C.P. No. 388
$(16,452)$
$(17,563)$ (18.980)
A.R.C. Technical Report
C.P. No. 388
$(16,452)$ $(17,563)$ (18.980)
A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

SOME CONTRIBUTIONS TO JET-FLAP THEORY AND TO THE THEORY OF SOURCE-FLOW FROM AEROFOILS

By
Sq. Ldr. L. C. Woods, M.A., D. Phil., A.F.R.Ae.S., (New Zealand Scientific Defence Corps, seconded to the Aerodynamics Division of the N.P.L.)

- Some Contributions to Jet-Flap Theory and to the Theory of Source-Flow from Aerofozls
 - By -
 Sq. Idr. L. C. Woods ${ }^{+}$, M.A., D.Phil., A.r.R.Ae.S.,
 (New Zealand Scientıfic Derence Corps,
 seconded to the Aerodynamics Division of the N.P.L.)

January, 1953

SUMARARY

The paper presents a theoretical study of the thrust, lift and moment on an aerofoil due to a two-dimensional jet of air ejected from the trailing edge at an angle r to the main stream. It is rigorously proved that in subsonic compressible flow the ideal thrust of the jet (assumed not to mix with the main stream) is independent of the exit angle r. The theory for the laft and moment is developed for incompressible flow only. It $1 . s$ not rigorous, beang based on the assumption that jets of equal momentum and at equal values of τ have essentially the same influence on the main stream. The theory is in satisfactory agreement wath the few experimental values available.

Two appendices have been added to the paper; the first writton in April, 1955, was added to clarafy the paper and to answer some criticisms of its contents, while the second, dated November, 1956, was added to show the relation between the author's thoory and that given later by Sponce.

1. Introduction

Some recent reports ${ }^{1,2}$ have drawn attention to the fact that the carculation about an aerofoll can be controlled by ejecting air from the trailing odge at an angle to the main stream. Because of the asymmetry of the rosulting flow the jet induces a circulation about the aerofoxl, and hence there is an induced lift which is additional to the component arising from the momentum flux of the jet itself. To thas cxtcnt the jet is similar to a flap, although the term "Jot-flap" which has been applied to it 1 is perhaps too restricted, sance other types of control, o.g., a splat flap, or a spoller, may, in certain carcumstances, bo the morc appropriate analogy3.

Whale it it not surprising that the jet induces a lift - in gencral any asymmetric disturbance of the flow wall do this - it is remarkable that, providod the jet does not cause flow soparation from the aerofoll, and does not max with the main stream, the thrust on the aerofoll is andependent of T, the angle of ejection ${ }^{1}$. Thus, ideally, tho lift is obtainod wathout loss in forward thrust. The proof of this result given in Ref. 1 is bascd on D'Alembert's paradox, which is not appropriate to the open contour of the aerofoll plus jet, to which it is there applied. A rigorous proof of the independonce of the thrust and ejection angle for compressible flow is givon an tho next section.

In contrast to the paradoxical rosult on thrust, the induced lift, while casily prodicted qualatatively, is much more difficult to determino quantitatively. The theory presented in this paper is not rigorous but involves one or two assumptions which appear reasonable. Also the agrecment obtained with experiment provides further justification of these assumptions.

The/

[^0]The jet is assumed to be a distinct stream of fluid separated from tho main stream by two vortex sheets. The theory for the lift and moment is based on an equation for the flow about an aerofoil behind which extends a vortex shoet, given in Ref. 4, where it was developed for application to unsteady aerofoil theory. In the present applacation the two vortex sheets produced by the jet are replaced by a single vortex sheet, the strength of which is shown to be proportional to $\mathrm{CJ}_{\mathrm{J}} / \mathrm{R}$, where C_{J} is the jet momentum coefficient defined by equation (13) below, and R is the radius of curvature of the jet. Unfortunately the curvature cannot be determined until the vortex strength is known. This situation leads to an integral equation for the vortex strength, which, if CJ_{J} is small enough, can be solved by iteration. In the particular case when the velocity of the ejected flujd is the same as the man stream velocity, so that no vortex shcets arıse, the theory is exact. Such flow is termed "source-type" flow to distinguish it from the "jet-type" flow which occurs at highor ejection velocities. A fundamental assumption of the theory is that a jet of given momentum and ojection angle has essentially the same effect on the main stroam as a source-type flow having the same momentum and ejection angle.

The main conclusions are that (i) the lift coefficient $C I$ is proportional to $\tau \sqrt{\overline{C J}}$ and (11) that the lift due to the jet acts approximately at the mid-chord point. The conclusion that at constant T, CL is proportional to $\sqrt{C J}$, is in agreement with the few experimontal results so far avallable (see Figs. 7, 8 and 9), but the dependence of C_{L} on T has not yot been investigated experimentally. The author's theory is in good agreement with experiment for values of C_{J} loss than 0.5 with $T=31.4^{\circ}$ (the lowest value of τ yet investigatod). Howover as C_{J} and τ are increased there is an incroasing discrepancy between theory and experiment, probably mainly due to turbulent mixing in the wake (at high CJ) and loss of carculation due to some flow separation near the trailing edge (at high τ).

The law $C_{L} \propto \sqrt{C J}$ was also derived by an unconvincing argument in Ref. 1, based on an analogy with a mechanical flap. The reasoning is essentially as follows. The characteristics of a mechanical flap are functions of two independent variables, namely Ec, the flap chord, and T_{0} the flap deflection angle, while $1 t$ is reasonable to suppose that the jet-flap characteristics are likewase dependent on the two varlables, C_{J} and T. Hence any two relations of the form $F\left(E C, \tau_{0}\right)=f\left(C_{J}, \tau\right)$ may be taken as establishing "simılarıty" betweon jet and mechanical flaps. One of thoso relations is taken to be that the "lift" on the jet, $\mathrm{C}_{\mathrm{J}} \sin \tau$, is equal to the lift on the flap, which is a known function $F\left(E c, T_{0}\right)$. Thus

$$
\begin{equation*}
C_{J}=-\frac{1}{\sin \tau} F\left(\operatorname{Ec}, \tau_{0}\right) \tag{1}
\end{equation*}
$$

The other relation is that the ratio of the total lift to the lift on the flap in the mechanical systom, is equal to the ratio of the total lift to the "laft" in the jol on the jot-flap system, i.e., that

$$
\begin{equation*}
M_{F}\left(\text { Ec, } \tau_{0}\right)=M_{J}\left(C_{J}, \tau\right) \tag{2}
\end{equation*}
$$

in which A_{F} is a function known from classical aerofoil theory, while the form of \mathcal{M}_{J} Is unknowm. Eliminating Ec from (1) and (2), we obtain

$$
\begin{equation*}
M_{J}=M\left(C_{J}, \tau, \tau_{0}\right) \tag{3}
\end{equation*}
$$

where/
wherc $J l$ is a known function. Equation (3) is moroly another form of tho defination of "similaraty" given by (1) and (2), and is valuoloss unloss combined with somo theory or plausiblo hypothesis giving τ_{0} as a function of C_{J} and T. Such theory or hypothesis must tako into nccount the basis of equation (3), namely the dofination of similarity. In Ref. 1 T_{0} is tacitly assumed to depend on T only; $1 t$ is then statod that the ratio J / τ_{0} "at this stagc can only bo guossed at", which of course begs tho question completely. To given valuus of Ec and τ_{0} correspond fixed values of F and \mathcal{M}_{F}, and hence from (1) and (2), fixed valuos of $C_{J} \sin T$ and M_{J}. If the jet-flap theory were known it would then be possible to find fixed values of C_{J} and τ. However whthout this theory we can still say that given valuos of Ec and τ_{0} determane fixed values of C_{J} and T. It is not possible to $2 m p o s e ~ a ~ t h i r d ~$ relationshrp botwoen τ and τ_{0}. The argument given an Rof. 1 is not a theory, despite the fact that the final result is in fair agreoment with exporimont. (This criticism was subsequently modified; soe $\mathbf{g}_{2} .1$ of Appendix I.)

In view of the criticisms given above it is only falr to stalo that in the writer's opinion the authors responsible for Refs. 1, and 2 and other roports from the N.G.T.E., Pyestock, on the same topic have done most valuablo work in attracting attention to and elucidating the physical nrinciples of this neglected method of circulation control.
2. List of Synbols


```
a, ao incidonce and no-lift anglo rospectively
    \delta dofined by equation (51)
    \sigma definod by oquation (27)
    K defined by equation (30).
```


3. The Ideal Thrust of a Two-Dimensional Jet

We now calculate the thrust on an aerofoll due to a twodimensional jet leaving the trailing edge at some angle to the main stroam. Two principal assumptions are made, namely (1) that the jet causos no flow separation and consequent form drag, and (2) that the jet is an irrotational stroam soparated from the mann stream by two vortox sheets. The flow pattern is shown in Fig. 1. The fluld which is ejocted from the trallang odge $C C^{\prime}$ is assumed to onter the acrofoll at the leading edge BB'. (The case when there is a source within the aerofoll is deduced from the present case below.) The fluid which passes chrough the acrofonl can thus be regarded as flowng in an infinite channel. The mass flow in this channel is constant but the momontum flux is, in general, subject to a rapid increase soncwhere within the aerofoil. The velocity magnitude is continuous across $A_{\infty} B$ and $A_{\infty}^{\prime} B^{\prime}$, but in genoral discontinuous across $C D_{\infty}$ and $U^{\prime 1} D_{\infty}^{\prime}$ the pressure is continuous across each of those linos.

The forces acting on the acrofoll are obtained by integrating tho prossures acting on both the external and intcrmal surfaces of tho profile. In particular if T is the thrust force on the aerofoll (acting parallel to the undisturbed flow), it follows from Fig. 1 that,

$$
T=\left\{\int_{\mathrm{BFC}}-\int_{\mathrm{B}^{\prime} \mathrm{F}^{\prime} C^{\prime}}+\int_{\mathrm{B}^{\prime} \mathrm{E}^{\prime} C^{\prime}}-\int_{\mathrm{BEC}}\right\} \quad \mathrm{p} \sin \theta \mathrm{ds}, \quad \ldots(4)
$$

whoro G is the flow dircction on the profile moasured from the undisturbed flow direction, s is distance measurod on tho acrofoll surface, and p is the pressure.

From Euler's momentum theorem applied to the channel in Fig. 1,

whore H, h are the wadths of the jet at $A_{\infty} A_{\infty}^{\prime}$ and $D_{\infty} D_{\infty}^{\prime}$ rospoctuvoly, U, V are the jet velocitius at $A_{\infty} A_{\infty}^{\prime}$ and $D_{\infty}^{\infty} D D_{\infty}^{\prime}$ rospectively, and p_{∞}, P_{∞} are the fluid pressure and donsaty in the undisturbed flow.

