not converge, so that ~L ~ -+ o0. 
The achieved acceleration is given by (7.2-5): 

O'M 2 ~ d(.o 
0 ~(52 + o~2) ~ 

--i .e.  the mean square acceleration achieved by the missile is equal to the mean square target 

acceleration. 
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Thus for k 2 = ;t = 0 the opt imum transfer function is unity, giving zero mean square miss 
distance but requiring infinite demanded acceleration. This of course cannot be realised, since in 
practice the missile control surfaces would be heavily saturated. 

7.2.2. 

k 2 + 0. We then have from (7.2-2) 

Ho(ioo ) = ~ 2fi~T 21 + z r ° ~ 4 ( ~ 2 )  ~ ] 

) + £0 2 ) 

But 

Unlimited missile acceleration in the presence of  no ise . - - In  this case A = 0 but 

2fl~T 2 
2 f i ~  2 ~o + f i ~ 4  + ~k ~ 

+ k 2 = k 2 
~ ( ~  + ~2) ~,~(5~ + ~2) 

(7.2-6) 

The factor oJ 4 in the denominator of this expression gives a quadruple pole at the origin, and it is 

not obvious how the poles should be divided between the upper and lower half planes. To resolve 
this difficulty write ~o 4 as (oJ2+ e2) 2, with e positive. 

Then 

25~T 2 2fi~T 2 ,o6 + fi%~ 4 + ~.k ~ 

k2 = k2 • (7.2-7) 
(~o~ + e2)2(o~2 + fi2) (oo + ie)2(oj - ie)Z(o~ + i5) (oo - ifi) 

Now write the factors of ~o 6 + fi2oJa + 2fi~T2/zrk 2 as 

2ficrT2 
o~6 + fi2~4 + zrk 2 = ( o J + i a ) ( o J - i a ) ( o J + c + i d ) ( w + c - i d ) ( c o - c + i d ) ( ~ o - c - i d ) .  (7.2-8) 

Then  from (7.2-7) and (7.2-8) 

, 6 .  o~ ,4 - 2P~T2\ + 

and 

= k2 (~ - ia) (~ + c -  id)  (~ - c -  id) 
(~ - ie)~(~o- i~) (7.2-9) 

~,o + ~2~ + 2p~>\-  
k ~- . . . . .  rrk2 } = 

(o,2 + ~2)2(o,~ +52) / 
(~o + ia) (~o + c + id) ( e o - c  + id) 

(~ +ie)2(~ +i5) (7.2-10) 

since each expression has all its poles and zeros confined to the upper half plane (U.H.P.) and 
lower half plane (L.H.P.) respectively. From (7.2-10), 

{ 
(~,, + ~2),(~,, +/3,) / ) 

25¢T '~ (o, + i¢)2(~o +,'5) 
qT (~,~ + ~)~(o~ +/3~) (~, + i~) (o, + c + id) (~, - ~ + id) 

2 ~  ~ 1 
"iT (o, - i~) ,(~ - / 5 )  (~, + ia) (o, + ~ + id) ( ~ , -  ~ + id)" 

(7.2-11) 
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It  is now necessary to express (7.2-11) as the sum of two functions, each of which has its 

singularities confined to one half plane. To  do this (7.2-11) is expressed as partial fractions: 

= ~ coZie)  + (co - i e )  ~ + -  + . (7.2-12) ~o - ifi ( o ~ + i a ) ( o o + c + i d ) ( o J - c + i d  

The  first three terms have poles in the U.H.P. ,  and the fourth has its poles in the L.H.P.  We may 

now discard the e-- i ts  purpose was to show how the poles of 1/coa must be distributed between the 

upper  and lower half planes. 

Thus  

- -- + + (7.2-13) 
+ 77" ~ ' 

where the constants A,  B and C are obtained from the identity (7.2-12). Th ey  are 

A = i ( a -~ )  (c~ + a~) - 2.~a 
a2~2(c2+d2)~ 

1 
B -  af i(d + dZ), (7.2-14) 

and 
1 

C = - i  ~(3 + a) [c~ + (8 + a)~]" j 

On using (7.2-13) and (7.2-10) (with e = 0) in (7.2-6), we obtain 

~(~o-i3) [ 2/3~,~ (_~ B ~ _c/~)] 
Ho(ico ) = h 2 ( a ~ _ i a ) ( ~ o + c _ i d ) ( ~ o _ c _ i d  ) K + .or - + ~ + 

23crrz K'co~(co-i3) + A c @ o - i 3 )  + B ( c o - i 3 )  + Coo ~ 

~k  2 (~o - i a )  ( w  + c -  i d )  (o~ - c - i d )  ' 

where K '  = rrK/2fi~rT2. 

This  expression is of order zero in co, so that the mean square miss distance due to noise is infinite, 

since the noise integral 

does not converge. To  avoid this we must write K '  = 0, so that 

go(i~o ) _ 2fl~T ~ ( A  + C)w 2 + ( B -  iAfi)~o - iBfi 

2fl~T 2 - i (A  + C)oJ z - ( B -  iA3)iaJ - 173 

zrk 2 (ico+a)(c2 +d2 + 2d iw-~o  ~) 

This  is the opt imum frequency-response function H0(i@; since it is stable, its transfer function is 

Ho(p): 
Ho(p ) _ 23~T 2 i ( n  + C)p  ~ - ( B  - iA3)  p - Bfi 

7rk ~ (p  + a) (p2 + 2dp + c a + d 2) 

On noting f rom (7.2-8) that 

2 ~  o-if, 2 
zrk 2 = a~(c 2 + d~) ~, 
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and substituting for A, B, and C from (7.2-14), we have finally 

where 

A'p a + (ca + da + 2ad)p + a(ca + d 2) 
H°(P) = (p + a) (pa + 2dp + c a + d a) 

a '  = [2aSd + (19- a) (ca + d ')]  [(19 + a) (c + (19 + d)a)] + a2(c a + d2)  
/3a(19 + a) (c a + (19 + d) a) 

(7.2-15) 

and this gives the opt imum transfer function in terms of the roots of 

2flcrl, a 
w 6+fiaoJ4+ 7rk~ - 0. 

Equation (7.2-15) shows that Ho(p) has no displacement lag and no velocity lag, in agreement 

with the conditions imposed in the derivation of the general equation (5.3-10). 
The  mean square miss distance achieved with this opt imum function can now be obtained on 

using (7.2-15) in (7.2-3). This  integral converges, since Ho(p) is of order - 1 inp ,  so that Ho(ioo) ~ is 

O ( - 2 )  in a~. T h e  integrals of (7.2-4) and (7.2-5) however do not converge, and both the demanded 

and achieved accelerations are infinite. 

On evaluating (7.2-15) for h a = 4 x 10 -s rad2/rad/sec, with the other constants as given in 

Section (7.1), one obtains 

0.446 + 1 .1 6 9 p  + 1 .4 3 2 p  a 
H°(P) = 0.446 + 1 .1 6 9 p  + 1 -532p  a +p'~'  

giving an acceleration lag of ( 1 - 5 3 2 -  1.432)/0.446 = 0 .22 sec a. For this case the r.m.s, miss 

distance is 0 .42 mils, or 42 feet at a range of 100 000 feet. Tha t  part of the miss distance due to 

target motion (the first integral of (7.2-3) is 18 feet, while that due to the noise alone (the second 

integral) is 38.5 feet. 

The  results for k a = 0.5 x 10 -s rada/rad/sec and k a = 0 are given in Table 1. Th e  system is still 

not practicable, since it requires infinite acceleration from the missile. 

T A B L E  1 

Miss Distances, etc., with no Constraints 

k 2 

(rad2/rad/ 
see) 

Ho(P) 

0-5 x 10 -s 

Accn. L a g  R(r 1 
%2 (sec2) ft 

R(T 2 
ft 

0 1 0 0 0 

1.26 + 2.3@ + 2.08p e 
(1.08 + p)(1 .17 + 1-08p + p~) 

0.45 + 1.17p + 1-43p z 
4 x  10 -8 

0"07 

0- 22 

16 

38-5 
(0.77 + p) (0.58 + 0.77p + p~) 

18 

R O'mi n 
ft 

18 

42 

R%~ 
g ' s  

R ~T 

O0 

0(3 
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In Table 1 

and 

R 

ao s 

R 0.rain 

R0.1 

R% 

R0. M 

the range at interception = 100 000 ft 

the acceleration lag of the overall system Ho(p) 

the min imum r.m.s, miss distance 

the r.m.s, miss distance due to noise 

the r.m.s, miss distance due to target motion, so that 

0"12 ~- 0"22 = 0.rains ; 

the r.m.s, missile acceleration. 

7.2.3. Limited achieved missile acceleration and zero noise.--Suppose now that we impose 
a limit on the achieved acceleration. Since 

f~± = D(D + 2cM)Oz,z, 

we have from (5.2-1) that 

F(D) = D(D + 2cM), or F(D) = D 2 if c~v z = O. 

Thus  F(Ao)F(- i0))  = 0)4, so that in equation (7.2-2) the term )t0)4(1 + 0)STS)S must be replaced by 
A0)a. The  same effect is achieved by putting T = 0: for then the missile is perfect, and the demanded 
and achieved accelerations are equal. 

With k s = 0 (7.2-2) reduces to 

1 I K + { ( 1 S T  + A0)4)_ST_} + ] (7.2-16) H°(io)) = (1 + :~0)4)+ST+ 

where 

Thus  

1 
where/~a = ~.  

Then  

and 

2/30.T~ 
s) 

(1 + ~0)4)S T = - -  

2f10.T2 0)4 + ~4 
0)4(0)s + p s ) '  

i + 1 ]  (co i - 1  - - 

(1 + A0)a)+S~ + - 2/%T2 (0) tx ~/2 ] ' (7.2-17) 

i - 1  i + 1 ~  ( 0 ) + ~ _ ~ _ )  

(0) ~/2 ] (7.2-18) 
+ 

(1 + A0)4)-S<r - -- 0)2(0) + ifi) 

{We may deduce from Section (7.2.2) how the poles of 1/0)4 are distributed, so that it is unnecessary 
to write (co s + es) s for 0)4.} 
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From (7.2-18) 

ST 2fi~ ~ 
(1 + Aco4)-ST - ~r 

~(~ + i~) 

( 
~ ( ~ +  ~ )  ~ + ~ 5/2 ] ~ + ~ - Q ~  

7/" ( ~ ( ~ - i ~ )  ~ + t~ V2 ] ~ + ~ ~ /~-  

- i - 1  = - - ~  ~ + L ~ + ~  ifi + i + l ]  
m + ~  5 / 2 ]  m + ~  

(7.2-19) 

Therefore  

(1 + ; ~ - ) - S T -  + - --~ + ~ + ' 
(7.2-20) 

the constants A, B and C being found from the identity (7.2-19). Using (7.2-20) and (7.2-17) in 

(7.2-16), we have 

= ~ [K%2(~-ifi)  + Ao,(o~-iS) + e (~ , - i f i )  + c~2] 

c o -  i +  1~ (~o -  i - 1  
5/2 j ~ ~/~-) 

The  integral for the r.m.s, achieved acceleration (7.2-5) does not converge unless K '  = 0, so that 

H o ( i m )  = ~a ( A  + C)~o 2 - i c o ( i B  + f i A )  - i f i B  

co ~ - 5/2 tzico - l* ~ 

On evaluating the constants A ,  B and C from (7.2-19), this reduces to 

o r  

Ho(i~o ) = 

_ t ~ + 5 / 2  p.fi ~ 
tz 2 + 5 / 2  i~ioJ tL 2 + 5 / 2  tzfi + 8 2 

/*~ + ~/2/,ico - o) ~ 

~ + 5/2 ~ 
tz ~ + 5/2/zp + / ~ + 5/2/zfl + fl~ p 

Ho(p)  = f.~ ~ + 5 /2  I@ + Pz (7.2-21) 

The  transfer function is seen to represent a stable system, with no displacement or velocity lag, 

and an acceleration lag of 

/~(~" + V2 ~fi + 3") 
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In this equation/z is any positive constant, to each value of which corresponds a particular r.m.s. 

achieved acceleration. The mean square miss distance and mean square acceleration can be evaluated 
by using (7.2-21) in (7.2-3) and (7.2-5): the results are 

~m~d = ~ a  84(V2 ~ a -  ~a~ + t~) 
~/2 ~(t~ 4 +/~4) (txa + ~/2 ~fi +/?a)a (7.2-22) 

and 

55/2/xafi 5 3 ~/2 /~ [/~7 + 2~/2 ~6/? + 4k~5/?a + 2~/2/x4/3 a + ~ + 4/x/36 + ~ - - / ~ ' ]  

%za = ~Ta (~4 +/~4) (~a +/~a + ~/2 ~/?)a (7.2-23) 

The results are tabulated in Fig. 7 for various values of/x, with ,8 = 0.1 rad/sec, and ~min/eT is 

plotted as a function of the ratio of missile and target r.m.s, accelerations %~/~T. To each value of 

the missile r.m.s, acceleration ~M there corresponds an opt imum transfer function of the form 

(7.2-21). The ordinates of Fig. 7 give a measure of the r.m.s, miss distance achieved with these 

various operators, and their acceleration lags are also plotted. 

In particular,/~ = co corresponds to no acceleration limit: in this case Ho(p) = 1, crmin a = 0 and 

eM a -~ eT a as in Section (7.2.1). At the other extreme/z = 0, Ho(p) = 0, ~ n  a -+ co and aM a = 0. It 

will be seen from Fig. 7 that the miss distance in the absence of noise is critically dependent on the 

available missile acceleration as a proportion of the target acceleration. 

Equation (7.2-21) shows that even whel~_ there is no noise present, the opt imum operator is not 

unity if account is taken of the limited available acceleration of the missile. It will be noted that 

both the form of the optimum function and its parameters are completel) specified when the target 
spectral density and the allowable achieved acceleration are given. 

7.2.4. Limited achieved acceleration in the presence of noise.--The appropriate equation for 
this case is obtained by putting T = 0 in (7.2-2). This gives 

{i 1 7r~o4(oJa + 32 ) 
Ho(ico) = { 2ficrTa )+ K +  { 2fl~T a 

(1 + A~o4) + \,ro~4(coa+/?2 ) + k a 1 + A~o4) - + 

The treatment of this expression is similar to that of (7.2-6), with the extra factor (1 +A~o4). 
Following the method given in Section 7.2.2, one obtains 

Ho(p ) = al~"(c 2 + d 2) + [/xa(c a + d a + 2ad) + a ~ / 2 ( c  a + da)]p + Cp a (7.2-24) 
(p + a) (pa + 2dp + c a + d a) (pa + / ~ / 2  p +/~a) 

where _+ ia, + (c+id) and + ( c - i d )  are the roots of 

2~T a 
oJ ~+fia~o4+ 7rka - 0, 

as in Section 7.2.2; 
C = aa~4(ca + da)2 

~a(a +~)  [ca + (~ + d)a] @ + ~ a +  V 2  ~ )  

a~,a(ca + d 2) _ ~ [(c~ + d~) (~a + ~/2 a~) + 2a~,ad] 

and ~ is a constant which determines the r.m.s, achieved acceleration. 
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Comparing (7.2-24) with (7.2-15), it is seen that the effect of limiting the mean square achieved 
acceleration is to introduce a further quadratic term in the denominator, as well as modifying the 

numerator coefficients. Ho(p)  is then of order ( - 3 )  in p, so that [H0(i0))12 is 0 ( - 6 )  in 0), and the 

integrals (7.2-3) and (7.2-5) converge, giving finite %~in and c~ M. The integral (7.2-4) however does 
not converge, showing that the demanded acceleration is still infinite. 

