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Foreword (1965). 

The work described in this R. & M. originated in a suggestion made to the first author, in 1959, by Professor 

B. Etkin of Toronto University. In 1957 the slender-delta type of configuration had been adopted in the 
U.K. as the most promising for a supersonic transport aircraft designed to cruise at about M = 2.0, and by 
1959 one or two exploratory studies of the aeroelastic behaviour of such layouts had been made. Professor Etkin 
now suggested a mode of attack on the steady and quasi-steady aeroelastic problems, whereby such an aircraft 
would be regarded as a 'free-free' beam subject only to longitudinal bending, while aerodynamic loadings 
would be calculated in accordance with slender-wing theory. Under such conditions the mode of deformation 
corresponding to a particular steady or quasi-steady state is directly calculable by numerical solution of the 
appropriate differential equation, and the effects of aeroelasticity on the various trim, stability and manoeuvra- 
bility criteria are then readily computed. 

Following this suggestion, the first of the present authors developed the relevant mathematical theory in a 
general form, which permits some freedom of choice as to the method of calculating the aerodynamic loadings. 
Then, in collaboration with the second author, he embarked on a comprehensive programme of numerical 
applications (using a 'Mercury' digital computer) in which the influence of various parameters (planform, 
stiffness and mass distributions, etc.) on the aeroelastic characteristics was to be studied. The sensitivity of 
results to changes in the aerodynamic assumptions was also to be considered. By the end of 1962 a considerable 
volume of computations had been completed for one particular planform. Slender-wing theory had been 
used throughout for the calculation of aerodynamic loading due to elastic camber and the effects of varying 
stiffness and mass distributions had been investigated. At this stage, however, the impending transfer of the 
authors to other duties cast doubt upon the possibility of extending the work any further. Accordingly, the 
report which forms Part I of this R. & M. was written. This describes the method and presents the results 
of the calculations performed up to that time. 

Subsequently, the first author was able to carry the investigation a stage further by repeating the earlier 
calculations, using piston-theory aerodynamics instead of slender-wing theory for the computation of loading 
due to elastic camber. An extension to the theory of Part I, and appropriate modifications to computer pro- 
grammes, made it possible also to calculate the effects of elastic camber on the longitudinal distributions of 

Replaces R.A.E. Reports Nos. Aero. 2684 and Structures 296--A.R.C. 25 763 and 26 192. 



shear force and bending moment. This stage of the work was described in a report which forms Part I I  of 
this R. & M. This includes a recapitulation of the essential steps of the mathematical analysis given in Part I, 
so that although it is complementary to the first Part, it is also sufficiently self-contained to be read indepen- 
dently if, for instance, the reader's main interest is in the effects on shear forces and bending moments. 

The method of these reports was originally conceived at a time when attention was focussed on the 
'completely integrated' slender-wing configuration, rather than on configurations involving a discrete fuselage 
phis a thin slender wing, such as that adopted for the Anglo-French 'Concord' aircraft. Although the 
assumption of 'beam-like' behaviour might have been reasonably valid for the former type of layout, BAC-Sud 
calculations for the 'Concord' have shown that for such an aircraft account must be taken of spanwise 
deformations. 



P A R T  I 

Estimation of the Effect of Longitudinal Elastic Camber on Trim and 

Manoeuvrability of Slender Aircraft 

By A. S. T A Y L O R ,  M.Sc., A.F.R.Ae.S. and W. F. W. E R I C H ,  B.Sc. 

Summary. 

An approximate method of estimating the effect of aeroelasticity on the longitudinal trim and quasi-steady 
manoeuvrability of slender aircraft has been developed. It is assumed that, structurally, the aircraft behaves 
as a 'free-free' beam, subject only to longitudinal bending, and that the total chordwise aerodynamic loading 
(including that due to elastic camber) varies linearly with local angle of attack, and is thus calculable by super- 
position of a number of 'elementary' distributions. It is then possible to set up the differential equation for 
the deflected beam, and by solving it on a digital computer, in conjunction with the equations of overall 
equilibrium, obtain the distributions of elastic camber, the angles of attack of the centreline chord and the 
elevon ai~gles appropriate to the aircraft in trimmed level flight and in the steady pull-up manoeuvre. 

The theory is developed in detail for the cases where the loading due to elastic camber is assumed to be in 
accordance with slender-wing theory and piston theory respectively. The practicability of the method has 
been demonstrated by application (using slender-wing theory) to a possible design for a supersonic (M = 2.2) 
transport aircraft, and from the calculations, some tentative conclusions have been drawn regarding the likely 
order of the effects for such an aircraft. 
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1. Introduction. 

1.]. General Background to the Investigation. 

This report describes the derivation of an approximate method for estimating the effect of 
aeroelasticity on the longitudinal trim and manoeuvrability of slender aircraft. It also presents the 
results obtained from the numerical application of the method to a possible supersonic transport 
aircraft, designed to cruise at M = 2.2. 

Since 1957, when the slender-delta type of configuration was adopted in this country as the 

most promising for such an aircraft, intensive research has been concentrated on various aspects 

of the design problem which it was thought might be strongly influenced by the novelty of this 

layout. One such focus of attention has been in the domain of aeroelasticity, for at the outset, little 

or nothing was known of the potential aeroelastic characteristics of slender configurations. 

At the Royal Aircraft Establishment, several workers, including E. G. Broadbent, W. G. Molyneux, 
A. D. N. Smith and L1. T. Niblett made exploratory studies of the aeroelastic behaviour of such 
configurations. This work included the examination of dynamic stability characteristics, using the 
assumed-mode type of flutter analysis, and also the estimation of the effect of aeroelasticity on 
longitudinal and lateral control effectiveness. At the same time, Zbrozek investigated the effect of 
aeroelasticity on the longitudinal short-period response of a slender aircraft, obtaining both a 
quasi-static solution, and a 'dynamic' solution involving the assumption of a single structural mode, 
namely the first normal mode of longitudinal bending, which he calculated by a method of successive 
approximation. He also made estimates of elevator effectiveness. 

Aeroelastic studies on more specific designs were made by ~. C. A. Baldock of Handley Page Ltd. 
and by R. E. Hodges of Bristol Aircraft Ltd. 

Among the tentative conclusions to be drawn from this unpublished work are the following: 

(i) Classical (coupled-mode type) flutter is unlikely to occur on a strength-designed slender 
supersonic transport aircraft, but flexibility will exert a destabilizing influence on its longitudinal 
short-period mode at cruising Mach numbers. 

(ii) Elevator power* is reduced by flexibility. 

(iii) The reductions in short-period stability and elevator power, noted under (i) and (ii) 
respectively, exert opposing influences on elevator effectiveness, as measured by the incremental 

normal acceleration per unit deflection. With practical configurations, the net effect of flexibility 
at supersonic speeds is likely to be a reduction in elevator effectiveness (i.e. an increase in elevator 
angle per g). 

(iv) Although longitudinal structural modes exert the predominant effects on longitudinal 
stability and control effectiveness, the effect of spanwise structural modes is not entirely negligible. 

(v) The magnitude, if not the nature, of the aeroelasti-c effects under consideration may depend 
rather critically on the delicate balance between the opposing distributions of aerodynamic and 
inertia loading considered in relation to the stiffness distribution. Consequently, the results of 
calculations may vary considerably according to the aerodynamic theory employed. Thus, when 
using slender-body theory, Hodges obtained results quite different from the mutually compatible 
ones obtained with a lifting-surface theory and piston theory. 

* Defined as the pitching moment about the c.g. per unit elevator deflection, with the aircraft restrained at 
the c.g. 



The early work of R.A.E. investigators had necessarily to be based on somewhat crude 
assumptions as to mass and stiffness distributions. The active interest of the present authors in 
these problems began, however, at a time when aircraft firms were beginning to make fairly detailed 

design studies in connection with the supersonic transport project, so that there was opened up 
the possibility {welcome, in view of (v) above} of making an aeroelastic investigation based on 
stiffness and mass distributions rather more realistic than those assumed in the earlier studies. 

Meanwhile, Professor B. Etkin of Toronto University had, while working at the R.A.E., suggested 
a mode of attack on the steady and quasi-steady aeroelastic problems, whereby the aircraft would 
be regarded as a 'free-free' beam subject only to longitudinal bending, while aerodynamic loadings 
would be calculated in accordance with slender-wing theory. Under such conditions the mode of 
deformation corresponding to a particular steady or quasi-steady state is directly calculable by 
numerical solution of the appropriate differential equation, and the effects of aeroelasticity on the 
various trim, stability and manoeuvrability criteria are then readily computed. A. S. Taylor, the 
first of the present authors, pursued this suggestion and by the end of 1960 had elaborated the 

mathematical theory described in Section 2 of this report. 
All the investigations so far mentioned were based on the assumption of attached flow, which 

is implicit in the linear formulae for lift which have been used. In practice, of course, the flow will 
be detached in 'off-design' conditions and the variation of lift with incidence is likely to be 

appreciably non-linear. 
Dr. Hancock of Queen Mary College, London, made somewhat restricted use of non-linear 

aerodynamics, in applying independently a method basically similar to the authors', to the problem 
of trim for uniform flat-plate wings of various planforms 1. His results suggested that the aeroelastic 
characteristics of non-linearly loaded, slender aircraft might differ radically from those of similar, 
linearly loaded aircraft. However, it appears probable that the non-linear formula for lift used by 
Hancock, in common with most of those suggested by other theoretical investigators, tends to 

exaggerate the non-linear effect considerably at the moderate angles of attack which are primarily 
concerned in this kind of investigation. Thus, while the possible importance of non-linear effects 
should certainly be borne in mind in future aeroelastic investigations, it would be premature to 
suggest that the broad conclusions of previous investigations are seriously invalidated by their 

assumption of linear aerodynamics. 
Subsequent studies of the static stability and manoeuvrability of slender aircraft 2"3'4'a led 

Hancock and Milne to question the validity and applicability of the classical Gates and Lyon theory 
(which uses the concept of 'modified derivatives' to deal with flexible aircraft), in relation to 
flexible aircraft of this configuration. Their findings, coupled with the observations of Zbrozek 
and the present authors, concerning the lack of physical significance attaching to 'modified' 
derivatives for a flexible slender aircraft, prompted a reappraisal of the classical theory as applied 

to flexible aircraft in general. 
The difficulties of aeroelastic calculation which are peculiar to the slender integrated configuration, 

stem from the fact that the whole of the structure is concerned in the deformations, whereas in 
dealing with the conventional configurations of the past, it has usually been possible to consider 
only individual components to deform, the remainder of the structure being assumed rigid. Milne 6 
has made an important contribution to the resolution of these difficulties in a report which presents 
an integrated analytical treatment of the equilibrium and stability of the flexible aeroplane in flight. 
The equations of motion for such an aeroplane are developed in as general a manner as possible and 
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the analysis is then applied to a detailed study of the equilibrium and stability of the slender, 
integrated aeroplane configuration. 

1.2. Scope of the Present Investigation. 

In relation to some of the work referred to above, the aims of the present investigation were 
modest and the underlying assumptions somewhat restrictive. Thus the method described ignores 
spanwise deformations and seeks only to determine the effect of longitudinal bending on the trimmed 
shape of the aircraft (including elevon deflection) in steady rectilinear flight and in the quasi-steady 

pull-up manoeuvre. The technique is essentially that of the 'method of modified derivatives', the 
relevant principles of which are, for the benefit of readers unfamiliar with it, outlined in Section 1.3.1. 

As developed herein, our method assumes linear aerodynamics and, as regards the loading due 
to elastic camber, is restricted to either slender-body theory or piston theory. Subject to the linearity 

assumption, however, other contributions to the total aerodynamic loading may be specified in 
accordance with the best available experimental or theoretical data. 

Section 2 of this report gives the mathematical outline of the method, some of the more detailed 
aspects of which are described in Appendix I. Section 3 summarizes the computations required for 
the trim and manoeuvrability analysis of a specific design, while Section 4 gives an account of the 
numerical applications. The practicability of the method and the significance of the numerical 
results are discussed in Section 5, and the overall conclusions, with suggestions for possible future 
work, are given in Section 6. 

1.2.1. Note on the application of the method of modified derivatives.--As already postulated, 
we assume linear aerodynamics. Then, in the general case of the quasi-steady pull-up manoeuvre 
at specified Mach number and altitude, with incremental normal acceleration ng, (which includes 
steady rectilinear flight as the special case with n = 0) the resultant loading (aerodynamic and 
inertial) on the rigid aircraft would be a linear function of n, q (pitching velocity), n (elevon 
deflection), ~0 (the angle of attack of the centre-section chord) and %(~), the chordwise distribution 
of built-in camber relative to the centre-section chord. Of these five parameters, n and q are 
kinematically related; hence, if we assume %(~) is known, then for a specified value of n, only the 
parameters %, ~ remain to be determined in order that the aircraft configuration and the resultant 
loading shall be completely defined. The two parameters in question may be evaluated by 
simultaneous solution of the two equations of overall equilibrium for the aircraft (equations of 
normal forces and of pitching moments about the c.g.). In coefficient form, these equations may be 
expressed as 

- 0C~ aC~ aC~ aC~ (n+ 1 ) (n+ 1)W ~ - - ~  
~pV S 

and 

aC,  oCm oCm (n+ 1) = o 

where Czo and Cmo correspond to the angle of attack distribution %(~)* and where, for the rigid 
aircraft, OCL/On = aCre~an = O. 

. In the detailed mathematical development (Section 2) it will be found convenient to replace (%(~) + %} 
by {~a(~) + ~'o}, where the distribution ~a(~) corresponds to the 'design C•' and ~'0 is the additional angle of 
attack. CLo , Cmo will then correspond to %(~:) rather than %(s~), but the general argument is unaffected. 



When we consider the flexible aircraft, we find that the resultant loading depends on an additional 
parameter, namely the distribution of elastic camber %(~), which introduces additional terms into 

the equations of overall equilibrium, which now effectively contain three unknowns %, ~1 and 
%(~). However, the (differential) equation of aeroelastic equilibrium provides the third simultaneous 
equation necessary for the solution of the problem. By virtue of the linearity assumptions, the 
solution of the differential equation for %(~) is expressible as a sum of terms proportional to %, 
~, q and (n + 1) respectively, together with a term independent of those parameters, which results 
from loading due to %(~). Thus %(~) may be eliminated from the equations of overall equilibrium 

at the expense of introducing additional terms in each equation, proportional to %, ~1, q and (n + 1) 
respectively, together with a fifth term in each case, independent of those parameters. It is thus 
possible to rewrite the equations of overall equilibrium for the flexible aircraft in forms identical 
with those set out above for the rigid aircraft, but the coefficients CLo, Cm0, and the derivatives 
OCL/3%, OCtal0%, etc., will have value~ modified, in comparison with those for the rigid aircraft, 
to take account of the effects of flexibility. In particular, OCL/On and OC,Jan will not be zero for 

the flexible aircraft. 
In application to a 'conventional' (wing+fuselage+tail)  aircraft, the method of modified 

derivatives yields modified derivatives which have some physical significance, but as will be 
discussed later (Section 2.6.1), those calculated for an integrated configuration have no true physical 
significance of their own, and their calculation must be regarded purely as a convenient mathematical 

device for arriving at the solutions for the equilibrium states. 

2. Mathematical Outline of Proposed Method of Estimation. 
2.1. Basic Assumptions. 

We consider the configuration illustrated in Fig. 1, with chordwise distributions of weight and 

bending rigidity denoted by W(~) and B(~) = EI(~) respectively. (See Figs. 2 and 3.) 
All incidences are assumed small, so that ~ ~ ~' and in assessing deformations z~'(~') = l~,'(~') 

relative to 0(~', ~') we approximate to the normal forces by the corresponding lift forces (cos ~ 1, 
drag forces neglected). The neutral axis of the beam representing the aircraft, and the mean camber 

line of the centre section are assumed to coincide. 
We consider the aircraft in steady, manoeuvring flight, (initiated from trimmed level flight at 

speed V and lift coefficient CLt ) with incremental normal acceleration ng. 
The distribution of effective local angle of attack may be expressed as 

~(~) = %(~) + % + %(~) + %(~) (1) 

where 
%(~:) is the distribution of built-in camber relative to the centre-section chord (=  line joining 

nose of aircraft to mid-point of trailing edge), 
~o is the angle of attack of the centre-section chord, 
%(~:) is the effective camber distribution due to the pitching velocity q, 
%(~) is the distribution of elastic camber. 

We have 
= (2) 

where ~ = ql/V is the non-dimensionalised pitching velocity, related to n by 

n - = 2/~ with/z = g ~ ,  (3) 
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f 
l 

W = l W(~)d~ is the total weight of the aircraft, S its gross plan area and p is the air density. 
0 

Since the basic aerodynamic design of an aircraft of the type under consideration is usually realised 
in terms of a 'design CL lift distribution' and a 'lift distribution due to additional angle of attack', 
it is desirable to rewrite (1) in the form 

a(~) = ~a(~) + %' + %(~) + %(~) (4) 

where CCa(~) = %(~) + %a is the angle of attack distribution corresponding to the design CL, and 

0t0 r ~ O~ 0 ~ 0~0d 

%a being the angle of attack of the centreline at the design C L. 

If  ~/is the control deflection, we assume that the aerodynamic lift per unit length at station 
may be expressed as 

L(~) = G(~)  + L,,(~) (5) 

where the respective contributions are due to the a(~) distribution and % On the assumption that 
the local lift varies linearly with local angle of attack, we may express L~(~) for 0 ~< ~ ~< 1 as 

L~(~) = L~a(~ ) + L~0,(# ) + L~(~) + L~¢(~). (6) 

Now L~o,(~), L~q(~) and L~/(~ ) will be proportional to %', ~ and ~/respectively so that from (5) and (6) 
we may write 

L(~) = 91{¢a(~) + %'4o(~) + qG(~) + ~(~) + ~4,,(~)} (7) 

where Q = ½-pV ~ is the kinetic pressure and the ~b(~) are all non-dimensional functions, which 
may in general depend on Mach number.  Within the limits of the linearity assumption we are free 
to prescribe each of the ~(~) by any convenient method, without  necessarily restricting ourselves 
to the same method for all functions in a particular instance. Thus  ~a(~), ~0(~) and ~,/(~) may be 

determined from the most accurate combination of experimental and theoretical data that is 
available, while in general we shall have to fall back on a simple (linearised) theory, such as slender- 
wing or piston theory, for the specification of ~b~(~) and q~(~). We may assume that in accordance 
with such a theory we may write 

~o(~) = 4[%(& ¢} 

Where } is linear in %(~) and its derivatives with respect to ~. 