It is now necessary to obtain a result corresponding to (5) for tho "channels" of infinite wlath which lie on each side of the jet. Consider the flow in the channel shown in Fig. 2. The wall $G_{\infty} F_{\infty}$ is stralght, so that the momentum theorom yiclds.
$-\int_{G_{\infty}^{15} \infty}$
$\left.p \sin \theta d s+H_{0}\left(p_{0}+\rho_{0} U_{0}^{B}\right)-H_{0}-b\right)\left(p_{1}+\rho_{1} U_{1}^{2}\right)=0$,
where the suffices 0 and 1 denote conditions at $G_{\infty} G_{\infty}^{\prime}$ and $F_{\infty} F_{\infty}^{\prime}$ rospectively, and $H_{0}, H_{0}-b$ are the corresponding channel widths. From continuity of mass

$$
\begin{equation*}
P_{0} H_{0} U_{0}=p_{1}\left(H_{0}-b\right) U_{1} . \tag{7}
\end{equation*}
$$

It is easily deducod from Bernoulli's theorom (cf. any account of linear perturbation theory) that
and

$$
p_{1}=\rho_{0}\left\{1-\mathbb{M}_{0}^{2} \delta\right\}+0\left(\delta^{2}\right),
$$

$$
p_{1}=p_{0}-\rho_{0} U_{0}^{2} \delta+0\left(\delta^{2}\right),
$$

whero δ is defined by

$$
U_{1}=U_{0}(1+\delta)
$$

and Mi_{0} is the Mach numbor at $G_{\infty}^{G}{ }_{\infty}^{\prime}$. Substitution of these expansions in (6) and (7) leads to

$$
\int_{G_{\infty}^{\prime} F^{\prime}} p \sin \theta d s=b p_{0}+o\left(\delta^{2}\right)
$$

If wo now let H_{0} tend to infinity, δ tenas to zoro, and

$$
\begin{equation*}
\int_{G_{\infty}^{\prime} F_{\infty}^{\prime}} p \sin \theta d s=b p_{0} \tag{8}
\end{equation*}
$$

Which gives the drag on a wall caused by the flow of an infinito stream past it. (Two obvious applications of thas result yields D'Alembert's Paradox for a closed body.)

Applyang (8) to the two regnons outside the jot shown in Fig. 1, we have by subtraction that
$\int_{A_{\infty} P E C D} p \sin \cap d s-\int_{A_{\infty}^{\prime} B^{\prime} E^{\prime} C^{\prime} D_{\infty}^{\prime}} p \sin \theta d s=p_{\infty}(h-H)$.
Subtracting equations (5) from (9), and making uso of tho continuity of the pressure across $A_{\infty} B, A_{\infty}^{\prime} B^{\prime}, C D{ }_{\infty}$ and $C^{\prime} D_{\infty}^{\prime}$, we find
$\left\{\int_{B E C}-\int_{B F C}+\int_{B^{\prime} F^{\prime} C^{\prime}}-\int_{B^{\prime} E^{\prime} C^{\prime}}\right\} p \sin 3 d s=\rho_{\infty}\left(H U^{2}-h V^{2}\right)$,
and hence from (4)

$$
\begin{equation*}
T=P_{\infty}\left(h V^{2}-H U^{2}\right) . \tag{10}
\end{equation*}
$$

The thrust is thus indopendent of the angle of ejection, T. From contanuity of mass $H U=h V$, so that equation (10) can be written in the form

$$
\begin{equation*}
C_{T}=C_{J}-2 C_{Q} \text {, } \tag{11}
\end{equation*}
$$

where C_{T}, C_{J} and C_{Q} are thrust, momentum and mass coefficients defined by

$$
\begin{align*}
& C_{T}=\frac{T}{\frac{1}{2} P_{\infty} U^{2}}, \tag{12}\\
& C_{J}=\frac{P_{\infty} h V^{2}}{\frac{1}{2} P_{\infty} C U U^{2}}=\frac{2 h V^{2}}{\mathrm{CU}^{2}}, \tag{13}\\
& C_{Q}=\frac{P_{\infty} h V}{P_{\infty} \mathrm{CU}}=\frac{\mathrm{hV}}{\mathrm{cU}},
\end{align*}
$$

c being the aerofoul chord.
Two spocial cases of (11) are of some intercst:-

1. Jet derived from a source within the aerofoll.

In thas case $H=0$ in (10), and (11) reduces to

$$
\begin{equation*}
C_{T}=C_{J}, \tag{15}
\end{equation*}
$$

a result farst given in Ref. 1.
2. Jet joming main stream smoothly so that no vortex sheets occur.

In this case the velocity of the jet is the same as that of the main stream; in particular $V=U$, so that from (13) and (14) $U_{J}=2 C_{Q}$. Equation (11) then yields $C_{T}=0$, whereas if the fluid comes from a source on or within tho aerofoil, from (15)

$$
\begin{equation*}
C_{T}=2 C_{Q} \tag{16}
\end{equation*}
$$

This last equation gives the thrust coefficient due to a source on an aerofoll. Similarly a sink on an acrofoil gives rise to a "sink-drag" of amount $2 \mathrm{C}_{Q}$, a result that at least for incompressible flow is quate well-known5.

It is important to distinguish between the character of the flows giving rise to (15) and (16). In both casos the flutd comes from a source whthin the aorofoll, put in the caso of tho jet it does not turn the corners at the end of the jet channcl exit. This casc ls shown in Fig. 3(a). The jet separates at points B and D and in general emerges at a different speed to the local flow, so that $B F_{\infty}$ and $D G_{\infty}$ are vortox sheets. When the thrust is gaven by (16), the flow whll appear as in Fig. $3(b)$, in which the streamlinos $\mathbb{H F}_{\infty}$ and $E G_{\infty}$ bounding the emitted fluid are not vortex shcets. Incidentally it has been assumed in Fig. $3(b)$ that the carculation is such to make the trailing edge E a stagnation point, but of course this affects the lift only. The position of the stagnation point H will be a function of C_{Q}.

As far as thrust is concerned the rosult for the "Jot-type" of flow (Fig. 3(a)+) can be dorived from the result (16) for the "sourcetype" of flow (Fig. 3(b)+) samply by replacing $2 C_{Q}$ by C_{I}. Later in the paper plausiblo rcasons aro givon for adopting the same procodure when calculating tho lift.

4. The Basce Transformations

In tho remainder of this paper we confinc our attention to incompressible flow, although the results obtained can be extended to subcritical subsonic flow by a fayrly obvious application of lincar perturbation thoory. Before calculating the laft acting on the profile duc to a jet-typo of flow, wo consider a nartzcular case of source-type flow. The solution for jet-type flow as then doduced from this case by roplacang $2 C_{Q}$ by C_{J}, and adding a further torn which arisos from the volocity distribution anduced on the profile by the vortex sheets bounding the jet. This additional term doos not, of course, ariso in the source-type of flow, and must be calculated separately. This $1 s$ discussed in more detall in Section 7.

The particular casc of source-type flow wo consider arises whon points H and E coincido with pounts B and E respectively in Fig. $3(b)$. The complete $z-p l a n c(z=x+2 y)$ is shown in Fig. 4 (a), in which the acrofoll is shown at the zero-lift position. The problom wall be solvod if the rolation betwoen the no-lift angle, \mathbf{c}_{0}, and C_{Q} can be determinod, for if the aerofoll is placed at an incidence α, from thin aerofozl theory the lift coofficient will be given by

$$
\begin{equation*}
C_{L}=2 \pi\left(a-a_{0}\right) \tag{17}
\end{equation*}
$$

This mothod assumes that both α and C_{Q} are small enough to pormit the linear superposition of their offects.

Let ϕ and ψ bo the equipotontial and stroam functions respectively, then the $w-p l a n c(w=\phi+i v)$ for the no-lift case is shown in Fig. $4(\mathrm{~b})$. Tho fluid issuing from the aerofoll is confined betwoen the streamlines $\psi=\mathbb{a n d} \psi=Q$, and the aerofoil is assumed to be thin so that its length in tho w-plane can be taken to be Uc. The orlgin of the w-plane has been selected to make $\phi=-\frac{1}{\mathrm{~L}} \mathrm{U}$ at the front stagnation poant and $\phi=\frac{1}{2} \mathrm{Uc}$ at tho point whore tho emitted fluid leaves the aoroforl.

The/

[^1]The $w-p l a n e$ is mapped into the upper half of the $t-p l a n e$ (Fig. $4_{4}(\mathrm{c})$) by

$$
\frac{d w}{d t}=A\left(t-\frac{t_{0}^{a}}{t}\right)
$$

where A is a constant and t_{0} is a roal constant. Thus

$$
\begin{equation*}
w=\frac{1}{2} A t^{3}-A t_{0}^{2} \log t+B+I C, \tag{18}
\end{equation*}
$$

where B and C arc real constants. Since $\psi=Q$ when $t>0$, and $\psi=0$ when $t<0$ on the real axis in the $t-p l a n e, ~ i t$ follows from (18) that $C=Q$, and $A=-Q / \pi t_{0}^{2}$. If tho origin of the $t-p l a n o$ is now solected so that $\phi=-\frac{1}{3} U c$ when $t= \pm 1$, and $\phi=$ when $t= \pm t_{0}$, the constants in (18) can be calculated. It is fourd that.

$$
\begin{equation*}
w=\frac{1-t^{2}}{1-t_{0}^{2}}\left(U c-\frac{Q}{\pi} \log t_{0}\right)+\frac{Q}{\pi} \log t+1 Q-\frac{1}{2} U c \tag{19}
\end{equation*}
$$

where Q and to are rolated by

$$
\begin{equation*}
\frac{1}{2 \pi}\left(\frac{Q}{U c}\right)=t_{0}^{2}\left(1-t_{O}^{2}+t_{O}^{2} \log t_{O}^{2}\right)={ }^{-1} \tag{20}
\end{equation*}
$$

The t-plane is mapped into, the ζ-plane show in Fig. 4(d) by

$$
\begin{equation*}
t=-\cosh \frac{2}{2} \zeta, \zeta=\eta+2 \gamma . \tag{21}
\end{equation*}
$$