The constants of (7.2-24) have been evaluated for h e = 0.5 x 10 -s and 4 x 10 -s rad2/rad/sec, 

with various values of ~,. The results are given in Figs. 8 and 9, which also show the r.m.s, miss 

distances obtained with various limits on the achieved r.m.s, acceleration. Similar results for T = 0 

were obtained by Keats in Ref. 2. 

7.2.5. L i m i t e d  demanded acceleration in the presence of  n o i s e . - - T h e  results of the previous 
section refer to a system containing a missile of limited available acceleration, but which is otherwise 

perfect, in that it responds immediately to a demand for acceleration. We now study the more 

realistic case in which this response is of the form 

1 
with T + 0, 

(1 + p  

and in which the demand for acceleration is limited to some finite r.m.s, value R% ; this of course 

implies a limit also on the achieved acceleration. 
The opt imum system is then given by (7.2-2), which may be evaluated as follows. 

We have 
1 1 

( I + A F F )  = 1 + A0)a(1-{0)ZT2) z = ~(~4+0)4+2T20)6+ T40)s), where /~ = A. 

( T ~ 2 0)6 1 0)4 (7.2-25) 0)8+  

In order to find (1 + AFF) + and (1 + AFF)-, we require the factors of (7.2-25). Let 

1 /~a 
0)s '+ ~_2 0)6 + ~-~ °)4 + ~7~ -- (oJ + l 1 + iml)  (0) - l~ + inh)  (0) + lz + ira2) (0) - l~ + imz) x 

x ( 0 ) + l ~ - i m l ) ( 0 ) - h - i m t ) ( 0 ) + l ~ - i m 2 ) ( 0 ) - 1 2 - i m 2 ) .  (7.2-26) 
Then  

T 4 
(1 + AFF) + = ~ g  (0) + l~ - iml)  (0) - l~ - imp) (0) + l 2 - imp) (0) - l 2 - imp) (7.2-27) 

and 

(1 + A F F ) -  = (0) + l~ + imp) (0) - l~ + imp) (0) + l z + imz) (0) - l~ + imz) . (7.2-28) 

The functions 

( 2 f i ~  he) + and { 2fi(~T~ ) 
have already been obtained in Section 7.2.2: they are (e-+ 0) 

2ficrT~ )+ ( 0 ) - i a ) ( 0 ) + c - i d ) ( o ~ - c - i d )  (7.2-9) 

and )- + : 
+ i3) 

where a, c and d are defined by the identity (7.2-8). 

(7.2-10) 
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From (7.2-28) and (7.2-10), 

~-w(w+/3~) 

(1 + aw(1 + co~ T~)~)- \,~W(W +/3~) + k~ 

_ 2fie~ '2 cw(~o + i~) 
rr co4(co ~ + fi2) (co + ia) (co + c + id)  (co - c + id)  (co + I~2 + im~o) ' 

where for brevity we have used the notation 

(CO +_ ll~ -I- imp2 ) -- (co + l t + imp) (co - l~ + imp) (co + lz + ira2) (co - l 2 + ira2) .  

Thus  

} 2/3o'r2 1 

= g co2(co - ifi) (co + ia) (co + c + i-d) (co - c + id)  (co + 112 + im~.) 

2/3a:e2 [-D E F Gco°+ Hoe + . . .  + Lco+ M 
= - -  L~ + + - -  + ] (7.2-29) 

where D, E, F . . .  M are constants determined by this identity. 
The  first three terms have poles in the U.H.P.  (the first two are actually ( co - i e ) ,  (co- ie)Z) ,  and 

the last term has poles in the L.H.P. Therefore 

_ _ + 2o~ + ~ + 7r 

so that 

K + {  

2ficrT~ Dco(co-  ifi) + E ( c o -  ifi) + Fco ~ 

cw(co - i ~ )  

2flO'T2 
Kco~(co - i/3) + [(D + F)co~ + ( E -  i/~O)co - i/~E] 

+ co2(co_ i/3 ) (7.2-30) 

On substituting from (7.2-27), and (7.2-9) and (7.2-30) in (7.2-2), we have 

[i,4 
Ho(ico ) - T4k2 

2•aT Z KW(co- i~) + [(D + F)co ~ + ( E -  ifiD)co - i[3E] 

(co - ia )  (co + ~ - i d )  (co - ~ -  i d )  (co + G - i m ~ )  

This expression is 0 ( -  4 ) in  co, so that I H0(ico)l e is 0 ( -  8), and the integral (7.2-4) does not converge 
unless K = 0. Hence 

Ho(iw) _ 2f iaz~tz  4 ( D + F ) c o  2 + ( E - i f i D ) c o  - i f lE ,  
qrk 2 T 4 (60 - i a ) ~  ~ i - d y ( ~ ~ ¢ . o  .++ G - i"/12) " 
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On evaluating the constants D, E and F from the identity (7.2-29), and writing p for i~o, we have 

finally 
A + B p  + Cp a 

Ho(p) = ( p + a ) ( p a + 2 d p + c a + d a ) ( p a + 2 m l p + l l a + m t a ) ( p a + 2 m a p + l a + m e a ) ,  (7.2-31) 

where 
A = a(ca + da) (lie + m?)  (Ze a + m a), 

B = (c a + d e + 2ad) (11 e + ml  a) (le a + me e) + 2a(c a + d e) [ml(le a + ma a) + me(ll a + mla)] 
and 

C = aa(cZ + d~)a(l~e + m~2)a(lea + mea)a d - f iB 
fia(a+fi) [c a + (/3 + d) a] [l, e + (/3 + m~) e] [le a + (fi + me) a] /3 ~' 

The positive constants a, c, d, and Ii,  l~, m~, m s are defined by the identities (7.2-8) and (7.2-26) 

respectively; they depend on the roots of polynomials, and it is for this reason that Ho(p) cannot be 

expressed more directly in terms of the primary constants. 

The constant coefficient of the denominator of (7.2-31) is equal to A, and the coefficient of p in 

the denominator is equal to B,  so that the system has no displacement or velocity lag. We may write 

(7.2-31) as 
A + Bp  + Cp e 

N°(P) = A + Bp  + C'p a + D'p  a + E'p  4 + F 'p  5 + G'p 6 + p7,  (7.2-32) 

and its acceleration lag is 
C ' - C  

A (7.2-33) 

The minimum r.m.s, miss distance, and the r.m.s, demanded and achieved accelerations, can 
now be found by using the opt imum transfer function (7.2-31) in (7.2-3), (7.2-4) and (7.2-5). Since 

Ho(ioJ ) is 0 ( -5 ) ,  IH6(i~o)la is 0 ( -10) ,  so that all the integrals converge, giving finite mean square 
values for these quantities. 

The Ho(p) of equation (7.2-31) applies to a system which contains a missile whose modified 

weathercock transfer function is 
1 

il+pr)a' 
the demanded acceleration being limited to a desired r.m.s, value (depending on /~). The noise 

spectral density k e is assumed to be constant over the frequency range covered by (7.2-31), and the 

target lateral acceleration spectral density is of the form 

2 
~rTa 7r o92 + ]32" 

With this data (7.2-31) gives the transfer function for which the mean square miss distance is less 
than for any other linear system. 

7.3. Numerical  Examples. 

7.3.1. Comments on Figs. 10 to 13.--The examples which have been evaluated, and which 
are shown in Figs. 10 to 13, are all for 1~ = 0.1 rad/sec and ~T a = 12.5 X 10 .8 rad a sec -~. Two 
values of the weathercock time constant T--0-  1 sec and 1 sec--have been taken, each with noise 
levels of 0.5 x 10 .8 and 4 x 10 .8 rada/rad/sec. The special cases for T = 0 and k 2 = 0 have 

already been discussed. 
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Figs. 10b, c to 13 b, c show the variation of the minimum r.m.s, miss distance (at R = 100 000 feet) 

with the achieved missile acceleration, and the relation between the r.m.s, achieved and demanded 

accelerations. The  curvature of the latter graphs has no connection with aerodynamic or other non- 

linearities: it is due to the fact that each point on the curves is associated with a particular opt imum 

transfer function, which is different for different points. This  means that the spectral density of the 

demanded acceleration is varying with different operators, and therefore equal r.m.s, demanded 

accelerations for the same missile result in different r.m.s, achieved accelerations. For  any one 

system the plot of demanded vs. achieved acceleration is of course a straight line up to the limit 

imposed by structural considerations, assuming that the missile has been linearised by heavy 

degenerative feedback. 

Some of the opt imum transfer functions corresponding to certain points of the miss distance and 

acceleration curves of Figs. 10b, c to 13b, c are given in Figs. 10a to 13a. It  Will be seen that all the 

miss-distance curves have a pronounced knee: it is clearly advantageous to choose a system such 

that the operating point is slightly to the right of this knee: for a system requiring less acceleration 

gives a greatly increased miss distance, while little improvement  in miss distance accrues from 

employing greater acceleration, particularly in view of the increased drag with which this is associated. 

A comparison of Fig. 7 and Figs. 8 to 13 shows that the effect of the noise is to raise the level of 

the miss distance, as well as making the latter less critically dependent  on the achieved missile 

acceleration. I t  is also clear from these figures that the best system is obtained with T = 0--i .e.  

perfect aerodynamics; however, the curves for T = 0.1 sec are already close to this ideal. 

T he  opt imum transfer functions have been derived in terms of angular quantities, so that the 

results for miss distances, etc., for any range are obtained by multiplying the relevant quantities by 

the range in question. There  are two reservations to be made, however;  the first is that the time of 

flight must be sufficiently long for the approximations h0(T) = 0 (Section 4.2.2) and c M = @ -- 0 

(Section 7.2) to be valid. For  given missile and target velocities this implies a minimum range, below 

which the results are in error. 

T he  second reservation concerns the behaviour of the target: its r.m.s, lateral acceleration fT is 

likely to be independent  of its range from the weapon site, whereas in the analysis it has been assumed 

that the quantity a T is constant, where Ra  T = fT .  For a smaller range, therefore, fT is smaller if a T 

is kept constant, and conversely. 

We may conclude that the results apply over a limited range of ranges; and that for greater or 

smaller ranges it is necessary to re-evaluate the opt imum operator for a different choice of aT, such 

that fT remains constant. In the present examples we have 

a T = 12.5 x 10 -8 rad ~ sec -4, 

so that for R = 100 000 feet, fT = 1. lg. We may assume that the results hold for ranges of, say, 

80 000 to 120 000 feet, which implies a variation of fT  between 0.9g and 1.3g r .m.s . - -a  not unlikely 

occurrence. 

7.3.2. The optimum system and miss distance for a given missile acceleration l imit . - -As an 

example, consider a missile having a modified weathercock frequency of 10 rad/sec. ( T = 0.1 see), 

and so designed that the acceleration must  be limited to a maximum of 10g (briefly, a '10g missile'). 

Since we have assumed critical damping of the weathercock mode, it follows that the demanded 

acceleration must be limited to 10g. Suppose further  that the noise spectral density is h ~ = 4 x 10 -8 

rad2/rad/sec. 
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In order for the analysis to remain valid, the r.m.s, demanded acceleration must be such that the 

10g limits are never (or rarely) brought into operation. If  a gaussian distribution is assumed for the 

d e m a n d e d  acceleration, the proportion of time for which the demand exceeds the limits is given by 

q = 1 - err ~- fmax ~ (5.2-1) 
LR~L~/2_] ' 

where R e  L is the r.m.s, demanded acceleration and + fm~x the level at which the demand is l imi ted--  
in the present case fma ~ = 10g. This curve is shown in Fig. 14, from which it is seen that for 

R~rL -- 0.51,  
fm~x 

the demand is on the limits for 5 °/o of the time. 

We may suppose for the moment that the difference between limiting for 5 °/o of the time and the 

absence of limits is sufficiently small not to affect the linear analysis. The choice of 5% is however 
arbitrary, and requires further investigation. 

For the 10g missile and 5~/o limiting, we have 

Rcr r = 5. lg ; 

the nearest operator which has been evaluated is that given for/~4 = 10 (Fig. 11a): it is 

Ho(p ) = 141 + 509p + 827p ~ 
(0-766 +p) (0.582 + 0.776 p +pZ) (100.2 + 20.01 p +pZ) (3.16 + 2.47 p +p~)'  

with which the r.m.s, demanded acceleration R e  L is 4.24g. The actual operator which gives 
R e  L = 5. lg can of course be found more exactly by evaluating (7.2-31) for values of/x between 
10 and 50--for  t~ 4 = 50, Re  L = 6.57g (Fig. l la) .  

From Fig. 1 lc, the r.m.s, achieved acceleration with this opt imum system ( R ~  L = 5. lg) is 4' lg, 
and Fig. l l b  gives the miss distance as 67 feet r.m.s. 

Thus  this opt imum system will give an r.m.s, miss of 67 feet, and the demanded acceleration will 
exceed 10g for only 5% of the time. 

If  we wish to reduce this limiting to 1%, we have from Fig. 14 that 

R e  5 =  4g for f m ~  = 10g. 

The corresponding transfer function is then very nearly that given for/~4 = 10 (Fig. 11a). The 

achieved acceleration is 3.4g r.m.s. (Fig. 11c); and f iom Fig. 11b the r.m.s, miss distance is 73 feet. 

The insertion of 10g limits will clearly have a negligible effect on this assessment, since they will 
only be in operation for 1% of the time. 

It  may be concluded that the r.m.s, miss distance for a 10g missile need not be more than 73 ft 

(under the stated conditions of noise, etc.), and probably nearer 67 ft. As mentioned above, the 

degree of saturation for which the linear analysis gives markedly optimistic results remains to be 
determined: it is estimated however that at least a 5 % saturation can be allowed before the difference 
becomes appreciable. 

7.3.3. The missile acceleration required for  a given r.m.s, miss d is tance . - -As  a further 
example, suppose that we wish to achieve a miss distance of 50 ft r.m.s, with a missile having a 
weathercock frequency of 1 rad/sec (T  = 1 sec), in the presence of a noise spectral density of 

k 2 = 0"5 x 10 -s rad2/rad/sec. 
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From Fig. 12b, the optimum system requires an achieved acceleration of 2.6g, and the demanded 
acceleration (Fig. 12c) is then 16g. For 5% saturationthis would require acceleration limits of 32g-- 
a quite impractical figure. This result is due to the low weathercock frequency, giving rise to a large 

difference between the r.m.s, demanded and achieved accelerations. 
The remedy lies in increasing the weathercock frequency; suppose that additional feedback is 

applied so that it is raised to 10 rad/sec (T = 0.1 sec). The appropriate curves are then those of 
Fig. 10. For a miss distance of 50 feet, an achieved acceleration of 2.2g r.m.s, is required (Fig. 10b). 