(8) 

2.2. The Conditions of Overall Equilibrium. 

The  total lift I], and the total moment  about the c.g. l]~ are given by 

? E = l L (~ )d~  
0 

? ? = l~ L ( ~ ) ( ~ -  ~)d~ = £ ~ l  - 12 L(~)~ d~ 
0 0 
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and for overall equilibrium these must be equated to ( n + l ) W  and 0 respectively, where 

f = l W(~)d~ is the total weight of the aircraft. Using (7) and expressing in coefficient form, 
0 

we have, if S denotes gross plan area, 

; 51 
8L  - 9 s  - s ¢~(~)d~ -~ ~o' o ¢o(~)d~ + 0 o ¢~(~)d~ + 

+ ¢o (~ )d~+~  ¢~(~)d~ = Q s  
0 O 

C,~ - QSl  - CL¢ -- ~ ¢a(~)¢d¢ + a°' o ¢°(¢)¢d¢ + 0 o ¢q(¢)¢d¢ + 

f f } + ¢~(~)~d~+~ ¢,,(~)~d~ = 0 
0 0 

(12) 

2.3. The Equation of Aeroelastic Equilibrium. 

The distribution of total chordwise loading per unit length which produces the elastic camber %(~) is 

~¢(~) = L(~) - ( n +  1 )W(~) .  (13) 

It should be noted thatthis distributed loading (0 ~ s e ~ 1) must be self-equilibrating for the aircraft 
as a whole. Employing standard beam theory, we obtain as the differential equation defining the 

deflected shape of the beam: 

d2 { d~  / = _ 185e(~) (14) 
d~ 2 B(~) d~ J 

or substituting for ~(~)  from (13) and (7) and using (8) 

t d~ ~ B(~) d~J + Ql4¢{%(~)' ~} 
= ( n +  1)l~W(~) - Ql~{¢~(~) + ~0'¢0(~) + 0¢~(~) + ~¢,,(~)}- (15) 

2.4. Control Setting and Wing Angle of Attack Distribution for Steady Flight. 

To define completely the aircraft configuration, in a given steady-flight condition, we have to 
determine the three unknown quantities ~0, ~7 and a~(~) from the two equations of overall equilibrium 
(11) and (12), and the differential equation (15), for which we must specify three boundary 
conditions, namely, that the bending moment and shear at the nose should be zero and that there 
should be no relative ~' displacement between the nose and trailing edge. ;* Mathematically, this 

requires 

I d%-] = 0; (16) 
d~ J~=o 

and 

I ~  ( d ~ / ]  = 0; (17a) 

f l ~ ( ~ ) d ~  = O. ( 1 8 )  

0 

* The last requirement follows from the fact that we are considering the distribution of local angle of 
attack to be essentially compounded of an angle of attack ~0 of the centreline chord plus a distribution of 

camber relative to that chord. 
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In view of (16), (17a) reduces to 

[ d~%] = O. (17b) 
d~2Jg=0 

It is readily shown that, if the conditions of overall equilibrium (11) and (12) are satisfied, then the 
additionally necessary conditions, that the bending moment  and shear at the trailing edge should 
vanish, are automatically satisfied. 

2.5. Solution of the Differential Equation. 

2.5.1. GeneraL--The precise manner in which we tackle the solution of (15) will depend 
on the specific form of the function ~{%(~), ~}. We may at once observe, however, that with our 
underlying assumptions of linearity, the equation (15) will be linear, so that we may solve it by 
superposition o f  five elementary solutions corresponding to the five terms on the right-hand side. 
Thus  the solution may be expressed as 

%(~) = (n+ 1) 8%(~) ,8%(,~) 8%!~) 8%(~) (19) 

where O%(E)/Sn, %a(~), 8%(E)/0%', 0%(~)/0~ and 8%(E)/a~ are the solutions of (15) with the 
right-hand side put equal to laW(E), - Ql~d?a(~), - Ql4~o(~), - Ql~q(E) and - Ql~q~,~(~) respectively; 
the assumed boundary conditions in each case are (16), (17b) and (18). e 

We are also able to write 

, 0 a<!E) a<(E) (20) 

In the following section we give the detailed mathematical development for the case where the 
function ~{%(~), ~} is assumed, as it was for the numerical work of the present investigation, to 
be appropriate to slender-wing theory. The corresponding development using piston theory is 
given in Appendix I. 

2.5.2. Solution using slender-wing theory.--If the loading due to elastic camber is assumed 
to be in accordance with slender-wing theory, we have 

L~(E) = 012= [sT~ 2-d- I%(E ) /s(~)t ~] (21a) 
\ l ] dE t sT / 

o r  

= t j 

For convenience and consistency we will assume the loading due to %(~) also to be in accordance 
with slender-wing theory, writing 

L%(e) = Ol2= [>~ 2 d [%(e)Is(E)/~] (22a) 
\ l J  dE t sT ) ] 

or, by virtue of equations (2) and (7) 

q~q(E) = 2rr ~ ( ~ -  ~) • (22b) 
t s T l ]  

Equation (15) has to be solved for 0 ~< E ~< 1 subject to the boundary conditions (16), (17b) 
and (18). 

e For remarks concerning conditions at the trailing edge, see Section 2.6.1. 
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Now if we integrate (15) from the nose (~ = 0) to station ~, using equations (21b) and(22b) and 
the boundary condition (17a) we obtain {provided s(0) = 0} 

B(¢) d~ J + Ql,2rr %(¢) tS:v~ 
= (n+ ~)Z~W(~ :) - Q~%(~:) -  9 z % ' ¢ o ( ~ ) -  

- Qla2rr (~)~ (s~,(s(~)l~ (~ -~ )  0 - Ql%l¢,,(~ ) (23) 

where 

and 
f 

~ 
W(~) = z W(~)d~ (24) 

0 

~(~) = ; :ko(~) = ¢ 0 ( ~ ) d ~ ;  ~,,(~) = ¢ , , (~ )a~ .  (us )  
0 0 

If we divide equation (23) through by B(.~), and write 

~ ( ~ ) -  B ( 0  (26) 

(where Qc is the kinetic pressure in the design cruising condition) so that/?(~) is a non-dimensional 
stiffness parameter, the equation may be expressed as 

{ D~ +A(¢) D +A(¢,  O)}%(f) = (n+ 1)F~(f) + F~(¢, Q) + %'F3(~, Q) + ~F~(¢, Q) + vFs(¢, Q) (27) 

where 

and 

d 
D -  

d~:' 

Q 
fl(~) = B---(~)--d-~-;f2(~, Q) = B~#) Q~ t sT J 

FI(~) B(~)Qj ~, 

Q ¢~(~). 
Q~ B(~) ' 

Q ¢0(~). (29) 
F3(~,  Q)  = - ~ ~(~), 

U4(~, Q) = -f2(~,  Q)(~-~) ;  
Q ~(~) 

Fs(~ ,  Q) = - ~ ~(~). 

Since equation (27) is linear, we may, as already indicated in the previous section, solve it by 
superposition of elementary solutions corresponding to the five terms on the right-hand side, 
writing 

5 

-o(~) = Z %~(~) 
r = l  

0%!~) 0%(~) (19)bis = (n+ 1) a%(se) a%(~:) + 0 - a ~ -  + r / - -  + %a(~) + %' a%--7 a~ 
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where 8c~(~), 8%(~) 0~(~) Oc~(~) are the respective solutions of the equations 
~°~(~)' 0~0' '  0O ' aV 

{D ~ + f~(~)D +f2(s e, Q)}c,~(s e) = F,.(~, Q), (30.r) 

r = l , .  . . . .  5. 

with the forcing functions Fr(~, Q) defined in equations (29). The equations should be solved with 
boundary conditions (16) and (18). The first of these, in conjunction with the boundary condition 
(17a), which has already been used in reducing the third-order equation (15) to the second-order 
equation (23), expresses the fact that the forward end of the beam is free. As discussed in 
Section 2.6.1, however, the solutions when evaluated for ~: = 1 will not correspond to a free rear end. 

2.5.3. A'note on the technique of solving the differential equation by digital computer.--In Our 
numerical applications, the differential equations (30.r) have been solved on the 'Mercury' digital 
computer, using the special facilities provided for step-by-step integration. Application of this 
procedure depends on the knowledge of the starting values (at ~: = 0) of both ~e(~) and d~e(~)/d~, 
whereas the boundary conditions (16) and (18) provide us directly with only the second of these. 
{It may be noted that, in general, ~(0) ~: 0.} This difficulty may be overcome in the following way. 

Suppose ~0(~) is the solution of (30.r) which satisfies boundary, condition (16) and also the 
condition 

~ o ( 0 )  = ~ 1  (31)  

where ~1 may be assigned any convenient value. Let c~'(~) be the solution of the 'complementary' 
equation 

{D 2 +f~(~)D +f2((,  Q)}~,(~) = 0 (32) 

which satisfies (16) and also the condition 

%'(0) = ~2, (33) 

where ~2 is non-zero but otherwise arbitrary. Then the function 

~(~) = ~o(~)  + k~' (~)  (34) 

where k is an undetermined constant, is a solution of (30.r) which satisfies boundary condition (16) 
and is such that 

~o(0) = ~ + h ~ .  (35) 

We require a solution of (30.r) that satisfies (16) and (18). The  function ae(~ ) given by equation (34) 
will be such a solution provided that the constant k is chosen to satisfy the condition 

f l {~,o(~) + k~, ' (~)}d~ = 0, 
0 

f k = - ~eo(~)d ~ ' ( ~ ) d ~ .  
0 0 

i.e. 

(36) 

(37) 
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Thus we have to solve (30.r) with boundary conditions %(0) = s~ and [d%/d~]~= 0 = O, and (32) 
with boundary conditions %(0) = s~, [d%/d~]~= o - O, where sl, s~ may be assigned any convenient 
values (s24=0). If k is then evaluated from (37), the required solution of (30.r), which satisfies 
boundary conditions (16) and (18), will be given by equation (34). In the present application, 
s 1, % have been taken to be 0 and 1°(0 • 01745 radian) respectively. 

The solutions for %0 and %' are readily obtained by the 'Mercury' integration routine since, 
in each case, the initial values of the dependent variable and its first differential coefficient are 
known. 

2.6. Restatement of the Conditions of Overall Equilibrium in Terms of 'Modified' Lift and 
Pitching-Moment Derivatives. 

We may express C L and C~ in the forms 

OCL OCL OCL OCL (n+ 1) ] 
CL = CL° + OSo ~ s°' + ~ ~q + ~ q + T-n- (38) 

C.,,~ = Cmo + -&o ~ %' + ~ .  + T-q ~ + ~ (" + 1) 

where eL0, Cmo' ~ C L / ~ s o  t, - -  ' DCm/&o, etc. are 'modified' coefficients and partial derivatives 
incorporating the effects of elasticity. 

Using (20) and noting that ~-V/QS = C--~t, we may rewrite (11) and (12) as 

; 1 + (~+ 1) ~¢~(¢) d; = (,~+ 1)C~ 
o T  

(39) 
l 2 1 0¢~(7~)i 

T ,  {;2 4 + 
; l + (n+ 1) 0¢~(~) 

o - - ~ n  ~df = 0 .  

From (38) and (39) we obtain the following equations for determining %' and ~7: 

aCL ~CL aCL aCL ( . +  1) ] 

and ) (40) 

~%, %' + ~ -  ~ - C , ~ o - - ~  ~ 
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where the 'modified' coefficients and partial derivatives are given by 

] ] 
0CL l~ 

0% J df  1 

aCL I ~ 
 -CJ 

adL l ~ ] 
J d~l 

a G _ ~ fl 3¢o(f) ,~f 
On S do an 

0c,,, acL z~ a¢~(~)t 

3C~ 0CL l ~ 

oc., acL z~ f* a¢~(~) 
On On ~ - ~ Jo-VZn ~af" 

(41) 

(42) 

(43) 

For any condition of steady manoeuvring flight, with incremental normal acceleration ng, 

initiated from trimmed level flight at lift coefficient CLC , we may deduce the additional angle of 
attack %' and the control deflection ~/ by solution of equations (40), (remembering that 

0 = n C ~ , / 2 f f ) .  

The particular forms assumed by equations (41) to (43) when Cq(f) and ¢~(f) are taken to be in 
accordance with (a) slender-wing theory and (b) piston theory are given in Appendix I {equations 
(64) to (66) and (79) to (81) respectively}. 

2.6.1. A note on the significance of the 'modified' derivatives.--To evaluate CL0 , Cmo 
{equations (41)} and the pairs of partial derivatives {equations (42) and (43)} we have first to 
determine %a(f), 3%(f)/0%', etc. by solving the equation (15) with the right-hand side replaced 
in turn by quantities - QlH?a(f), - Ql4¢0(f), etc. proportional to its individual terms. In so doing, 
we are effectively considering the deflection of the beam under various distributed loadings which 
are not self-equilibrating. Thus if, in a particular case, we solve the differential equation using the 
leading-edge boundary conditions (16) and (17b) (corresponding to a free end), we shall not have 
zero shear and bending moment at the trailing edge and must, in fact, postulate that a force and 
moment be applied there to hold the beam in equilibrium. Now we could equally well (though less 
conveniently for computational purposes) assume the beam to be restrained at any arbitrarily 
chosen point along its length, and thus obtain an infinity of different deflected shapes. It is evident, 
therefore, that Cn0 and C~o and the partial derivatives with respect to the various parameters 
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%', n, etc. are not uniquely definable and that they have no real physical significance in relation to 
the freely flying aircraft. In particular, singularities of behaviour in the partial derivatives will not 
necessarily (or indeed usually) be reflected in singular behaviour of the aircraft• 

These facts do not, however, invalidate the 'modified derivative' approach to the solution for 
the steady equilibrium states of the aircraft, provided that we evaluate all the modified derivatives 
under the same (arbitrary) conditions Of constraint. For when we combine the elementary solutions 
of the differential equation in accordance with equation (19), having set ~ = nCzx/21~, and chosen 
%' and ,1 to satisfy equations (40), we shall once again have the beam subject to a self-equilibrating 
distributed loading, so that the various constraining forces and moments introduced at the trailing 
edge (or other chosen point of restraint) must constitute a null system. Accordingly the final 
solution for %(~) will be (uniquely) appropriate to the 'free-free' condition of the beam. 

2.7. Particular Cases. 

2.7.1. Trimmed level flight.--In trimmed level flight n = ~ = 0. The distribution of 
elastic camber is given by 

, 0%(~) (44) 0%(~) 0%(~) + , 1 , _  
%'g:) = %+g:) + - ~ - ~  + %' o% - - ~  0,7 

where the additional angle of attack Sot', and the control deflection ,it to trim, are the solutions of 
the equations 

o G ,  o G  o G  
a%--~ %l + W  ,1' = c ~ , - G o  ~ -  

(45) 
oG,, acre aC~ 
3%' Sot' + ~ ,it = - C~o an " 

The solutions may be expressed in the form 

% / =  G~B,+ °G(l_K q 
Os o' K~ ] 

where 

and 

CLtH~ 
• • ( 4 6 )  , ,11 = 

+<"1 ; (47) 
K m =  3%'13So''  Kra~ - &q I 3.1 

H t =  K~  1 -  1 CLO + - C,+o + 
cG G. /  G a. / 

J { <I 1 Go+ aniJ c,,+o+-y#/. 

(48) 

2.7.2. Control angle per g in the steady pull-up.--The incremental elastic camber per g 
in the pull-up is given by 

d%(~) 0%(~) 
dn an 

+ 
d%' a%(~:) C~, a%(~:) d,  a%(~:) 
dn aSo ~ + 2~ O~- + dn 3,1 (49) 
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where the increments of root angle of attack and control deflection, d%'/dn and d*l/dn respectively, 
are the solutions of the equations 

ae~d%' aC~aT e~, e~,ac~ ac~ ) 
8%' dn + &l d n -  21~ 8 0 On 

J O C,~, d%' a C~ d~ CLt a C., 0 C m 
0%' dn + &7 d n -  2IX O s 8n " 

'The  solutions may be expressed in the form 

d%' CL~H..~ ~ d v 
dn Oe~ (a _K.~ q dn 

0%' Km } 

(50) 

~J-/m 
- ; ( 5 1 )  

Or 1 K,,J 

where K,n , Krm 1 have been defined in equations (47) and where 

Hm=K,~{I  1 aC L 1 SCLI I'OC~ 1 ~C~ } 
2~ aS ~ t  anJ 2~ a~ C~, an 

H,, =Kin.v{1 1 OCL 1 % t  1 OC,,, 1 aC,,~. 
2> a s gLt an ! 2tz a~ UL~ On 

(52) 

It may be noted that in the manoeuvrability theory for conventional aircraft, K m and H m would 
be identified as the restoring margin and manoeuvre margin respectively, with well-defined physical 
meanings. Here, since they represent partial derivatives relating to unbalanced states of the aircraft, 

these quantities are lacking in precise physical significance; in particular, the behaviour of Hr~ 
will not, in itself, tell us anything about the stability of the aircraft. 

The second of equations (51) may be compared with the formula obtained by Gates and Lyon, 
in R. & M. 2027, for the manoeuvre discriminant &?/dn of a conventional tailed aircraft. Their 

equation (82) effectively gives 

dv CLtH,n 
- ( 5 3 )  

dn VTA ~ 
where VT = V/(1 + F)  is a 'modified' tail volume ratio and A~ the 'modified' slope of the tailplane 
lift curve with respect to elevator angle. It can be shown that - VTA 2 = (OCm/O~/)(1- Km/K,,~, ) so 
that (51) and (53) are consistent. 

2.8. Determination of the Built-in Camber Distribution for a Particular Design. 
The aerodynamic design of a slender-wing aircraft will normally proceed from the specification 

of the load distribution required for optimum performance in the design cruising condition with 
undeflected elevons. From this the aerodynamicist will seek to deduce the required distribution of 
built-in camber, proceeding in the first instance, on the assumption that the aircraft is rigid. 
Strictly, however, the design load distribution should be realised by the deformed (flexible) wing 
in the design cruising condition and it is therefore desirable to check whether the inclusion of 
aeroelastic effects significantly influences the required distribution of camber. 

We use suffix c to denote quantities appropriate to the design cruising condition, for which 
n = S = 0, and for which we assume ~Tt = 0. The angle of attack distribution of the deformed wing 
in this condition is given by 

%(~:) = ~,~(~:) + % ;  + %c(~). (54) 
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The lift distribution {L~o(~)}Q=Q~ corresponding to %(¢) at ~ = Qc must be that specified to give 
opt imum performance. 