The aorofoll surface is given by $\eta=0$, so that if $y=\pi+\delta$ at $t=t_{0}$ it follows from (21) that

$$
\begin{equation*}
t_{0}=\sin \frac{1}{2} \delta . \tag{22}
\end{equation*}
$$

It should bo noticed that in the ζ-plano the central stroamline of the fluid emorging from the acrofoll lies along $y=\pi$, while the streamlines $\psi=0$ and $\psi=Q$ lie on each side of $\gamma=\pi$. An oquation glving the valuos of $\log \mathrm{U} / \mathrm{q}+i \theta$, whore (q, θ) is tho vclocity voctor in polar-co-ordinates, at any point in the $\zeta-\mathrm{planc}$, in torms of the boundary conditions, θ given on $\eta=0$ (the aorofozl), and the jump in log U / Q (if any) given on $y=\pi$, has beon derived for application to unsteady acrofoil thcory in a previous report4. Its application to tho presont problom is gavon in the noxt section. In this application it is nocessary to know the value of η at $\phi=\frac{2}{3} \mathrm{Uc}$ on the stroamline $y=\pi$, that is at a point madway botween D and D^{\prime} of Fig. 4(a). If the value of η in question is σ, thon $\phi=\frac{1}{2} \mathrm{Uc}$ at $\zeta=\sigma+i \pi$, and (19) and (20) yield

$$
\mathrm{Uc} /
$$

$$
\mathrm{Uc}=\frac{1+\sinh ^{2} \frac{1}{2} \sigma}{1-\mathrm{t}_{0}^{2}}\left\{\begin{array}{c}
\mathrm{U}-\frac{Q}{\pi} \log \mathrm{t}_{0}
\end{array}\right\}+\frac{Q}{\pi} \log \left(-\sinh \frac{\sigma}{2}\right) . \quad \ldots(23)
$$

It 1s shown below that $\sinh ^{2}\left(\frac{2}{2} \sigma\right)=0\left(t_{0}^{2}\right)$; also from (19) $\frac{Q}{U c}=0\left(t_{0}^{2}\right)$. Hunco lgnorang torms $O\left(t_{0}^{1} \log t_{0}\right)$, wo duduce from (19) and (23) that

$$
1+\left(\frac{\sinh \frac{1}{2} \sigma}{t_{0}}\right)^{2}+\log \left(\frac{\sinh \frac{1}{3} \sigma}{t_{0}}\right)^{2}=0
$$

tho solution of which is

$$
\begin{equation*}
\sinh \frac{1}{2} \sigma=-0.528 t_{0} \tag{2,4}
\end{equation*}
$$

Now by dofinction Q is tho mass flow from the source, so that (cf. equation (14))

$$
\begin{equation*}
C_{Q}=\frac{Q}{U C} . \tag{25}
\end{equation*}
$$

Finally, by lgnoring socond-order torms, we havo from (20), (22), (24) and (25) that

$$
\begin{equation*}
\delta=\sqrt{\left(\frac{1}{-} \times 2 C_{Q}\right)}, \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\binom{\delta}{\bar{\sigma}}^{2} \doteqdot 3.58 \tag{27}
\end{equation*}
$$

5. The Thoory of Acrofulis Bohind which Extend Vortex Shcets

At this point it is conveniont to intorrupt tho calculation commenced above to givo an uutline of the thoory of acrofozls which have vortex sheots lying along their trailing-edgy streamlines. It includes ordinary acrofoll thoory as the spocial caso whon the strongth of the vortox shect vanishes.

The first stop in to transform the w-plane anto the ζ_{0}-plane as in tho provious soction. In the usual applications to aeroforl thoory there is no sourco or sink whthin the aerofoll, and (19) and (21) roduce to

$$
\begin{equation*}
w=-\frac{1}{2} U C \cosh \zeta . \tag{28}
\end{equation*}
$$

However, regardless of the form of the transformation by which the $\zeta-p l a n e$ is achieved, in this plane tho boundary conditions are comparatively simple, the aerofoll lying on $\eta \Rightarrow 0,0 \leqslant \gamma \leqslant 2 \pi$, and the vortex sheot on $\gamma=\pi,-\infty \leqslant \eta \leqslant 0$. It has beon shown that in thas plane 4
$f \equiv \log \frac{U}{q}+1 \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \theta\left(y^{*}\right) \cot \frac{1}{2}\left(y^{*}+1 \zeta\right) d y^{*}+\frac{1 \sinh \zeta}{2 \pi} \int_{-\infty}^{0} \frac{K(\eta) d \eta}{\cosh \eta+\cosh \zeta}$,
whero K is the Jump in $\log (U / q)$ across the vortex sheet, i.e.,

$$
\begin{equation*}
K=\left[\left.\log \frac{U}{q}\right|_{y=\pi+0} ^{y=\pi-0}=\left[\log \frac{q}{U}\right]_{y=\pi-0}^{y=\pi+0} .\right. \tag{30}
\end{equation*}
$$

With slight modifications and approximations this equation can be appliod to the jet-type of flow boing considored in this paper. Those arこ:-

1. If the jot is rolatively than, i.e., C_{Q} is small, then as far as its aerodynomic effocts on the aerofoll aro concerned it can be rogarded as a vortex shect lying on the streamlino $\gamma=\pi$ in $-\infty \leqslant \eta \leqslant \sigma, \eta=\sigma$ beang the pount on $\gamma=\pi$ where the jet leaves tho aerofoll and becomes free to assume a curved shapo.
2. The strength of the shoet (which to first order is diroctly proportional to K) is the algebraic sum of the strengths of the two vortox shoets which separate the jot from the man flow. A formula for K is deduced in the noxt section. For the sourco-type of flow discussed in the provious section, $K-0$.

$$
\text { Sinco } \lim q=U, \text { and } \ln \theta=0 \text {, it follows from (29) }
$$

$$
z=0 \quad z=0
$$

that $\lim f(z)=0$. Now $z \rightarrow \infty$ implios that $w \rightarrow \infty$, and honce from $z=0$
equations (19) and (21), that $\zeta \rightarrow-\infty$ therefore

$$
\begin{equation*}
\lim _{\zeta=-\infty} f(\zeta)=0 . \tag{31}
\end{equation*}
$$

For tho problom consldered in this paper (29) bocomes
$f=\frac{1}{2 \pi} \int_{0}^{2 \pi} \theta\left(y^{*}\right) \cot \frac{1}{2}\left(y^{*}+1 \zeta\right) d y^{*}+\frac{i \sinh \zeta}{2 \pi} \int_{-\infty}^{\sigma} \frac{K(\eta) d \eta}{\cosh \eta+\cosh \zeta},(32)$
where from (31), 0 and K must satisfy

$$
\begin{equation*}
\int_{0}^{2 \pi} \theta d y-\int_{-\infty}^{\sigma} K d \eta=0 \tag{33}
\end{equation*}
$$

Near $\zeta=-\infty$, equation (32) can bo oxpanded

$$
\left.\begin{array}{rl}
f= & -e^{1} e^{\zeta}\left(\int_{0}^{2 \pi} e^{-1 y} \theta \mathrm{~d} y\right.
\end{array}+\int_{-\infty}^{\sigma} \mathrm{K} \cosh \eta \mathrm{~d} \eta\right)+\frac{-e^{2 \zeta}\left(\int_{\pi}^{2 \pi} \mathrm{e}^{-21} y \text { } \theta d y\right.}{} \begin{aligned}
\left.-\int_{-\infty}^{\sigma} \mathrm{K} \cosh 2 \eta \mathrm{~d} \eta\right)+0(e 3 \zeta), & \ldots(34)
\end{aligned}
$$

while from (19) and (21)

$$
\begin{equation*}
e^{\zeta}=-\frac{U c}{4 w}\left(1+k+0\left(\frac{1}{-}+\frac{w^{2}}{4}\right)\right), \tag{35}
\end{equation*}
$$

whero k is a term of ordor $t_{0}^{2} \log t_{0}$. From the defination of f gaven in equation (29)

$$
\begin{equation*}
f=\log \frac{U e^{1 \theta}}{q}=\log \left(\frac{d z}{d w}\right) \tag{36}
\end{equation*}
$$

Therofore $1 f$

$$
\begin{equation*}
a_{12}=\frac{1}{\pi} \int_{0}^{2 \pi} 0^{-\ln \gamma} \theta d y-\frac{(-1)^{n}}{\pi} \int_{-\infty}^{\sigma} k \cosh n \eta d \eta, \tag{37}
\end{equation*}
$$

It follows from (34), (35) and (36) that
$\frac{d w}{d z}=U\left\{1+z\left(\frac{U c}{-}\right) a_{1}(1+k)-1\left(\frac{U c}{-}\right)^{2}(1+k)^{3}\left(a_{2}-\frac{1}{2} a_{1}^{2}\right)\right\}+0\left(\frac{1}{\frac{1}{3}}\right) \underset{\ldots(38)}{ }$

Wo havo derıved this oxpansion in order to calculate the forces and momont acting on the profile from Blasius' theorem, but before doing this wo must discuss tho possibility of a jump in prossure across the vortex sheet. There are two ways of approximating to the jet, which is a rogion bounded by two vortox sheots, across which tho prossure is continuous. Either the jet can be replacod by a thin shoot across whech both the pressure and velocity are discontinuous, (by removing tho fluid within tho jet), or by a single vortcx sheet, being the algobraic sum of the two separato shoots, across which the velocity alono is disconumuous. Either method can be adopted, and they lead essentially to the samo result, but the second method is adopted in this paper since it alono gives the corroct rosult when the velocity in the jet is reduced to the point whon source-type flow occurs.