Fig. 10c gives the demanded acceleration as 2.5g, so that if the demand is limited to 4.9g maximum 

(Fig. 14), the limits will only be reached for 5% of the time. Under these conditions, therefore, a 5g 

missile is necessary to give an r.m.s, miss distance of 50 feet. 
The appropriate optimum transfer function lies between those listed in Fig. 10a for/x ~ = 4 and 

/~ = 10. Again, the precise optimum can be evaluated from (7.2-31). 
For a 30 ft r.m.s, miss distance, the same procedure shows that a missile capable of 9.2g maximum 

is required--probably a worthwhile improvement. However, a further reduction in miss distance is 
only achieved at the expense of greatly increased acceleration requirements, as is evident from 

Fig. 10b; the benefits of a rather smaller miss distance are outweighed by the adverse factors invoked 

by higher accelerations. 
Figs. 8 to 13 also show the merit of a moderately high weathercock frequency. The improvement 

shown by increasing this frequency from 1 to 10 rad/sec is considerable, but the results for infinite 
frequency (T = 0) are not greatly different from those for 10 rad/sec. Thus, for the target spectral 
density chosen in these examples, the weathercock frequency should be rather more than 10 rad/sec 
--say 2 to 3 c/sec--but there is little advantage to be gained from higher frequencies. 

8. The Adjustable Components of the Optimum System. 

In Section (6.1) it was shown that in order to achieve the optimum system for a given set of 
conditions, the various components of the system must satisfy the equation 

T(p) A(p + cM)S(p + cM) : (6.1-1) 
H°(P) - 1 + T(p) A(p  + c~v~)S(p + c,~) + p~ + 2c~±p" 

In this equation A(p) is fixed {it has been used in the derivation of H0(p)}, but we are at liberty 
to choose either T(p) or S(p) to satisfy (6.1-1). Examples of both are given below for some of the 

operators evaluated in Section 7. 

8.1. The Optimum Tracking System when the Missile Control System is Given. 

8.1.1. The form of the optimum tracker.--The appropriate equation when S(p) is given is 

H°(P) (6.1-2) 
T(p) = A(p  + eM)S(p + c1~ ) _ Ho(p ) 

A(p + cM)S(p + CM) + p2 + 2c~zp 

Since the optimum transfer functions have been evaluated with c3, z = c T = 0, we must make the 
same approximation in the derivation of T(p). (There is of course no difficulty in retaining the 
correct values of c~,~ and c~, but the work becomes rather more laborious.) Thus 

n0(p) (8.1-1) 
T(p) = A(p)S(p) _ Ho(p ) " 

A(p)S(p) + p2 
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As an example, suppose that the missile control system consists of a phase-advance network; this 
type of control system has received much attention, and is one way of stabilising a zero velocity lag 
system. In this case we have 

1 + p~ (8.1-2) 
S(p) = K 1 + np~' 

where K is the stiffness of the missile system, y is the phase-advance time constant, and n a constant 
( < 1). Any other time constant which is present, of necessity or by design, can be included in S(p), 

but for simplicity we shall assume that (8.1-2) gives the main term. 
We have already assumed (Section 7.1.3) that the missile weathercock characteristic is such that 

1 
A(p)  - (1 +p T) ~ ; (7.1-4) 

On substituting for Ho(p) , S(p) and d(p )  {equations (7.2-32), (8.1-2) and (7.1-4)} in (8.1-1), one 
obtains 
T(p)  = (A + Bp + Cp ~) [1<(1 +p~) + p~(1 +pr)~(1 + np~-)] 

p~ [K(1 +p-r) ( C' - C + D'p + E'p ~ + F'p 3 + G'p a +pa) _ (1 +p  T)~(1 + np-r) (A + Bp + Cp~)] 

. . .  ( 8 . 1 4 )  

which is the open-loop transfer function of the optimum tracking system, the constants A, B, C, etc., 

being defined by (7.2-31) and (7.2-32); they are determined by the target acceleration and noise 
spectral densities, and the permissible missile acceleration, as in Section 7. 

Equation (8.1-3) may be written as 

f (P)  (8.1-4) T(p)- 

and the presence of the double pole at the origin indicates that the tracker has no velocity lag. If we 
write a02, aR ~ and aM 2 as the acceleration lags of the overall system, the tracker and the missile 
system respectively, then 

1 A K  1 
- f(O) = K(C' C) A - C' C 1 aR 2 - -  _ _ 

A K 
o r  

1 1 
- -  = ( 8 . 1 - 5 )  
aR 2 a 0  2 - a M 

since aM ~ = 1/K, where K is the stiffness of the missile loop, and 

C ' - C  
a°2 - A (7.2-33) 

Thus, from (8.1-5) ao ~ = aR 2 + aM ~, as required. 
The simplest possible servo system having zero displacemem and velocity lags has the transfer 

function of the form 
kl + k2p 

kl + k2p + p2' 

the open-loop transfer function being 
k 1 + k~p 

p~ • 
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T he  function F(p) (8.1-4) is therefore to be compared with the simple phase advance (k 1 + kzp). 
Neither  (kl+kzp) nor f (p)  are physically realisable in the exact sense: they are both 0(1) in p, 

implying an infinite response for infinite frequency. However,  a network can readily be found 

which has the required characteristics over the bandwidth  of the system, and this is all that  is 

necessary. T h e  realisation of networks such as f (p)  is taken up in Appendix IV. 

8.1.2. A numerical example.---As an example of the derivation of the opt imum tracking 

system, consider the case in which 

k a = 0"5 x 10 -s rad~/rad/sec, 
and 

2 /3 
tFT = ~T2 ~r co 2 +/32, 

with 
CrT2 = 12"5 × 10 -s rad 2 sec -4 

and 
/3 = O" 1 rad/sec,  

as before, the target being intercepted at a range of 100 000 feet. Suppose also that the  missile has 

been modified by feedback so that the weathercock mode is critically damped with a f requency of 

10 rad/sec--i .e.  

1 
A(p) - (1 + 0 .  lp) 2 

The  relevant curves for the opt imum system are those of Fig. 10. As mentioned earlier, it is 

preferable to work just to the right of the knee of Fig. 10b. A suitable operator is that fo r /z  4 = 10 

(Fig. 10a). It  is 

399 + l130p + 1472p ~ 
H°(P) = 399 + l130p + 1603p z + 1374p 3 + 695p 4 + 204p 5 + 24-.7p 6 +p7 (8.1-6) 

for which the r.m.s, demanded and achieved accelerations are 2.80g and 2.4-1g respectively. F ro m  

Fig. 10b, the r.m.s: miss distance is 38 feet. I f  we again take 5% saturation as the allow-able limit, 

Fig. 14 shows that 

2 .80 
fm~x -- 0.51 g = 5"5g, 

SO that a missile with a 5.5g limit would be suitable. For  a 5g missile the saturation would be 7 . 5 %  

(Fig. 14), which is probably still sufficiently small to admit the linear analysis. 

F rom (8.1-6) and (7.2-32), the constants A, B etc. are 

A = 399 D'  = 1374 

B = 1130 E'  = 695 

C = 1472 F '  = 204 (8.1-7) 

C' = 1603 G' = 24.7  

The  opt imum tracking system (8.1-3) now depends on the choice of the missile control system. 

It should be emphasised that, within limits, this choice is arbitrary as far as the realisation of the 
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opt imum system is concerned: different missile control systems merely aker the transfer function of 

the opt imum tracking system, the overall transfer function remaining unchanged. 

S.uppose that the missile control system chosen is 

K(1 

(1 + np ) ' 

as discussed above. The  choice of the constants K, 0- and n is of course also arbitrary; however, it is 

necessary to make the missile response to beam motion reasonably well damped and fairly fast, in 

order to deal with initial transients. The  overall acceleration lag of the selected opt imum system 

(8.1-6) is %2 = 0.33 sec ~, so that 

aR 2 + a:vl ~ = 0" 33 sec ~ . 

Thus  the acceleration lag of the missile system must  not exceed 0.33 sec2--otherwise ai~ z will be 

negative, implying an unstable tracker. This  imposes a lower limit on the missile stiffness K = 1~aM ~. 
A reasonable set of parameters for the missile loop is as follows: 

K = 5 sec -2 (a21~ ~ = 0 .2  sec 2) i.e. a stiffness of 6 .4  ft/g 

T =  0 .65sec ,  
and 

n = 1/20. 

The  values of r and n are such as to give approximately half-critical damping for the response of 

the missile to beam movement.  The  natural f requency of this mode is 

@ K  = 2 .2  rad/sec. 

With these values and those of (8.1-7), the transfer function of the opt imum tracker (8.1-3) 

becomes 
(399 + 1130p + 1472p 2) [5(1 + 0.65/)) + p2(1 + 0. lp)2(1 + 0.0325p)] 

T (p) = p2 [5(1 + 0- 65p) (131 + 1374p + 695p ~ + 204p ~ + 24.7p 4 +p~) - 
- (1 + 0. lp)~(1 + 0. 0325p) (399 + 1130/) + 1472pz)] 

o r  

7.75(1 + 3.98/) + 5.72/) 2 + 3.01p a + 0.87)04 + 0- 18p 5 + 0.013p 6 + 0 • 00025p 7) 
T(p) = 

p~[1 + 23.7p + 24.2/) z + 11.4p z + 2.97p 4 + 0.34p 5 + 0.012p 6] 

The  acceleration lag of this function is a e z = 0- 13 sec 2, i.e. the loop gain of the servo is 7.75 sec -2. 

T h e  amplitude response of the opt imum t racker - - tha t  is, 

V(i ) 
1 + T(ioJ) 

- - i s  plotted in Fig. 15. For  comparison the response of the simple tracker whose forward transfer 

function is 
1 + 23a~p 

(IR ~I) 2 

is also plotted for the same value of ale ~ (0.13 seeS), and for various values of 3, the damping ratio. 

It  will be seen that it is not possible to approximate to the opt imum system by varying the 

parameters of the simple system. In this latter system the undamped natural f requency is given by 

1 
too  = - - 7  

aR 
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but this simple relation does not hold for the opt imum system; in fact the main effect of the function 

f ( p )  is to reduce the noise bandwidth of the tracker without the accompanying increase in acceleration 
lag which occurs in the simple system. In this particular case the noise bandwidth of the opt imum 

system is 

f 
~ T(i~) 2 
o 1 + T( i@ &o = 5 .3 rad / sec ,  

while for the simple system it is 

0 l+2a.=g- n air 4"~ , 

which has a minimum value of zr/a n when 3 = 0.5. With an ~ = 0.13 sec 2 this is 8.8 rad/sec; and 

the resonant frequency is more than an octave above that of the opt imum system. To obtain the 

same resonant frequency it would be necessary to increase the acceleration lag four-fold, resulting 

in a greatly increased miss distance. 
The optimum transfer function T(p)  is such that the closed-loop system is stable, since this 

condition was inserted in the derivation of the opt imum system: the stability is however conditional 

--i .e.  the system is only stable for a limited variation of the loop gain, instability being reached if 

the gain is greater or less than the permissible range of values. This contrasts with the normal kind of 

stability, in which there is only an upper limit to the loop gain, all lower values giving a stable system. 

The  networks of the following Section (8.2) are also of the conditionally stable type, and the 

phenomenon is examined in more detail in that section. 

8.2. The Optimum Missile System for a Given Tracker. 

In the preceding section the opt imum overall transfer function was realised by arbitrarily defining 
the missile control system and deducing the required properties of the ground tracker. As discussed 
in Section 6.2, this procedure is only permissible when the noise arises from linear sources external 

to the system. If  the noise is due wholly or in part to servo noise, the insertion of the optimising 

filter will not have the desired effect, and it is then necessary to provide a correcting network in the 
missile rather than in the tracker, using (6.2-3). A case in which this treatment is required will now 

be considered. 

8.2.1. The transfer function of the optimum missile system.--Suppose that observations 

with a radar set of the type 

1 + 23aRp (8.2-1) T(p)  - aR~p ~ 

have shown that the beam jitter has an r.m.s, value of 1 mil for 3 = 1 and a n = O. 157 sec, with a 

spectral density consistent with the representation of white noise applied at the input to the servo: 

that is, the spectral density of the beam jitter is 

k2 1 + 28ai@o 
1 + 23ani-~ -- an2oJ 2 

The integral of this expression over o~ gives the mean square value: it is 

~B 2. ~ an 

and for cr B = 1 mil, 8 = 1 and a n = 0.157 sec, we have 

k 2 = 4 x 10 -8 rad2/rad/sec. 
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This then is the appropriate value of k z to be used in the derivation of the opt imum transfer 
function. It will also be assumed that the beam jkter  cannot be reduced by varying the parameters 
3 and aR--i.e, it is due to causes which are not affected by these parameters. 

The missile weathercock frequency will again be taken as 10 rad/sec, and for k 2 = 4 x 10 -8 
rad2/rad/sec the appropriate curves are those of Fig. 11. For a 5g missile the relevant operator is that 
for/z 4 = 1 (Fig. l la) :  

44.6 + 189p + 351p 2 
Ho(p) = (0.77+p)(O.58+O.77p+pZ)(lOO+20p+p2)(1+l.41p+pZ) (8.2-2) 

This transfer function gives a miss distance of 93 ft r.m.s., requiring achieved and demanded 

accelerations of 2.33g and 2-56g (Figs. 11b and c). Thus the chance of limiting in a 5g missile is 

5% (Fig. 14). Fig. 11b shows that the miss distance could be substantially reduced by using higher 

accelerations--e.g, a 12g missile would give a miss of 60 ft r.m.s.; however, the 5g missile has been 

chosen with a view to possible flight trials in a test vehicle (the R.T.V.1), which is limited to this 
figure. 

Since the tracking system cannot be modified, the correct overall transfer function must be 
obtained by modifying the missile control system S(p). From (6.2-3) 

Ho(p) [1 + r(p)]p 2 (8.2-3) 
s(p)  = A(p)  I T ( p )  - Ho(p)(1 + T(p))]  ' 

for cl~,z = cr = O. In this case, 

1 
A(p) --, (1 + O. lp) ~ 

and 
T(p) - 1 + 0-314p, 

0- 025p ~ 

since 3 = 1 and a R = 1.57, from (8.2-1). Thus 

S(p) = pZ(1 + O.lp)ZHo(p) 
1 + 314p ' (8.2-4) 

1 + 0-314p + 0.025p ~ - H°(P) 

where Ho(p) is given by (8.2-2). The  combination of (8.2-2) and (8.2-4) yields 

1 (1 + 0. lp)2(1 + 0. 157p)~(1 + 4.23p + 7.87p 2) 
S(p) - 1-04 (1 + 0. 095p) (1 + 0 .  106p) (1 + 10.31p + 2.90pZ) (1 + 0.60p + 0.233p~)" 

The product (1 + 0 .  095p) (1 + 0. 106p) is very nearly (1 + 0. lp) 2, so that we may write 

1 (l+0.314p+O.O25pZ)(l+4.Z3p+7.87p 2) 
S(p) - 1 "04 (1 + 10-31p + 2-90p2) (1 + 0-60p+0.233pZ) " (8.2-5) 

This is the required transfer function of the missile control system, and may be regarded as 
replacing the simple network 

x ( 1  

(1 +npw) 
of the previous example (Section 8.1). 