Now the distribution of total chordwise loading per unit length which produces the elastic 
camber ~ (~)  is 

~C~¢c(~) : {L~c(se)}O=Oo- W~(~) (55) 

and the differential equation defining the deflected shape in accordance with standard beam 
theory is 

d~ { d%~/ : - la~¢~(s ~) (56) 
d~ ~ B(~) d~ J 

where oW~(~) {unlike ~¢(~) in the general deflection equation (14)} is a completely known function. 
Consequently, using the boundary conditions: 

I = F d~ -]~=0 o %~(~)d~ = 0 (57) 
jj =o = 

we may integrate (56) directly to obtain 

where 

~ec(~) = 0 d ~  0 d ~ l  

d~ f~o~ ~*(~.)d~.' 
/~(~) B(~) 

(58) 

~ e o ( ~ ) .  ~(~:) _ B ( ~ )  (59)  
~eo,(~)- 9 d '  9ol, 

are non-dimensional loading and stiffness distributions. 
When %~(~) has been calculated from equation (58), the required angle of attack distribution 

~a(~) for the undeformed wing at the design C L may be determined from equation (54). Thus 

(60) ~(~) = %(~) - %o' - % M ) .  

The lift distribution for the undeformed wing at the design CL is caleulable from 

{L~a(~)}Q=Qc = {L~c(~ ) - L~o,(~ ) - L,eo(~)}Q=Q~ (61) 

on the assumption that {L~e(~)}Q=Q~ and {L:o,(~)}Q=Qo {= Qolc%'¢0(~)} have been specified at the 
outset and that {L:~(~)}Q=Q~ = Qcl¢=(~) has been calculated by substituting the function eec(~) 
{see equation (8) with %(~) = %c(~)} appropriate to the particular aerodynamic theory employed. 
With {L~a(~)}Q=Q~ = Q~lea(~ ) {see equation (7)} now known, the function Ca(f) can be determined 
for the cruising Mach number. If calculations are to be made for other Mach numbers, ~ba(~ ) may 
have to be modified (depending on the aerodynamic assumptions made in a particular application). 

3. Summary of Computations Required for Trim and Manoeuvrability Analysis of a Specific 
Design. 

The following data are assumed to be given: 

(i) Planform of configuration [l, sT, S, s(~)]. 

(ii) Weight and stiffness distributions, W(~) and B(~). 
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(iii) The kinetic pressure Qo and the required lift distribution {L~c(~)}Q=Qo in the design Cruising 
condition. It is also assumed that the additional angle of attack %c' and the corresponding lift 
distribution {L~oc,(~)}o=oc are specified, so that the function ~'0(~:) in equation (7) is effectively 
defined. 

(iv) The function ~v(~:) defining the lift distribution due to control deflection in equation (7). 

The following computations must be performed for the cruising Math number Mr: 

(i) Calculation of %c(~) from equation (58) and hence {LO~ec(~)}Q=Oc = Q~l(~e~,(~ ). 
(ii) Calculation of {L~a(~)}Q=O~ from equation (61), followed by the determination of the function 

~a(~:) from the relation 
1 

(iii) For a range of values of Q, obtain 

%d(0, and 
On ' 0 % ' '  00 ' O~ 

as solutions of the differential equation (15), with the right-hand side replaced in turn by 13W(~), 
-Ql~(~a(~), -Ql46o(~), -Q144,a(~) and -Qla4,~(~), and subject to the boundary conditions 
prescribed in equations (16), (17b) and (18). 

(iv) Evaluation of CL0 and C~0 from equations (41) and of the partial derivatives of C L and C m 
with respect to %', ~7, ~ and n from equations (42) and (43), for the selected range of values of Q. 

(v) Evaluation of K~ and K ~  {equations (47)}, H t and H~,~ {equations (48)} and H m and Hm~ 
{equations (52)}. 

(vi) Evaluation of the additional angle of attack %/ and control deflection ~t to trim, from 
equations (46). 

(vii) Evaluation of the additional angle of attack and the incremental control deflection per g, 
(d%'/dn and d~/dn respectively) from equations (51). 

If computations are required for Mach numbers other than Me, it may be necessary to modify 
some or all of the functions ~a(~), ~0(~), 4q(~), 4~(~), (depending on the particular aerodynamic 
assumptions associated with each). The operations (iii) to (vii) listed above must then be repeated 
wholly or in part for the other Mach number(s). 

4. Numerical Application of the Method. 
4.1. General. 

The original aims of the numerical work undertaken in connection with this report were 
threefold: 

(i) It was required to assess the practicability of the method, from the purely computational 
point of view, when stiffness and mass distributions typical of actual aircraft are introduced. 
Programmes had to be devised for the performance and checking, by digital computer, of the various 
computations listed in Section 3. 

(ii) Realistic assessments of the aeroelastic effects in question were required for possible layouts 
of the Supersonic Transport Aircraft which were under consideration when the calculations were 
initiated. 
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(iii) It was hoped to derive general information as to the influence of such parameters as planform, 
and weight and stiffness distributions, and to assess the extent to which results are influenced by 
the aerodynamic assumptions. 

At the time relevant to aim (ii), the R.A.E.'s ideas as to possible shapes for the Supersonic 
Transport Aircraft had crystallised around three distinct planforms discussed by Kiichemann and 
Spence in an unpublished Memorandum. It seemed appropriate to make an aircraft with one of 
these planforms the subject of the pilot calculations needed to achieve aim (i), since the same 
calculations would partially achieve aim (ii). Subsequent repetition of the calculations for aircraft 
having the other two planforms, and additional computations in each case, made with modified 

stiffness and/or mass distributions, and possibly with alternative aerodynamic assumptions, would 

complete the second task and go a considerable way towards the completion of the third. 

The planform selected for the pilot calculations had been the subject of a detailed project study 

by J. F. Holford, which yielded a realistic mass distribution for an aircraft of this layout. A fairly 

extensive set of calculations has been completed for such an aircraft. This included calculations for 
various stiffness and mass distributions, but the effect of changing the aerodynamic assumptions 
was not investigated, slender-wing theory being used in all cases to estimate the lift distributions 
due to elastic camber and to induced camber due to pitching. 

A number of unexpected and puzzling difficulties were encountered in the course of the 
computations and although these have now been resolved, the process has been so time-consuming 
that it has not been possible, so far, to tackle the other items of the programme. 

4.2. Data for the Selected Aircraft. 

4.2.1. Geometrical data.--The selected aircraft embodies what is essentially a delta wing 
with rounded (streamwise) tips and a discrete body, protruding a relatively small distance ahead 
of the wing apex ~. The planform is illustrated, roughly to scale, in Fig. 1 and the leading particulars 
are: 

Overall length: 

Semi-span at trailing edge: 

Ratio: semi-span/length: 

Body overhang/overall length: 

Planform shape: 

For 

l = 168 ft 

s T = 42f t  

sT/l = 0.25 

lB/l = ~B = 0-328. 

\ 
0 4  ~:~<0"328, - ' ° '  = 0 . 6 8 ~ - 1 . 7 ~  a+0 .476~4;  | 

ST 
For (62) 

0.328 ~< ~ <  l t ,  ~¢--) = 1 . 1 ( 1 . 2 6 s a - 0 . 2 6 ) - 0 . 1 ( 1 . 2 6 ~ : - 0 . 2 6 )  n .  
ST 

* In contrast, one of the other configurations incorporated a much longer nose, while the third consisted 
of an ogee wing with no discrete body. 

]" Referred to the wing apex, the wing planform is defined by 

s(~w)/s T = 1-1 ~ w -  0.1 ~wn; 0~< ~w ~<1. 
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Gross plan area: 

Planform shape parameter: 

Aspect ratio: 

f 
l 

S = 2l s(~)d~ = 6376 ft ~. 
0 

S 
p -  2lsT 0" 452. 

A - 4 s : v 2  - 1 • 107. 
S 

4.2.2. Weight distributions.--A detailed estimate of the weight distribution in the 'all-up' 
condition (take-off with full fuel- and pay-loads) was provided by J. F. Holford. This was 
approximated by Curve X of Fig. 2, which is composed o f  the minimum number of straight-line 
segments, consistentwith preserving the essential features of the actual distribution ~. 

Some aeroelastic calculations were made with the weight distribution 'X', but it was considered 
appropriate to make the bulk of the aeroelastic calculations for a 'middle of the cruise' condition, 
with half of the fuel used; the corresponding weight distribution is shown as Curve Y in Fig. 2. 
In normal operation, fuel is consumed in such a way as to leave the c.g. position undisturbed, and 
accordingly the c.g.'s corresponding to Curves X and Y are practically coincident. To examine 
the effect of a shift of c.g., some calculations have been made using the weight distribution shown 
by Curve Z in Fig. 2, which corresponds to a condition (not occurring in normal operation) where 
all fuel ahead of the c.g. has been used, but the rear tanks remain full. The total weight in this case 

is approximately the same as for Case Y. The actual weights and c.g. positions for the three cases 

are tabulated below. 

Distribution Curve 
in Fig. 2 

X 

Y 

Z 

Total weight 
(lb) 

350 9 2 8  

271 111 

277 804 

c.g. position 

0.650 

0.6475 

0. 6742 

4.2.3. Structural data and assumptions.--For the purposes of this investigation the aircraft 
was idealised as a beam of varying cross-section, subjected to distributed transverse loading, which 
produced bending in planes parallel to the vertical plane of symmetry, but no spanwise deformations. 
Accordingly the only structural data to be specified was the distribution of bending rigidity 
B(~) = EI(~) along the representative beam. 

No detailed structural analysis had been made for the layout under consideration, but a simple 
approximate method of deducing the required stiffness distribution, given the mass distribution, 
was suggested by G. E. Smith (R.A.E.). This was based on the assumption that overall strength 

e It should be remembered that the deformation of the aircraft is produced by the generally small and self- 
equilibrating distribution of loading resulting from the combination of the (large) aerodynamic and weight 
loading distributions. Accordingly, in assessing aeroelastic effects for a specific design, it may be important 
to ensure that 'peaks' in the weight distribution, due to local concentrations of mass, such as engines, are 
accurately represented. 
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requirements would be dictated by the dynamic loading imposed in a heavy landing at maximum 
weight. On the further assumption that the landing wheels would be situated at the c.g., this 
implied that the maximum bending rigidity would be required at the section through the c.g., 
while typical calculations indicated a steep fall-off in sectional rigidity on either side of this section. 
When applied to some S.T.A. layouts of Bristol Aircraft Limited and Handley Page Limited, 

which had been the subject of more detailed structural analysis, this procedure was seen to provide 
a good approximation to the required rigidity in the vicinity of the c.g., but to underestimate it 

for sections far removed from the c.g. This, of course, was due to the fact that the heavy landing 
case was critical only for the part of the structure near the c.g. and that elsewhere, various other 

stressing cases dictated the required strength (and hence stiffness). Thus Smith's method does no 

more than define the maximum sectional rigidity (which is required at or near the c.g.) and a curve 

representing a lower bound to the rigidity required elsewhere• 
This lower bound to sectional rigidity was computed for the present layout and its form 

compared with the more accurate distributions for Bristol and Handley Page layouts referred to 

above• On this basis it was possible to suggest, for the present investigation, a mathematically 
simple but plausible generalized stiffness distribution, depending on two parameters, as indicated 

in the sketch: 

0.01 B~ k 

!=0 

0.25 B 2 

The maximum sectional rigidity B m and the station ~ = ~,~ at which it occurs are kept fixed. The 
distribution is then determined by specifying the rigidities B1, B~, respectively, at two other fixed 
stations ~ = ~1, ~ = ~2, and taking the rigidities at ~ = 0 and ~ = 1 to be fixed proportions (0.01 
and 0.25) of B 1 and B~ respectively. Thus the forward 'half' of the distribution is determined by 
the value of the parameter B1/Bm, and the rear 'half' by the value of B~/Bm; a variety o5 stiffness 
distributions can thus be examined by assuming different combinations of values of the two 

parameters. 
In the present work, three values of each parameter were considered: 

B 1 1 1 5 
B m 4 ' 3 ' 1 2 '  

B~ 2 4 2 
B,~ 15 ' !5 ' 5 ' 
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while ~1, ~m and ~ were taken as 0.4045, 0.6824 and 0.8015 respectively e. The corresponding 
distributions are illustrated in Fig. 3, which also shows the 'lower bound' curve determined by 
Smith's method. 

It is thought that the distribution corresponding to B1/B m = 1/3, B~/B,~ = 4/15 probably 
approximates most closely to that which would actually be required for' our layout and this has 
been adopted as a datum, (subsequently termed the 'basic stiffness distribution') to which other 
distributions are referred. 

4.2.4. Aerodynamic data and assumptions.--For the purposes of this investigation the 
design cruising condition is specified as: 

Mach number M = 2.2, at height 63 600 feet, with weight W = 271 111 lb and c.g. position 
= 0. 6475. 

Other related data for this condition are: 

Lift coefficient: CLc = 0.1 

Kinetic pressure: Qc = 425.3 lb/ft ~. 

The optimum longitudinal load distribution for this condition (denoted by {L~c(~)}o=oc in our 
notation) was worked out by J. H. B. Smith of R.A.E., and is presented non-dimensionally in 

Fig. 4a. It was compounded of two contributions--one corresponding to the design C 5 of 0.05 
and the other to the additional angle of attack (%c') required to produce the overall C L of 0.1 in 

the cruise. This second contribution (which is {Laoc,(~)}Q=Qc in our notation) is shown non- 
dimensionally in Fig. 4b. 

On the assumption that dCL/d %' = 0-025 per degree for M = 2.2, c%' was estimated to be 
2 degrees and thus it was possible to derive the function ~0(~) of equation (7); this is shown in 
Fig. 5. Of the remaining four non-dimensional lift distribution functions defined by equation (7), 
~a(~) had to be determined by the procedure described in Section 2.8, and is shown in Fig. 6, 
while for all the calculations covered by this report, ~q(~) and ~6e(~) were assumed to be in accordance 
with slender-wing theory. Consequently the detailed mathematical analysis of the aeroelastic 
effects followed the lines of Sections 2.5.2 and 2.6 of the main text and Section A1.2 of Appendix I. 
In seeking to specify the remaining function ~v(~), (defining the loading due to control deflection) 
so as to be reasonably representative of practicable control-surface layouts we have made 
calculations employing linearized supersonic theory and compared the results with experimental 
data obtained by Bristol Aircraft Limited in connection with one of their S.T.A. project studies. 
As a result, we have defined q6,j(~) for this investigation, (which has been restricted to supersonic 
Mach numbers) by 

qS,,,(s ~) = O; 0 ~< ~: ~< 0.92 

1 
qSv(s e) - ;0 .92  ~< s e < 1. (63) 

~/(M~- 1) 
This represents roughly the distribution one would expect to derive from the wing-tip elevons 
illustrated in Fig. 1, with E = 0.08 and sJs T = 0.5. 

* This apparently odd choice of values for ~1, ~:v* and ~z is explained by the fact that the analysis was 
originally referred to an origin at the wing apex, with the wing root chord taken as reference length. In this 
system ~1, ~m and ~ had the values 0.25, 0.6 and 0"75. 
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4.3. Calculations Performed. 
The procedure of Section 2.8 was first applied to determine the distribution of elastic camber 

%~(~) in the design cruising condition defined in Section 4.2.4, assuming the 'basic stiffness 
distribution' specified at the end of Section 4.2.3. [The configuration of the aircraft in which the 
weight distribution of the design cruising condition (Curve Y in Fig. 2) is combined with the 

basic stiffness distribution will henceforth be referred to as the 'standard configuration'.] The 
calculated distribution ~e~(~) is shown in Fig. 7 and, as already mentioned in Section 4.2.4, 
the function ¢~(~) to which the subsequent analysis of Section 2.8 leads, is shown in Fig. 6. 

The remaining calculations covered by this report have all been made for a Mach number of 

2.2, as being relevant to the constant Mach number, 'cruise-climb' phase of the flight plan envisaged 
for a supersonic transport aircraft. A range of values of kinetic pressure Q, corresponding to flight 
at M = 2.2 at various altitudes, has been considered. A plot of Q against altitude is given in Fig. 8, 
which also shows the variation of trimmed lift coefficient C-Lt and aircraft relative density/z with 

altitude, for the standard configuration% 
The calculations fell into two sets. In the first, the weight  distribution was kept fixed, (as 

Distribution Y of Fig. 2) while the seven different stiffness distributions tabulated on page 26 

were considered. 
As originally defined, distributions 6 and 7 exhibited discontinuities at ~ = ~.  However, when 

applied with such distributions, the 'Mercury' programmes then in use, yielded incorrect (non- 
checking) results and since, at the time, the reasons for this were not understood, the modified 

distributions defined above were substituted. (See Discussion: Section 5.1.) 
The second set of calculations was designed to illustrate the effects of total weight and c.g. 

position. The three weight distributions shown in Fig. 2 were considered in conjunction with the 

basic stiffness distribution. 
For each configuration considered in the two sets, calculations were made for ~/Qc = O. 5, 1. O, 

1.5, 2.0 and 2.5. Although, as indicated in Section 2.6.1, the deformations and associated 
'modified' derivatives, corresponding to changes in individual parameters, have no physical 
significance, it has been thought worthwhile to present, for the standard configuration, a complete 
set of results to illustrate the sequence of calculations which leads to the physically meaningful 
quantities, %t(~) (or za(~)}, a0/, % and d%(~)/dn (or dze(~)/dn ), d%'/dn, d~?/dn. Such results are 
given in Figs. 9 to 14. For the remaining configurations only the overall results are presented. 

(See Figs. 15 to 24.) 

5. Discussion. 
5.1. Some Observations on the Practical Working of the Method. 

The complete sequence of computations listed in Section 3 was programmed for the 'Mercury' 
digital computer. The empirically defined lift function ¢0(~) was fitted by a polynomial as was the 
function Cd(~), determined from the first two operations of the sequence. 

The main programme was concerned with the solution of the differential equations (30.r) and 
the processing of the resulting {%(~)}r distributions, in accordance with equations (64) to (66) 

* It should be remarked that in the normal operation of such an aircraft, the cruise-climb would commence 
with a weight considerably in excess of that applying to the standard configuration, and would terminate 
with a weight much lower than that. Thus, for aeroelastic calculations to be strictly applicable to the cruise 
climb, we should have to vary the weight distribution (and consequently Cat and/x) with Q. We have not, 
in fact, done this, because of the additional complications that it would entail in the computations. 
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Stiffness Distributions 

Ref. No.  
in 

Fig. 15 

Relat ionship to 
basic dis t r ibut ion 

Basic distr ibut ion . .  

Increased th roughout  . .  

Decreased  th roughout  . .  

Increased over  rear ' ha l f '  . .  

Decreased  over  rear ' h a l f ' . .  

Increased over  rear 'quar te r '  

Decreased  over  rear 'quar te r '  

Values of  stiffness parameters  
of Sect ion 4.2.3 

B1/Bm 

5 

12 

1 

B 1 1 

B ~  3 

B 1 1 

B.~ 3 

. B2/B m 

4 

15 

2 

15 

2 

15 

Reference to 
Fig. 3 

Midd le  curve 

T o p  curve 

Bot tom curve  

Fron t :  Midd le  curve 

Rear :  T o p  curve 

Fron t :  Midd le  curve 

Rear :  Bot tom curve 

B 2 2 
T h e  line corresponding tO B ~  = 5 was pro- 

duced  forward of  ~: = ~:2 to mee t  the bask 
B 2 4 

curve  for ~-~ = ~ .  (See sketch below.) 