If the lift, drag and moment (about tho origin in the $z-p l a n e$) are donoted by I, D and M respoctivcly, Blasius' theorem states that

$$
\begin{equation*}
D-I L=\frac{i}{2} \rho \int_{C}\left(\frac{d w}{d z}\right)^{2} d z, \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
M+I N=\frac{1}{2} \rho \int_{C} z\left(\frac{d w}{d z}\right)^{2} d z \tag{40}
\end{equation*}
$$

where N is a dumny symbol, and C is any contour onclosing both the aerofoil and vortex shect, the pressure being continuous across tho latter. Now sance I must vanish, the aorofoil bengg in the no-lift position, it follows from (37), (38) and (39) that $a_{1}=0$, i.0.,

$$
\begin{equation*}
\int_{0}^{2 \pi} r \cos y d y+\int_{-\infty}^{\sigma} K \cosh \eta d \eta=0 \tag{41}
\end{equation*}
$$

and

$$
D=-\frac{1}{2} \rho \mathrm{cU}^{2} \int_{0}^{2 \pi} \theta \sin y d y
$$

Hence

$$
\begin{equation*}
C_{D}=-\int_{0}^{2 \pi} \theta \sin y d y, \tag{42}
\end{equation*}
$$

C_{D} being the drag coefficient. From (37), (38), (40) and (41) it is found from the theorem on rosidues that

$$
\frac{M}{\frac{1}{2} \rho c^{2} y^{2}}=c_{m_{0}}=\frac{1}{4}\left(\int_{0}^{2 \pi} \theta \cos 2 y d y-\int_{-\infty}^{\sigma} K \cosh 2 \eta d \eta\right), \ldots(43)
$$

where a second-order torm depending on C_{Q} has boen noglocted. $C_{m o}$ is the moment coofficiont at zero lift and is therefore andependent of the origin of the z-plane. From than aerofoil theory the moment coefficient about the mad-chord point is

$$
\begin{equation*}
c_{m}=\frac{1}{4} C_{L}+C_{m_{0}} . \tag{44}
\end{equation*}
$$

It is convemient in the application of the theory to combine equations (33) and (41) an the form

$$
\int_{0}^{2 \pi} 0(\cos y-1) d y+\int_{-\infty}^{\sigma} k(\cosh \eta+1) d \eta=0, \quad \ldots(1, y)
$$

and simalarly

$$
\int_{0}^{2 \pi} \theta(\cos 2 y-1) d y-\int_{-\infty}^{\sigma} K(\cosh 2 \pi-1) d \eta=\tau_{m_{0}} \cdot \ldots(45)
$$

Two apocial cases of the theory are:-

1. Suarce-type of flow, in winch case $K=0$. Equations (45) and (46) becone

$$
\begin{align*}
& 0=\int_{0}^{2 \pi} \theta(\cos y-1) d y \tag{47}\\
& c_{m_{0}}=\frac{1}{4} \int_{0}^{2 \pi} \theta(\cos 2 y-1) d y, \tag{48}
\end{align*}
$$

while (42) is unchanged.
2. Flow about a clooed acrofoll, when $C_{Q}=0$. In thas cuse the drac must vausish, low., from (42)

$$
\int_{0}^{2 \pi} 0 \sin y d y=0,
$$

the other oquations romaining unohanged.

6. The Inft and Moment Duc to a Sourco-XPD of Flow

We now roturn to the particular problem discucsed in Section 4 , two oquations appropriate to which arc (47) and (48). The distriution of θ as a function of γ is shown in Fig. 5, which should be compared with Figs. $4(\mathrm{a})$ and $4(\mathrm{~d})$. In airiving at Fig. 5 wo have assumed the acrofoil to be essentially a flat plate at an anglo of incadence σ_{0}, with a parailol wall duct makng an angle $-\tau$ with the acrofoll chord taring the fluid from rithln the aerofoll to the tralling cdec. Of course exit ducts will not in practice bo as simple in shape as the one wo have assumed, but the principal reature of a duet as far as the extornal flow as concorned will be tho direction of the flow at its exit, and protalod the final suction as stralght and soveral times longer than it as wado it is difficult to mavine that our model wall introducc signifecent orrorc,

From cquation (47) and the aistribution of θ shown in Fig. 5 wo find that, ignoring terms $O\left(\delta^{3}\right)$,

$$
\alpha_{0}=-\frac{2 \pi \delta}{\pi} .
$$

Hence from (17) and (26) wo have that

$$
C_{L}=2 \pi \alpha+4 \tau \sqrt{\frac{2 C_{Q}}{\pi}} . \quad \cdots(1+9)
$$

Simulanly from (33) (in whych $K=0$) and (46) at follows that

$$
\mathrm{c}_{\mathrm{m}_{\mathrm{O}}}=-\tau \sqrt{\frac{2 \mathrm{C}_{Q}}{\pi}}
$$

and honce from (44) and (49)

$$
\begin{equation*}
C_{m}=\frac{\pi}{2}, \tag{50}
\end{equation*}
$$

Hence C_{m} is indopendent of C_{Q}, and the force due to the source-type strear leaving the aeroforl must act at the mid-chord point.

This now completos the theory of the source-typo flowt. The theory was dovelopod for two reasons. First and foremost it is a spucial casc of the more genoral jet-type flow, so the solution for this latter caso nust degenerato to the one found abovo when $V=U$, or from (13) and (4), when $C_{J}=2 C_{Q}$. Second, it is an exact solution as far as first-order torms are concornod - this is not necessarily true of the solution gavon below for the jet-type flow - and thereforo has an intrinsic valuo.

7. The Besic Assuriptions in the Theory for Jet-Type Flow

As in Section 3 it wall bo assumod that tho jet does not max whth the nain flow, and that Bornoulla's thoorom applles in tho jot. Thon, since the avorage pressure takon across the jot will not vary to any deproe Wath distenco along the jet (oxcept possibly noar the jet oxit), it follows that tho velocity V, and honco the coofficient $C J$, wall romain ossentially constant along the jet. In any case $3 t$ will be assumed that C_{J} is constant from tie jot cxit to tho point at infanaty.

Supposo now wo have a nuiber of thin jets ontering unaform stroams at tho same angle T. It as not unreasonable to say that thear offocts on tho main stream wall depend esscntially on thour momentum

```
cocificionts/
```

+Sco Rof. 10 (writton two years after the account givon abovo) for an cxact
troatment of zource-type flow.
coefficients, C_{J}, and that if two thin jots have the same momentum cocfficients they will have approximately the same overall effect on the flow patterm. Now for source-type flow the momontum coefficient is equal to $2 \mathrm{C}_{\mathrm{Q}}$, so that a jet with a momentum coefficiont of CJ can be sald to be oquivalent in 2 ts influence on the main stream to a sourco-type of jet the mass coefficient of which satisfics

$$
2 C_{Q}=C_{J} .
$$

Thus from the simple rule ombodied in this equation and equation (26) it follows that the numbor δ appropriate to the jet-type of flow as givon by

$$
\begin{equation*}
\delta=\sqrt{\left(\frac{C_{J}}{\pi}\right)} . \tag{51}
\end{equation*}
$$

The equation, $2 C_{Q}=C_{J}$, is the basic assumption in the present method of dealing with jet-type flows. The author has boen unable to find a theoretical argumont for $2 t$, but the physical argument givon above seems quite plausible. It iss strongthenod by the fact that if the rulc $1 s$ used to deduce the thrust of a jet-type of flow from that of a source-type flow the exact answer 1 s obtained.

The theory given in Section 6 for source-type flow simply takos into account the direct offect of the aeroforl shape on the lift and moment. No vortex sheets occur and therofore the socond intograls in (45) and (46) vanish. With jet-type flow not only doos the aerofoil shape "directly" affoct the lift and moment but it also has an "indirect" effect through the two vortox shoets extending bohind the acrofoll. The induced velocataes on the aerofoll surface due to these vortex sheets largely cancol out since the elgebraic sum of the strengths of the sheets is quite small. However the resultant volocity distribution is still large enough to contribute substantially to the lift and moment forces. This problom is considered in the next Scction.

8. The Intogral Equation for the Vorticity in the Jot

In ordor to calculate $C_{m o}$ and C_{L} in the case of jet-type flow it follows from oquations (43) and (45) that wo must farst calculate the function $K(\eta)$ - a function which from its definition (30) is clearly proportional to the strength of the vortex sheet reprosenting tho jet. The first stop is to obtain a rolation between the curvature of the jot, Its momentum, and the sum of the strengths of the two vortox shocts separating it from the main flow.

Considor conditions at a section EF of the jet bounded by the vortex shoots $A B$ and $C D$ shown in Fig. 6. Jot stroam values will be distinguished by a suffix J. Continuity of prossure across tho vortex shect $A B$ yzelds

$$
A_{1}+\frac{1}{2} \rho q_{E}^{2}=A_{a}+\frac{1}{2} \rho q_{J E}^{2},
$$

whero A_{1}, A_{3} are constants, and $q E$, $q B y$ are the volocitics at E just outside and inside the jot respectively. Samilarly at F

$$
A_{1}+\frac{1}{2} p q_{F}^{2}=A_{a}+\frac{1}{2} \rho q_{J F}^{2},
$$

and honce by subtraction

$$
\left(q_{E}+q_{F}\right)\left(q_{E}-q_{F}\right)=\left(q_{J E}+q_{J F}\right)\left(q_{J E}-q_{J F}\right) .
$$

we make a slight approximation in this equation to find

$$
\begin{equation*}
\mathrm{U}\left(\mathrm{q}_{E}-q_{\mathrm{F}}\right)=\mathrm{V}\left(q_{J E}-q_{J F}\right), \tag{52}
\end{equation*}
$$

where V 2s the mean jot velocity at the section EFF.
If n and s are distancos measured normal to and along a streamline of the jet respectively, the absence of vorticity within the jet yzelds

$$
\frac{\partial q}{\partial n}=\frac{q}{R},
$$

where R is the radius of curvature of the streamline. Applying this equation to the mid-streamline of the jot we have approximately

$$
\begin{equation*}
q_{J E}-q_{J F}=\frac{h V}{R}, \tag{53}
\end{equation*}
$$

where H 1s the width of the jet at FF.
Now the sum of the strengths of the vortex sheets $A B$ and $C D$ $2 s$

$$
\begin{aligned}
\Gamma & =\left(q_{E}-q_{J E}\right)+\left(q_{J F}-q_{F}\right) \\
& =\left(q_{E}-q_{F}\right)-\left(q_{J E}-q_{J F}\right)
\end{aligned}
$$

and hence from (52) and (53)

$$
\begin{equation*}
I=\frac{h V}{R}\left(\frac{V}{U}-1\right) . \tag{54}
\end{equation*}
$$

The sum of the jumps in $\log \frac{q}{U}$ across the vortex shects, namely K (see (30)) follows immediately from (54). To first order in K we find that

$$
K=\frac{\Gamma}{U}=\frac{h V}{c U}\left(\frac{V}{U}-1\right)_{R}^{c} .
$$

Hence from (13) and (14)

$$
\begin{equation*}
K=\left(c_{J}-2 c_{Q}\right) \frac{c}{2 R}, \tag{55}
\end{equation*}
$$

which we note satisfies the condition that K must vanish for sourcetype flow. To calculate K we thus need to know the shape of the jet. This can be calculated from equation (32).