From (8.2-5), the missile loop acceleration lag a ~  ~ = 1.04 sec z, which is equivalent to a stiffness 
of 33.5 ft/g. This agrees with the fact that the overall acceleration lag is %2 = 1.07 sec z (Fig. l la ,  

/~4 = 1), and we have chosen a2~ ~ as 0. 025 sec ~. Thus most of the lag is in the missile system, resulting 
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in a rather slow response to beam movement. In practice, it would be preferable to allocate the total 
lag more equally between the tracker and the missile systems, but the figures have been chosen to 
give a large beam jitter, so that the system can be tested with the equipment at present available 
for flight trials. 

If, for the same conditions, a missile having a greater limiting acceleration is available, we may 
choose Ho(p) to give a smaller miss distance. The optimum system for /~4 = 50 (Fig. lla),  for 
example, gives a miss distance of 63 ft r.m.s., with achieved and demanded accelerations of 5.04g 
and 6.57g; and a 13g missile would be required for 5°,/0 saturation. For this system the necessary 

missile control function is 
1 ( l + 0 . 3 1 4 p + O . O 2 5 p 2 ) ( l + 3 . 3 4 p + 5 . 0 5 p  2) 

S(p) - O. 491 (1 + 10.63p + 2.64p ~) (1 + O. 33p + O. 078p2) ' (8.2-6) 

with the tracker as in equation (8.2-1). 

In this case aM 2 = 0"491 secZ---a stiffness of 15.8 ft/g. 

8.2.2. Physical realisability.--Equations (8.2-5) and (8.2-6) are of the same form. The 

factor 
(1 + 0. 314p + 0. 025p ~) 
( l + 1 0 . 3 1 p + 2 . 9 0 p  2) 

of (8.2-5), and the corresponding factor of (8.2-6), have two real zeros and two real poles, and can 

be realised by passive networks consisting of capacitances and resistances. The remaining factors 

contain a pair of complex zeros and a pair of complex poles; their realisation requires active networks, 
since the use of inductance is impracticable at the low frequencies involved. The realisation of such 
functions is treated in Appendix IV. 

822.3. Conditional s tabi l i ty . --The equation relating missile acceleration and the beam-to- 
missile error is 

A(D)S(D)  [0 B - 0~±] = D~011~, (3.2-6) 

since we have assumed 61,z = 0. Thus 

A(D) S(D) 
0~± = A(D)S(D) + D 20B'  

so that the transfer function relating beam to missile motion is 

A(p) s(p) 
A(p)s(p) + 

For the example of the previous Section (8.2-1), we have 

1 
A(p) - 

(1 + 0.1p) z' 
and S(p) is given by (8.2-5). 

The open-loop transfer function is {A(p)S(p)}/p ~, and the frequency response of this function is 
shown in Fig. 16. Inspection of this diagram shows that the missile system is conditionally stable, 
in that a decrease as well as an increase in gain leads to instability. The phase margin is 19 °, and the 
gain margins are--9 db and 6 db. Thus to maintain stability the loop gain must not be allowed to 
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fall below its nominal value by more than a factor of 3: it must also not increase by more than a 
factor of 2. These are fairly wide limits, giving a permissible stiffness range of 15 ft/g to 100 if/g, 
as far as stability is concerned. The stiffness must clearly be controlled much more accurately than 
this, if the optimum performance of the system is to be achieved. 

It will be noted from Fig. 16 that the phase margin attains its maximum value at precisely the 
point where it is required--when the loop gain is 0 db; in this way the system is stabilised with the 
minimum increase in noise bandwidth. The Nyquist diagrams of Fig. 17 illustrate the effect of 
stabilising the missile system by a phase-advance network and by the network S(p) of (8.2-5). 

With no stabilising network (Fig. 17a) the missile loop is clearly unstable; the addition of the 
phase-advance network 

1 + p~ 

1 + np7 

gives stability, at the expense of increasing the response to higher frequencies (Fig. 17b). The 

optimum system (Fig. 17c) achieves (conditional) stability by providing a local distortion of Fig. 17a 
in the neighbourhood of the critical point ( - 1, i0), and decreases the response for higher frequencies. 
This may also be seen by comparing the high-frequency response of S(p) and of the network 

K(1 +p~-) 

( l + n p ~ )  " 

The gain of the latter for high frequencies is approximately K/n; for the same stiffness K = 1/1.04 
sec -~, and for stability n is necessarily in the region 1/10 to 1/20. The optimum network, on the 

other hand, has an attenuation of approximately 3 for these frequencies u~,-,F limo~ S(p).] 

8.2.4. The missile response to beam motion.--The response of the missile to a step of the 
beam, with the optimum network of (8.2-5), is shown in Fig. 18. The recovery is rather slow, 
accompanied by a large overshoot: this is a consequence of the rathdr artificial conditions which 
have been chosen to give a large beam jitter with a 5g missile. Normally a larger share of the overall 
acceleration lag would be incorporated in the tracker; alternatively, the missile acceleration could be 
increased without altering the tracker constants, leading to a faster response of the missile--this is 
the case for the network of (8.2-6), for which a 13g missile is required for 5% saturation. 

9. A Comparison of the Optimum System and the Phase-Advance System. 

Having derived the optimum systems for a number of cases, it is useful to estimate whether the 
increased efficiency of the optimised system is sufficient to warrant the inclusion of additional net- 
works. That the optimum system does in fact lead to a considerable improvement may be illustrated 
by comparison with the phase-advance system, which has received extensive theoretical and 
simulator treatment. The system referred to has a missile stabilising network of the form 

K(1 +pT) 

(1 + n p ~ )  ' 

associated with a radar tracker whose open-loop transfer function is 

1 + 2~aRp 
a t~2p 2 
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as in Section 8. It is shown in Ref. 2 that this arrangement achieves its maximum efficiency when 
the various parameters are such that the demand for acceleration frequently exceeds the limits; in 

which case the system is non-linear, and analysis is only possible for simple target motions--such 

as a constant angular acceleration of the line of sight. 
As a specific example, suppose that the following conditions obtain: 

Noise spectral density 

Interception range 

Target manoeuvre 

Missile weathercock response 

k 2 = 0"5 x 10 -s rad2/rad/sec 

100 000 feet 

2g normal to beam 

1 
(1 + O. lp) 2" 

Using the methods of Ref. 2, the parameters K, a~, ~, etc., can be found such that the r.m.s. 
miss distance against the 2g target is a minimum. The results for 5g and 10g missiles are given in 

Table 2. 
The appropriate curves for the comparable optimum system are those of Fig. 10. If the achieved 

acceleration is taken to be 2.5g, the r.m.s, miss distance is 35 ft (Fig. 10b). This gives a demanded 
acceleration of 3g (Fig. 10c), so that for a 5g missile the demand would be on the limits for about 
10% of the time (Fig. 14). These values are of course for the statistical ensemble of target motions 

for which the system is optimised, but since the system is linear its performance against any other 

target is readily deduced. For a target having a constant acceleration offT normal to the beam, the 
mean miss distance is simply fT %2, where %2 is the acceleration lag of the complete system. 

The scatter due to noise alone is given in Fig. 10b together with a0L The r.m.s, achieved and 
demanded accelerations against the 2g target are slightly different from those quoted above, because 

the latter include the acceleration due to the target ensemble motion as well as that due to noise. 

Table 2 compares the results of the two systems. 

TABLE 2 

Comparison of the Optimum and Phase-advance Systems for a Target Accelerating at 2g 

Limiting 
missile 
accn. 

5g 

5g 

10g 

r . m . s .  

demand 
accn. 

(before 
limits) 

3.2g 

8-2g 

lo.gg 

% of 
time on 
limits 

12% 

58% 

37% 

r . m . s .  

achieved 
accn. 

2-7g 

3.2g 

6.Og 

Mean 
miss 
dist. 

19ft 

47 ft 

32 ft 

Dis- 
persion 

22 ff 

20 ft 

21 ft 

r.m.s. 
miss 
dist. 

29 ft 

51 ft 

38 ft 

Accn. 
lag 

(sec2) 

0.3 

0"51 

0.4 

Type of system 

Optimum System 

"] Phase-advance 
(_system with opti- 
[-mum parameters 

J for a 2g target. 

The results for the optimum system have been obtained on the assumption that the 12% saturation 
can be neglected, whereas for the .phase-advance system the effect of saturation has been included. 
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It is evident that the optimum system is considerably better than the phase-advance method, in 
that it results in a smaller miss distance with smaller accelerations; even with a 10g missile the 
phase-advance system gives a greater miss distance than does a 5g missile with the optimum arrange- 
ment, while the r.m.s, acceleration required for the former system is nearly twice as great. It will be 
noted from Table 2 that while the manoeuvre miss distance in the optimum system is simply 
.fT a0 ~, for the phase-advance system it is greater than this quantity: this results from the interaction 
of the limits and noise signals 4. 

It should be emphasised that the optimum system above is an optimum with respect to an 

ensemble of targets having the autocorrelation function 

= e- lxl, 

and not for targets having a constant acceleration; the performance of such a system against the 

constant acceleration target is nevertheless superior to that of the phase-advance system. It is 

possible to derive an optimum operator for the constant-target-acceleration case, but for this it is 

necessary to revert to the integral equation (4.1-9), since the assumptions inherent in the Fourier 
Transform solution of this equation are no longer apposite. 

10. Simulator Tests with Opthnum and Phase-advance Systems. 

10.1. The Optimum System Used in the Simulator. 

In quoting numerical results for a typical system, a number of approximations and simplifications 
have been made. The simplifications have been introduced to ease the labour of computation, while 
the approximations were necessary to render the problem analytically tractable. The extent to which 
such approximations are likely to affect the conclusions reached can be usefully assessed by solving 
particular cases with the aid of a simulator, which can readily provide a closer representation of the 
true situation than is possible within a mathematical framework limited by considerations of 
linearity, etc. The greater flexibility of the simulator is of course offset by the fact that only particular 
cases can be studied: its proper role therefore is to verify and amplify the theoretical work, or, as in 
the present case, to assess the influence of factors which have been neglected or idealised in the 
analysis. 

Although an exhaustive simulator study has not been undertaken, a preliminary examination of a 
particular optimum system has been carried out. The example used in the simulator work is that of 
Section 8.2, where it was assumed that the tracker could not be modified, and that it was therefore 
necessary to place the optimising network in the missile control system. 

The choice of this example was influenced by the facilities at present available for simulator tests 
and flight trials: these reside with the test vehicle R.T.V.1 (limited to 5g), and a radar tracking system 
(the S.C.R. 584) in which the noise level is greater than may be expected with later systems. The 
combination of large noise and low acceleration limits results in a heavily filtered system (cf. the 
response of the missile to a beam step, Fig. 18), and in fairly large miss distances. Although this 
situation is unlikely to arise in an actual weapon--the noise, for example, will certainly be less--it 
nevertheless serves our present purpose, which is to assess the validity of the theory when neglected 
factors are taken into account, and to compare the optimum system with other possible systems. 

The appropriate network for the missile is the S(p) of (8.2-5): 

1 (l+0.314p+O.O25p2)(l+4.23p+7.87p 2) 
S(p) - 1.04 (1 + 10.31p +2.90p2)(1 + 0 .60p+  0.233p2)" 
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The realisation of such a transfer function is given in Appendix IV, and Fig. 23 shows the actual 
circuit used in the simulation. It will be recalled (Section 8.2.3) that this network leads to a con- 
ditionally stable system for the missile loop, with the characteristics given in Figs. 16 and 17. 

10.2 Additional Factors Inchtded in the Simulation. 

The main factors neglected in the analysis but included in the simulator are: 

(a) Non-linearity of the aerodynamics. The simulation of the R.T.V.1 aerodynamics includes 
non-linear effects such as downwash, and since only a moderate degree of rate gyro and accelerometer 
feedback is at present applied, the resulting weathercock mode is only approximately linear; for 

example, the stiffness varies between zero incidence and the incidence necessary for 5g by a factor 
of 1.4. In the theory the stiffness is of course considered constant with incidence. 

(b) The transfer function of the weathercock mode of a fixed-wing vehicle with rear control 
surfaces is of the form 

P(P)/Q(P), 

where both P and Q are quadratic in p. The coefficients of p and p~ in P(p) are negative, because 
of the rear control, and the system behaves as a non-minimum phase network. It is this fact which 
limits the amount of acceleration feedback which can be applied--it is necessary to use an accelero- 
meter displaced from the centre of gravity, or some equivalent arrangement, to avoid instability. 

The coefficients of p and p~ in P(p) are normally small, and they have been discarded in the 
theory (for the examples evaluated), where we have used the representation 

1 
(1 +pT) 2 

for the modified weathercock mode. In the simulator however these terms are present. 

(c) As derived in the analysis, the function S(p) relates the demanded acceleration fD(t) to the 
error from the beam: 

fD(t) = S(D)rM(t)(OB(t ) -- 0M(t)}. (3.2-1 i 

Thus S(p) should properly include the transfer function of the receiver as well as the network 
introduced for control purposes. If this last network is given the transfer function S(p), it implies 

that the receiver is perfect, or nearly so. In the simulator tests the correcting network S(p) was 
introduced in addition to the actual receiver and a simulated control-surface actuator. 

The differences between the simulator arrangement and the theory noted in (b) and (c) arise from 
simplifications introduced to ease calculation, and do not represent limitations of the theory; 
item (a) however is a necessary approximation for the analysis. 

10.3. Results for the Optimum and Phase-Advance Systems. 

Since the R.T.V.1 control system is normally of the phase-advance type, it is convenient to 
compare this system with the optimum arrangement. 

The simulation of the two systems is indicated in Fig. 19. For the optimum system the network 
S(p) (Fig. 23) replaces the phase-advance network of the normal R.T.V.1 system. At first sight the 
optimum network appears more complicated, e but in fact the phase-advance requires additional 

* See footnote on p. 65 to Section 12.2. 
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components apart from the phase-advance network: low-pass filters are necessary to reduce the 
gain for high frequencies--to eliminate the scan frequencies--as well as an amplifier to recover the 
d.c. attenuation produced by the phase-advance network. In the optimum system these additions 
are unnecessary. 

The results of the simulator experiments are summarised in Table 3. 

TABLE 3 

A Simulator Comparison of Optimum and Phase-advance Systems for R. T. V. 1 
Interception range = 100 O00ft) 

System 

Optimum . . . .  
Phase-advance .. 
Optimum . . . .  
Phase-advance .. 



frequencies lie well above that of the correcting network S(p), their effect will be negligible. It must 

be borne in mind however that in our present example the complete missile system is rather sluggish, 

for the reasons given in Section 10.1, so that the response times demanded of receiver and actuator 

are correspondingly less severe. In a more practical situation--e.g, less noise--the optimum stiffness 

is likely to be higher, in which case it may be necessary to take account of these components in 
designing the correcting network. 

11. Condusions. 

11.1. Given certain information about the target and the noise, and the characteristics of the 

missile (its weathercock response and structural strength) we have shown that a practical system 
can be devised for which the r.m.s, miss distance is less than that for any other linear system. In the 
derivation it has been assumed that the target and noise functions 

and 
% 

9N(X) = n Z ON, . (T)Om(T-x)  

are independent of T, the time of strike, over an interval immediately prior to engagement. This 

assumption leads to an optimum transfer function for the system, which may be identified with the 

beam-riding system, since we have shown that the latter can be regarded as linear in the sense 

required for the analysis. This leads to the definition of certain components of the beam-riding 

system for optimum performance--components which, depending on the sources of noise, may be 

associated with either the tracker or the missile, or both. The conditions imposed in the derivation 

of the optimum operator ensure that the components required are physically realisable within the 

framework of a beam-riding system. 