T h e  basic curve  for B~ 4 B m - 15 was produced 

beyond ~ = ~:2 to mee t  the line correspond- 
B 2 2 

ing to Bm - 15" (See sketch below.) 
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(which appear in Appendix I), to obtain the 'modified' aerodynamic coefficients and partial 

derivatives, and hence, via equations (47), (48) and (46), and (52) and (51), the quantities %,', ~h 
for the trim condition and d%'/dn, d~/dn for the pull-up manoeuvre respectively. 

A note on the technique of solving the differential equations was given in Section 2.5.3. The 
derivations of the five elementary solutions {%0(~)}r of equations (30.r), with boundary conditions 
%(0) = [d%(~)/d~]~= o = 0, were programmed into separate chapters, and a further chapter solved 

the equation (32) with boundary conditions (33) and (16), {~2 being taken as 0.01745 radian (1°)} 
to obtain %'(~). The parameter k was then determined from equation (37) and hence {%(~)}r followed 
from the equation {%(~)}r = (%0(~)}r + k%'(~): A 'processing' chapter provided the final solutions 

for %t', *If, d%'/dn and d~l/dn. 
The complete programme is inevitably lengthy and of a type that does not readily allow for the 

incorporation of 'built-in' checks en route. Moreover, as the results deducible from individual 
chapters are lacking in physical significance, they provide little clue as to the correctness of the 

relevant parts of the programme. Consequently, the most economical way of insuring against errors 

is probably to have two programmers working in parallel, and to apply an overall check of results 

in the manner described in Section A.1.3 of Appendix I. If this fails, then a similar check may be 

applied to the results of the individual chapters. 
Most of our calculations have been made using an integration step length, for the Runge-Kutta 

process embodied in the Mercury Autocode ' I N T  STEP'  routine, of A~ = 0.002. With this step 

size, the main programme achieves the complete solution for a particular value of Q in 7 minutes. 
The influence of reducing step size to 0.0005 was investigated, but although the effect on the results 

was not entirely negligible, it was considered that, having regard to the numerous approximations 
involved in the method as a whole, the additional accuracy achieved by using the smaller step, 

would not justify the multiplication of machine production time by four. 
An unexpected difficulty was encountered in calculations for the cases involving stiffness modifi- 

cations over the rear 'quarter' of the aircraft length, i.e. Cases 6 and 7 in the Table of Stiffness 
Distributions in Section 4.3. As mentioned there, the stiffness distributions originally assumed for 
these cases involved discontinuities at ~ = ~2, where the stiffness 'jumped' from the 'basic' curve 
to either the 'increased stiffness' or the 'decreased stiffness' curve. The results obtained for these 
distributions failed to satisfy the check programme, although those for the modified distributions 
(Cases 6 and 7) were quite satisfactory. The reason for the failure of the 'Mercury' programme, 
which was not apparent to the authors at the time, has since been revealed by D. J. Eckford of 
R.A.E. A step in the stiffness function implies a singularity in a function appearing in one of the 
set of equations to be solved by the 'Mercury Intstep' routine. The integral of this function over a 
vanishingly small interval containing the singularity is finite and non-zero, so that there is a step 
in one of the dependent variables at the point in question. However, the 'Intstep' routine will 
not recognize the existence of such a step and will accordingly produce incorrect answers if allowed 
to continue operating, without modification, through such a singular point. To obtain correct 
answers in such circumstances, the magnitude of the step must be determined analytically, and the 
'Mercury' programme modified to take account of it. A more detailed discussion is given in 

Appendix II. 
With the programme thus modified, the method should work satisfactorily for all stiffness 

distributions. Once the programme for a particular layout has been proved, results for a range of 
values of Q, and for various combinations of mass and stiffness distributions, may quickly be produced. 
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5.2. Discussion of Numerical Results. 

5.2.1. GeneraL--In view of the lack of any real physical significance attaching to the 
deformations and associated partial derivatives which correspond to changes in individual parameters, 

Figs. 9 to 12 call for little comment. It may, however, be noted from Figs. 10 and 11, (as a point 

of academic interest) that with the exception of aCz/On and OCoJOn all the 'modified' quantities 
tend to the rigid aircraft values as ~) tends to zero. As regards the u-derivatives, Q OCL/an and 
Q OCm/an tend to zero as Q tends to zero, so that the actual lift and pitching moment (as distinct 

from the coefficients) which result from the deformations occurring when n is varied, both tend to 
zero with Q. 

From Fig. 12 it will be observed that K ~  and H,~ (which correspond to the restoring and 
manoeuvre margins of classical stability theory) exhibit singularities at Q/Qc ~ O. 56 and are negative 
over parts of the range of Q/Qc considered. Because these parameters relate to unbalanced states 
of the aircraft, however, and have had to be calculated with the aircraft arbitrarily constrained, 
their behaviour alone tells us nothing about the stability and controllability of the aircraft. 

The physically meaningful results to which those of Figs. 9 to 12 lead, are the resultant deforma- 
tion curves shown in Figs. 13 and 14 and the curves of %~', d%'/dn, ~7~ and d~l/dn which are shown 
(labelled 'basic stiffness') in Figs. 16, 17, 18 and 19 respectively. 

It is seen from Fig. 13 that the shape of the deflection curve for trimmed flight changes con- 
siderably as Q increases. Examination of Figs. 2 and 4a indicates that in the design cruising condition 
(Q/Q~ = 1) the resultant of the weight and aerodynamic load distributions will, broadly speaking, 
consist of regions of net downward loading towards the nose and trailing edge, with net upward 
loading in between. The deflection curve for Q/Q~ = 1.0 in Fig. 13 is consistent with such loading. 
We see from Figs. 16 and 18, that as Q increases, %~' decreases (eventually becoming negative) while 
~h increases. This implies a transfer of (upward) aerodynamic loading from the middle part of the 
beam to the region of the controls near the trailing edge, which would account for the indicated 
changes of shape in the deflection curves '*. 

The main indications of Fig. 14 are that although, in the pull-up manoeuvre, the amplitude of 
the incremental deformation curve increases considerably with increasing Q, changes in its 

(normalised) shape are quite small. This reflects the fact, illustrated by Figs. 17 and 19, that 

d%'/dn and d~/dn both decrease in magnitude (albeit at somewhat different rates) as Q increases, 
so that the shape of the incremental aerodynamic load distribution (and hence that of the resultant 

incremental load distribution) in the pull-up varies much less with Q than does the shape of the load 
distribution in trimmed flight. 

5.2.2. The influence of stiffness distribution.--The overall effects of varying stiffness are 
illustrated in Figs. 15 to 19. Fig. 15, which relates to the design cruising condition (Q = 425.3 lb/ft ~) 
shows deformation curves calculated for the seven stiffness distributions specified in the Table on 
page 26. As might be anticipated, increasing the stiffness (relative to the basic) over the whole 
of the beam, decreases the amplitudes of the deformation curves, without very much affecting their 
(normalised) shapes; the reverse (as regards amplitudes) is true for decreasing stiffness. In the 
manoeuvre case (Fig. 15a), changing the stiffness over the rear 'half' or even over the rear 'quarter' 
only, produces a large proportion of the effect produced by stiffening throughout the length. The 

e The argument is somewhat crude, inasmuch as it neglects the further changes in aerodynamic loading, 
consequent upon the deflection of the beam. 
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powerful  influence of stiffness changes over the rear part of the beam is brought out even more 

strongly in Figs. 16 to 19. In particular, the curves of ~7~ and d~/dn (Figs. 18 and 19) calculated for 

the cases with stiffening over the rear 'half' and rear 'quarter '  only, are virtually indistinguishable 

from those for the case with stiffening throughout,  while reducing stiffness over the rear 'quarter '  

is nearly as effective as reducing it throughout.  
The range of elevon angles required to trim the aircraft at M = 2 .2  for a given range of altitude, 

increases progressively with decreasing stiffness. Thus for the range 50 000 ft to 78 000 ft, the 

required ranges of ~t are: 

Rigid aircraft: 5-5 ° > ~t > - 12-2 ° 

I Stiffer throughout 8.7 ° > ~l > - 13.3° 

Flexible aircraft Basic stiffness 11 ° > ~ > - 13"8 ° 

Less stiff throughout 29° > ~t > - 15.5 ° 

The effects of stiffness variations on manoeuvrability, as illustrated by the curves of d~?/dn vs. O 

in Fig. 19, are shown in an alternative way by the curves of relative control effectiveness versus Q 

in Fig. 25. (Relative control effectiveness is here defined as the ratio of the value of dn/d~? for the 

flexible aircraft to the value for the rigid aircraft.) These curves are very nearly linear and are 

readily extrapolated to determine, for each stiffness distribution, the kinetic pressure 0R at which 

control reversal would theoretically occur% Thus,  for the basic stiffness .distribution, OR is about 

1750 lb/ft~; this figure is increased to about 2400 lb/ft ~ for all the cases of increased stiffness which 

have been considered, while it is reduced to the region of 1060 lb/ft 2 when the stiffness is reduced 

over the rear 'quarter ' ,  and to 980 lb/ft = when the stiffness is reduced throughout.  

The precise significance of these figures in relation to a supersonic transport aircraft, under  

normal operating conditions, depends upon the detailed flight plan prescribed for the aircraft. Ideas 

on this subject had not crystallised when the calculations for this report were initiated, and in 

relation to current ideas, which suggest an altitude range of 58 000 ft to 62 000 ft for the cruise- 

climb at M = 2.2, our assumed 'middle-of-the-cruise' height of 63 600 ft (corresponding to 

~c = 425.3 lb/ft ~) is somewhat high. For the more realistic height of 60 000 ft, the  curves of Fig. 25 

indicate a relative control effectiveness of just under 0- 7 for the standard configuration; this falls to 

rather less than 0" 5 for the configurations of reduced stiffness which have been considered. Although 
these values suggest that the effects of longitudinal elastic camber on manoeuvrability should not be 
unacceptably large under  normal operating conditions, note should be taken of the potential dangers 

of an inadvertent dive at M = 2.2, to altitudes lower than those envisaged for that  Mach number  
in the flight plan. Thus,  for M = 2 .2  at 40 000 feet, the relative control effectiveness for the standard 
configuration would be rather less than 0.25, while for the configurations of reduced stiffness, 

control reversal would already have occurred. 

5.2.3. The influence of weight distribution.--Results of the calculations for the three 
different weight distributions (X, Y, Z in Fig. 2) are shown in Figs. 20 to 24 and 26. Fig. 20 indicates 
that, starting with the 100% Fuel (maximum weight) case (X), only small changes in the deformation 

e In practice, as Q is increased, the deformations increase without limit, so that the assumptions of linearity 
on which the theory has been based are invalidated well before QR is reached. It would, in fact, be impossible 
to trim the aircraft at Q = QR" 
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curves result when half the fuel is assumed to have been consumed in the normal way (i.e. sym- 
metrically with regard tothe c.g.). When a similar quantity of fuel is assumed to have been consumed 
from tanks ahead of the c.g. (so that an aft shift of c.g. of roughly 2 . 5 ~  I is simulated), there are 
considerably more pronounced changes (of opposite sign) in the deformations. 

The effects of flexibility on %t and d~o/dn are little affected by these changes in weight distri- 
bution, being generally small in all cases (Figs. 21 and 23). It should be remembered that the curves 

of %~ and d%/dn, and also those of ~t and d~?/dn, for the rigid aircraft change with weight distribution. 

Thus in considering the extent to which weight distribution influences the aeroelastic effect on ~t 

and d~/dn (Figs. 22 and 23) we have to compare the various 'flexible' curves with their corres- 

ponding 'rigid' curves, rather than with one another. This point is brought out better by Fig. 26, 

which shows the relative control effectivenesses for the three weight distributions, and demonstrates 

that in fact, the changes of weight distribution considered have only a small influence on the 

aeroelastic effect. In particular the control reversal speeds for the three cases are identical e. 
Taking the standard configuration (Loading Y) as datum, we see from Fig. 22 that the main 

effect of increasing the weight (Loading X) is to increase the value of Q at which the elevator angle 
to trim is zero, by about 100 lb/ft 2 for both rigid and flexible aircraft, while the effect of the c.g. 
shift represented by Loading Z is to reduce the value of Q at which ~t = 0 by about 100 lb/ft ~. 
Fig. 24 shows that increasing the weight increases the elevon angles per g, as we might expect from 
the second of formulae (51), since C~;~ for a given value of Q is increased. Shifting the c.g. aft 
(Loading Z) reduces d~/dn, as we would expect, because of the generally destabilising effect of such 
a shift. 

5.3. Limitations of the Worh. 

The relevance of the present investigation to the actual aeroelastic behaviour of a slender delta 
aircraft may be limited by the assumptions upon which it has been based. Other investigations 
mentioned in the Introduction have suggested that while longitudinal bending will undoubtedly 
exert the major influence on longitudinal trim and manoeuvrability, the effects of spanwise deforma- 
tion may not be entirely negligible. Such effects were, however, automatically excluded from 
consideration in the present instance; this was the price that had to be paid for the privilege-- 
comparatively rare in aeroelastic work--of  being able to compute a deformed shape directly, without 
recourse to iterative procedures or to assumed modes and strain-energy methods. 

Other limitations stem from the aerodynamic assumptions. The possible effects of non-linearity 
were alluded to in the Introduction, in relation to Hancock's work. Such effects should, however, 
be fairly small at the moderate angles of attack obtaining in the design cruising condition, although 
they could become more pronounced in 'off-design' conditions. Hodges' work, at Bristol Aircraft 
Limited, has suggested that slender-wing theory may give unreliable estimates of aeroelastic effects 
for the type of slender configuration which we have considered. In our numerical work, we have 
restricted the use of this theory to the computation of the loading contributions due to elastic camber 
and to the induced camber produced by pitching. These should be relatively small compared with 
loading due to additional angle of attack etc., but an examination of the effect on overall results, of 
computing the loadings in question by piston theory, would be an informative exercise. 

In Ref. 5, Hancock and Milne showed that the control reversal speed (called 'maximum trim speed' by 
them) is independent of the weight distribution. 
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It will have been noted that in considerations of the effects of varying stiffness and weight 
distributions, the relevant parametershave been varied independently of one another. In considering 

the results of such studies, however, it is well to bear in mind that in the search for the optimum 
layout to meet a given specification, it is seldom practicable for the designer to vary one of the 

parameters influencing aeroelastic behaviour, independently of all others. Changes in stiffness and 

weight distributions tend to go hand in hand, while a change of weight distribution, if it involves a 

shift of c.g., necessitates a change in wing warp distribution or planform configuration in order to 
keep the centre of pressure coincident with the c.g. in the design condition. The danger of drawing 

false conclusions is inherent in any trend study which fails to take due account of any essential 
interdependence of the several parameters upon which a particular aircraft characteristic depends. 

6. Conch~sions and Suggestions for Further Work. 

(1) A method has been established for estimating the effects of longitudinal bending on the trim 
and manoeuvrability of slender aircraft. The degree of relevance of results obtained by this method 
is dependent on the extent to which spanwise deformations would influence these characteristics in 

an actual aircraft. The work of other investigators has suggested that while longitudinal bending is 
probably the dominating source of aeroelastic effects on longitudinal characteristics, the influence of 
spanwise deformations will not be entirely negligible. In this context it should be emphasised that 
the present method was conceived, and the work of earlier investigators such as Broadbent was 
performed, at a time when attention was focussed on the 'completely integrated' slender-wing 
configuration, rather than on the alternative configuration involving a discrete fuselage plus slender 
wing. For the latter type of layout, the effects of spanwise deformation are likely to be of relatively 
greater importance than the calculations suggested they would be for the completely integrated layout. 

Apart from excluding non-linear effects, the method permits of some freedom as regards aero- 
dynamic assumptions, inasmuch as loadings corresponding to the distribution of effective local angle 
of attack for the undeformed aircraft may be specified in any convenient theoretical or empirical 
manner. As regards the chordwise loading due to elastic camber, the method assumes that this is 
expressible as a function of %(~) and ~ which is linear in %(~) and its derivatives with respect to ~; 

detailed development of the method i s given using functions appropriate to slender-wing theory 
and piston theory respectively. 

(2) For application to a possible design for a Supersonic (M = 2.2) Transport Aircraft, the 
method was programmed for t h e  'Mercury' digital computer and a fairly comprehensive set of 
calculations was performed for M = 2.2 over a range of altitudes, representing different kinetic 

pressures, Q. In this instance, loading due to elastic camber was assumed to be given by slender-wing 
theory. The calculations were made for a so-called 'standard configuration' (with realistically 
estimated weight and stiffness distributions) and also for configurations modified in respect of either 
weight or stiffness distribution. 

This numerical work has demonstrated the practicability of the method and the results suggest 
that for a supersonic transport of the type considered, the aeroelastic effects should not be pro- 
hibitively large under normal operating conditions, at the cruising Mach number of 2.2. An 
inadvertent dive at M = 2.2 to altitudes lower than that envisaged in the flight plan could, however, 
result in a reduction of control effectiveness to a dangerously low value. The possibility that aero- 
elastically critical combinations of M and Q might occur in the flight plan, at altitudes lower than 
the minimum permitted for M = 2.2, would require separate investigation. 
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In general, stiffening of the structure will reduce the aeroelastic effects, but the results show that 
stiffening of the rear-most portions is far more effective than stiffening elsewhere along the length 
(see, for example, Fig. 19, in association with Fig. 3). The weight and c.g. changes considered, had 

little influence on the aeroelastic effects. 

(3) Further numerical work would be required to achieve completely the aims originally prescribed 

for this investigation. 
It is intended to examine the effect of using piston theory instead of slender-wing theory for the 

loading due to elastic camber, so as to indicate the degree to which refinement of the aerodynamics 

may be required. 
It would also be desirable to apply the method to a completely integrated shape and also to one in 

which the discrete body is more pronounced. This would add to our knowledge of the effect of 
various parameters on the problems which have been studied. In each of these extensions of the 

work, a certain amount of re-writing of computer programmes would be involved. 
A further extension of the work could readily be made in the field of Loading Actions, by computing 

the longitudinal distributions of shear force and bending moment for manoeuvres corresponding to 
points on the Flight Envelope. Comparison with the distributions for the rigid aircraft would indicate 

the likely order of aeroelastic effects on loading actions. 