The middle streamline of the jet is defined by $\zeta=\eta+1 \pi$ in the ζ-plane introduced in Section 4 . On this streamline $\phi \approx$ Us, and lgnoring a socond-order term due to the source strongth wo use (28) to find

$$
\begin{equation*}
\frac{s}{c}=\frac{1}{2} \cosh \eta \tag{56}
\end{equation*}
$$

Also on $\zeta=\eta+1 \pi$ equation (32) yields ${ }^{+}$
$\cap=-\frac{\sinh \eta}{2 \pi}\left\{\int_{0}^{2 \pi} \frac{\theta\left(y^{*}\right) \mathrm{d} y^{*}}{\cos y^{*}+\cosh \eta}+\int_{-\infty}^{\sigma} \frac{\mathrm{K}\left(\eta^{*}\right) \mathrm{d} \eta^{*}}{\cosh \eta^{*}-\cosh \eta}\right\} \cdot$

From (56) and (57) and an integration by parts it is found that

$$
\frac{c}{2 R}=\frac{c \partial A}{2} \frac{1}{\partial s}=-\frac{1}{2 \pi \sinh \eta}\left\{\int_{0}^{2 \pi \sin y^{*} \exists \theta\left(y^{*}\right)} \frac{\cos y^{*}+\cosh \eta}{\cosh \eta \cosh \eta^{*}-1} \int_{-\infty}^{\sigma} K\left(\eta^{*}\right) \frac{\left.\cosh \eta-\cosh \eta^{*}\right)^{2}}{\left(\cosh \eta^{*}\right.}\right\}
$$

The integral equation for K now follows from (55). It is

$$
K=\frac{\left(C_{J}-2 C_{Q}\right)}{2 \pi \sinh \eta}\left\{\int_{0}^{2 \pi \sin \gamma^{*} d \theta\left(y^{*}\right)} \frac{\cos \gamma^{*}+\cosh \eta}{-\int_{-\infty}^{\sigma} K\left(\eta^{*}\right) \frac{\cosh \eta \cosh \eta^{*}-1}{\left(\cosh \eta-\cosh \eta^{*}\right)^{2}} \mathrm{~d} \eta^{*}} \int_{(58)}\right.
$$

This integral cquation is not one of the standard types, but if $\left(C_{J}-2 C_{Q}\right)^{2}$ is small compared with $\left(C_{J}-2 C_{Q}\right)^{2}$ it can be solved by iteration. On this assumption the first approximation is

$$
\begin{equation*}
K=\frac{\left(C_{J}-2 C_{Q}\right)}{2 \pi \sinh \eta} \int_{0}^{2 \pi \sin y^{*} d \theta\left(y^{*}\right)} \frac{\cos \gamma^{*}+\cosh \eta}{}, \tag{59}
\end{equation*}
$$

which if substituted in the last intogral in (58) should yield a more accurate value of K and so on. However in view of the other approximations made in this paper we shall be content with the approximation (59). To use
equation/

[^2]equation (59) is essentially to assume that the jet lies along the position that would bo adopted by a source-type flow, for which (since we will usc equation (51) in evaluating (59) the momentum coefficıent equals CJ. This approximation $2 s$ then, in a sense, consistent with the argument given in Section 7.

Evaluating the Stieltjos integral in (59) by substituting in the discontinuitius in $\theta\left(y^{*}\right)$ shown in Fig. 5, we arrive at

$$
\begin{equation*}
K=\frac{\left(C_{J}-2 C_{Q}\right)}{2 \pi \sinh \eta}\left\{\frac{\pi \sin y_{0}}{\cos y_{0}+\cosh \eta}+\frac{2 \tau \sin \delta}{\cos \delta-\cosh \eta}\right\}, \tag{60}
\end{equation*}
$$

in which δ is given by equation (50).

9. The Lift and Moment Due to a Jet-Type of Flow

From Fig. 5, equations (45) and (60) we deduce that

$$
\begin{align*}
2 \pi \alpha_{0}+4 \pi \delta & +\frac{\left(C_{J}-2 C_{Q}\right)}{2 \pi}\left\{2 \pi \cot \frac{\delta}{2} \log \left(\frac{\cosh \sigma-\cos \delta}{\cosh \sigma-1}\right)\right. \\
& \left.+\pi \tan \frac{1}{2} y_{0} \times \log \binom{\cosh \sigma-1}{\cosh \sigma+\cos y_{0}}\right\}=0 . \tag{61}
\end{align*}
$$

From (27) and (51) we find that δ and σ are small first-ordor numbers. From (33) it is found that the same is true of y_{0}. Thus retaining only the highest order terms in (61):-

$$
2 \pi a_{0}+4 \pi \delta+\frac{2\left(C_{J}-2 C_{Q}\right)}{\pi \delta} \tau \log \left(\frac{\sigma^{2}+\delta^{2}}{\sigma^{2}}\right)=0 .
$$

Henco from (17), (27) and (50)

$$
C_{L}=2 \pi a+\frac{2 \tau}{\sqrt{\pi}} \frac{\left(C_{J}-2 C_{Q}\right)}{\sqrt{C}_{J}} \log (4.58)+\frac{4 \tau}{\sqrt{\pi}} \sqrt{C_{J}}
$$

Therefore

$$
\begin{equation*}
C_{L}=2 \pi a+\frac{4 \tau}{\sqrt{\pi}} \sqrt{C_{J}}\left\{1+0.76\left(1-\frac{2 C_{Q}}{C_{J}}\right)\right\} \tag{62}
\end{equation*}
$$

In attempting to determine the moment coofficient from equations (46) and (60) we have a difficulty which arises in a similar manner in the theory of an aerofoll in harmonic motion. It is that the integral along the vortex shect, namely

$$
\begin{equation*}
\lim _{\mathrm{R}=\infty} \int_{-\mathrm{R}}^{\sigma} \mathrm{K}(\cosh 2 \eta-1) \mathrm{d} \eta, \tag{63}
\end{equation*}
$$

Is divergent, becoming logarithmical infinite in the limit. As in unsteady aerofoll theory this infinity arises from the mathematical simplifications introduced at various points in the theory, and does not lave any roal physical significance. In an oxact theory the logarithmic infinities would cancel out since the sum of the cocfficients of the logarithmic terms arising in the intogration aro idontically oqual to zoro. We assume this is the caso hore, and consider only the finito part of the integral (63). We then find that this fimite part is a term of second order, which can be agnored in comparison with the term arising from the first integral of equation (44). This latter integral has alroady been evaluated in Scction 6. It was found that $\mathrm{C}_{\mathrm{m}} \mathrm{O}=-\delta \tau$, and honce from equation (50)

$$
\begin{equation*}
\mathrm{C}_{\mathrm{m}_{\circ}}=-\tau \sqrt{\frac{\mathrm{C}_{J}}{\pi}} . \tag{64}
\end{equation*}
$$

From (44), (62) and (64)

$$
\begin{equation*}
C_{m}=\frac{\pi \alpha}{2}+\frac{0.76}{\sqrt{\pi}} \tau\left(1-\frac{2 C_{Q}}{C_{J}}\right) \tag{65}
\end{equation*}
$$

Finally, in tho case $a=0$, wo doduce from (65) and (62) that the centre of prossure must be a distance

$$
\begin{equation*}
\frac{\bar{x}}{\bar{c}}=0.19 \frac{\left(1-2 C_{Q} / C_{J}\right)}{1+0.76\left(1-2 C_{Q} / C_{J}\right)}, \tag{66}
\end{equation*}
$$

forward of the mid-chord point.
One final comment on the theory remains to bo made herc. It $1 s$ that oquations (15), (62) and (64) include as special cases tho cxact solutions for source-type flow given by (16), (49) and (50) rospectivoly.

10. Comparison with Exporimont

As montioned in the Introduction there is at the moment a lack of experimental data on the phonomenas however a little work on the subject is reported in Refs. 1 and 2.

In Figs. 7, 8 and 9 theorotical and exporimental values of C_{L} are plotted against C_{J}. From (13) and (14) It is found that

$$
\begin{equation*}
C_{Q}=\sqrt{\frac{h}{2 c}} \quad \sqrt{C_{J}} \tag{67}
\end{equation*}
$$

In the experiments reported in Rof. ${ }^{1}, \tau=55^{\frac{1}{4} 0}, \mathrm{~h}=0.005^{\prime \prime}$ and $c=5.5^{11}$; hence $2 \mathrm{C}_{\mathrm{Q}}=0.059 \sqrt{\mathrm{CJ}}$. Equation (62) yiclds for this case

$$
C_{L}=3.85 \sqrt{C_{J}}-0.10,
$$

which is the curve drawn in Fig. 7. The agreemont is quato satisfactory consldering the approximations made in the theory and the acknowledged crudity of the experiments.

For the experiments of Rof. 2, $T=90^{\circ}, \mathrm{H}=0.018$ and $c=8^{\prime \prime}$. Hence from (62) and (67)

$$
C_{L}=6.23 \sqrt{C_{J}}-0.18,
$$

which is compared in Fig. 8 with the oxporimontal values. Tho agreomont is not so good in this case, but this could hardly bo oxpected with such a large ojection angle. It is difficult to belicve that there is not somo loss in circulation due to soparation of the flow at the trailing edge. A further possible cause of the discrepancy betwoen experiment and theory is that the angle τ was not actually measured in the experiments, but deduced to bo 90° from a spectous argument basod on the theory of Ref. 1. Evon if the argument given is correct, on the accuracy of the figures givon (one docimal place) it is only possible to deduce that $76^{\circ} \leqslant \tau \leqslant 104^{\circ}$.

In Ref. 2 it 2π found oxporimontally that $C_{m} \approx-0.14 \times 2 \pi \sqrt{C_{J}}$. 2π
From (64) we find for this case that $C_{\text {TIO }}=-\frac{2 \pi}{4} \sqrt{C_{J}} / \pi=-0.141 \times 2 \pi \sqrt{C_{J}}$, so there is good agreement for this coefficient.

Finally in Fig. 9 wo have compared theory with some further N.G.T.E. oxporimental results (as yot unpublished). The agreement in $0<C_{J}<0.25$ could hardly be mprovod. There aro probably four reazons for this succoss, namely (1) it appoars these last exporinents have boen carried out much more carefully than the eariner onos, (11) the value of T (31.4°) was reasonably low, and the Idcal flow - which 1s the basis of the theory - is more closely achieved, (111) at high values of C_{J} turbulent maxing will be an amportant factor, and (iv) an any case the theory is only devoloped to farst order in $\sqrt{C_{J}}$.

11. Final Cormonts

Tho "thrust hypothesis" of Ref. 1 has been rigorously ostablished for compressible flow. A first-order thoory for the lift in incompressible flow has beon dovelopod, which is in fair agrooment whth the fow expermontal results avallable. The lift theory is deduced from tho oxact thoory for source-type flow by a plausible argument, although more conslderation is desirable hore. The thoory for pitching momonts is unfortunately vitiated by an inadequate explanation of a logarithmic singularity arising in tho rathematics, and the author hopos to be able to invostigate this furthor at a later dato.