It is interesting to note that with a perfect missile (i.e. no time lags and no acceleration limit), the 
best transfer function of the system is not unity, but of the form 

a + bp + cp 2 

a + bp + c 'p 2 + d'p a' 

and that even with a practical missile the r.m.s, miss distance with the optimum system may be less 

than the r.m.s, error in the beam estimate of the target's position. This is the case for the examples 
discussed in Section 8.2.1. 

In the cases evaluated the optimisation leads to a conditionally stable loop either for the missile 
or for the tracker, depending on where the correcting network is placed: this is a consequence of the 

assumption that the target lateral acceleration is stationary. It has been shown that for a case in 
which the correction is applied in the missile, the range of stiffness over which stability is maintained 
is such that the conditional stability is of academic interest rather than an obstacle to the practical 
design. 

11.2. From the numerical results given in Section 7.3--with the assumptions regarding the 
target motion, noise, etc., of that section--we may draw the following conclusions: 

(a) The optimum system achieves a smaller miss distance, and at the same time requires less 
acceleration, than the comparable phase-advance system. Since the induced drag is proportional to 
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the mean square lateral acceleration, the latter point is of significance, in that for a given performance 
the demand on the missile and on its propulsion unit are less stringent. In Table 2, for example, the 

phase-advance system gives a five-fold increase in induced drag, to achieve an r.m.s, miss distance 
which is 9 feet greater than the optimum system against a '2g target'. 

(b) Figs. 10 to 13 show that when the optimum system is used there exists a fairly well-defined 
achieved acceleration, beyond which the increase in accuracy is more than offset by the increased 

fuel consumption, etc., which the higher accelerations involve. The optimum point depends on the 

targets, the noise, and the overall logistics of the weapon defence system. In Fig. 10, which covers 

the set of conditions likely to be realised (k 2 = 0.5 x 10 .8 rad2/rad/sec, T = 0.1 sec), the optimum 

r.m.s, acceleration appears to be in the region of 3½g, where the  r.m.s, miss distance is 30 feet at a 

range of 100 000 feet. (For the higher noise, the figure is about 41g.) Under these conditions the 

demand for acceleration in a 10g missile would only reach this limit for 5~/o of the time, and it is 
probable that the acceleration limits could be reduced without materially affecting the performance 
(see Section 12.2). 

It is noteworthy that these accelerations are considerably less than those previously deemed 
necessary; and that the results are achieved by a more efficient use of the available information, 
requiring electrical components at a low power level rather than the costly provision of missile 
acceleration greatly in excess of possible target acceleration. 

(c) The modified weathercock frequency of the missile should be in the region of 2 to 3 c/sec; 
lower values react adversely on the miss distance obtained with a given acceleration, while higher 
values provide little improvement. 

(d) The numerical results quoted are all for a particular target spectral density, and this subject 
has not yet been fully investigated; the form used, however, even if shown to be inadequate, leads 

to a system which has a better performance against constant acceleration targets than the phase- 
advance system. The example quoted in (b) above for example would have a miss distance of 30 ft 
r.m.s, against a 3g target at a range of 100 000 feet. 

Although the present theory leads to the best practical linear system, it may be argued that a 

non-linear system may exist which has a better performance. This cannot be denied and the search 
for such a system should continue: meanwhile full use should be made of a system which appears 
to have some advantages over those at present employed. 

12. Further Work. 

It is considered that the preliminary results of the above analysis warrant a further investigation, 
directed along the following lines: 

12.1. Analysis'. 
This would include a more detailed study of possible target motion, with a view to making more 

direct use of preliminary target data--such as height, course and speed--furnished by the radar 
search systems; such specific information eliminates some of the uncertainties regarding the target's 
subsequent behaviour, thus easing the task of the guided weapon. This implies a different optimum 
system for each target, which would be possible if the alterations could be confined to the tracker. 

For a given system, there will be an optimum target spectral density which will render the system 
as ineffective as possible; this should not be overlooked as a probable type of target behaviour. 
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The present paper is concerned mostly with beam-riding. The application of the theory to 
proportional navigation is less tractable, in that it is essentially a variable-coefficient system; it is 

possible that a similar approach would yield an optimum arrangement. 

12.2. Simulation. 
There are a number of problems for which the simulator approach is more expedient than analysis: 

(a) It is necessary to establish the degree of saturation which can be tolerated before the theoretically 
predicted performance becomes markedly optimistic. With a missile of a given structural strength, 

it may be preferable to choose an optimum system for which the saturation level is, say, 25%, rather 

than the optimum for a lower acceleration which is more nearly linear. Reference to Figs. 10 to 13 

shows that the steep rise in miss distance for the smaller accelerations may more than offset the loss 

in accuracy due to saturation. The simulator programme would therefore consist of the evaluation 

of a series of optimum systems for given acceleration limits. 

(b) In the simulation so far attempted (Section 10) the optimum filter has been realised accurately. 

Further tests are necessary to determine to what extent the networks can be simplified without 

sacrifice of performance, and the permissible tolerances on the components, e 

12.3. Flight Trials. 

(a) The facilities at present available are such that the jitter of the radar beam is rather greater 

than may be expected in a weapon system. However, it is possible to design an optimum system for 

these conditions (Section 8.2) and to test its performance in the presence of jitter. If this is in agree- 

ment with the theory, there is no reason to suppose that an optimum system designed for less jitter 

would be less predictable. 

(b) The overall acceleration lag of the optimum system when the jitter level is low (k a = 0.5 x 

10 -s rad2/rad/sec) is rather small (Fig. 10b), and since there is a. limit to the permissible loop gain of 

the tracker, it follows that a stiff missile control system (of up to 5 ft/g) may be necessary. It is not 
essential that the flight trials to test such arrangements be carried out in the presence of jitter: since 
the systems are sensibly linear, a few comparatively simple experiments with stationary and moving 

beams would suffice to give a fairly accurate assessment of the performance of a weapon. 
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A(D) 

ao 2 

a M  2 

a R  2 

c T  

F(D) 

iT 

H(D) 

Ho(D) 

h(t) 

ho(t) 

R 

rT(t) 

S(D) 

S 7, 

T 

T(D) 

LIST OF PRINCIPAL SYMBOLS 

Operator relating demanded and achieved missile lateral accelerations 

Overall acceleration lag of the optimum beam-riding system 

Acceleration lag of the missile system 

Acceleration lag of the ground-radar tracking system 

~;M/rM ! , considered constant 
) I:T/F~7, 

Operator defining 05, the mean square value of which it is desired to limit, in 
terms of 0~: 

OL(t ) = F(D)OM(t ) 

Achieved missile acceleration 

Demanded missile acceleration 

Maximum permissible acceleration which can be demanded of the missile 

Target acceleration perpendicular to the line of sight 

Operator defining the complete beam-riding system 

Optimum operator 

Weighting function of the complete system 

Optimum weighting function 

Range at which interception occurs 

Missile range at time t 

Target range at time t 

Operator relating the missile-to-beam error and the. demanded missile 
acceleration: 

fD(t) = S(D)r~(t) [0B(t ) -- OM(t)] 

Miss distance for the rth attempt 

Time, reckoned from launch, at which interception occurs. A time constant in 
the missile aerodynamic response 

Operator defining the response of the ground radar tracking system: 

OB(t ) = T(D)[0T(t ) + O~,j(t) - OB(t)] 
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OT(t) 

o (t) 

O v(t) 

o (t) 

0.rain 

0.1, 0"2' 

0.L 

0.M 

GT 

1 

LIST OF PRINCIPAL SYMBOLS--cont inued 

Angle which the line of sight to the target makes with a datum line through the 

ground radar set 

Angle which the centre-line of the beam makes with this datum 

Angle which the line of sight to the missile makes with this datum 

'Noise' angle, i.e. the difference between the true angular error (6 2,-  0B) and the 

error as given by the ground radar receiver 

Quantity in the missile system whose mean square value it is desired to restrict 

Additional suffix r refers to the values of O~,(t), O~(t), etc., during the rth attempt 

r.m.s, angular miss distance taken over a large number of attempts: 

1 1 ~ 
- -  ~ S~. 2 

0.2 R 2 n r = l  

Minimum r.m.s, angular miss distance when the optimum operator Ho(D ) is used 

r.m.s, angular miss distances due to the noise and to target manoeuvre respec- 

t ively-i .e .  

(Ylnin 2 = 0-12 + (722 

r.m.s, value of the quantity it is desired to limit--e.g, the demanded missile 

acceleration: 
7~ 

aL~= R~_I X [0cr(T)] ~ 
/~/ r=X 

r.m.s, missile achieved acceleration, divided by the range R 

r.m.s, target acceleration normal to the line of sight, divided by the range R 

Autocorrelation function of the mth derivatives of the target angles: 

1 
CPT('O(X) = n E OTJm)( T)OT/m)( T -  x) 

Autocorrelation function of the ruth derivatives of the noise angles 

1 ~#,,)(x) = -~ Z ONLY)( T)Olv/~)(T- x). 
~'=1 

Autocorrelation function of the target acceleration normal to the line of sight, 
divided by R ~ 

Fourier Transforms of ~om(,z)(x), %v(,n}(x) and ~bT(X), 
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A P P E N D I X  I 

Some Properties o.[ Linear Differential Equations 

1.1. The Weighting Function. 

T he  general nth order linear differential equation may be writ ten as 

d~-lY ~t dnY + a,~_l(t ) + + al(t ) + ao(t)y = f ( t )  (I-1) 
clt----Z ~ . . . .  

where a~_l, . . . . ,  a~(t), ao(t ) a n d f ( t )  are arbitrary functions of time. If  the complementary function 

of this equation is known, the complete solution may readily be found. 

Let  the complementary function be 

Y = q Y l  + c~y~ + . . . .  + cny ~. (I-2) 

In this Yl, Y2, • . . . .  y~ are the n independent  solutions of the homogeneous equation corresponding 

to (I-1), i.e. of 
dn- ly  dy 

d~Y + an_l(t ) d--F~ f + . . . .  + al(t ) ~[ + ao(t)y = 0 (I-3) 
dt ~ 

and q ,  c2, . . . . .  c~ are arbitrary constants which may be determined from the initial conditions of 

the problem. 

Consider 
y = v l y  I + v~y~ + . . . .  + v~y~ ; (I-4) 

where vl ,  v~, . . . . ,  v~ are functions of t. Then  

~) = Vl~ )  1 -~- V2~)) 2 -~- . . . .  -[- "onyn, 
provided that 

~1Yl + ~2Y2 + . . . .  + ~)~y~ = 0 .  
Also 

= v l ~  1 + v 2 y  2 + . . . .  + v ~ y ~ ,  
provided that 

~)1/Pl + ~).,~P2 + . . . .  + ¢ ~  = 0. 

Continuing in this way up to the ( n -  1)th derivative, we have 

provided that 
~)lyl(n-z) + ~)~y2(n-~) + ~).y (n-2) = O. 

Thus  ( n -  1) linear homogeneous relations have been established between e) 1 , v2, • • • . ,  e),~. Also 

y(n) = vlyl(n) + v.zy2(n) + . . . .  + whys(n) + ~)lyl(n-1) + ~)~y~(n-1) + . . . .  + ~nyn(n-1). 

I f  now we substitute y as given by (I-4) in equation (I-1), the condition that y be a solution of (I-1) 

leads to the fur ther  relation 

~)~yl(~-~) + ~2y~(,-~) + . . . .  + V~y~(~-~) = f ( t ) .  
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T h i s  provides  the  n th  relat ion b e t w e e n  the  derivat ives,  and the  sys t em of equat ions  

elYx + %Y2 + . . . .  + ~)~y~ + . . . .  + 75,~y,~ = 0 

~13)1 + ~2~92 + . . . .  + ~5,.9,. + . . . .  + ~,~9,~ = 0 

~)lYl (n-2) + ~)2y2 (n-2) + . . . .  + i ) ryr  (n-2) + . . . .  + ~)nyn (n-~) = 0 

i,~y~(~-~) + ~)2ye(~-~) + . . . .  + ~)ry~(~-~) + . . . .  + ~)~y~('~-l) = f ( t )  

m a y  be solved to give vl  . . . . .  , ~)n. Def ine  

W =  Yl Y~ . . . . . .  Y,~ 

. . . . . . . . . . . . . . . .  . * . . . .  

yl(n-~) y~ (n-2) . . . . . .  yn(n-m 

y l ( n - 1 ) y ~ ( n - l )  . . . . . .  y n ( n - l )  

t hen  
A,~r 

~)r = f ( t )  W '  r = 1 , 2 , .  . . . .  n ,  

whe re  Ant is the  cofactor  of  y,(,~-1) in the  d e t e r m i n a n t  W. H e n c e  

f 'o f (X  ) A,~r(x) vr = d x ,  

y = v ly l  + . . . .  + %y,~ = X vry r 

= X of(x)  ~(x)Y~(t )A.~(x)dx  

f f  1 ya(x) y2(x) . . . . . .  y,~(x) 

. . . . . .  

. . .  , ° o . , °  , ° . .  , ° . . , ,  o . . ~  . °  . . . .  

• . . . . . . . .  , . . . . .  . . . . . . . . .  . • • , , 

yl(t) y~(t) . . . . . .  y~(t) 

( -  1) '~-1 yl ( t )  y2(t) . . . . . .  y~(t) 

dx 

. . . . . . . . . . . . . . . . . . . . . . . .  o ,  . .  ° °  

. . . . . .  

7O 

dx.  



Hence the general solution of equation (I-I)  may be written as 

Y = q Y t + c 2 Y 2 +  . . . .  + % Y ~ +  

; i f ( x )  ( - 1 )  ~-1 y l ( t )  y2(t)  . . . . . .  y~ ( t )  + 
Jo w(~) y&~) y~(~) . . . . . .  y,~(~) 

~ ) I ( X )  y 2 ( J ¢ )  . . . . . .  y n ( , ~ ¢ )  

y~(~-~)(~) y('~-~)(x) . . . . . .  y~(~-~)(~) 

dx, 

(I-5) 

where W ,  termed the Wronskian, is given by 

W(x) = y~(~) y~(~)  . . . . . .  y~(x) 

. Y l ( x )  J ) 2 ( ' ~ )  . . . . . .  y n ( x ~  

y~(~-~)(~) y~(~-~)(~) . . . . . .  y,~(~-~(x) 

yi(n--1)(2) y2(n-1)(X) . . . . . .  ynO~-l)(x).  

(I-6) 

The expression (1-5) is the complete solution of (I-1) since it involves n arbitrary constants. The 

integral term is of course the particular integral. It  has been assumed in writing the integral term in 

(I-5) that the process described by the differential equation (I- l)  starts at time t equal to zero. 

I f  the system starts from rest at t = 0, i.e. if y, 3~ , . . . . ,  y0~-l) are all zero, then q ,  c~, . . . . ,  % are all 

zero and the solution reduces to 

f (_ 1)~-1 
Y=  of(') w(~) 

y~(t)  y~(t)  . . . . . .  y ~ ( t )  

y~(x)  y z ( x )  . . . . . .  y ~ ( x )  

. ° o . . . . , o ° ° . . . , . ° o , , . , . . q . , . .  