(4) Views as to the general applicability and usefulness of the method will probably vary from 

reader to reader according to technical upbringing. The numerical work has shown that for incre- 
mental loading resulting from control deflection, the deformation mode shape changes very little 
with kinetic pressure (Q); from this it may be argued that, for a determination of structural stiffness 
requirements, (depending on control reversal considerations) a modal-type analysis will provide a 
more rapid solution, which will be sufficiently accurate if the (incremental) mode shape is deter- 
mined accurately at the outset, for a particular Q, and thereafter assumed constant. However, the 
overall deformation shape in steady or quasi-steady flight changes considerably with Q and load 
factor n, so that an investigation of equilibrium configurations and of the corresponding load 
distributions could not proceed on the basis of a single, invariant mode. 

The method is rather restrictive in its assumptions, particularly as regards its neglect of spanwise 
deformations, so that it may not be well suited to the study of the aeroelastic behaviour of an actual 
aircraft, whose aerodynamic and structural properties are completely determined. Because of the 
emphasis placed on realism in the representation of the stiffness and weight distributions in the 

present investigation, the programmes evolved for the numerical work do not lend themselves 
immediately to general parametric studies. By idealising the distributions of stiffness and weight, 
however, it would be possible to devise programmes better suited to this purpose. 

It might be argued that other methods, such as the modal type of analysis, are more versatile for 
this kind of work. However, providing as it does, a unified solution of the equations expressing the 
equilibrium of the elastic aeroplane, the present approach has the undoubted merit that it yields an 
accurate solution of an idealised problem which may be used as a check on other methods. 
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SYMBOLS 

Aspect ratio of gross planform 

EI(~), bending rigidity at station ~e:lb/ftz 

B(~) non-dimensionalstiffness parameter 
Qcl4 ' 
Maximum value of B(~) in range 0 ~< ¢ ~< 1 

Values of B(¢) at stations ¢1, Cz, used to define stiffness 
distribution 

QS' overall lift coefficient 

'Modified' lift coefficient corresponding to angle-of-attack 
distribution ae(~): a function of Q 

Overall lift coefficient in trimmed level flight 

QSI' overall pitching-moment coefficient 

'Modified' pitching-moment coefficient corresponding to 
angle-of-attack distribution ~a(~): a function of Q 

d 
d~ '  differential operator 

Young's modulus: lb/ft z 

Forcing functions in the differential equations (30) {Defined 
by equations (29)} 

Variable coefficients of the differential equations (30) {Defined 
by equations (28)} 

Gravitational acceleration 

Defined by equations (52) 

Defined by equations (48) 

Defined by equations (47) 

Coefficient to be evaluated from equation (37) 

Second moment of area of beam section at station ~ (about 
neutral axis): ft a 

Total aerodynamic lift per unit chord at station ~:lb/ft 

Contributions to L(~) due to distribution of local angle-of- 
attack and devon deflection respectively: lb/ft 

Contributions to L~(~) due to angle-of-attack distributions 

~a(~), %', %(~), c%(~:) respectively: lb/ft 

Total aerodynamic lift on aircraft: lb 
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S Y M B O L S - - c o n t i n u e d  

Total transverse loading per unit length at station ~ (positive 
upwards): lb/ft 

_ ~o(~) non-dimensionalised loading per unitlength Qcl' 
Total length of aircraft at centreline: ft 

Length of body ahead of wing leading edge (see Fig. 1): ft 

Mach number 

Total aerodynamic moment about c.g.: lb. ft 

Incremental normal acceleration in pull-up manoeuvre 

S 
- , planform shape parameter 

2Is T 

= ½pV 2, kinetic pressure: lb/ft ~ 

Theoretical value of Q for control reversal 

Pitching velocity: rad/sec 

ql 
- V' non-dimensionalised pitching velocity 

Gross planform area: ft2 

Semi-span of planform at station ~: ft 

= s(1), semi-span at trailing edge: ft 

Speed of flight: ft/sec 

Weight per unit length at station ~: lb/ft 

= l W(~)d~: lb 
0 

= W(1), total weight of aircraft: lb 

Normal displacement of neutral axis from centre-section chord 
at station ~: ft 

Parts of z'(~) due to built-in camber and elastic camber 
respectively 

Total effective local angle of attack at station 

Arbitrarily assigned values of %0(~) and ~'(~) respectively at 
~: = 0 (Section 2.5.3) 

Contribution to ~(~) from built-in camber relative to centre- 
section chord 

Local angle of attack at station ~: for the undeformed wing at 
the design C L 
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~o(~) 
eL o 

0~0 t 

0~0g 

~q(¢) 

~'(~) 

~o'(~) 

E 

p 

¢~(~), Ce(E), ¢0(E), Cq(~), ¢~(~) 

~ ( ¢ )  = 

~o(~) = 

~ (~ )  = 

'rl(~), "r2(~, Q), 'F3(E, Q), 
,v,(~, Q), ,v~(¢, Q) 

¢1(~), ¢~(~), ¢~(~:, Q) 

Suffices 

SYMBOLS--continued 

Contribution to ~(~) from elastic camber 

Angle of attack of centre-section chord 

C~ 0 - -  Cg0d 

Angle of attack of the centre-section chord of the undeformed 
wing at the design CL 

Contribution to ~(~) from induced camber d u e  to pitching 
velocity 

Particular solutions of equations (30.r) and (32). (See Section 
2.5.3) 

Normal displacement of neutral axis from centre-section chord 
at station ~ (as fraction of l) positive upwards 

Part of ~'(~) due to elastic deformation 

elevon deflection, positive downwards 

aircraft relative density 
gpSl '  

~', distances from the nose, measured as fractions of l, along 
the direction of flight and the centre-section chord line, 
respectively 

IB/I 

Stations to which the stiffnesses B1, B2, B m apply 

Distance of c.g. from nose as fraction of l 

Air density: slugs/ft 3 

Non-dimensional lift functions--see equation (7) 

Forcing functions in the differential equations (78); {defined 
by equations (77)} 

Variable coefficients of the differential equations (78); {defined 
by equations (76)} 

Relating to design cruising condition 

Relating to design C L lift distribution 

Relating to tr immed level flight 
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APPENDIX I 

Detailed Development of the Mathematical Analysis for Two Particular Cases 

AI.1. General. 
In the main text we developed the differential equation defining the deflected shape of the beam 

in the form 

d~ 2 B(~ )~ -  + Ql4¢{%(~), ~} = (n+ 1)laW(~) - ~14{¢a(s e) + %'¢0(~) + 0~q(~:) + ~¢~(~)}, (15)bis 

wherein the lift distribution due to elastic camber is represented in the generalised functional form 
~l~{%(~), ~}. The formulae {equations (41) to (43)} for CLo and Cr~ 0 and the 'modified' partial 
derivatives of C L and C m were also expressed in terms of ~(~) = ~{c%(~:), ~}. We have already 

. considered in Section 2.5.2 of the main text, the particular form assumed by equation (15) and the 
method of solving it, when Ce(~) is appropriate to slender-wing theory. We now give, in Section 
A1.2, the development from equations (41) to (43) of the formulae for the modified derivatives, 
appropriate to the assumption of slender-wing theory. Section A1.3 gives the mathematical basis of 
the overall check which has been applied to the digital computer results. Finally, Section A1.4 gives 
details of the mathematical analysis for the case when the loading due to elastic camber is assumed 
to be in accordance with piston theory. 

A1.2. Formulae for the Modified Derivatives Appropriate to the Assumption of Slender-wing Theory. 
Equations (41) to (43) may be developed to the forms appropriate to this case, by substituting for 

Cq(~) from equation (22b) and for ¢ea(~), ~¢e(~)/~%', etc. in accordance with equation (21b){i.e. 
substituting %a(~), ~%(~)/~%', etc. for %(~) in that formula). The resulting formulae, expressed in 
terms of aspect ratio A = 4sT2/S are: 

eL O- A [ 3 _¢a(1) + vA = ~ ~ ]  2 -%a(1) 

- -  A 1 2 1 7rA E%a(1)_ leo%a(<)(s(e)l=d<] j ( 6 4 )  

aC,~ 
a~7 

~Cm 

Cm 
an 

aCg A ( I) ~ ~A a%(1) 
a~o~-4 ~ ¢°(1)+ 2 a~o' 
acL A(,)~ ~A aM1) 
'%7 - 4 ~ ~'s(1) + 2 a~7 

( 

ag 2 3q ] 
oCL ~-A do<o(1) 
an 2 an 

aC L A ( I ) e  F =A [-<9:~(1,) 
- <%<o' ~ - 4- ~ o G(~ )~  d~ - ~ -  L ao<o 

- a~ ~ - ¥ ~ o G(~ )~  d<~ - ~ L <9~ 

oCL :A[ f 2 - a~7 ~ - - - 2 -  1 - ~ -  o ( e - ~ ) t  [s(~)tsm; d ~ +  - - -  

- an ~ - - 7 L ~  o ~ t S m ;  

a~2 fo ao<o(~) a~t t sm I 

(65) 

(66) 
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A1.3. The Basis for an Overall Cheek of Results. 

The end-products of the calculations for a configuration with particular mass and stiffness 
distributions, operating at a specific value of Q, are: 

(1) the values of the additional angle of attack ~0{ and the control deflection ~h to trim {calculated 
from equation (46)}, together with the distribution of elastic camber %,(e), calculated from the 
equation 

3%(e) ,3%(e) 3%(e) (44) bis 

(2) the increments of root angle of attack and control deflection, per g, d%'/dn and d~?/dn 
respectively, {calculated from equations (51)} together with the incremental distribution of elastic 
camber d%(e)/dn, calculated from the equation 

&o(~) a%(e) d%' a%(e) c~, 0%(~) d~ a%(e) 
dn - 3 ~  + d~ O~o ~ + 2~ 3~- + dn On (49) bis 

With  the elastic camber distributions c%t(~ ) and dc%(e)/dn known, the resultant load distributions 
which are purported to have produced them may be written down as 

m~(~) = L,(e) - (n + 1) W(~) 

LSmJ JJ 
and 

dm(~) dL(e) 
& - T w(~) 

= 9l  [d o' d,  
L & 60(~) + ~ AXe) + 

Sc , r<,% fs( )lq + 2: (~)~ t2~ ~ [(<_~)+s(¢)}~] + ~ Ld- }]- W(<). (68) t sm t sm I _J 

The deflection of the beam under the known loadings (67) and (68) may be calculated by direct 
integration of the differential equation 

d ~ 

(cf. the calculation of %e(e), described in Section 2.8). Thus we may calculate 

; s' (s: -d(e) = de de1 
0 0 

and 

where 

d& f~o~ m#(&)d&" 

{s: 1 
dG o dn _ ~ del 

B(6) o 

me,(e) am,~(e) am(e!/ 9ol. m ~ * ( ~ ) - 9 e  ~ and - ~ n  = dn / 

f 2 dm*(e~) ~} 
dG de 

0= & 
e(el) 

(69) 

(70) 

(71) 
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Then, if all calculations have been correctly performed, we should have 

%/(~) = %~(~); = N 
within the limits of accuracy of whatever numerical methods have been employed. 

(72) 

A1.4. Details of Mathematical Analysis when the Loading Due to Elastic Camber is in Accordance 
with Linearized Piston Theory. 

A1.4.1. Form of the Differe/ztial Equation. 
In this case, we have 

4 
L**(~) = Q ~ %(~) × 2s(~) (73a) 

where M is the Math  number, so that 

¢~(~) = M t s~ 
For consistency we will assume the loading due to %(~) also to be in accordance with piston theory, 

writing 
4 

L%(~) = Q ~ %(~) x 2s(~) (74a) 

or 

¢~(~) = M t s~-~ 
The form of Ce(~) in this case does not permit the reduction of the order of equation (15) from 
third to second by direct integration. Since 

d~ I d%l d% dB(~) d% d~B(~) d% 
d ~  .B(~) d~ J = B(~) ~ + 2 d~ d~  + d~ ~ d~ ' 

equation (15), when divided through by B(~), assumes the form 
{ D3 + Cx(~) D2 +¢2(~) D + Ca(~, Q)}%(~) 

= (n+  1)T1(~) @ X~P2(~, Q) -]- O~0'l{P3(~, Q) -[- q~4(6;, Q) q- 7~5(~:, Q) (75) 
with 

and 

2 'dB(~). ~b2(~) _ 1 d2/3(~).]  
~ 1 ( ~ ) -  ~(~) d g '  B(g~ dg2 ' 

• ~bs(~' Q) M B ( ~ )  Qo t s T J 

• vl(~) _ ~w(~) , 
B( ~) Qcl 

l Q Cd(~). "r2(~, Q) = Qc ~ ( ~ ) ,  

Q ¢o(~). 

~ ( ~ '  Q) = Q o B ( ~ '  
• v,(~, Q) = - .v~(~, Q) ( ~ -  ~); 

Q ¢,(~) 
~ ( ~ '  Q) = Qo ~(~) 

(76) 

(77) 
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The solution of (75) may be expressed in the form (19) where 3%(~)/3n, %a(~), 3%(~)/3%', 
0%(~)/30 and 3%(~)/8~1 are now the respective solutions of 

{D a + ~b,(~)D ~ + ~b~(~)D + ~ba(~, O)}%(~) = vF~(~, O), 
(78.r) 

r = l , . . . 5  

with forcing functions ~,(~, Q) as defined in equation (77), and with boundary conditions (16), 
(17b), (18). 

In the solution of equations (78.r) by digital computer, the technique described in Section 2.5.3 
may again be used to overcome the difficulty arising from the fact that the value of %(0) is not 
Specified. 

With 

A1.4.2. Formulae for the Modified Derivatives. 
appropriate substitutions for ~q(~), ~ea(~), etc. equations (41) to (43) now become: 

A ( I )  2,- 2A l f* ('(~)1 } 
o t sT )  

C~o cz0~ - ~(¢)¢ de %~(¢) ¢ de. 
\ ~/ o M s e o t s~ ) 

~ % ' - 4  ~ ~o(a)+Hg o a~7o' ts-7~ 

a ~ - 4  g ~ 4 1 ) + ~ g  o-Tg-, ts~j 

c3~ M s  T t sT)  o t  sT J 

an M sT o T t sy I 

(79) 

(8o) 

aC,~ 
~0~0 t 

aC~ 
@ 

an ~ - ~  g o 

0 C,,, 
3n 8n ~ M @ o ~ 7 - n  t s T j  

(81) 
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A P P E N D I X  II  

The Effect of Discontinuities in the Stiffness Distribution or in the 
Slope of the Stiffness Distribution 

Reference was made in Section 5.1 to the computing difficulties that arose in the calculations 
using slender-wing theory, when the stiffness distribution was discontinuous. Similar difficulties 

will arise when piston theory is employed if either the stiffness distribution or its slope is discon- 

tinuous. We will discuss this somewhat  more complicated case in detail; results for the simpler 

slender-wing theory case then follow easily. 
The  equations by which equation (78.r) is replaced for solution by the 'Mercury  Intstep'  routine 

f ,  = 

f ~  = _ _  _ 

f ~  = _ _  _ 

A = _ _  

are: 

where 

4 

ay~  

d~ - y~' 

d~ - Ya, 

d~ = y~' 

( 8 2 )  

d% d 2 % 
Yl = - ~, Y~ = %, Y a -  d~:' Y4 = d~: 2 .  (83) 

Also, if we write, for a linear segment of the stiffness distribution curve: 

B ( ~ )  = B 1 + / 7 0 ~ ,  (84)  
we have 

2 d / 7 ( ~ )  2 ~ 0  

¢1(~) - / 7 ( ~ )  d~ - /7 ' (85) 

1 d 2 B  1 d/30 
$~.(~) - _ - , (86)  

B df~ /7 df  

2 Q /s(~)/ 1 

~ba(~) - M Qc~ sT ' ~ '  
(87) 

1 (see equation (77)). (88) 

N o w  consider a point ~o such that the stiffness is given by (84) for '~ < ~0, and by 

2~'(~) = /74' +/3o'~ (89) 
for ~ > ~o. Write 

A/~ = 2~'(~o) - /7 (~o) ,  (90) 
and 

A B o  =/7o '  - t7o. (91) 

We assume that in general A/7 4= 0, A/3 o 4: 0, i.e. both the stiffness and its slope are discontinuous 
at ~ = ~o. Now/3(~) ,  and hence ~hz(~) and Wr(~), remain bounded throughout any (small) interval 
containing ~:o, but  ~hl(~) and ~b~(~) will each have a singularity at ~ = (o. It  will follow that in the 
integration of equations (82) through ~ = ~o, steps should occur in the values o f y  4 a n d y  a at ~ = ~o. 
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However, the 'Intstep' routine will not recognize the existence of such steps, and will accordingly 
produce incorrect answers if allowed to continue operating without modification through such a point. 

The existence of the steps in Ya and y~ may be confirmed, and their magnitudes calculated more 
easily, perhaps, by invoking physical considerations than by using purely mathematical arguments. 
For remembering that bending moment and shear must be continuous across ~ = ~o and noting that 

B.M. (~) = QflZB(~)Ya, 
and 

Shear (~) = 
we have at once 

~(~o)y~(~o- o) = 
whence 

ya(~o + 0) - - -  

o r  

Qfl2{B(~)y+ +/?oYs}, 

~'(~o)y.(~o + o) 

~(~o) y~(~o- o) 
B'(~o) 

and 

~ B  

Ay~(fo) = B'(~o) Y~(~°-°) '  

N~o)y,(~o - o) + Boy~(~o- 0) = B'(~o)y,(~o + 0) + Bo%(¢o + 0), 

whence, using (94a) we obtain 

y~(~o+O) - B(~o) , >  o) + ~3o~'(~o) - Bo'B(~o) 
~'(~o~ y~t ~o - {~,( ¢o)}~ 

o r  

Yz(~o-0) 

(92) 

(93) 

(94a) 

(94b) 

(95a) 

B o ' A B  - B'(~o)ABo Ay4(~o ) _ AB y,(~o_0 ) + ya( (o-0) .  (95b) 
/~'(~o) {/~'(~o)} ~ 

In the particular case where the stiffness/3(~) is continuous at ~ = ~o and only B o discontinuous, 
we have A/3 = 0 and/?'(~0) = /3(~0), so that 

y~(~o+O) = y ~ ( ~ o - O )  -- y~(~o), or 
and 

Ay3(~o) = 0, (96) 

y4(~0 + 0) = y4(~0- 0) - a2-5° y~(~0) 

/3(~o) l (97) o r  

A/2o 
ay,(~o) = ~ o ) y ~ ( o ) .  

In order that the 'Mercury' programme should cope with stiffness distributions exhibiting 
discontinuities of the stiffness itself or of its slope, it is necessary to make provision for adding 
increments to Ya and Y4 in accordance with equations (94b) and (95b) at any point where such 
discontinuities occur e. 