It is porhaps worth reporting that closor agroomont with experiment can bo achicvod by allowing $C_{J}-2 C_{Q}$ to vary with distence (s) along the jet. The velocity of the jet is gradually reduced by viscosity and turbulonco so that as $\mathrm{s} \rightarrow \infty, \mathrm{V} \rightarrow \mathrm{U}$, and from (13), (14)
and (55), $K \rightarrow 0$. Now for a jet discharged into still fluid the maximum volocity of the jet 1 s known to be inversoly proportional to $\sqrt{\mathrm{s}}$ whore s is measured from some suitable orlgin. If we assume that this law is applicable to the velocity $V-U$ of the present problem, then we find that

$$
\begin{equation*}
C_{J}-2 C_{Q} \propto \frac{\left(C_{J_{0}}-2 C_{Q}\right)}{\sqrt{s}}, \tag{68}
\end{equation*}
$$

where $C_{J_{0}}$ as the value of C_{J} at the jet exit. (C_{Q} is constant along the jet by continuity.) The use of (68) in equation (55) leads to a modification of cquation (60) and honce to a chango in the coefficient of ($1-2 C_{Q} / C_{J}$) in equation (62). It was found that this coefficient was roduced, and that the amount of reduction depended on the origin selected for s. As this orlgin was varied from being some distance from the jet exit to very close to the oxit the coefficient in question varied from 0.76 to zero. Howover the mothod 15 rather doubtful theoretically, as the use of (68) amplies that Bornoulli's equation is not satisfied in the jet, which is incompatible wath the derivation of (55).

The prossure distribution over the aorofoll has not been discussed in the report, but if it is requirod it can be readily deducod from equation (29). Wo find that putting $\eta=0$ and integrating by parts
$\log (1-C p)=\frac{2}{\pi} \int_{0}^{2 \pi} \log \sin \frac{1}{2}\left(y^{*}-\gamma\right) d \theta\left(y^{*}\right)+\frac{\sin y}{\pi} \int_{-\infty}^{\sigma} \frac{K(\eta) d \eta}{\cosh \eta+\cos y}$ (69)
whore $C p$ is the pressure coefficient, $1-(q / \mathrm{U})^{2}$. The Stieltjes integral can be ovaluatcd immediately from Fig. 5 and equation (51), while the second integral can bo calculated from equations (60), (27) and (51).

12. Acknowledgements

The author was encouraged to work on the problem of jet flaps by Dr. W. P. Jones, Superintendent of the Aerodynamics Division of the N.P.L., who suggested that mothods proviously devoloped by the author might provide a solution to the problem. Valuable discussion on the topic whth Dr. H. Davies (Southampton Unıversity), Dr. R. C. Pankhurst, Mr. H. H. Pearcey and Dr. J. Willıams (Aerodynamics Division, N.P.L.), Mr. I. M. Davidson and Mr. B. S. Stratford (N.G.T.E., Pyestock) contributed materially to the author's understanding of the phenomena.

APPRIDIX I

16th April, 1955
The following Appendix clarifies some of the physical assumptions made above, about which some masunderstandings have arison. The distinction botween sourco-type flow and jot-typo flow is clarified, and the model of the lattor type of flow used above is discussed in some detall.

Some comments are also made on other theories of the jot flap.

1. Basic Assumptions made in Papor

1.1 Source-Type Flow

Source-type flow can bo defined as flow in which a source on or whthan an aoroforl produces fluid at the same total head as the mam stroam flund.

Consider the flow show in Fig. 10. A source at E omits fluyd which flows down the duct EFC and then into the main stroam. Stagnation points will occur at points D and D^{\prime}, and stroamlines $D G_{\infty} D^{\prime} G_{\infty}^{\prime}$ will separate the source fluid from the main stream. Contanuity of pressure across $D^{\prime} G_{\infty}^{\prime} D_{\infty}$ implies continuity of velocity across these streamines provided we have source-typo flow. If the total head of the source fluid is not tho sane as that of the main stream fluid, only the pressure will be continuous across $D G_{\infty} D^{\prime} G_{\infty}^{\prime}$, and these streamlinos will now be vortex sheots.

Roturming to the case of source-type flow we notice that the positions of throe stagnation points have to be determined to define a unique flow. The third stagnation point is at B, near the leading edge. If wo first assume that D coincides wath the trailing edge F (Joukowski's condition), then tho positions of the other two stagnation points follow from (1) the value of the carculation, and (2) the source strength. At a given valuo of the circulation there $1 s$ just one source strength that makes D^{\prime} coincide with C at tho duct exit, and this produces the fiow pattern show in Fig. 11.

The flow pattern of Fig. 10 Is clearly physically unrealistic soparation would occur at points C and F - but that of Fig. 11 could bo achieved in practice. For tho flow show in Fig. 11 any change in incidence would require a chango in sourco strength to maintain the stagnation point D^{\prime} at C; but this can bo shown ${ }^{10}$ to bo a socond order effect, whinch for small values of the source mass coefficient, C_{Q}, and the incidence a can be ignored.

Now it is possible ${ }^{10}$ to dovelop an exact theory of sourco-type flows which allows for the duct shapo and is independent of the marnitudes of C_{Q} and a. However as this exact theory takes many pages to devclop rigorously the theory given in 86 was an approximato one, valid only to first order in C_{Q} and a. (This rostriction $1 s$ medo cloar after equation (17) of 86.)

To this order of accuracy it is show in S_{6} that for the type of flow show in Fig. 2,

$$
\begin{equation*}
C_{L}=2 \pi \alpha+4 \tau \sqrt{\frac{2 C_{Q}}{\pi}}, \tag{1}
\end{equation*}
$$

where/
where T is the angle a parallel wallod duct makes with the chord line. The mass coofficient in (1) is the usual ono dofined by

$$
\begin{equation*}
C_{Q}=\frac{Q}{U c} \tag{2}
\end{equation*}
$$

where Q Is the mans output of the source per second, U is the undiaturbỏ main stream velocity, and c is the acrofoll chord. It 13 also shown in \mathbb{S}_{6} that if C_{m} is the moment coofficiont about the madchord point,

$$
\begin{equation*}
C_{m 1}=\frac{\pi}{2}, \tag{3}
\end{equation*}
$$

Equitions (1) and (3) ignoro acrofoll thicknoss effects.
Thoso cquations woro deravod by an application of $\mathrm{Blaszu}{ }^{\prime}$ thooron, a procoduro which has rocently boon clammod "anvalıd"9. Thoro is no doubt at all that Blasius' thoorom can bo appliod to problema in whech sourccs or sinks occur on or noar cerofolls (soo, for cxample, p. 213 of Rof. 11). The mothod used in $\xi 6$ nay not be adequatoly explanod. It is as follows.

First the function (dw/dz), whore w is the coriplex strean function, is (correctiy) oxpanded in the nelghbourhood of infinity. The expansion is exprossod in terms of the variable $\mathcal{G}_{\text {, }}$, where b lis definod by cquations (19) to (21). Then the corresponding expansion of the rolation botween the ζ and w-planes $1 s$ writton dow, ossentially lemoring the terms in C_{Q}, and lakewnse for the relation betwoon tho w- and z-pianos. This pormits (dw/dz) to be oxpanded noar infinity in the z-plane (not glvon in \mathbf{Z}_{6}), and Blasius' thoorom applied. Thus tho rethod is oquavalont to lgnoring tho uffcet of tho sourco on the rolation botwoon the ζ and $z-p l a n o s$, but takang it into account in 1 ts effect on (dw/dz).

This is a colmon typu of approximation in acrodynamics. For anstance in the thoory of filaps the effoct of the flap on the volocaty distribution is corroctly calculatod, but its effect on the mapping of the w-plane on to the z-plano $1 s$ lgnored, and this 1 s know to rosult in crror torms of only second ordor in flap deflcction angle.

In any caso the nothod usod in $\$ 6$ is fully justafiod by the fuller and much longer analysis givon in Rof. 10 , where it is shown that tho rolation botwoon z and ζ near infinity is exactly of the form

$$
\begin{equation*}
c_{0}^{\zeta}=-\frac{a P}{U z}\left\{1+o\left(1 / z^{a}\right)\right\} \tag{4}
\end{equation*}
$$

where in the notation of $\delta_{6} 6, \quad P=\left(1-\frac{Q}{4 \pi a} \log t_{0}\right) /\left(1-t_{0}^{2}\right)$. With the aid of (4) instoad of (35) of 66, Blanlus' thooron char bo appliod to the problem without the approximations rientionod above.

1.2 Jot-Type Flow

In Jet-type flow the fluid produced by the source is at a differont total head from that of the mann stream flow - usually a much higher total hoad. In thas type of flow, although the pressure must still be contanuous across the surfaces $\mathrm{FH}_{\infty} \mathrm{CH}_{\infty}$ (soe Fig. 11), this is no longer true for the veloczty, and so $\mathrm{FH}_{\infty} \mathrm{CH}_{\infty}^{\prime}$ are now vortex shocts. The principal difforenco betwoen the source-type flow and jet-type flow lios in the presence of these vortex sheots in the latter case.

Thore is another differcnce botweon the two flows which occurs right at the jet exit, and is worth noting. In source-type flow the tangonts to the dividing streamilines $\mathrm{FH}_{\infty}, \mathrm{CH}_{\infty}^{\prime}$ at the separation points biscet the angles of the jet oxit, as shown in Fig. 12. On the other hand in jot-type flow the difforent stagnation prossures in tho two streams implies that thore cannot be stagnation points in both streams at C and F, and henco tho flow must separate tangontially to that surface on which tho total hoad is groatest. In Flg. 12 it is assumed that the jet is at a greator total head than tho main stream, and so the jet flow is tangontial to EF and ES In genoral tho streamline curvature at the separation points wall bo infinito.

The author is of tho opinion that the offecto of this discontanuzty in bohaviour between tho two types of flow at the jet oxit aro very localizod, and play an insignificant part in dotermining the nain charactoristics of tho flow. It is cortannly difficult to bellove that tho lift and moment coofficients for jot-type flow do not tond continuously to their vaiues given in (1) and (3) for source-type flow, as the total head of the jet tends to that of the main stream. Thas boliof is tacitly assumed in 88.