. . . . . . . .  , . . . . . . .  o .  . . . . . .  ° o . o . .  

dx. 

(I-7) 

The expression (1-7) may be simplified as follows. Since Yt, Ya . . . . .  , y,~ are separately solutions of 

equation (I-3), we have the following n relations 

yz('~) + a~_~y~(~-~) + . . . . . .  + a i ~  I + aoy  ~ = 0 

y2 (n) + an_lY2 (n-l) + . . . . . .  + a l p  2 + aoy  2 = 0 

o °  ° o . o o  . . . . .  . . o o o  o . . . .  o . . ° .  ° . ° °  ° ° ° °  ° °  o . o °  

yn (hI + a~_lyn (n-ll + . . . . . .  + a~#~ + aoy~ = 0 .  
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F r o m  this set of  n equat ions  we  m a y  el iminate  % ,  az,  . . . . . .  , a,~_~ and this leads to the  s imple  
equa t ion  

d W  
dt 

since 

T h e n  f r o m  (1-8) we  have 

- -  + a~_dt)W = 0 ,  (1-8) 

d W  
dt 

_ yl(t) y2Ct) . . . . . .  y+(t) 

~(t) 2~(t)  . . . . . .  5,dr) 

yl('°(t) y~('~)(t) ' y,,(~')(t). 

W =  W 0 exp ( - f t  an_~(t)dt) ' ( I -9)  

w h e r e  W o is some  constant .  T h u s  ( I -7)  becomes  

(-1)~-l ftof(x)exp (fXG~ l(t)dt) Y -  ;Vo 
yl(t) y2(t) . . . .  y ~ ( t )  

y d ~ )  y & )  . . . .  y & )  

~(x) 2dx) . . . .  2~(x) 

s~(~-~)(~) y~(~-~(~) . . . .  y~(~-~(~) .  

dx.  

( I -10)  

T h i s  is a per fec t ly  general  result ,  and  does not  depend  on the  f o r m  of the  func t ions  %(0, al(t) . . . .  , 
~_~(t). 

N o w  let us suppose  tha t  ao(t), a~(t), . . . . ,  G~_~(t) are all cons t an t s - - i . e ,  the  original equa t ion  ( I - l )  

is n o w  the genera l  n th  order  l inear  differential  equa t ion  w i t h  cons tan t  coefficients. In  this case the  

func t ions  y~(t) . . . . .  y~(t) are all of  the  f o r m  

y~.(t) = exp (%.t) r = 1 ,2 ,  . . . .  , n  

w h e r e  a l ,  " • • " ,  0t~ are roots  of the  character is t ic  equa t ion  

~" + ~,~-1~ ~-1 + . . . .  + ~1~ + ao - ( ~ - % ) ( ~ - % )  . . . .  ( ~ - ~ )  = 0 .  (I-11)  
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We have excluded the possibility of equal roots, but the analysis may be readily extended to include 

this. We note that 

yr(S)(t) = (%)Syr(t), 

and from (I-11) we also have 

% + %  . . . .  + % =  Y, ar = - a ~ _  1. (I-12) 
1 

Thus (1-10) becomes 

- f ( x )  exp - x %. 
W o  o ,, 

hence 

exp (%t) exp (%t) . . . .  exp (%t) 

exp (%x) exp (%x) . . . .  exp (%x) 

%,,-1 exp (%x) o@ -2 exp (%x) . . . .  %,~-2 exp (%x) 

exp {%( t -  x)} exp {%( t -  x)} . . . .  exp { % ( t -  x)} dx. 

1 .  1 . . . .  1 

0~1 ~2 .... ~ 

O~l(n--2) O~ (n--2) .... ~ ('n,--2) 

The constant W 0 is readily found: for from (I-9) and (I-12), 

W o.= W(t) exp t % ; 

Wo = W(O)= 1 1 . . . . . .  

(X 1 O~ 2 ...... 0~?~ 

0617~'--i 0~2 ~-I ...... C~ ~-I 

using equation (I16) which defined W(x). 

(I-13) 

(1-14) 
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Thus  equation (1-13) may be written as 

y = f (x )h ( t -x )dx ,  
0 

=f' 
0 

where 

h(x) f ( t -x )dx ,  

exp (%x) exp (%x) . . . . . .  exp (%x) 

1 1 . . . . . .  1 

O~ 1 O~ 2 ...... C~ 

. . . .  , ,  . . .  . . . . . . .  , ,  ° ,  . . . . . . . . . .  

. . . . . . . .  , , ° °  . , , .  , • . . . . . . . . . . . .  

C ( I  ~ - 2  O ~ 2 ~ - - 2  . . . . . .  0 ~  ~ - 2  

h(x) - ( - 1 )  '~-* 
1 1 . . . . . .  1 

0( I C~ 2 . . . . . .  ~ 

............ ° ................. 

0~1s--i 0(2~--I ...... 0~ ~-I . 

(1-15) 

(4.1-1) 

(I-16) 

The  function h(x) is usually termed the weighting function, 9 and it will be noted from (1-15) that 

y = h ( t )  

is the response of the system if the input, f(x),  is a delta function. 
It should be pointed out that it is only possible to write the response of the system in the form 

f y = f ( x )h ( t -  x)dx, 
o 

if the functions Yl, Y2 . . . . . .  y~ are exponentials, i.e. if the differential equation of which it is the 

solution has constant coefficients. For the general case in which the coefficients are not constants 

it is possible to write {from (I-lO)} 

f y = f(x)h(t, x)dx 
0 

where h(t, x) is given by 

_ 1 ) ~ 1  
h ( t , x ) -  Wo exp( f~a~_l( t )d t )  

This function 
t and x do not necessarily occur only in the combination t - x. 
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For the constant coefficient system (4.1-1) may be written as 

y(t) = h ( x ) f ( t -  x)dx - h(x)f(t  - x)dx, 
0 

and if the system is stable h(t) vanishes for sufficiently large t, so that 

y(t) = h ( x ) f ( t - x ) ,  dx, for t large. (1-17) 
0 

Thus equation (I-17) holds for a stable system if the interval between the application of the input 
and the time t is large enough for the transient effects to have decayed. (I-17) therefore gives the 

steady state response, while (4.1-1) gives the complete solution (assuming that the system starts 

from rest). 

1.2. The Convolution Integral. 

If two systems, designated by weighting functions hl(t ) and h2(t ), are arranged such that the output 
of the first provides the input to the second, the overall response to a unit impulse applied to the 

first will be 

f t  ° h~(x)hl( t -  x)dx , 

from (4.1-1). Thus if the weighting function of the complete system is h(t) we have 

f f h(t) = h~(x)hl( t -  x)d~ = hl(x)h~(t-  ~)~lx. 
0 0 

1.3. Conditions for No Displacement Lag, etc., in Terms of the Weighting Function. 

If a system is to have no displacement lag, the output in response to a constant input must in the 
steady state assume the same constant value. The steady-state response to a unit step input is, 
from" (I-17), 

fo y(t) = h(x)dx, 
0 

so that 

f ~ h ( x ) d x  = 1 ,  
0 

for no displacement lag. 

The response to an input f ( t )  = t is 

y(t) = h(x) ( t -  x)dx = t h(x)dx - xh(x)dx 
0 0 0 

= t -  xh(x)dx,  
0 

and this must equal the input t if there is to be no velocity (or 1st order) lag. Thus 

f ~ h(x)dx = 1 
0 

are the necessary conditions. 

l 
eo 

and xh(x)dx = 0 
0 
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In general, for no lags up to the ith order, an input # must in the steady state yield an output  
t i, so that 

I~  h( t i = x) ( t -  x)~dx 
o 0 

giving 

= t i h ( x ) d x -  . . . .  + ( - 1 )  i xih(x)dx, 
0 0 

f ~o h(x)dx = 1, 
0 

as the conditions for no ith order lag. 

~ co 

and x~h(x)dx = 0, r = 1, 2, . . . . , i  
0 

1.4. The Transfer Function. 

1.4.1. The  general linear differential equation may be writ ten as 

Hl(D)y( t  ) = H~(D)f(t) ,  
o r  

y(t) = H(D) f ( t ) ,  (I-18) 

where f ( t )  is the driving function and y(t) the response, Hi(D), H2(D ) are polynomials in D and 
H(D) = H2(D)/HI(D ). On defining Y(p) ,  F(p) as 

Y ( p ) =  y(t)e-vtdt and F ( p ) =  f(t)e-Ptdt,  
0 0 

i.e. the Laplace Transforms of y(t), f ( t ) ,  we have from (1-18) 

Y ( p )  = 

and H(p) is the transfer function 
inverse transform 

y(t) = 

we have 

y ( t )  = 

H(p) F(p) ,  for f ( t )  = O, t < O, 

relating the Laplace transforms of input and output. From the 

1 ~c+i~o 

1 (o+i~ 
~ i  j ~ _ ~  H(p)F(p)e?tdP' (1-19) 

where c is such that all the poles are to the left of the path of integration. T h i s  ensures that 
y(t) = O,t <O. 

1.4.2. Equation (I-19) gives the general solution for the driving function f ( t ) .  For an input 
8(t), F(p)  = 1, and we have defined the response of the system to a S-function as h(t), the weighting 
function. 

Thus,  from (I-19) 

so that by inversion 

H(p)e~tdp , (1-20) 

f 
cO 

H(p) = h(t)e-ptdt, (I-21) 
o 

i.e. the transfer function is the Laplace Transform of the weighting function. This  applies to stable 
or unstable Systems. 
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1.5. The Frequency-Response Function. 
If the system is stable, the integral 

f ;  h(t) e-i°~tdt 

converges, in which case 

o o  

H(iw) = h(t)e-'~tdt, 
0 

from (1-21). 

The steady-state response to an input sincot is, from (I-17) 

f 
o o  

y(t)  = h(~) sin ~o(t-~)a~ 
0 

1 oo h(x)e_~(t_X)dx] - 2i l f  ; h(x)e'°'('-x)dX - f o 

2i o 2i o 

1 1 
= 2i e~ H(i~o) - 2i e-~°'~H(- i°O' from (I-22) 

(I-22) 

= (AZ+ B2)l&sin (eot + tan-l B)  , where H(ioJ) = A + i B  

= ]/n(i~)[ sin (~ t  + arg n(i~)), 
so that the H(iw) defined by (I-22) is in fact the frequency-response function. 

If the system is stable, the transfer function H(p) will have no poles in the right half of the 
p-plane, so that the path of integration in (1-20) may be taken along the imaginary axis. Thus 

1 f i ~  H(p)e~ldP • k( t) = 2-ffi -io~ 

On changing the variable of integration to ioJ, we have 

h(t) = 2~r H(i°°)d~td°~" (I-23) 
--0o 

1.6. Summary. 

The operator H(D), the transfer function H(p), the weighting function h(t), and (if the system is 
stable) the frequency response function H(ioo) all serve to define a linear system with constant 
coefficients. The solution y(t) for a driving function f ( t)  may be found either as 

1 ~c+io~ 
y(t) = ~ j~_~  H(p)F(p)er~dp 

o r  a s  

y(t) = h( t ) f ( t -  x)dx, 
o 

and 

f 
o o  

H(p)  = h(t)e-~dt .  
0 
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If the system is stable: its steady state response is 

in which case 

c o  

y(t)  = h ( x ) f ( t -  x )dx ,  
0 

H(ico) = h(t)e- iJdt .  
0 

In the derivation of the optimum system and its subsequent realisation, use has been made of all 

these functions. 
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APPENDIX II 

The Solutions of the Integral Equations .for the Optimum Weighting Functions 

I1.1. Introduction. 

The integral equations derived for the optimum weighting functions under various conditions 
can be reduced basically to the form 

f o~ K(x -y )h (y )dy  = f (x) ,  x >1 O, 
0 

where h(y) is the unknown function, and the kernel K ( x - y )  is symmetrical in x and y. Its solution 

has been discussed by several authorsa,4,5; the treatment allows a ready extension to the cases 
involving constraints. 

11.2. The solution of (4.2-5). 

The equation may be written as 

where 

f oo ~o(x-y)ho(y)dy - 9~,(x) = O, x >1 O, (4.2-5) 
0 

=  dx) 

The fact that the equation need only hold for x/> 0 prevents a direct solution by means of a 

Fourier Transform: we may not write 

Ef: 1 e-~Xdx ~o(x-y)ho(y)dy - ~oT(x ) = O, 
--GO 

since this assumes that (4.2-5) holds for all x. I f  the range of x in the integration is restricted to 
x I> 0, however, the equation 

f : e-ioXdx [ f  : ~(x-  y)ho(y)dy - q~T(x)? = O (II-1) 

is valid, but does not lead to a solution except for special forms of ~o(x-y). For, on interchanging 

the order of integration of (II-1), 

f ;  ho(y)dy f ;  ~o(x-y)e-i~dx- f :  
or 

giving 

ho(y)e-¢Wdy V(x)e-i~Xdx _ 
0 - - y  0 

and this is not soluble for a general ~o(x), since the integral 

f o~ 9(x) e-i°'xdx 
- - y  

is a function of y. 
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We may however make use of the Fourier Transform in the following way. Returning to (4.2-5), 

let 

f co cp (x -y )ho (y )dy  - ~oT(x ) = l (x) .  (II-2) 
0 

Then the condition to be fulfilled is l(x) = O, x >10. Now define L(i~o) as 

so that 

Then from (1I-2) and (II-3), 

L(ioJ) = _1 f co l(x)e_~,ozdx ' 
7T __co 

i f [  L(ico)e~o~Xdco 
~(~) = -2 co 

(11-3) 

(11-4) 

L( i~ )  = _1 e_¢o~Xdx ~ ( x _  y)ho(y)dy  _ _1 ~(x)e_~o,xdx.  
77" eo T~" _ c o  

Interchanging the order of integration, 

provided that these integrals exist--i.e, provided that the system is stable. 

Thus 

L(ioJ) = ho(y)e_~,,.dy _1 ~o(x)e_~dx _ _1 ~oT(x)e_~o,~dx" 
0 77 oo 9T co 

On defining (~(io~), q)T(iw) as 

@(io)) : _l ~co q~(x)e_,.,xd x (11-5) 
"/Y , ) _ _ c o  

and 

1 f co 5o,l,(x)e_¢,oxdx ' (II-6) = - -  

%(/~) ~ _ c o  

and noting from (I-22) that 

Ho(ioJ) = ho(y)e-i°~Vdy , 
0 

we have 
L(i~o) = Ho(iw)~(ioJ) - oh,lifo). (1I-7) 

We now deduce the properties of L(i~o) corresponding to the condition that l(x) = O, x >10. The 
function l(x) may be expressed as a contour integral with respect to a complex variable z, of which 

~o is the real part. Thus 

1 co 1 L ( i z ) e ~ d  z -  2 ~ 
l ( ~ )  = ~ -co r ( i ~ ) ~ d ~  = -~ o~ 

where c I is a closed contour consisting of the real axis and the infinite semi-circle in the upper half 
of the z-plane, and c 2 the open contour along the infinite semi-circle. By Jordan's Lemma, the second 

integral vanishes for x > 0, so that 

1 
f L ( i z ) e i~dz ,  x > l ( ~ )  = ~ o~ O. 
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But l(x) = 0, x > 0, so that the contour q encloses no poles. Thus L(im) has no poles in  the upper 
half of the w-plane, m being regarded as complex. 