The reader may easily check for himself that when, as in the calculations described in this report, 
slender-wing theory is employed, and the equation to be solved by the computer is the second-order 
equation (30.r) rather than the third-order equation (78.r), singular behaviour occurs only if the 
stiffness itself is discontinuous. This may be dealt with by adding the increment Aya(~o) , given by 
equation (94b), to Ya(~o- 0) at any point ~ = ~o where such a discontinuity occurs. 

A point of interest to programmers is that the relevant instructions must not be included within the 
'Intstep' auxiliary sequence itself. 
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PART II  

A Further Investigation of the Effects of Longitudinal Elastic Camber 
on Slender Aircraft in Steady Symmetrical Flight Including Estimates 

of the Effect on Shear Forces and Bending Moments 

By A. S. TAYLOR,  M. Sc., A .F .R .Ae .S .  

Summary. 
The method developed in Part I for the estimation of the effect of longitudinal elastic camber on trim and 

manoeuvrability of slender aircraft has been used for further calculations relating to the design for a supersonic 
(M = 2.2) transport aircraft, which was studied in that Part. Some of the earlier calculations have been 
repeated using piston theory instead of slender-wing theory for the estimation of the incremental loading due 
to elastic camber. In addition, estimates have been made of the effect of deformations on the longitudinal 
distributions of shear force and bending moment in quasi-steady symmetric manoeuvres. 

The results have been used to demonstrate the importance of allowing for aeroelastic effects when computing 
loading actions on slender aircraft, and to draw attention to the need for a reliable method of specifying the 
loading on such aircraft due to arbitrary distributions of elastic warp, superposed on known initial incidence 

distributions. 
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Effect of flexibility on longitudinal distributions of shear and bending moment in 
symmetrical flight at M = 2.2, Q = 637.8 lb/ft2: 

Z = l . O  

z = 2 . 5  

~ =  - 0 . 5  

1. Introduction. 

In Part I the author and W. 1 ~. W. Urich developed an approximate method of estimating the 
effect of aeroelasticity on the longitudinal trim and quasi-steady manoeuvrability of slender aircraft. 
The method assumes that, structurally, the aircraft behaves as a 'free-free' beam, subject only to 
longitudinal bending, and that the total chordwise aerodynamic loading per unit length (including 
that due to elastic camber) varies linearly with the effective local angle of attack, ~(~). The loading 
is thus calculable by superposition of 'elementary' distributions corresponding to the various 
contributions to ~(~:), together with the distribution due to elevon deflection. Subject to the assump- 
tion of linearity, the contributions to total aerodynamic loading, other than that due to elastic 
camber, may be specified in accordance with the best available experimental or theoreticaldata. 
For the specification of loading due to the elastic camber, however, recourse must be had to a simple 
(linearised) theory such as slender-wing or piston theory, since there is a dearth of experimental 
information concerning loading due to arbitrary camber modes and since, in any event, the elastic 
camber mode for a particular flight condition is unknown at the outset. Part I, in fact, gave the 
detailed mathematical development of the method appropriate to each of these theories, but in the 
numerical application described therein, only the slender-wing-theory version was used. 

It was the original intention in the investigation begun in Part I that sufficient numerical work 
should be undertaken to accomplish the following three aims: 

(i) To assess the practicability of the method, from the purely computational point of view, when 
stiffness and mass distributions typical of actual aircraft are introduced. 

(ii) To make realistic assessments of the aeroelastic effects in question for various possible layouts 
of a supersonic (M = 2-2) transport aircraft. 

(iii) To derive general information as to the influence of such parameters as planform, and weight 
and stiffness distributions, and to assess the extent to which results are influenced by the aero- 
dynamic assumptions. 

The first aim was substantially achieved with the completion of the numerical work described 
in Part I, which related to a feasible layout for a M = 2.2 transport aircraft with the planform 
illustrated in Fig. 1, and in which supposedly realistic mass and stiffness distributions, based on 
detailed project studies in progress at the time, were used. Thus, to the extent to which the assumed 
mass and stiffness distributions were, in fact, realistic, the work could also be said to have provided 
a partial realisation of the second objective, which would have been more fully realised if the original 
intention of studying two other configurations e had been put into effect. 

One of these would have had a much longer 'nose' than that shown in Fig. 1 while the other, representing 
the 'completely integrated planform' concept, would have consisted of an ogee wing with no discrete body. 
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It was of course recognised in Part I (Sections 5.3 and 6) that in some practical applications, the 

neglect of spanwise deformation which is implicit in the assumption of 'beam-like' behaviour might, 

in fact, be unrealistic. The method was originally conceived at a time when attention was focussed 

on the 'completely integrated' slender-wing configuration, rather than on configurations involving 

a discrete fuselage plus a thin slender wing, such as that adopted for the Anglo-French 'Concord' 
aircraft. Now that detailed structural analyses of the latter type of configuration by matrix methods 

have been made, it has become clear that the beam hypothesis is indeed untenable for such con- 

figurations. From an examination of the matrices of structural influence coefficients, and the 
deformation for representative flight conditions deduced therefrom, it would appear virtually 

impossible to prescribe an 'equivalent (EI) distribution' for use in our method, which would at all 
adequately represent the stiffness properties of the aircraft. Thus, for a quantitatively reliable 
assessment of aeroelastic effects in these circumstances it would appear to be essential to resort to a 
more sophisticated mathematical model of the structure ~. Accepting this, it would appear pointless 
to pursue the second of the original aims any further, at least in respect of a Concord-type layout. 

As regards the third aim, the numerical work in Part I included a limited investigation of the 
effects of varying the weight and stiffness distributions of the particular aircraft configuration under 
consideration, but did not examine the influence of aerodynamic assumptions. Even though doubt 
has now been cast on the applicability of the method for quantitative assessments of certain con- 
figurations, it still seemed useful to investigate the sensitivity of results to changes in the assumptions 
regarding the aerodynamic loading due to elastic camber. For in seeking any 'three-dimensional' 
adaptation of the present 'two-dimensional' method it would be of advantage to know at the outset 
what degree of refinement must be aimed at in specifying the aerodynamic loading due to elastic 
deformation, in order to achieve a reasonably accurate overall answer for the aeroelastic effects. 
Comparative results derived from the present method, using two such radically different theories as 

the slender-wing and piston theories, could provide valuable pointers in this direction. 

One of the two main aims of the work described in this part of the report was therefore to repeat 
a selection of the calculations made for Part I, using piston theory instead of slender-wing theory, 
and to make a critical comparison of the two sets of results. This necessitated reprogramming the 
sequence of computations detailed in Section 3 of Part I and advantage was taken of this fact to 
implement a suggestion made in the concluding Section 6 of that Part, namely that the work be 
extended into the field of Loading Actions. The computer programme is readily adapted to yield the 
longitudinal distributions of shear force and bending moment for the flexible aircraft in quasi-steady 
symmetric manoeuvres, in addition to all the previously obtained output quantities, such as the 
elastic camber shape, the angle of attack and elevon deflection for trimmed level flight, and the 
incremental angle of attack and elevon deflection in pull-ups. The derivation and interpretation of 
comparative estimates of these loading actions quantities for the flexible and (hypothetical) rigid 
aircraft thus constituted a second main aim for the work described in this Part. 

Section 2 is devoted to the mathematical theory upon which the investigation has been based. 
Apart from the portion dealing with the derivation of the shear and bending-moment distributions, 
this was fully developed in Part I, but to make the present Part reasonably self-contained an outline 
of the complete method is included here. 

BAC-Sud calculations for the 'Concord' have shown, for instance, that because of spanwise deformation 
of the wing, the relative effectiveness of the elevons (i.e. effectiveness on flexible aircraft/effectiveness on rigid 
aircraft) depends very much on their spanwise location. 
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Section 3 gives details of the numerical work, results of which are presented and discussed under 
two headings, relating respectively to the two main aims of the investigation, specified above. 

Section 4 gives a more general discussion of this later phase of the work begun in Part I, and seeks 
to draw final conclusions from the work as a whole. 

Acknowledgement. 

The author is indebted to Miss S. France, who drafted the 'Mercury' computer programmes 
used in this investigation, and to Mr. D. J. Eckford who helped her to perfect them and to make 
the 'production runs'. 

2. Mathematical Theory. 

2.1. General. 

The general mathematical theory underlying the calculations of both parts of the report was fully 

developed in Part I. For the convenience of the general reader, the main steps in the analysis are 

indicated below by quoting the essential equations from Part I, to which, however, the reader who 

is interested in detailed derivations should refer. The recapitulation of earlier equations is followed 
by the development of some additional analysis relating to the calculation of the 'loading actions' 

quantities considered in the present work. 

2.2. Recapitulation of Equations fi'om Part I. 

2.2.1. Basic assumptions.--An aircraft of the configuration illustrated in Fig. 1 is con- 
sidered in steady manoeuvring flight, (initiated from trimmed level flight at speed V and lift 
coefficient CLt ) with incremental normal acceleration rig. 

Structurally, the aircraft is assumed to behave as a beam of varying cross-section, subject only to 
longitudinal bending; the distributions of weight and bending rigidity along the beam are denoted 
by W(~) and B(~) = EI(~), respectively. 

Aerodynamically, it is assumed that the lift per unit length at station ~ may be expressed as 

L(~) = Ql{4d(~ ) + %'40(~) + 0G(~) + ~(~) + ~G(~)}, (1) 

corresponding to a distribution of effective local angle of attack ~(~) given by 

= + % ' +  + ( 2 )  

together with a control deflection ~7. Here ~d(~) denotes the angle of attack distribution corresponding 
to the 'design C L lift distribution', and %' is the 'additional angle of attack'; 

= ( 3 )  

is the effective camber distribution due to the non-dimensionalised pitching velocity ~ = ql/V, 
which is related to n by 

n - 2tz with tz - gpSl '  (4) 

W = l W(~)d~ being the total weight of the aircraft, S its gross plan area and p the air density; 
0 

%(~) is the distribution of elastic camber. 
In equation (1) Q = ½p V z is the kinetic pressure and the ~b(~) are all non-dimensional lift functions, 

which may in general depend on Mack number. For numerical work, 4a(~), q6o(~) and ~(~) have 
been prescribed on a semi-empirical basis, while the general theory of Part I has been developed for 
cases where ~q(~) and q~(~) are in accordance with either slender-wing theory or piston theory. 
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2.2.2. Equations of equilibrium for steady symmetric f l ight.--For steady flight at fixed 
values of Q, M and n, the (deformed) configuration of the aircraft relative to the airstream, and hence 
the aerodynamic loading, is determined by three quantities--the 'additional angle of attack' a0', the 
control deflection ~/ and the distribution of elastic camber %(~). Three equations are available to 
determine these quantities, namely the two ordinary equations expressing the overall equilibrium 
of forces and moments acting on the aircraft, and the differential equation expressing the aeroelastic 
equilibrium of the beam representing the aircraft; with the last equation must be associated the 
boundary conditions appropriate to the 'free-free' condition of the beam. 

The conditions of overall equilibrium are expressed in coefficient form as 

e L  = Q S  - s ¢~(~)d~ + %' o ¢o(~)d~ + ~ o G(~)d~ + 

+ o¢~(~)d~+ '  oG(~)d~ - Q s  
(5) 

l {f I f fl l 
f f } + o ¢o(~)~:d~ + ,  o G(~)~:d~ = 0. 

The differential equation of the deflected beam under the total chordwise loading per unit length 

~qa(~) where 
~(~)  = L(~) - ( n +  1 )W(~)  (6) 

is developed in Part I, with the assumption ¢~(~) = ¢{%(~), ~}, as 

d~ { B ( ~ ) ~  } +  Ql~4 {%(~), ~) 

= ( n +  1) /~W(~)  - Ql4{¢a(~) + %'4o(~) + 0¢q(~) + ~7¢~(~)} (7) 
with boundary conditions 

= = o ( s )  
d~l~=0 [_ dr2 l~=0 

and 

f l %(~)d~ = (9) 0. 
0 

The solution of (7) is expressible in the form 

5 

%(~) = t: %r(~) = (n+ 1) ~ -  ~%~) (10) 
3%(~) 3%(~) ( 3%(~) 

+ %~(~) + %' a-L~0, + O ~ + ~ 

where 0%(~)/3n, %~z(~), 3%(~)/3%', 0%(~)/~ and 3%(~)/3~1 are the solutions of (7) with the right- 
hand side put equal to 13W(~), - Ql4¢d(~), - Ql4¢o(~), - Q/4¢q(~) and - Ql4¢~(~) respectively. 
The corresponding lift function can then be written 

Ce(~) = (n+ 1) 3¢~(~) , aG(f) + O 0G!f) 0G(~) (11) 
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This form of solution permits equations (5) to be re-expressed in terms of 'modified' derivatives* 
of C L and C m with respect to %', 7, q and n; regarded as simultaneous equations for the deter- 
mination of the unknowns %' and ~, equations (5) finally appear in the form 

aG aG } 0%' %' + - ~  " = (n+ 1)eL, -- C~o _ -~-~3CL 0 -- --ffd-nOCL (n+ 1) (12) 

OC~ aCm 3C~ acre (n+ 1) a%' %' + G-~ ~ = - Go - ~-0 0 - 

where expressions for the 'modified' coefficients and partial derivatives, in terms of the various 
'rigid body' lift functions ~b(~) and the generalised 'elastic' lift function 6e(~) are given in equations 
(41) to (43) of Part I. The particular forms which these expressions assume when ~&(~) is appropriate 
to slender-wing theory and piston theory respectively, are given in Appendix I of Part I. 

2.2.3. Formal sohttions for trimmed level flight and for the steady pull-up.--For t r immed 
level flight (n = ~ = 0) the formal solution of the equations of equilibrium is given in Part I as 

0%(~) (13) a%(;) a%(;) + ~ _  
~'(~) = %~(~) + T + % / - a ~ o  - - r -  a~ 

with 

%t = , ~ = ; ( 1 4 )  

3Urn (1 _ K"v ~ OC~ ( 1 _  Km 1 
a%' K~ / 3V K~n~/ 

where Km, Km~ , Ht, Hlv are functions of the 'modified' derivatives, defined in equations (47) and 
(48) of Part I. 

For a steady pull-up, incremental solutions per g are expressed as 

&o(~) 3%(~) &o' 3%(~) CL, 3%(~) 
dn - On + dn a%' + 2/, 3~ (15) 

with 
d%' CLtHm, 1 d~ 1 

dn aC,~ (1 _ £m,,i dn 
3%' K m / 

where H,~ and Hm~ are defined in equations (52) of Part I. 

dn 0%(;) 
+ d n  0,7 

CLtHm 
; (16) 

2.2.4. Treatment of the differential equation for particular forms of the function ~ {%(s~), se}. - 
For the numerical work described in Part I ,  the function 6 {%(~), ~} was given the form appropriate 
to slender-wing theory, and Sections 2.5.2 and 2.5.3 of that Part deal fully with the solution of the 
differential equation (7) in that case. The work described in the present Part has been principally 
concerned with the case where 6,(~) = ${%(~), ~} and also Se(~) have the forms appropriate to 
piston theory. The  analysis for this case is also developed in Part I (Appendix I) from which the 
following equations are quoted: 

(17) 

G(~) = 33 t sT 

* That is, derivatives modified to incorporate the effects of aeroelasticity on a quasi-static basis. 
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With these expressions for ¢~(~) and Cq(~), the differential equation (7) is manipulated to the 
form (in which D =- didO): 

{D ~ + ~bl(~)D ~ + Ce(~:)D + ¢~(~:, Q)}%(~:) 

= (n+ 1)tF~(~) + ~ ( ~ ,  Q) + % ' ~ ( $ ,  Q) + O~( f ,  Q) + vtFa(~, Q). (18) 

The solution of (18) is expressible in the form (10) where Oc%(~)/On, %a(~), ~%(~)/~%', ~%(~)/Oq and 
d%(~)/d~ are the respective solutions of 

{D a + ¢~(~)D e + ¢2(~)D + ~ba(~, Q)}%(~) = 'F~(f, Q), , (19.r) 

r = l , . . . 5  
where 

¢1(~)_  _2 d~(~).__ 
B(~) d~ 

¢~(~' Q) = M B(~) O~ , s:~ , '  

and the forcing functions/F~(~, Q) are given by 

, r l ( ~ ) -  w ( ~ )  , 
B( ~) Q~l 

,~(~, Q) Q 4~(~). 

~(~ ,  Q) _ Q 40(~). 
Q~ ~(~) ' 

~r~(~, Q) = - ,r~(~, Q) ( ~ -  ~); 

%(~, Q) = _ Q 4g~). 

9o/~(~) 
/~(~) is the non-dimensional stiffness parameter defined by 

~(~) _ B(~:) 
Q ol ~ ' 

1 d~B(~). ) 
¢2(~) - ~(~) d~ 2 , (20) 

where Qo is the kinetic pressure in the design cruisiI~g condition. 
In each case the equation (19.r) is to be solved with the boundary conditions (8) and (9). 

(21) 

(22) 

2.3. Extension of Analysis to Include the Evaluation of the Shear Force and Bending-Moment 

DistribUtions. 

2.3.1. Basic formulae . - - I f  J~(x'), 5¢(x ') denote the bending moment and shear at 
distance x' = ~'l from the nose of the aircraft and if z,'(~') = ~,'(~')l is the normal displacement of 
the neutral axis from the centre-section chord at station ~', (~  ~) due to elastic camber, then since 
%(~) = - dz~'(~)/dx' ~ - dz~'(~)/dxand d/dx = (1/l)d/d~, ~ ( x )  ~ - B(x)d~z~'/dx 2 = {B(x)/l}d%/d~ 
or, non-dimensionalising by dividing through by Qjs ,  

./z~(~) ~Z(x) d% 
- Q~l. - 9(~:) d e  (23) 
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Now 

o r  

: ( ~ )  _ d~(~)  ~ d { d% t 
d~ - l d~ Qd"~(~) d~ J 

{ d% d~(~) d% t 
= Qd~ ~(~) -d~  + de d ~  

5:,(~) _ 5:(x) d~% d/~(E) d% (24) 
Qd ~ - B(~) -d~  + d ~  d~" 

Note on sign conventions. 

With the geometrical notation as given in Fig. 1, and the differential equation for the deflected 
beam as given in equation (14) of Part I (leading to equation (7) of the present Part), the sign 
conventions for 5:(~) and ~d(~) consistent with equations (23) and (24) are that 5~(~0) is positive if 
the resultant of the forces between stations ~ = 0 and ~ = ~0 is downwards and that ~{(~o) is positive 
if the resultant moment at ~ = ~o, of the loads acting between ~ = 0 and ~ = ~o, is anticlockwise. 