Now the really signifleant differonco between the two types of flow lics in tho vortex sheets. These shoots exist simply bocause the total hoad of tho jet diffors from that of the main stroan. In fact it is shown in $\bar{G} 8$ that at any point alonf the jet the algebraic sun of the strongths of tho two shoots is given by

$$
\begin{equation*}
\Gamma=U\left(C_{J}-2 C_{Q}\right) \frac{c}{2 R} \tag{5}
\end{equation*}
$$

in which C_{J} is the moment coefficient

$$
\begin{equation*}
C_{J} \equiv \frac{2 Q V}{\mathrm{CU}^{2}}=2 \frac{V}{U} C_{Q} \tag{6}
\end{equation*}
$$

V is tho volocity in tho jot at infinnty, and R as tho moan radus of curvaturo of the jet. In the derivation of (5) It is assumed that CJ is constant along tho jot, and that tho jot wadth as cmall comparod wath F. For sourco-type flow, $V=U$,

$$
\begin{equation*}
C_{J}=2 C_{Q} \tag{7}
\end{equation*}
$$

and honco from (j), $I=0$.

Now to represent fully the effects of the vortex shoots we need to consider not only thole algebraic sum but also thor possible doublet contribution. This point is emphasized in Ref. 12, and apparently overlooked in Si. However even if tho doublet contribution significantly affects the velocity distribution, this contribution will be very nearly symmetrical about tho chord lino, especially for small values of τ, and hence tho effect on the lift and moment forces will largely cancel out.

The author's method of deducing the left force an jet-type flow $1 \approx$ based on one further assumption, namely that $C J$ and rot C_{Q} is the significant parameter for such flows, and this socms to bo eonurally accopted in Refs. 9 and 12. This moans that, considering sourco-typo flow as a spocial case of jot-type flow, wo should writo (1) in the form

$$
\begin{equation*}
\mathrm{C}_{L}=2 \pi x+4 \tau \sqrt{\frac{\mathrm{C}_{J}}{\pi}}, \tag{8}
\end{equation*}
$$

on raking use of (7).
Wo start with this result for source-type flow. Suppose now tho total head of the jot is increased above that of tho mann stream, C_{J} beans kept constant, then jot-typo flow rosults. By (5) vortex shows now appear giving rise to an additional contribution to C_{L}. Incnco instoad of (8) wo have

$$
\begin{equation*}
C_{L}=2 \pi \alpha+4 \tau \sqrt{\frac{C_{J}}{\pi}}+f\left(C_{J}-2 C_{Q}\right) \tag{9}
\end{equation*}
$$

whore f is a function which romains to bo determined. In $\mathcal{S} 9$ it was calculated to first order in $\left(C_{J}-2 C_{Q}\right)$ on the assumption that tho jot shape remained unchanged during the increase of tho total hoad of the jot. Tho rosult is

$$
\begin{equation*}
C_{L}=2 \pi \alpha+4 \tau \sqrt{\frac{-}{C_{J}}}\left\{1+0.76\left(1-\frac{2 C_{Q}}{C_{J}}\right)\right\} \tag{10}
\end{equation*}
$$

Tho nothod of deriving (10) shows that it con only bo valid for small values of $\left(C J-2 C_{Q}\right)$, tho actual range of validity bone bost dotominod by comparison with oxporiment. Certainly (10) is exact in tho limit $C_{J} \rightarrow 2 C_{Q}$.

2. Other Theories of tho Jot-Flap

2.1 Tho Mechanical Flap Analogy

The author criticised the oarlior prosontabion of tho flapanalogy theory in K_{1}, and now fools that this criticism although philosophically correct, does not do jurtico to tho theory.

It will bo recalled that tho method is based on "similarity being defined botwoon the jot-flap and a mechanical flop in such a way that tho lifts on the aerofoil and jot are made equal to tho lifts on the fixed part of tho flapped aerofoil and flap rospoctivoly. On this basis it as established that C_{L} can bo written in the fora

$$
\begin{gather*}
-26- \\
C_{L}=\frac{\eta}{\tau} F\left(C_{J}, \tau\right), \tag{11}
\end{gather*}
$$

whore F is a known function, and η is that value of the deflection of the mechanical flap necessary to produce the imposed simılarity. As pointed out in S_{1}, (11) merely shifts the problom from that of detcrmining C_{L} as a function of C_{J} and T to that of detemuining η / T as a function of C_{J} and T.

Howevcr, from physical considerations, it seems reasonablo to suppose that η / τ ls only a slowly varying function of C_{J} and r, and so (11) does simplify the problom in practice. Tho significant featuro of tho flap-analogy is to transform the problom from that of detormining a rapidly varyang function to that of determaning a slowly varying one. If η / T can bo approwimatcd to by a constant over a roasonablo range of values of CJ and T, then the method doponds only on a singlo experiment to dotormino tho valuc of η / τ, and so can bo termed a "somi-ompirical" theory.

2.2 The Thoory of Roference 12

A rough drart of Rof. 12 was recontly mado available to the author. Tho nothod is to coliapso tho jot into a than sheot by toking tho limit $h \rightarrow 0, V \rightarrow \infty$, such that C_{J} romains innito. Thon, on the assumption that τ as small, the problon $1 s$ lincarized by making the usual thin aerofoll approximations. This leads to an integral cquation for tho downwash on the jet, whech appears to bo relatod to that found in 88 for the strength of the vorticity in the jet. The method is much moro diroct then that givon by tho author, and when tho basic integral equation has boon solved, should give rcsults valid for quito large values of CJ^{+}.

Two romarks on the limatations of this thcory aro worth making. firstly the limat $h \rightarrow 0$ used in the theory invalidates it for small values of $\left(C_{J}-2 C_{Q}\right)$. Sccondly the author found that in his approach to the problem this limit croated nathematical difficultios at the jot cxit that he was unable to surmount. The limit $h \rightarrow 0$ may be satisfactory woll away from the trailinc edge, but it scoms to bo an oversimplification in the neighbourhood of the trailing cdge - ospecially as the answor dopends so critically on tho character of tho flow at tho trailing edge. It is to be hoped that this viow is wrong. ${ }^{x}$.

2.3 The Theory of Reforonce 9

This theory closely follows that given by tho author, oxcopt that the lift inducod by the vortox shoets - the term $f\left(C_{J}-2 C_{Q}\right)$ of oquation (9) - is calculatod by an altomative mothod. This altomativo mothod is to uso tho wellinown theorem that the lift on an acroforl bohind which ortonds a vortez shoct is cqual to pur, whore I is tho total carculation around both the aorofoil and tho shout. Then with the ald of the author's result for the stroncth of tho vortex shoot (oquation (5)) it is doduced that tho daroct contribution to C_{I} from the carculation about the sheot alono is $\left(C_{J}-2 C_{Q}\right) \tau$. Although tho author of Ref. 9 apparontly approciatos that tho vortox shoet also has an indirect contribution to mako to $C I$ - by lodifyine tho
carculation/

[^3]circulation about the aorofoll - thas 1 s 1 gnorod and $\left(C_{J}-2 C_{Q}\right) T$ is takon to be the total contribution from tho shoot, that is, it is identified as the function f in (9). The function f, of course, roprosents the effect of the shoct on the total circulation about both aorofoll and shoet. The method of calculating at given in $\$ 8$, whatever its deficiencios is sound on this point.

A furthor curious anomaly to be found in Ref. 9 Is the accoptance of the term $4 \pi \sqrt{C J} / \pi$ from ξ_{9} despito tho criticism made in the same paper of its derivation from Blasius' theorom. No othor dorivation of this term has bcon given.

Another cratacisri mado in S_{2} of Rof. 9 of tho author's thoory is on the quastion of whether to take the pressure continuous or discontinuous across the vortcx sheot. Botli mothods aro accoptable, but wath tho partacular sodel adoptod in f It was defanitoly profurable to take the prossuro as boing contanuous - tho author washod to avold tho awhard limat $h \rightarrow 0$ (sco the second paragraph of $\hat{\xi}_{2.2}$ abovo).

In a recent papor ${ }^{13}$ spence derived an integro-differential equation for the slope of a hagh spood shoet of air cmerging from the trailing odge oi an aerofoll. In this Appondix it is shown that this equation is adentical in form with one grvon by the author in $\$ 8$, a point which was ovorlookod by Spence. The author's derivation is moro direct, boing based from the start on a well-lnow solution possessing the appropriate typo of mixod boundary conditions.

1. Spenco's Mcthod

Sponce lanvarizes the problom fron the start by applying the boundary conditions on $y=0$, with tho acrofoz] in $0 \leqslant x<1$, and the wako in $1<x<\infty$. The strongth of tho vorticity in the vake, Γ, 1s (seo S8)

$$
\begin{equation*}
\Gamma=\frac{U c}{2 R}\left(C_{J}-2 C_{Q}\right)(1<x) \tag{1}
\end{equation*}
$$

where U is the undisturbed main stream velocity, c is the acrofoil chord (unity in the present case), R is the radius of curvature of the jot, C_{Q} is the mass coefficient, $C_{Q} \equiv$ mass flow in the jet/Uc, and C_{J} is the monenturn coefficiont, $C_{J} \equiv$ momentum in the jot/2 $\frac{1}{2} \mathrm{pcU}^{2}$, where ρ is the donsity. In order to avoid the difficulties of the nonhomogencous flow Spence allows the jot wath to tend to zoro in such a way that C_{J} romains finite, but C_{Q} tonds to zoro. This gives

$$
\begin{equation*}
\Gamma=\frac{1}{2} \mathrm{UC}_{J} \frac{\partial 0}{\partial x}, \quad(1<x<\infty) \tag{2}
\end{equation*}
$$

where θ_{1} is the slope of the jet.
Let tho vorticity strength on the acrofoll be Uf(x), then the domwash equation is

$$
\begin{equation*}
w(x)=-\frac{U}{2 \pi} \int_{0}^{1} \frac{f(\xi)}{\xi-x} d \xi-\frac{U C_{J}}{4 \pi} \int_{1}^{\infty \partial \theta_{1} / \partial \xi} \frac{\xi-x}{\xi-x} . \tag{3}
\end{equation*}
$$

If 0_{a} is the (known) avoraece slope of the aerofoll surface, then $w(x) \approx-U \theta_{a}$ in $0<x<1$, and $w(x) \approx-U \theta$ in $1<x<\infty$ Thus we arrive at the parr of simultancous intogro-difforontial equations

$$
-\frac{1}{\pi} \int_{0}^{1} \frac{f(\xi)}{\xi-x} d \xi-\frac{C_{J}}{2 \pi} \int_{1}^{\infty} \frac{\partial \theta_{1} / \partial \xi}{\xi-\pi} d \xi=-2 \theta_{2}(0<x<1) .
$$

Dr. A. E. Billington of the Aoronautical Roscarch Laboratorios, Fisherman's Bond, Melbourne, Australia, roducod this parr of equations in two pages of algobra (too lengthy to give hore: soe Spence's paper13) to the single integro-differential equation
$n_{1}=-\frac{1}{\pi}\left(\frac{x-1}{x}\right)^{\frac{1}{2}}\left\{\int_{0}^{1}\left(\frac{\xi}{1-\xi}\right)^{\frac{1}{2} \theta_{a}(\xi)} \frac{\xi-x}{\xi-} \frac{C_{\xi}}{4} \int_{1}^{\infty}\left(\frac{\xi}{\xi-1}\right)^{\frac{1}{2} \frac{\partial \theta_{1} / \partial \xi}{\xi-x} d \xi}\right\}_{\ldots(4)}$,

In which we havo made somo trifling changos in notation. Sponce then solves this oquation by an approximate Fourier series method. From this solution tho lift, moment and prossure distribution aro readily deducod.