For a stable system, we also have the condition that Ho(p) has no poles in the right half p-plane, 
so that Ho(im ) has no poles in the lower half w-plane. 

Returning to equation (II-7), let 

~(im) = ~+(im) @-(im), (II-8) 

where ~+(im) has all its poles and zeros in the U.H.P., while those of O-(im) are confined to the 
L.H.P. If, for example 

1 1 1 
O(im) = 1 + m ~ = ( r e + i ) ( m - i ) '  

Using (II-8) and (II-7), 

then 

1 1 
e + ( ~ ) -  - i '  * - ( ~ ) -  m r e + i "  

L ¢9~, 
O -  - H ° ¢ +  ~ -  (II -9)  

(The argument im has been omitted for brevity ) 
Now let 

(I) T 

where (OT/O-)+ has all its poles and zeros in the U.H.P., and (~T/O-)_ in the L.H.P. 
Substituting (II-10) in (II-9), 

L Oi. 

Since L has no poles in the U.H.P., the left-hand side has no poles in the U.H.P., so that 

H0qO+ _ 

has no poles in the U.H.P. But this 

L.H.P. A function which has no poles anywhere must be either a constant or zero, so that 

(II-10) 

quantity has no poles in the L.H.P., since H 0 has no poles in 

(coy) K, 
H o  - + = 

o r  

@T 
H o  = - 6 ;  

Replacing q) by • r + ~ ,  we have finally 

Ho - (qbi.+(ptv)+ K +  
t~  T 
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Ho(ico ) is the frequency response function of the optimum system--i.e. Ho(p) is the optimum 
transfer function; q)T, q)n are the spectral densities of the target and noise angles 0~, and ON, defined 
as the Fourier Transforms of the respective autocorrelation functions: 

a)T N = _1 ~co CpT,~,c(x)e_io~Xdx 

where 
1 n 

and 
1 

~(~ )  = ~ ,.Z o ~ (  r ) O ~ (  r -  x) . 

The constant K is determined by the restrictions imposed on Ho(i~o ). 

The mean square miss distance given by the optimum system is given by (4.2-10): 

am~ 2 = 9T(O) -- 2 9z(x)ho(x)dx + ho(x)dx ~ ( x - y ) h o ( y ) d y .  
0 0 0 

But 

1 q)T(ico)e~O~xdoo = 1 (P2,(ico)e-~&o {since 9r(x )  = cpT ( -x)}  
~(~)  = -~ -co ~ _co 

and 

1 q)(ioj)do)~doJ ' 
~(~) = 2 -o~ 

from (II-5) and (II-6). Thus 

1 @:e&o - 1 ho(x)d x ~ e ~ d ~  ° _ 1 ho(x)d x q~ze_i~dco + 
ami l l 2  = 2 - c o  2 0 -- 2 0 co 

1 ho(x)d x ho(y)dy ~ei~(,_v)&o, 
+~-~ o o -co 

o r  

i f  co lf~ fco i f  co fco O'min 2 = ~ ~T dw -- ~ ~T  de° ho(x)ei~°Xdx -- ~ (I)Td°J ho(x)e-i'OXdx + 
- - c o  - - c o  0 - - co  0 

f ;° 1 co ho(x)d x ~e,~,~&o ho(y)e_,,ovdy" 
+ 2 o  -co o 

On using 

Ho(ico ) = ho(x)e-io'~dx , 
0 

we have 

f fco fco i f  co Ho® 1 co 1 HorbTdoJ _ 1 Ho~T&o + 2 , a~i~ ~ = -~ q~Tdco -- ~ ~ Ho do) 
- - c o  - - co  - - c o  - - co  

where 

H 0 = Ho(-i~o). 
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But 

so that 

O r  

• = qo T + ON, 

f F -  - 1 HoHoOsd~o ~i=2 = -21 -co (1 -H0)(1  -Ho)OTdco + ~ -co 

~ ,~=  = ] 1 - Hol~Ozd~o + [gol~O~d~ 
0 0 

(4.2-11) 

11.3. The Solution of (4.3-11). 

T h e  equation 

f co g(y) [~T(,o(x-y) + ( -  1)~q~N(2~)(x--y)] dy - ( - 1)'~+l~oN(m)(x) = 0, x/> 0 
0 

has the same form as (4.2-5), and the solution may be written down from (4.2-6): 

- 1 [ K + {  S~ 1 G( ) 
(¢T~m' + S1) + ( % ~ 7 +  S l ) - ' + J '  

where 

a(i~) = g(x)e-~dx 
0 

S~(i~o) -- ( -  1) ~ cpN(2~)(x)e-i~dx 
- c o  

and 

Integrating these last two expressions by parts, 

i f  co 
- c o  

and 

s~(i~) = ( -  1)m+~ - 1 ~N(~)e_~dx = ( -  1)~+~(io0"e~v, 
qT --cO 

so that by substitution in (II-11) 

1 I X  + / ! -  1)~+l(ic°)~ON t 
G(io~) = (O~(m) + co2~ON)+ t((Oz(,~) + o~2mqo~)-J +J " 

To obtain the equation for Ho, we have, from (4.3-6) 

ho(X) = g(~)(~), 
so that 

Ho = h o ( ~ ) , - ~ d ~  = g(~)(x)e-~d~ 
0 0 

o r  

(4.3-11) 

(11-11) 

(II-12) 

(II-13) 

(II-14) 

(II-15) 

)1 = (~-l)(x) + i~og(m-Z)(x) + . . .  + (iw)(m-1)g(x + (i~o) rn g(x)e- i~dx ,  
0 0 

H o = 1 + (iaOmG, (II-16) 
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since, from Section 4.3.3, 

g ( m - i ) ( 0 )  = - -  1 

and 
g('~-~-~)(O) = O, 

g(i)(~) = O, 

i = l ,  2 , . . . m - 1  

i = 0 , 1 . . . m .  

Equations (II-15) and (II-16) determine H 0. 
Alternatively, the solution may be obtained in a different form by transforming the left-hand side 

of (4.3-11). Denoting the transform by L(ico), 

L(iw) = _1 e-~*dx [~T(~)(x-y) + (-1)'~%v(2"*>(x-y)] g(y)dy + 
--co 0 

f 
cO 

+ ( -  I) ~ %@~)(x)e-i~dx, 
- - o 0  

o r  

L = GOT(~) + co~GON + ( -  1)~(io~)~ON : 

using (I!-12, 13 and 14). Then  from (II-16) 

L H ° - I  
- (ico)~ [0r(~) + co~ON] + ( -  1)m(io~)'~e N, 

which reduces to 
1 

L = (ico)--- ~ [H0(OT(,0 + coemOg) -- O~(~>] 

N o w  write ico as ico + e, where e is small and positive. Then  

1 
n = (i~ + e) ~ [H°(Oz('~) + (c°2 + e2)mON) -- Or(m)] " 

On dividing through by (e- ico)% 

L ( OT<~) ) OT(m/ 
- Ho + ON 

and the left-hand side has no poles in the U.H.P.  

Writing 
L 

L i - (e_ico)2, 

OT(m) OT(m) 
O i = ( c°~ + e2) ~ + ON, and • 2 = (~o~ + e~)~, 

the equation becomes 

L1 = H o * l -  O~, 

and en comparing this with (I1-7) and its solution (4.2-6), we see that the solution is 

IIK+ { 
H o = ¢ i  + 

(II-17) 
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substituting for cI) 1 and qb 2 and letting e -+ 0, we have finally 

Ho = 1 IK+ J [OT(.,) Ou] + \ ~ -  + 

~02m 

{%~m) ) -  \-L~- + o~¢ + 
(4.3-12) 

11.4. The Solution of(5.1-8). 

The equation may be written as 

f co g(y)  [1 + )~F( - D~)F( - D;)] ~(,~)(x - y)dy + AF( - Dx)Fl(Dx)~(m)(x ) + 
0 

-t- ( - -  1)r%ON(m)(x) = O ,  N ~ O ,  

since for the second term of (5.1-8) D g  = - D x . Denoting the Fourier Transform of the left-hand 

side by L(i~o), we have 

f: L(io~) = _ 1 e-i°~dx g(y)  [1 + AF(-D~)F(-Dv)]q~(m)(x-y)dy  + 
7r oz 0 

2 5 ~  1 f ;  + ~r F ( -  Dz)Fl(Dx)q~(.o(x)e-~dx + - ( -  1) "~ e-i°JXq~N(m)(x)dx. 
--co q7 co 

On interchanging the order of integration, 

L = (1 + hFF)G¢9(,~)+ ~FFlO(m ) + (--iog)mON (II-18) 

Since ho(x ) = g('*)(x), we have H o = 1 + (iw)~a, from (II-16). Also 

(4.3-9) 

so that 

(~N(m) : o 9 2 m ~ N .  

Using these relations in (II-18) yields 

But 

o r  

( H o - 1 )  (1 +AFF)(OT(m)+ ~mON) + AFFI(OT(m)+ m~ON) + (--im)~O~V . r -  (ira) m 

F(D) = DmFI(D), (5.1-6) 

1 
Fl(i~o ) = (i@m F(io) ,  

giving 

o r  

L _ 
1 

(/co) m [(H o -  1) (! + AFF)(O:e(,~)+ o.)2m~N) -{- I~F_F(I~).I,(m)-]- O)2ml~J)N) @ oj2~n(I)N] , 

1 
L - (iw) m [Ho(l+ AFF) (OT(m)+ ~ q ) ~ , )  - q),~,(-,)] (II-19) 
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This equation is similar to (II-17), with 

(1 + AFF)(O.(~)+ o~"~+N) 
replacing 

( OT(m) ÷ ¢02m(~) N) , 

SO that from (4.3-12) the solution of (II-19) is 

H o = ((I)T('~) )+ K 
(1 + ~FF)+ \ ~  + +~,+ 

+ (<DT(m) ) -  . (5.1-9) 
(1 + AF_P)- . ~  + ON 

II.5. The  So lu t ion  o f  (5.3-9). 

The  equation is 

(Dx  2 - 2CTDx)qON(X) + ;~ IF( - Dx)F~(  - Dv)¢(x -Y)]y=o + 

+ g(y)  [1 + F ( - D ~ ) F ( - D y ) ] ¢ ( x - y ) d y  + 
0 

+ g (0) [(1 + A F (  - D x ) F  ( -  Dr )  ) (D~ - 2CT)qo(1)(x--y)]y=o = 0, X 1> 0, 

where we have writ ten 

1 ~ 
~%)(x - y )  = - Y~ D~O~( T -  x)DyO,,( T -  y )  

n~,=l 

= qo~,(1) ÷ TN(1),  

the autocorrelation functions of the first derivatives of target and noise angles respectively. Now 

g(0) [(1 + ~ F (  - D x ) F  ( - Dr))(D x - 2cT)qo(1)(x-Y)]u=o 

= g(0) [1 + AF(  - D ~ ) F ( D , ) ]  ( D  x -  2CT)qo(,)(X ) , 

and 
;~ IF( - Dx)Fz( - D v ) ¢ ( x  -Y)]y=o = AF(  - D x ) F ~ ( D x ) ¢ ( x  ) , 

since D x = - D u.  Thus  the equation becomes 

(Dx~-2c~D~ )~U(~) + ZF(--D~)F~(D=)¢(~) + g(y) [1 ÷ aF(-D~)F(-D~)] ¢(~- y)dy + 
0 

+ g(0)[1 + Z f ( - V ~ ) f ( D ~ ) ] ( D x - 2 c ~ ) ~ O ~ l ) ( ~ )  = O, ~ >10.  

Denoting the Fourier Transform of the left-hand side by L(icO), we have 

L = ico( io~--2@)ON + A P F z T  + (1 + A F F ) G ~  + g ( O ) ( l + A F F ) ( i o ~ - 2 c T ) a g ( ~  ), (II-20) 
where 

= 1 -- ~ o  ~b(x) e-i~°xdx IF 

Now 
ho(x ) = ( D  ~ + 2 @ D ) g ( x ) ,  (5.3-4) 

so that y= 
0 

= - Dg(O) - icog(O) + (i~o)ZG(ico) - 2cTg(0) + 2cTi~oG(io~). 
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For  no displacement lag (D + 2cr)g(0 ) = - 1, giving 

Ho(ioo ) = 1 - iwg(O) + ia~(ko + 2c f )a( iaJ  ) . (11-21) 

Also, f rom (5.3-8), 

G(i~)  = F(io,) 
i~(io, + 2 ~ )  

F r o m  (II-20, 21 and 22) we have 

L = ioJ(io,-2cy)OP N + 
hF_P tt e + (1 + 2tF_P) {H o - 1 + ioog (0)} Re + 

ioo(ioo + 2cT) ia,(i~ + 2c~,) 

(II-22) 

+ g(0) (1 + A F F )  (iw - 2cT)OO(, ) 

w e  can express ~5(v in terms of • as follows: 

~(X -Y)  = ~ Z (D~? - 2c~,D~) (D~ - 2c~,D~)O d T -  x)O~(T-y) 

n 

1 __2 G O ~ ( T -  ~)GO~(T - y )  = ( G  - 2~ )  ( G  - 2~ )  ~ ,,= 

(11-23) 

= (Dx - 2cT) (D v - 2cT)q%)(x-y).  

Thus ,  on t ransforming,  

tF = - (io~ - 2cT) (io~ + 2cT)(I)(l), 
o r  

tF 
(io~ - 2q,) 0(1) 

ioJ + 2c e 

Subst i tu t ing this last relation in (II-23) gives 

(1 + AF_F)HotF 
L = i~o(ico - 2c~)(I) N + 

i~(/~ + 2~)  
But 

Re 

ioo(ico + 2CT) " 

~b(x - y )  = ~bT(x--y) + (Dx 2 - 2cTDx) (Dr2 - 2CTDv)%v(x - - y ) ,  

f rom the d6finition of ~ b ( x - y )  in (5.3-7). T h u s  
: 

Re = ReT + (ioo)2( iw - 2cT) (iaJ + 2cT)(I) N 

(11-24) 

(II-25) 

T h e  combinat ion of (II-24) and (II-25) yields 

L = (1 + )~FP)Ho[Re ~ + w2(oJ~ + 4cT~)ON] -- ReT 
i ~ ( i ~ + 2 c . )  

N o w  write ico + e for i~o, wi th  e positive. T h e n  

L = (1 + , ~ F P ) H o [ W  T + (oJ~ + e 2) (~2 + 4CT~)fi)N] _ tF~" 
(io~ + ~) (io~ + 2cT) 

s7 

(II-26) 



There are two cases to consider, depending on the sign of c T. 