2.3.2. Bending moment and shear force in trimmed level flight.--Corresponding to the five 

'elementary' elastic camber distributions derived by solution of the equations (19.r), r = 1, . . . 5, 
there will be five pairs of 'elementary' bending moment and shear force distributions ~r*(~),  
5:~*(~), calculated in accordance with equations (23) and (24). The resultant bending-moment and 
shear-force distributions for trimmed level flight, ":/t*(~) and 5"t*(~ ), corresponding to the resultant 
elastic camber distribution %t(~) given by equation (13), will be obtained as 

(25) 
~ : ( ~ )  = ~ , ~ ( ~ )  + 5G*(~) + % , ' ~ ( ~ )  + v Y d ( ~ ) .  

2.3.3. Incremental bending moment and shear force in the steady pull-up.--The total incre- 
mental bending moment and shear force per g in the pull-up, d~/~(~)/dn and dS:~(~)/d~?, corres- 
ponding to the incremental elastic camber distribution d%(~)/d~ given by equation (15), will be 

given by 
d~O t d ~ ( ~ )  _ ~ ( ~ )  + ~: (~ )  

dn 

d% ' dS:~.(~) 5G,(~) + ~:(~) 
dn - 

d~ 
+ 

dv 
CL, 5: : (~)  + ~d(~) -  

(26) 

2.3.4. Resultant bending-moment and shear-force distributions in pull-ups.--For a pull-up 
under total load factor ~ = 1 + n, from trimmed level flight, the quasi-steady bending-moment and 

shear-force distributions are given by 

~ ( ~ )  = ~ , ~ ( ~ )  + n - - -  
dn (27) 

d ~ ( ~ ) .  
~ ( ~ )  = ~,~(~) + n d ~  

2.3.5. A note on boundary conditions.--When each of the equations (19.r) is solved with 
boundary conditions (8) and (9), the beam is in effect being considered with its forward end free, 
and subject to a distributed loading which is not self-equilibrating. Accordingly, while/eZra(0) and 
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5°r*(0) will be zero, (r = 1, . . . 5) ~ * ( 1 )  and 5P~*(1) will not in general vanish so that, in each 
case, application of a force and moment at the trailing edge must be postulated in order to maintain 
the beam in equilibrium. However, the resultant distributions given by equations (25) and (26) 
correspond (nominally) to equilibrium states of the aircraft in which the distributed loadings 
(aerodynamic + inertia) are self-equilibrating so that J{~*(1), 5°?(1), dJg*(1)/dn and dSPe(1)/dn 
should all be zero, consistent with the absence of constraint at the trailing edge. 

The values of %[ and ~Tt for substitution in equations (25), and those of dao'/dn and &7/dn for 
substitution in equations (26), may be obtained from equations (14) and (15) respectively. These 
equations, it may be recalled, were derived from the equations of overall equilibrium, expressed in 
terms of 'modified' derivatives of C L and C~ {equations (12)}. Now in numerical applications it has 
been found that this procedure leads to residual values of the resultant bending moment and shear at 
the trailing edge {i.e. ~¢/t*(1) etc.} which are not always negligible in relation to the maximum values 
occurring over the length of the beam. This reflects the fact that tile relatively small resultant loading 
actions quantities are evaluated, through equations (25) and (26), as the algebraic sums of terms of 
opposite signs which, individually, are much larger than their sums. The combination of the 
relatively small errors occurring in the calculated values of component distributions may result in a 

relatively much larger overall error. 
To avoid producing bending-moment and shear-force distribution diagrams which manifestly 

fail to satisfy the end conditions for a 'free-free' beam, the values of %1', ~Tt, d%'/dn and d~/dn for 
substitution in equations (25) and (26) may be chosen so as to satisfy directly the requirement of 
zero bending moment and shear force at the free trailing edge. Thus, equating the right-hand sides 
of equations (25), with ~ = 1, to zero and solving the resulting equations for a0t' and ~t yields 

~/~5"(1) {~¢~1"(1) -t- ~2" (1 )} -  ~9°5*(1) {J///l*(1) + J[~*(1)) 
%~ = - 5 ~ ( 1 ) ~ ( 1 )  - 5a~(1)~gs(1) 

and 
5P3*(1)fd{l*(1) + J2f~*(1)} - J[3"(1){5~*(1) + 5P~*(1)} 

~/, = 5pj~(1)d//3.(1) - 5ps*(1)jds*(l ) 

Similarly, from equations (26), when ~ = 1, 

d%' d/5,(1 ) {5o ,(1) + ~-~Cz~ 5p4.(1)} - 5P5"(1) {J[~*(1) + -~ff///4"(1) } 

dn 5P6*(l)d///3*(1)- 5~3"(I)~////5"(I) 

CLt 5p4,(1)} Sq*(1) + 

dn 5as*(1)J/a*(1)- 5a3"(1)~(5~(1) 

(2s) 

(29) 

2.3.6. Distributions of bending moment and shear force for the rigid aircraft.--The distri- 
butions of bending moment and shear force for the (hypothetical) rigid aircraft may be obtained by 
direct integration of the chordwise loading. Thus for trimmed level flight, (having regard to the sign 

conventions defined in Section 2.3.1) 

= - 
0 

f~ f~l 0 0 

(30) 
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where the non-dimensional load per unit length for the rigid aircraft in trimmed level flight, 
[~te(~)]i~ = (1/Q J)[~t(~)]R is readily deduced from equations (6) and (1) as 

Q 
= + + (31) ~ Q j "  

Similarly, for the steady pull-up, 

( 
dn ]i~ Jo k dn JR 

(32) 
1 

L 

where the non-dimensional incremental loading is given by 

The values of {%/}R, {~?~}R in (31) and of {d%'/dn}n and {dn/dn}R in (33) could be obtained from 
equations (14) and (15) respectively, using values of the various derivatives appropriate to the rigid 
aircraft. However, since the inherent inaccuracies of the numerical processes may lead to residual 
bending moments and shear forces at the trailing edge, it is again preferable to evaluate the angles 
of attack and control deflections directly from the conditions of zero bending moment and shear 
force at the trailing edge. Thus, for example, if the integrations of [~°te(~)] R {equation (31)} involved 
in equations (30) are performed term by term, [~te(1)]R and [J/t~(1)]i~ are obtained as expressions 
involving the unknown {%/}R and 0?~}n ; equating these to zero provides a pair of simultaneous 
equations for the determination of the unknowns. 

3. Numerical Application. 
3.1. GeneraI Aims. 

The numerical work undertaken in connection with the present Part of the report had two principal 
aims: 

(1) to assess the extent to which the results of calculations of the effects of longitudinal elastic 
camber, by the general method developed in Part I, would be influenced by the aerodynamic 
assumptions involved in the assessment of the incremental loading due to elastic camber, and 

(2) to obtain an idea of the order of magnitude of the changes in longitudinal bending-moment 
and shear-force distributions brought about by elastic camber. 

For the accomplishment of these aims, further calculations have been made for the slender- 
aircraft configuration studied in Part I, to which the reader is referred for full details regarding 
aerodynamic data and assumptions, and the specification of representative weight and stiffness 
distributions. For convenience, some of the more essential data are reproduced here. 

3.2. Aerodynamic Design Data. 

The planform of the selected configuration is illustrated, roughly to scale, in Fig. 1. The design 
cruising condition for the aircraft (mid-cruise) is specified as: 

Mach number M = 2.2, at height 63 600 feet, with weight W = 271 111 lb and c.g. position 
= 0. 6475; the lift coefficient in this condition is CLc = 0- 1 and the kinetic pressure Qc = 425.3 

lb/ft 2. 
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The lift distribution functions, ~a(~) for the design C 5 ( = 0" 05) and ~0(~) for additional angle of 
attack, are shown in Figs. 2 and 3 respectively, while the lift function ~,~(~), corresponding to control 
deflection ~ at supersonic Mach numbers (to which the investigation has been restricted) is defined as 

~b~(~:) = O; 0 <~ ~ ~< 0.92 

1 (34) 
q~(~:) = ~ / ( M  2 -  1)'  O. 92 ~< ~: ~< 1. 

3.3. Weight and Stiffness Distributions. 

All of the calculations in the present series have been made for the weight distribution illustrated 
in Fig. 4, which is appropriate to the mid-cruise condition defined above. Calculations which were 
made in the earlier inyestigation, reported in Part I, for two otherweight  distributions, indicated 
that practicable weight and c.g. vari'ations should have relatively little influence on the character and 
magnitude of the aeroelastic effects under consideration. 

Of the various stiffness distributions studied in Part I (Section 4.2.3), three have been considered 
in the present investigation, namely the 'basic distribution', which is thought to approximate most 
closely to what would actually be required for a supersonic transport aircraft of the type considered, 
and two distributions of reduced stiffness. These are illustrated in Fig. 5. 

3.4. "The Calculations Performed. 
As in Part I, calculations have been made for tile fixed Mach number of 2.2, corresponding to the 

'cruise-climb' phase of the fligl~t plan envisaged for this type of aircraft. A range of values of kinetic 
pressure Q, corresponding to flight at M = 2-2 at various altitudes, has again been considered. No 
account has been taken of variations, along the flight profile, of the weight, Which has been kept 
fixed at the value appropriate to mid-cruise. 

The sequence of computations required for the flexible aircraft, with a given stiffness distribution, 
at each value of Q is as follows: 

(i) Determination of Ose(~)/On, %a(~), 0%(~)/0%', Oc~,(~)/OO and 0%(~)/~ 7 as solutions of the 
differential equations (19.r) with boundary conditions (8) and (9). The  corresponding displacements 
O~e'(~)/On, ~ea'(~) etc. and the 'elementary' bending-moment and shear distributions Jdr*(~ ) and 
~9°r*(~) have also to be determined. .. 

(ii) Evaluation of Cry0 and Cm0 and the partial derivatives of Cr~ and U m with respect to %, 7, 
and.n from equations (79) to (81) of Appendix I to Part I. 

(iii)' Evaluation of Km, Ic2m~, H~, Ht ~ , H m, H~,~,~ from equations (47), (48) and (52) of Part I, which 
define these quantities as functions of the ~modified' derivatives evaluated in the preceding stage Of 
the calculations. 

(iv) Evaluation of (a i the additional angle of 'attack Sot' and control deflection ~t to trim, f rom 
equations (14), and (b) the additional angle of attack and incremental control deflection per g (d%'/dn 
and d~?/dn respectively) from equations (16). 

(v) Evaluation of the resultant elastic camber distributions %t(~) and d%(~)/dn from equations 
(13) and (14) respectively, and of the corresponding displacement distributions ~a'(~) and d~e'/dn 
from similar equations. 
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(vi) Evaluation of the resultant bending-moment and shear-force distributions for trimmed level 

flight, ~¢d,e(~) and ~9°~(~), from equations (25) and of the incremental distributions per g in the 
pull-up, dd~e(~)/dn and dSC~(~)/dn, from equations (26). 

(vii) Recalculation of %~, ~t from equations (28) and of (d%'/dn)dn/dn from equations (29), 

followed by the repetition of steps (v) and (vi), to obtain solutions satisfying exactly the conditions 
of vanishing bending moment and shear force at the trailing edge. 

(viii) Evaluation of the resultant bending-moment and shear-force distributions in pull-ups under 
total load factor ~ = 1 + n, for various n, using equations (27) in conjunction with the results of 
step (vii). 

For the rigid aircraft, the distributions of bending moment and shear force, under the same flight 
conditions as considered for the flexible aircraft in (viii) above, are required and may be obtained 
by the direct integration procedures described in Section 2.3.6 followed by the combination of the 
trim and incremental solutions in accordance with equations (27). 

3.5. Programming of Computations for Digital Computer. 
The sequence of calculations (i) to (vii) detailed above for the flexible aircraft was programmed 

for the 'Mercury' digital computer by Miss S. France. The programme was of the same general 
pattern as that developed for the numerical work of Part I (see Section 5.1 of that Part). Modifications 
were required to cover the substitution of piston-theory aerodynamics for slender-wing theory, and 

extensions were needed to provide for the calculation of bending-moment and shear-force distri- 
butions. Provision was made to deal with the singularities which occur in certain of the functions 
involved in the Mercury 'Intstep' routines when there are discontinuities in the stiffness distribution 
or its slope. (See Appendix II of Part I). 

In order to obtain comparative results using slender-wing theory, the original programme of 
Part I was revised and extended to bring it into line with the piston-theory programme. 

3.6. Presentation and Discussion of Results. 

3.6.1. General scope.--From the large volume of numerical results accumulated in the 
course of this investigation, a representative selection has been made and is presented in two groups 

of figures, 7 to 18 and 19 to 33, designed to permit the realisation of the two aims set out in 
Section 3.1. 

Figs. 7 to 18 serve principally to illustrate the effects of using piston theory in place of slender- 
wing theory for the estimation of loading due to elastic camber when assessing trim and manoeuvr- 
ability characteristics of the flexible slender aircraft. Some of these figures also serve the subsidiary 
purpose of indicating the order of magnitude of the differences arising in the results, according 
to whether ~0t', ~7,, d%'/dn and d~/dn are evaluated from 'modified derivative' calculations of 
overall equilibrium, or from direct application of the conditions of zero bending moment and shear 
force at the trailing edge. 

Figures !9  to 33 are relevant to the second aim of Section 3.1, with Figs. 25 to 33 illustrating the 
changes in the longitudinal bending-moment and shear-force distributions which result from elastic 
camber in various conditions of quasi-steady manoeuvring flight. Figs. 19 and 20 are included to 
indicate the order of magnitude of the residual shear forces and bending moments at the trailing 
edge, yielded by the 'modified derivative' calculations. Figs. 21 to 23 compare the deflections 
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computed, using piston theory and slender-wing theory, for the flight cases covered by Figs. 25 to 33. 
The additional angles of attack and elevon deflections required for these cases are shown in Fig. 24. 

3.6.2. Comparison of results obtained using the two different aerodynamic theories.--Before 

considering the results of the aeroelastic calculations, we may with advantage examine Fig. 6, in 
which the lift distributions predicted by slender-wing theory and piston theory respectively, for two 
modes of angle of attack, are compared. In the lower part of the figure, the lift function $(~) according 
to the two theories is shown for the constant angle of attack mode ~(~) = 1. Slender-wing theory 
predicts much less lift over the projecting fuselage portion of the planform than does piston theory 
while over most of the wing portion, the two theories give fairly similar results. Over the rearmost 
10% of the length, however, there is a rapidly increasing discrepancy between the two because, for 
a wing with streamwise tips, slender-wing theory predicts zero lift per unit length at the trailing 
edge whereas, according to piston theory the load is proportional to local span right up to the trailing 

edge. 
In the upper part of Fig. 6, the comparison is made for a sinusoidal mode of angle of attack which, 

as will be seen later, (e.g. Fig. 7) bears a rough resemblance to some of the computed elastic camber 
distributions ~. It will be observed that the estimates of 6(~) by the two theories are more widely 
dissimilar in this case than in that of constant angle of attack, and that again the discrepancy is 

greatest near the trailing edge. 
Thus, in going on to consider the comparative aeroelastic effects, we should bear in mind that the 

two aerodynamic theories which have been employed do, in fact, give estimates of the incremental 
loads due to elastic camber which are considerably different from one another. Unfortunately, it is 
not possible to say with certainty which theory provides the more accurate estimates of loading for 
the elastic camber modes corresponding to the various conditions of flight which have been con- 
sidered. It may be recalled that the lift distribution function 960(~) for additional angle of attack, 
shown in Fig. 3, was deduced semi-empirically (using experimental data to modify slender-wing- 
theory calculations). Comparison of the lower part of Fig. 6 with Fig. 3 suggests that, for the constant 
angle of attack mode, piston theory, although grossly overestimating the loading over the nose portion 
of the planform, provides a rather more accurate assessment than slender-wing theory elsewhere. 
This is particularly so towards the trailing edge, where the latter theory, contrary to experimental 
evidence, predicts zero load. Away from the trailing edge both theories appear to over-estimate the 
loading somewhat. Intuition might now suggest that, for camber modes resembling the sinusoidal 
mode illustrated in Fig. 6, piston theory would again provide the more reliable estimate of loading, 

but there is no firm evidence to support or to refute such a suggestion. 
Fig. 7, which relates to the aircraft with basic stiffness distribution in flight at the design cruising 

condition (Q -- 425.3 lb/ft 2) shows the distributions of elastic camber in trimmed level flight (%)1 
and the distributions of incremental elastic camber per g in the pull-up, d%/dn, as estimated using 
the two aerodynamic theories. Two sets of results are shown: (a) those derived when using the 
conditions of zero bending moment and shear at the trailing edge to determine the equilibrium 
angles of attack and elevon deflections; and (b) those derived when using the 'modified derivative' 
technique. It is seen that the choice of aerodynamic theory has negligible effect on the calculated 

e Such a camber distribution should, in fact, satisfy boundary conditions (8) and (9) and also [d%/d~]~= 1 = 

[d2%/d~2]g= 1 = O, whereas the sinusoidal mode satisfies only [d%/d~]g= o = [d%/d~]g= 1 = J i  %(~)d~ = 
/ t l  

0. 
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distribtition of elastic camber in tr immed level flight. For the pUll-up, slender-wing theory predicts 
somewhat greater incremental camber than does piston theory, the difference being more pronounced 
towards the trailing edge than elsewhere. The method of satisfying the overall equilibrium conditions 
has very little effect on the results except in the vicinity of the trailing edge. 

Fig. 8 gives results for a kinetic pressure of 1063 lb/ft ~ which is well outside the range to be 
encountered in the normal flight plan of the type of aircraft considered. The elastic camber is, of 
course, generally larger than in the design cruisingc°ndit i°n,  and the discrepancy between the 
results yielded by the two aerodynamic theories is now much larger. 

Figs. 9 and 10 for Q = 425.3 lb/ft 2 and Fig. 11 for Q = 1063 lb/ft ~ give the elastic displacements 
of the neutral axis corresponding to the camber distributions of F~g s. 7 and 8 respectively , and as 
Would be expected, they confirm the fact that increasing kinetic pressure accentuates the differences 
between the results derived from piston theory and slender-wing theory. 

Figs. 12 and 13 compare estimates of the deflections, based on the two theories, for the three 
stiffness distributions considered in the present series of calculations. The  kinetic pressures of 
425.3 lb/ft ~ and 637.8 lb/ft 2 approl~riate to the two figures should both be attainable in the normal 
flight plan. It can be seen that, except for the ease of the deflections in tr immed level flight at the 
design condition, (~  = 425.3 lb/ft 2) reducing the stiffness tends to increase the differences between 
the results obtained with the two theories. 