2. Woods' Method

A moro diroct derivation of (4) can be obtained once it is reallzed that tho maxed boundary conditions $-\theta_{a}$ given in $0<x<1$, Γ given in $1<x<\infty-$ aro just those occurring in the well-established theory for unsteady aerofozl motion.

Lut the acrofoil and wake bo transformed into a (η, y)-plane such that the acroforl lies on $\eta=0,0<\gamma<2 \pi$, and the vortex sheet reprosenting the jot lies on $\gamma=\pi,-\infty<\eta<0$, then it is easlly show that (see Rof. 4)

$$
\begin{gather*}
\frac{U}{\mathrm{U}} \mathrm{Q}+2 \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \theta_{\mathrm{a}}\left(y^{*}\right) \cot \frac{2}{2}\left(y^{*}+i \eta-y\right) \mathrm{d} y^{*} \\
+\frac{2 \sinh (\eta+1 y)}{2 U \pi} \int_{-\infty}^{0} \frac{\Gamma\left(\eta^{*}\right) d \eta^{*}}{\cosh \eta^{*}+\cosh (\eta+1 \gamma)} \tag{5}
\end{gather*}
$$

where (q, θ) is the velocity vector in polar co-ordinates at (η, y).
The conformal mapping which takes $y=-0,1 \geqslant x \geqslant 0$;
$y=+0,0 \leqslant x \leqslant 1$, on to $\eta=0,0 \leqslant \gamma \leqslant 2 \pi$, and
$y=0,1 \leqslant x \leqslant \infty$ on to $y=\pi, 0 \geqslant \eta \geqslant-\infty$ 1s

$$
\begin{equation*}
z=x+2 y=\frac{1}{2}(1-\cosh (\eta+i y)) \tag{6}
\end{equation*}
$$

although this transformation was not made in the derivation by the author, as it was more convonient to work in the (η, y)-plane.

On tho jet, $y=\pi$, (5) yields
$\theta_{1}=-\frac{\sinh \eta}{2 \pi}\left\{\int_{0}^{2 \pi} \frac{\theta_{\mathrm{a}}\left(y^{*}\right) \mathrm{d} y^{*}}{\cos y^{*}+\cosh \eta}+\frac{1}{. \mathrm{U}} \int_{-\infty}^{0} \frac{\Gamma\left(\eta^{*}\right) \mathrm{d} \eta^{*}}{\cosh \eta^{*}-\cosh \eta}\right\}, \ldots(7)$
which combincd wath (1) ammediatoly yaolds an integro-differontial cquation for O_{1}. Unablo to find an exact solution of this oquation, the author solved it approximatcly, only as far as the first step of the

Liouville-Neumann itorative process - a solution valıd only for small values of $C_{J}-2 C_{Q}$. In addition the theory was slightly complicated by the requiroment imposed by the author that the solution remain valid in the limit $C_{J} \rightarrow 2 C_{Q}$. When $C_{J}=2 C_{Q}$ we have a homogeneous sourcetype of flow for which the solution is known exactly10. While Spence's method of putting $C_{Q}=0$ obviates the difficulty of the nonhomogeneous flow, it cannot provide a correct solution for small values of C_{J}.

3. The Equivalence of the Two Integro-Differential Equations

The equivalonce of (4) and (7) is easily show. First from (5) the assumption that 0 vanishes at infinity, 1.0., at $\eta=-\infty$, gives

$$
\begin{equation*}
\int_{0}^{2 \pi} \theta_{a}\left(y^{*}\right) d y^{*}-\frac{1}{U} \int_{-\infty}^{0} \Gamma\left(\eta^{*}\right) d \eta^{*}=0 \tag{8}
\end{equation*}
$$

If (8) is now multıplied by $\sinh \eta /\{2 \pi(\cosh \eta+1)\}$, and added to (7) there results

$$
\begin{align*}
\theta_{1}= & -\frac{\sinh \eta\{ }{2 \pi}\left\{\int_{0}^{2 \pi} \frac{\theta\left(y^{*}\right)\left(1-\cos y^{*}\right) d y^{*}}{(1+\cosh \eta)\left(\cos y^{*}+\cosh \eta\right)}\right. \\
& \left.+\frac{1}{U} \int_{-\infty}^{0} \frac{I\left(\eta^{*}\right)\left(1+\cosh \eta^{*}\right) d \eta^{*}}{(1+\cosh \eta)\left(\cosh \eta^{*}-\cosh \eta\right)}\right\} \tag{9}
\end{align*}
$$

On the aerofoil ($\eta=0$) and jot $(y=\pi)$ equation (6) gives $x=\frac{1}{2}(1-\cos y), x=\frac{1}{2}(1+\cosh \eta)$, by which (9) is transformed into

$$
\left.\begin{array}{rl}
\theta=\frac{1}{\pi}\left(\frac{x-1}{x}\right)^{\frac{1}{2}}\{ & \int_{0}^{1} \frac{\frac{1}{2}\left\{0\left(y^{*}\right)+\theta\left(2 \pi-y^{*}\right)\right\}}{x-x^{*}}\left(-x^{*}\right. \\
1-x^{*} \tag{10}
\end{array}\right)^{\frac{1}{3}} d x^{*} .
$$

on eliminating Γ by (2). As $\frac{1}{2}\left\{\theta\left(\gamma^{*}\right)+\theta\left(2 \pi-\gamma^{*}\right)\right\}$ is the avorage of tho slopes on the uppor and lower surfaces of the aerofoil it is immediately obvious that equations (4) and (10) are identical.

This means that equation (4) is simply an altornative form of equation (7). Although the author derivod equation (8) in 85 , he did not combine it whth (7) to produce the form (9), which exactly corresponds wath (4). Equation (9) is clumsier than (7), and in the (η, y)-plane at least has no advantages over (7).

4. Conclusions

The method of dealing with the jet-flap given by Spence ${ }^{13}$ leads to exactly the same integro-differential equation for the jet slope (excepting a triflang transformation of variables) as that derived earlier by the author using hodograph methods. The general expression given for the lift by Spence (his equation (105)) is also exactly the same as that derivod by the author, but this is not acknowlcdgod.

However Spence has carricd the numerical work of solving the intcgral cquation, and derivang values for the lift and moment to a stage which renders obsolete this part of the author's work.

References

No. \quad Author(s)
1 B. S. Stratford

2 N. A. Dimmock

3 H. H. Pearcey

4 F/Lt. L. C. Woods

5 C. D. Perkins and
D. C. Hazen

6

8

7 S. Goldstean (Editor)
K. W. Mangler

9 H. J. Davies
F. Ehlers

Some comments on the "Jet flap" with particular reference to alrcraft controls and flight at transonic speeds. A.R.C. 16,174. Septamber, 1953.

The lift and moment acting on a thick acrofoll in unsteady motion. Phil. Trans. A, Vol. 247, pp.131-162, Part 925. November, 1954.

Some recent advances in boundary layer and circulation control. Proc. Fourth Anglo-American Aoro. Conforence, 1953.

On the influenco of sinks on the lift and prossure distribution of airfolls with suction slots. MAP-VG67-189T. A.R.C. 10,466 . September, 1946.

Modorn developments in fluid dynamics. Vol. II. Oxford Univ. Press. 1950.

Impropor integrals in theoretical aerodynamics. Curront Paper No. 94. June, 1951.

Note on a 'Jet FIap' theory. A.R.C. 17,113. October, 1954.

On the theory of source-flow aerofolls Quart. J. Moch. and Appl. Math., Vol.IX, Pt. 4, 1956.

No.	Author (s)	Tritle, etc.
11	L. M. Mılne-Thomson	Theoretical Hydrodynamics. M cMillan \& Co., 1949.
12	D. A. Spence	Calculation of the lift due to a twodimensional jet flap by means of the downwash integral. (To be issued as an R.A.E. Acro. Tech. Note.)
13	D. A. Spence	A treatment of the jet-flap by thinaerofoil theory. Proc. Roy. Soc., A. Vol. 238. pp. 46-68, 1956.

Figs. 1-4

Flow in a channel

Jet-type flow
Source - type flow

Figs. 5, 6
Fig. 5.

Distribution of θ.

Fig 6.

The Jet.

Fil9:그․

Fig. 8.

Fig 9

variation of c_{L} with $c_{J}, \tau=314^{\circ}$

Figs 10-12.

Fig. 10.

FIG. 11.

Fig. I2.

C.P. No. 388
 $(16,452)$
 $(17,563)$
 (18.980)

A.R.C. Technical Report

(C) Crown copyright 1958

Prnted and published by Hrr Majesty's Stationery Office

To be purchased from
York House, Kingsway, London w.c. 2
423 Oxford Street, London w.I
13A Castle Street, Edınburgh 2
109 St Mary Street, Cardiff
39 Kıng Street, Manchester 2 Tower Lane, Bristol 1
2 Edmund Street, Birmingham 3 80 Chichester Street, Belfast or through any bookseller

Printed in Great Britain

[^0]: ${ }^{+}$Now Nuffield Resoarch Profossor of Mechanical Engincering in the New South Wales Univorsity of Technology, Sydney.

[^1]: +The terms "source-typo" flow and "jet-type" flow are used throughout thas report to indicate the absence or prcsenco respectivoly of vortox sheets separating the ejectod fluid from the man stroam. Both typos of flow can be rogarded as originating from a source within tho acroioil.

[^2]: ${ }^{+}$All impropor integrais occurring in thas report are to be given their "principal values"8.

[^3]: +It subsequently proved that Spenco's integral uquation (when transiormed) was in essence rdentical to that givon in $\$ 8$ (soc Appondix II), and consequently thas last ronark is not truc.
 x
 This hopo was apprently justified.