(a) @ > 0. Divide each side of (11-26) by (e-i~o)(2cT-ico).  Then 

L 
(e - ko) (2@ - ioJ) 

'FT O~v) _ W~ 
= ( I + ~ F F ) H o  ( ( W + ~ ) ( W + 4 ~ )  + ( w +  ~) (W+4cT~) '  

and the left-hand side has no poles in the U.H.P. By analogy with (II-7) the solution is 

H .  = 
1 + K J(c°~ + 4cT=) 

( I + ~ F F ) +  ( ~FT qSN) + ( "FT 
~oz(wgT-4c~ z) + (1 + AFP) -  \oj2(coz + 4@~) 

+ }I _ . ( 5 . 3 - 1 0 )  

+ 

(b) c~ < 0. Divide through (11-26) by (e-ko).  Then 

W'T + 
L ( ~ + ~  (~°~ + 4@2)(I)~v) 

(e-ico) - (I + AFF)H° (ico+2@) (co ~ + ez)(ko + 2@)' 

and the solution is 

Ho = 

which reduces to 

Ho = 

1 [ 
~1 +~F,+ (~2~  ÷/~+4c~,°N) + ~+ 

(io~ + 2cT) + 

( ~  + e ~ y ~  + 2cT) 
+ - 7 ~ F G ~ - - - -  - , 

. . . .  \ c o ~ + ¢  " J / 
(1+ A r t ) -  ~/~ ~ ) ~  ) +  

1 K +  ?~ )+ ( ) ( I+AFF)+ ~ff + (co2+4CT2)q)N ( I + A F F ) -  ~W~' + (~oZ+4c;Z)@N - + 
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APPENDIX III  

The Autocorrelation Function of the Target Acceleration Normal  to the Sight Line 

III.1. The Autocorrelation Function in Terms of Probability Densities 

III.1.1. It was suggested in Section 5.3.1 that theacceleration of the targets normal to the line 
of sight might be regarded as forming a stationary ensemble, in the sense defined in the paper. We 
shall suppose that the mean path of the targets are straight lines, or nearly so, and that avoiding 
action is taken by weaving about the mean path in such a way that the actual paths are as un- 
predictable as possible. 

Suppose that the acceleration is changed at random intervals, the duration y of the interval having 

the probability density Py(y), and that the acceleration during one interval is uncorrelated with the 
accelerations outside that interval. We wish to determine the function 

1 n 

= - X f T , . ( T ) f T r ( T - x ) ,  R T ( x )  n , .=l  

where n is the number of engagements, assumed large, and fTr(t) the acceleration of the rth target. 

The chance that T, the t ime of interception, wilI be contained in an interval y is 

yPy(y)dy _ yP,,(y)dy 

f ~yP~(y)dy  Y ' 
o 

where 37 is the mean duration of the intervals. 

The chance that both T and T - x lie wholly within this interval is therefore 

y >  Ixl, 
(III-1) / 

and zero, Y < Ixl. J 
Suppose that the acceleration during each interval is sinusoidal, but that the amplitude, frequency 

and phase are changed from interval to interval. For the rth target, let the interval y which contains 
T start at time T - z,~. Then provided that T, T - x are contained in the same interval y, 

_1 X fT,.( T)fTr( T- -  x) = <S,. z cos (oJ,.zr+%) cos [%.(z~-x) + %.])", 
n r = l  
A 

where S~, o~ and % are the amplitude, frequency and phase during the interval in question, and 
< >r denotes averaging with respect to r. Then 

5% A 

1 ~ fTr (T) fT~ . (T_x  ) <½S~.2{cos [%.(2zr-x ) + 2%] + cos %.x}) r 
I1 ; " = i  

= <cos + 2%] + cos  o x>r 

if the amplitude, frequency and phase are all independent of each other. If moreover the phases are 
random and equally likely, 

<cos [oJ~(2%-x) + 2%] )" = O, 

so that 

<fT~( T) fzr(  T -  x))" - 2 <cos o~>~. (II1-2) 

89 



If  P~(co) denotes the probability distribution of the frequencies, then 

<f~,,.(T)f2,r(T-x)} r = a~, 2 P~(co) cos cox dco, (III-3)  
0 

A 

f rom (III-2),  where a2, 2 = <Sr=}/2, the mean square target acceleration. 

Equation (III-3)  applies when T ( T - x )  are contained in the same interval. If  they are not,  then 

<fTr( r)fT,.( T -  x) } ~ = O, 

since we have assumed zero correlation between accelerations in different intervals. 

T h e  chance that T, T - x lie within the same interval is given in (III-1), so that from (III-1) and 

( i l i -3) ,  

f RT(x) = fTr(T)f '-r~(T-x) = co YPv(y)dy= 1 - ~T 2 Pod(co) cos cox dco, (111-4.) 
' Ixl Y o 

which gives the autocorrelation function of the target accelerations in terms of the probability 

densities of the intervals and of the frequencies. 

111.1.2. Consider now a particular case in which only one frequency is present--coo, say. 

There  is still no correlation outside the same interval because o f  the random amplitude and phases, 

so that (III-4)  holds. T h e n  

and 
Po (co) =  (co- Oo) 

f ® coo) c o s  cox = c o s  co0x .  3(co dco 
0 

From (III-4),  

R T ( x )  = 

For a Poisson distribution of 

c ° s w o x f c o (  
- -  y 

~cr~ Y Ixl 

intervals ,aTe have 

1 -  J~-) Py(y)dy. (111-5) 

and 

so that, from (III-5),  

Finally, if coo = 0, 

Pv(Y) = ~ e-~y , 

j b c o  

y = ~ye-PVdy 1 
o 

RT(x ) = %.2e-Ptxl cos COo x.  (111-6) 

RT(x) = aT~e -plxl, ( III-7)  

and this is the form used for the examples given in the paper. It  will be seen that (III-7)  applies 

to target paths in which the lateral acceleration is held constant for varying periods, the duration of 

the intervals being governed by a Poisson distribution with a mean duration of 1//~. The  amplitude . 

of the acceleration is also a random variable with an r.m.s, value of ~T: the distribution of the 

amplitudes however does not affect the autocorrelation function. In Fig. 6, which shows a typical 

sequence of target accelerations under  these conditions , the amplitude distribution is Gaussian, 

with a Poisson distribution for the intervals. 
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III.1.3. From the definition of ~bT(x ) given in (5.3-2), 

= R (x) 
rT 2 

where a T = c~,/r2, from (III-7). 
The spectral density WT(ioJ ) for this autocorrelation function is 

WT(ico) = _1 aT%_~l~le_~O~dx = cr:v 2 2 fi 
"iT --oo 77. /32 + 0)2 

( 7 . 1 - 1 )  

(7.1-2) 

III.2. A n  Alternative Derivation. 

The target acceleration autocorrelation function may be thought  of as arising from a rather 
different kind of target motion, as follows. Suppose that the acceleration developed by the target fT 
is related to the demand for acceleration fTD by the operator AT(D): 

f~, = Ar (D) fTD,  

i.e. AT(p)  is the transfer function of the target aircraft. Then 

1 f~.(  T -  x)f~r ( T - y )  A~,( - D x ) A f ( -  Dy) 1 fTD~( T -  x ) f T D r ( T - y )  
n r =  1 M r =  

o r  

R T ( x -  y)  = AT( - Dx)AT( - h v ) R T D ( x -  y)  , 
so that 

~F T( ioJ ) = AT( ico ) A z (  - ico ) ~V T ~( i~o ) , 

where WT, qeTh are the spectral densities of the achieved and demanded target accelerations, divided 
by the range r T . If we now assume that 

~FTD(i~o) = kTD ~, 

i.e. that the demand for acceleration is 'white noise' over those frequencies to which the aircraft 
can respond, then 

= 

In particular, if 
/3 

AT(D ) - 
/3 + D '  

i.e. a simple time lag with time constant 1//3, then 

'rT(i ) = + W '  

which is identical with (7.1-2) if 

2 crT2 
kTD 2 = 7 ~ - .  

Thus the spectral density (7.1-2) may be considered as arising from a demand for target accelera- 

tion which is as unpredictable as possible, in that all frequencies to which the aircraft can respond 
are present with equal weight: the demanded and achieved acceleration being related by a simple 
time lag of time constant 1//3, representative of the aircraft characteristics. 
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A P P E N D I X  IV 

On the Realisation of Networks defined by their Transfer Functions 

IV.1. Introduction. 

The process of optimisation leads to a transfer function of the overall system: and we have seen 

that in order to realise the opt imum system within a given framework it is necessary that a given 

section of the system should have a particular transfer function. If, for example, the missile control 

loop of a beam rider is chosen arbitrarily, the tracker must have the transfer function as given in 

(6.1-2); alternatively, an arbitrary choice of the tracking servo system leads to an equation for the 
required missile control system (6.2-3) 

In either case the required transfer function reduces to a ratio of polynomials 

Z(p)  = a° + alp + a2p2 + . . . .  ampm (IV-l) 
bo + blp + b2p ~ + . . . .  b~p ~ ' 

where the coefficients a0, a 1 . . . .  and b0, bl . . . .  are real and positive; and for the realisation of 
the opt imum system it is necessary to produce a network having this transfer function. 

Both the numerator and denominator of Z(p)  may be expressed as the product of quadratic 
factors, together with a linear factor if m or n is odd. Since the coefficients are real, the roots of the 
quadratics are either real or they occur in complex pairs. The linear factors (if any) must of course 
have real roots. 

IV.2. Real Poles and Zeros. 

The realisation of that part of Z(p)  which has real poles and zeros causes little difficulty, in that 
all such transfer functions may be realised by passive networks consisting of capacitances and 

resistances only. A n u m b e r  of well known networks, together with their transfer functions, are 
shown in Fig. 20. The restrictions on the coefficients result from the fact that the component values 
must be positive. 

IV.3. Complex Poles. 

The complex poles (and zeros) of Z(p)  require either inductances or active networks for their 

realisation. The frequency range in the present application precludes the use of inductance, so that 
active circuits with capacitances and resistances only are necessary. 

Consider first the transfer function 
1 

1 + ~p + pp~:' 

where ~ and fl are such that the roots of the denominator are complex. Such a transfer function 
may be obtained by applying feedback to an integrator and a simple time lag; the forward transfer 
function of this combination is 

K 
p(1 + p  T ) '  

so that on applying feedback the overall transfer function is 

K 
p(1 +p T) 1 

K 1 T ' 
1 + p ( l + p T )  1 + ~ p  + f~p~ 
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and since the loop gain K and the time constant T are independent, the roots can be arranged to 
be real or complex. 

A practical circuit for obtaining this type of transfer function is given in Fig. 21a. Its transfer 
function is given by 

eo(p) 1 
el(P) R1 ( R1 R1) 

Roo + T2 l + -fro +-if2, p + T~ T2p 2 

the negative sign arising from the reversing property of the amplifier. 

IV.4. Complex Zeros. 
The circuits so far described suffice to provide the real poles and zeros and the-complex poles of 

Z(p). There remain the complex zeros; it is useful to group each pair of these with a quadratic 
term of the denominator, whose roots may be either real or complex. Suppose for example that the 
expression 

1 + 7P + 3P ~ 
] + ap + tips (IV-2) 

is a factor of Z(p) in which the quadratic in the numerator gives rise to a pair of complex zeros. 
We may write (IV-2) as 

1 rp(1 + 
+ (IV-3) 

l + ~p + 3p 2 l + ~p + 3p ~' 
and the term 

7P 
1 + c~p + tip2 

may be obtained directly from Fig. 21a. For 

so that 
v = - pT2eo, 

v p T~ 
el R1 ( RI R1) 

R~+ T~ l + ~ R o +  ~ p + T i T 2 p  2 

The network of Fig. 21b has the transfer function 

R4 (1 +pC3R3) , 
R8 

so that if the voltage v is applied to such a circuit (Fig. 21c) its output v 1 will be 

so that 

V 1 

e l  

Ra (1 +pC3R~)v, 
Ra 

R 4 
R3 (1 + p T~)p T 2 

R1 ( R 1 R 2 )  ' 
R-- + l + g + p +  T1T p2 
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and by a suitable choice of components this can be made equal to the second term of (IV-3). The 

first term of the latter is obtained at the point B in Fig. 21c, as before. If therefore the voltages at 

A and B are added in suitable proportions, we obtain for the overall transfer function of Fig. 21c: 

R6R~ 
Ra + ~ ( l + p T a ) p T  ~ 

60 R7 

go + x / 1  + + p + r l  °- 
which can be made equivalent to (IV-2). 

Since the coefficients are independent there is no restriction on the poles or zeros--both may be 

real or complex. The circuit however is only useful when the zeros are complex, for if they are real 

they can be more readily obtained by using passive circuits. 

The cathode follower of Fig. 21c is not essential--its absence modifies the coefficients as a result 
of the additional current taken by R a and C a. 

The complex zeros may be realised in a different way by using the circuit of Fig. 21a as the 

feedback element of a further amplifier. If (IV-2) is the required transfer function we first arrange 
the circuit of Fig. 21a to give 

1 

1 + 7P + 8P ~ ; 

if this network is now used as a feedback element for an amplifier with gain G, the transfer function 
of the system will be 

G 1 + yp + 8p ~ 
= G ,  

KG + l + yp + 8p a KG 
1 +  

1 + 7P + 3P ~ 

where K depends on the proportion of feedback. The coefficient of p in the denominator is now 

equal to that ofp in the numerator. To avoid this an additional feedback from the point P of Fig. 21a 

is necessary: this leads to 

G G(1 + YP + 3P ~) 
K~G + K2G p 1 + K~G + (y + K2G)p + 8p ~ 
1 + ,,/p + 8p 2 

1 +  

1 + yp  + 8p ~ 

1 + o¢ + 3p ~ 

Fig. 22 shows the arrangement for j~ < 3; other cases may be obtained by re-arranging the points 

at which the feedbacks are introduced to the amplifiers A 1 and A~. 

IV. 5. An Example. 

A combination of the above circuits allows the realisation of any rational function such as Z(p). 

The factors may be grouped in different ways, but there will usually be one arrangement which 
leads to the most economical circuit. As an example, consider the real isation of the transfer function 

given by (8.2-5): 
1 [1 + 0.314p + 0-025p~ { 1 + 4"23p + 7.87p 2 ~ (8.2-5) 

S(p) - 1-04 \-1 ~- ]~ '~ -p  ~- ~ ] \1 + 0"60p + 0.233p 2] 

This is the optimum missile network for the example Of Section 8.2.1. 
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The first bracket contains a pair of real poles and real zeros, and inspection of the coefficients 
shows that it can be realised by the circuit of Fig. 20d. The second bracket has complex poles and 

zeros, and for this the network of Fig. 21c is required. The combination of these two circuits to 
give S(p)  is shown in Fig. 23, together with the'component values. 

The network is fairly elaborate, e but it can be condensed without materially departing from the 

correct transfer function. The degree to which the actual transfer function may deviate from that 

required by the theory is a matter which remains to be investigated: this is more expediently carried 
out by simulator experiments rather than theoretically. 

e See footnote on p.65 to Section 12.2. 
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FIe. 1. The geometry of the beam-riding 
system in one plane. 

V,~ to 

1"0 

0"8 
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0 " :  0 ' 6  0 " 8  ~ ~o 1.0 1"8 

Fla. 2. An exponential approximation to the missile range. 
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(b) 
Fro.  3a and b. Transfer functions for the beam-riding system. 

e,(:)* o.(:) i e M ~  
(o)  

FIG. 4. Notation for the derivation of the 
opt imum system shbject to a constraint. 

e.,( :)  o.~(~) 
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o . .  (~) 

FIG. 5a. Noise sources in a target tracking system. 
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FIG. 5b. An equivalent representation. 
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