• Figs. 14 and 16 (derived from Piston-theory calculations), show how variations in ~ and stiffness 
affect th.e 'additional' angle of attack and the elevon angle required in level flight, and the incremental 
angle O f attack and elevon angle per g require d in pull-ups. Figs. 15 and 17 compare the results for 
the basic stiffness distribution case with the corresponding results obtained using slender-wing 
theory. Probably the most significant fact to emerge from these figures is that, for a given stiffness, 
the ultimate divergence of the quantities %/ ,  d%'/dn, ~l and d~l/dn (corresponding to the condition 
of control reversal ) is predicted by piston theory to occur at a much higher value of ~ than that 
predicted by slender-wing theory. The fact tha t  % / a n d  d%'/dn., when estimated by piston theory, 
appear to diverge in directions opposite to those in which they respectively diverge when estimated 
by slender-wing theory, is mathematically interesting , but not of any profound significance as 
regards the prediction of the aircraft behaviour on its normal flight plan. At kinetic pressures 
associated with the latter (which are much lower than the pressure for control reversal) the angles 
of attack and elevon angles predicted by the two theories may differ appreciably, but they remain of 
comparable magnitudes. 

The results for incremental elevon angle per g are presented in alternative form in Fig. 18, which 
shows relative control effectiveness (defined as the ratio of the value of dn/d~ 1 for the flexible aircraft 
to the value for the rigid aircraft) plotted against Q. This brings out very clearly the large difference 
in the estimated kinetic pressure for control reversal, according to the two aerodynamic theories , 
While it also indicates that the respective values ,estimated for control effectiveness at values of 
attained on the flight envelope are not greatly at variance. Thus, while for the basic stiffness case, 
piston theory estimates a value of ~ at reversal which is more than twice that deduced from slender- 
wing theory, the values of the relative control effectiveness at the design cruising condition 
(Q -- 425.3 lb/ft ~) are given as 0. 836 and 0.743 respectively. 

3.6.3. The effects of elastic camber on the distributions of longitudinal bending moment and 
shear force.--Results illustrating how elastic camber affects the distributions of bending moment  
and shear force are presented in Figs. 25 to 33. 
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Reference was made in Section 2.3.5 to the fact that the original calculations of bending moment 
and Shear force, employing values of the equilibrium angle of attack and elevon deflection obtained 
by the 'modified derivative' approach, yielded non-zero (albeit small) residual moments and shears 
at the trailing edge. To avoid this apparent violation of the physical boundary conditions, the alter- 
native approach based on the direct satisfaction of the trailing-edge conditiofis was introduced and 
in general, the results presented in this Section have been obtained by that approach. 

However, Figs. 19 and 20 have been included to show the order "of magnitude of the discrepancies 
between results obtained by the two methods; at the same time they give some idea of the overall 
accilracy of the numerical procedures used in the method of this report. These figures give com- 
parative results of piston-theory calculations for the aircraft with basic stiffness distributions, at the 

design cruising condition. Fig. 19 gives the non-dimensional shear-force {~°le(~)} and bending- 
moment {ddte(~)} distributions in trimmed flight, while Fig. 20 gives the corresponding incremental 
quantities &9~e(~)/dn, dMYe(~)/dn in manoeuvring flight. It is seen that the residual bending moment 
at the trailing edge, according to the 'modified derivative' calculations, may be of the order of 15% 

of the maximum bending moment; residual shear forces are relatively smaller. 
The remaining figures of this Section relate to flight at three values of the kinetic pressure Q 

(283.5,425.3 and 637" 8 lb/ft 2) which, for a Mach number of 2.2, correspond to a height range from 
about 73 000 ft down to 55 000 ft; this probably covers the cruising phase of the flight plan for a 
typical supersonic (M = 2.2) transport aircraft. For each value of Q, calculations have been made 
for three values of the total load factor 17, viz. 1" 0, 2.5 'and - 0" 5, corresponding respectively to 
trimmed level flight and quasi-steady manoeuvres with incremental load factors + 1.5 and - 1.5. 
In each case, results for the bending-moment and shear-force distributions on the aircraft with basic 
stiffness distribution, according to the two aerodynamic theories, are compared with those for the 

(hypothetical) rigid aircraft. 
Figs. 21 to 23 compare the deflections computed by the slender-wing and piston theories for the 

various flight conditions represented by the different combinations of Q and 17. They illustrate once 
again that the ~discrepancies between results obtained using the two theories increase with 

increasing O. 
Fig.. 24 indicates that, in general, the elevon angles ~7 required in quasi-steady manoeuvres are 

affected by flexibility to a relatively greater extent than are the additional angles of attack %'. The 
effect on 7, in particular, becomes relatively larger as the kinetic pressure increases. The loading due 
to the increment of elevon deflection necessitated by flexibility is concentrated at the rear of the 
aircraft, whereas the equilibrating loadings, due to the increment of angle of attack and to the elastic 
camber, are distributed over its whole length. This fact would lead one to anticipate that the 
influence of flexibility on shear and betiding-moment distributions would be more pronounced over 
the rearward half of the aircraft than over the forward half. An examination of Figs. 25 to 33 confirms 
that, in general, this is so. Other conclusions to be drawn from these figures are that: 

(1) The inclusion of flexibility effects may result in considerable increases in the computed values 
of shear force and bending moment, particularly at the higher kinetic pressures. Thus, for the 
fi = 2.5, Q = 637- 8 lb/ftL Case, (Fig. 32) the value of the maximum bending moment, according to 
the slender-wing .theory calculations for the flexible' aircraft, is about 22~o greater than that 
calculated at the same chordwise station (~ ~ 0-6), neglecting aeroelastic effects. Further aft 
(~ ~ 0.9) the bending moment for the flexible aircraft exceeds that for the 'rigid' aircraft by as 

much as 75%. 
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It will be observed from Figs. 25 to 33 that the effect of flexibility is always to increase the 
magnitude of the bending moments. That this must be so may be deduced from physical considera- 
tions. It suffices to consider the positive load factor case. The net loading is upwards over the middle 
portion of the aircraft's length, where the aerodynamic lift exceeds the inertia loading, and pre- 
dominantly downwards forward and aft of this region. This results in a 'hogging' deflection of the 
'beam' (as illustrated by the curves of Figs. 21 to 23 for ~ = 1 and 2.5) so that local angles of attack 
are reduced over the forward part of the aircraft and increased towards the rear. Thus the centre of 
lift due to wing incidence is moved aft by flexibility; this necessitates an increase in upward elevon 
deflection to bring the overall centre of aerodynamic lift again into coincidence with the c.g. The 
reduction in lift over the forward part of the flexible aircraft, as compared with the rigid aircraft, 
results in an increase in the net downward loading which clearly leads to a higher peak bending 
moment near mid-length. 

(2) The differences in the values of ,/, %' and %(~) computed for a given flight condition of the 
flexible aircraft according to the two aerodynamic theories lead, as one might expect, to considerable 
differences in the shear and bending-moment distributions. In general, the slender-wing-theory 
calculations predict larger aeroelastic effects on these quantities than do the piston-theory calcula- 
tions. Thus, for example, in the case quoted in (1) above, the bending moment at ~ = 0.9, as 

predicted using piston theory, exceeds the value for the rigid aircraft by only 36~o as against the 75% 
given by the slender-wing calculations. Nevertheless, the general order of magnitude of the effects 
computed by either theory is such as to indicate that their neglect could lead to a substantial under- 
estimate of loading actions. 

4. General Discussion and Conclusions. 

The investigation of the effects of longitudinal elastic camber on the characteristics of slender 
aircraft in quasi-steady symmetrical flight, which was begun in Part I, has been taken a stage further 
by the present series of calculations. Part I established a method of computing the configuration 
{specified by %', ~ and %(~)} which is assumed by the deformable aircraft in such a condition of 
flight, and applied it to a possible layout for a supersonic (M = 2.2) transport aircraft, which 
embodied a low aspect ratio (A = 1. 107) delta wing with rounded (streamwise) tips, and a discrete 
body, protruding a relatively small distance ahead of the wing apex. For these calculations, which 
were restricted to the cruising Mach number of 2.2, associated with various kinetic pressures, 
(corresponding to different altitudes) and which covered variations in structural stiffness and weight 
distributions, the aerodynamic loading due to elastic camber {%(~)} was evaluated by slender-wing 
theory. Some of the calculations have now been repeated, using piston theory instead of slender-wing 
theory. Since these two theories predict considerably different load distributions for an arbitrary 
camber mode of a shape similar to that expected for the elastic camber, a comparison of the overall 
aeroelastic effects derived from the two series of calculations should give a good indication of the 
sensitivity of the method to changes in the aerodynamic assumptions. 

The results in fact indicate that, in general, the aeroelastic effects as given by the slender-wing- 
theory calculations are larger than those given by piston-theory calculations, and that the differences 
between the two sets of results increase as the kinetic pressure Q increases (for a given stiffness 
distribution) or as the stiffness is reduced at a given Q. This, of course, simply reflects the fact that 
the aeroelastic effects themselves become larger as kinetic pressure is increased or stiffness reduced, 
so that the proportion of the total loading (i.e. the part due to elastic camber) which is estimated by 
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different aerodynamic theories in the two cases increases. It has been noted that, as a consequence 
of the increasing discrepancy between results as Q increases, estimates of the kinetic pressure for 

hypothetical* control reversal differ by a factor of more than 2, whereas differences in the estimated 
relative control effectiveness, at values of Q attainable on the normal flight plan, are of a lower order, 
although by no means negligible. Thus, for example, the values of the relative effectiveness, as 
calculated by piston theory and slender-wing theory respectively, for the design cruising condition,' 
are 0. 836 and 0" 743. 

As a further extension of the  work of Part I, the longitudinal distributions of shear force and 
bending moment for the flexible aircraft have now been calculated (using the two aerodynamic 
theories) for various quasi-steady flight conditions, and compared with the corresponding distri- 
butions for the (hypothetical) rigid aircraft. The results indicate that inclusion of the aeroelastic 
effects may lead to considerable increases in these loading actions quantities at some longitudinal 
stations, particularly towards the rear of the aircraft, where the local concentration of loading due 

to the additional deflection of the elevons (necessitated by their loss of effectiveness) makes its 
presence felt. As was to be expected from the results for control effectiveness, slender-wing theory 
leads to estimates of the increases in bending moment and shear force due to aero-elasticity, which 

are in general larger than those derived using piston theory. 

Before one seeks to draw any further inferences from the above facts, it is pertinent to make the 

following observations: 

(a) As mentioned in the Introduction, evidence accruing since our investigation was originally 
launched has suggested that one underlying assumption of our method, namely that of 'beam-like' 
behaviour of the aircraft under load, is untenable for the 'Concord'-type slender-aircraft layout, 

which incorporates a discrete fuselage with a thin slender wing. It seems likely that for such 
configurations spanwise deformations of the wing (leading to appreciable washout towards the tip) 
will have a destabilising influence on the aircraft so that the true relative effectiveness of inboard 
elevons should be greater than would be estimated by our method. With outboard elevons, however, 

the elevon powert,  as well as the aircraft stability, would be considerably reduced by elastic washout 
of the wing, so that in this case the true relative elevon effectiveness could be greater or less than 
that estimated by our method; however, the relative effectiveness of outboard elevons should 
certainly be less than that of inboard elevons. [The foregoing reasoning is somewhat intuitive, but 
leads to conclusions which are consistent with the results of unpublished BAC-Sud calculations.] 

For a slender-aircraft configuration of the 'fully integrated' (all wing) type, which would have 
much greater spanwise stiffness than the 'Concord'-type layout, the assumption of 'beam-like' 
behaviour might still be reasonably valid, but a detailed structural analysis of an integrated design 
would be necessary to confirm this. 

(b) The longitudinal distributions of shear force and bending moment in quasi-steady symmetric 
manoeuvres were quantities readily calculable as by-products of the trim and manoeuvrability 
investigation, and as such, they have been used to demonstrate the likely order of magnitude of 

e 'hypothetical', because with deformations, angles of attack and control deflections tending to infinity as 
the critical pressure is approached, it would be impossible to fly the aircraft at the reversal speed. Assumptions 
of linear aerodynamic and structural behaviour made in the calculations would, of course, become untenable 
as the reversal condition was approached. 

]" As measured by the pitching moment about the c.g. produced by elevon deflection. 
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aeroelastic effects in the general field of loading actions problems for slender aircraft. A thorough 
exploration of that field requiresthe consideration of numerous loading cases; in particular, with 
reference to the symmetric flight cases, current airworthiness requirements would necessitate an 
investigation of dynamic response characteristics (including aeroelastic effects) to determine tt~e 
critical loadings occurring during the manoeuvres associated with various points on the flight 
envelopes. In view of what has been said in (a), it is clear that for an accurate assessment of the 
loading actions on a flexible slender aircraft of the 'Concord' type, it is essential to adopt a 'three- 
dimensional' approach to both the structural and the aerodynamic as'pects of the problem. 

(c) From Fig. 24, in conjunction with Figs. 7 and 8, it may be deduced that in the manoeuvre 
cases for which loading actions have been calculated, local angles of attack could be as large as 
+ 20 ° or - 10 °. At such angles of attack, aerodynamic characteristics are likely to be markedly 
non-linear with incidence. 

Beariiag the above points in mind, we may return to the main line of discussion and suggest the 
following as the principal conclusions to be drawn from the present investigation: 

(i) When the method of Part I is employed to estimate the effects of aeroelasticity upon the trim 
and manoeuvrability of a slender aircraft and upon the associated loading actions , the results may be 
significantly affected by the choice of theory whereby the incremental loading due to elastic camber 
is to be computed. Although, because of its simplifying assumptions, this particular method is 
thought to be inapplicable to a 'Concord'-type layout, it is evident that in any more sophisticated 
approach, allowing for the 'three-dimensional' structural and aerodynamic behaviour of such aircraft, 
results would again be fairly sensitive to changes in the assumptions regarding the incremental 
loading due to deformation. 

(ii) In view of (i), there is an urgent need to establish an experimentally substantiated method of 
specifying the loading on slender configurations due to arbitrary distributions of elastic war p 
(camber + twist) superposed on known initial incidence distributions. Since, for loading actions 
considerations at least, the resultant attitudes of interest may involve local a_ngles of attack up to 20 °, 
for which non-linear effects may be pronounced, the problem is a formidable one, for the treatment 
of which the existing literature may provide some clues, but hardly the complete soliltion. 

(iii) With the assumptions of Parts I and II of this report, it has been shown that aeroelasticity 
tends to increase the shear forces and bending moments along the length of the aircraft. The 
magnitude of the increases is such as to suggest tha t !t is essential to allow for aeroelastic effects when 
estimating loading actions on slender aircraft; their neglect could lead to serious underestimates. 

(iv) Unless there is a revival of interest in the integrated (all-wing) type of layout, in connection 
with which the method of the report was originally conceived, the practical possibilities of the 
method would appear to have been largely exhausted by the work described in the two parts. 
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SYMBOLS " 

Aspect ratio of gross planform 

= EI(~), bending rigidity at station ~: lb/ft 2 

_ B(~) non-dimensional stiffness parameter Qcl 

E 
~ s '  overall lift Coefficient 

'Modified' lift coefficient corresponding 
distribution aa(~): a function of Q 

to angle-of-attack 

Overall lift coefficient in tr immed level flight 

M 
- Q S I '  overall pitching-moment coefficient 

'Modified' pitching-moment coefficient corresponding 
angle-of-attack distribution aa(~): a function of 

d 
- d~'  differential operator 

Young's modulus: lb/ft e 

t o  

GraVitational acceleration: ft/sec 2 

Functions of the 'modified' aerodynamic derivatives, appearing 
in equations (14) and (16) 

Second moment of area of beam at station ~ (about neutral 
axis): ft 4 

Total aerodynamic lift per unit chord at station ~: lb/ft 

Total aerodynamic lift on aircraft: lb 

To ta l  transverse loading per unit length at station ~: (positive 
upwards): lb/ft 

c~(~:) non-dimensionalised loading per unit length Qd, 

Total length of aircraft at centreline: ft 

Length of body ahead of wing leading edge (see Fig. 1): ft 

Mach number 

Total aerodynamic moment about c.g.: lb. ft 
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yd~*(~), r = 1, 2 , . . .  5 

rig, ~g 

Q 

q 
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S 
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y*(~) - 

y ~ * ( ~ ) ,  ~ = 1, 2 , . . .  5 

s(~) 

s~ 

V 

W(~) 

~'(~) 

zb' (~) ,  zo'(~) 

~(~) 

~(~) 

SYMBOLS--continued 

Bending moment at station x: lb. ft 

~/~(x) non-dimensionalised bending moment 
Q~l 3 ' 

'Elementary' bending-moment distributions corresponding to 
elementary elastic-camber distributions derived from 
equations (19.r) 

Incremental ar, d total normal accelerations in pull-up 
manoeuvre 

½pV a, kinetic pressure: lb/ft 2 

Pitching velocity: rad/sec 

ql 
V'  non-dimensionalised pitching velocity 

Gross planform area: ft ~ 

Shear force at station x: lb 

~9°(x) non-dimensionalised shear force 
Q , l  ~ ' 

'Elementary' shear-force distributions corresponding to ele- 
mentary elastic-camber distributions derived from equations 
(19.r) 

Semi-span of planform at station ~: ft 

s(1), semi-span at trailing edge:.ft 

Speed of flight: ft/sec 

Weight per unit length at station ~: lb/ft 

l W(~)d~, total weight of aircraft: lb 
0 

Normal displacement of neutral axis from centre-section chord 
at station ~: ft 

Parts of z'(~) due to built-in camber and-elastic camber 
respectively 

Total effective local angle of attack at station 

Contribution to ~(~) from built-in camber relative to centre- 
section chord 
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(g o 
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~ 0 d  

~(¢) 

~'(~) 

~o'(~) 

~B 

P 

4~(¢), 4~(~), 4o(~), 4~(~), ~(~) 

,r~(~), ,r~(¢, Q), ,r~(~, Q), 
• r~(¢, Q), %(~, Q) 

~(~), +~(~), ~(~, Q) 

Suffic~ 

S Y M B O L S - - c o n t i n u e d  

Local angle of attack at station ~ for the undeformed wing at 
the design CL 

Contribution to c~(~) from elastic camber 

Angle of attack of centre-section chord 

= % - c~a, 'additional' angle of attack 

Angle of attack of the centre-section chord of the undeformed 
wing at the design CL 

Contribution to a(~) from induced camber due to pitching 
velocity 

Normal displacement of neutral axis from centre-section chord 
at station ~ (as fraction of l) positive upwards 

Part of ~'(~) due to elastic deformation 

Elevon deflection, positive downwards 

- g p S l '  aircraft relative density 

~', distances from the nose, measured as fractions of l, along the 
direction of flight and the centre-section chord line, 
respectively 

= IB/z  

Distance of c.g. from nose as fraction of l 

Air density: slugs/ft 3 

Non-dimensional lift func t ions- -see  equation (1) 

Forcing functions in the differential equations (19) {defined by 
equations (21)} 

Variable coefficients of the differential equations (19) {defined 
by equations (20)} 

Relating to design cruising condition 

Relating to design Cr~ lift distribution 

Relating to the (hypothetical) rigid aircraft 

Relating to tr immed level flight 
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