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Summary. 

The transfer of heat between a fluid and a cavity in a solid surface over which it flows is discussed from the 
viewpoint of the closed 'inner boundary layer'. A (constant pressure) integral condition is derived from the 
energy equation which specifies the net flux of heat through the cavity at all Mach numbers. For a simplified 
viscosity-temperature function, velocity and temperature profiles are obtained as functions of Mach number 
and Prandtl number, while heat-transfer coefficients are developed in terms of these parameters. 

1. Introduction. 

Following SquirO we describe the closed motion which occurs in cavities and steps in solid 
surfaces, etc., as 'cavity flow' and consider it to consist of a boundary layer surrounding an inviscid 

core. Analyses and experimental results for this type of flow have been given for a square cavity 
by Mills ~,a. The heat transfer occurring in this type of motion may be of interest and has some 

practical importance as i n t h e  low-speed motion of a fluid over a transversely finned surface (e.g. 
nuclear reactor rod), and in high Mach number  flow over grooves and slots in aerodynamic surfaces. 

Interaction between the inner cavity flow and the outer flow takes place in a mixing region which 
is commonly turbulent. For the purposes of the present calculation the mechanics of this inter- 

action process will be neglected, and the outer flow 'separated' from the inner flow by a dividing 

:streamline along which the velocity and temperature are taken as constant. In reality, of course, 

re-attachment of the outer flow accompanied by a strong pressure rise will take place in a zone near 

the downstream top corner. I t  is assumed that this zone is very small in length compared with the 

breadth of the cavity, so that these assumptions are reasonably realistic. 

The  present analysis will embody the hypothesis that the vorticity and temperature of the core 

tend to constant values once the flow becomes steady. The validity of this has been demonstrated 

theoretically by Batchelor 4, 5; and verified to some extent experimentally by Mills 2, a in the case of 

vorticity for the flow in rectangular cavities. 

As an example of this type of problem we shall consider the steady, two-dimensional flow in a 
square cavity. The  methods may be applied to other shapes provided the inner boundary layer 

closes and remains substantially attached to the walls of the cavity. 

Replaces A.R.C. 26 049. 



2. Governing Equations and Conditions of  Closure. 

We consider the boundary-layer motion to be of constant pressure so that the equations of  

momentum and energy become in van Mises form, 

au a ( au] 
(la) ax - a¢ _~PU a¢] 

where 

( lb)  

( lc)  pu = a¢ /ay  

and the shear stress r and local heat-transfer rate q take the forms 

aT  &t ffpC~, u -  ( ld)  

= tzC~/k  is the Prandtl  number.  

In  the following discussion we take the produc t /zp  = constant, that is /z  oc T from the perfect 

gas law. From ( ld)  this implies that the shear stress and heat-transfer rate are the same functions 

(of x, ¢) at high Mach number  as at low speeds (see also LighthilF), and this circumstance is implicit 

throughout  our argument. 

The  non-dimensional quantities denoted by e are now introduced (see Fig. 1), 

2b 
u = U0 ue , x = - - x  ~ , Y = bY '~ , P = PoP e , I ~ = ffoff*, k = ha ke  , 

77" 

T = To T e  , ¢ = [t%poUo(2b/rr)C]lm¢ ~ /zep ~ = C,  

whereupon equations (la, b) become 

au a ( &q 
a .  - a¢ u ~ ]  

,0(0g) 
ax ~ a¢ u 

where 
E = M J ( r -  1) 

(2) 

(3a) 

[ au] ~ 
+ Eu \-aTb] (3b) 

(3e) 
and we have finally dropped the *" 

Boundary  Conditions: on u and T these may be writ ten (see Fig. 1) 

periodicity u(x, ¢) = u(x + 2rr, ¢) T(x ,  ¢) = T (x  + 2~, ¢) all x, ¢ (4a) 

37r 57r 
walls u(x ,O)  = 1 T(x, 0) = 1 ~- < x < ~ -  (4b) 

37r 37r 
u(x,o)=o ~(x,o)=/~ - T  < ~ < T  (4c) 

infinity u(x, ov) = U T(x ,  ov) = T~  all x (4d) 

together with the additional condition that the velocity and temperature  gradients vanish at the 

outer edge of the boundary layer, 

= u - -  = 0 .  ( 4 e )  
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Closure Conditions. 

Before proceeding to give solutions of the above equations we derive important general conditions 
resulting from the fact that the boundary layer must close. On integrating (3a, b) around any closed 
streamline we find 

f 
2. ah~ 
o a¢ 2 dx = 0 ( 5 )  

l f 2 .  8 ( 8T_f ) f 2 .  (8212 ~" o ~-¢ u d x + E  u dx = 0 (6) 
o \ a ¢ ]  

in view of the periodicity-conditions (4a). Two integrations of equation (5) with respect to ¢ and 
use of the boundary conditions (4) will show for any streamline 

~27t 

j u2dx = constant. (7) 
0 

This result provides the value of the velocity U at the edge of the boundary layer (½ in the present 
case) and in turn the constant vorticity of the core with the aid of Stokes' theorem s. Forms of 
equations (5), (7) have been first reported by Batchelor ~, Wood s. 

Condition (6) throws light on the heat flux through the cavity; for on utilising the second equations 
of (ld), (4e) we find after one integration with respect to ~b 

¢)dx = " dx d e .  (8) 
0 oo 

This equation, which is in effect the energy conservation law for this problem, has two immediate 
consequences: 

(I) If there is no frictional heating the net flux of heat across any closed streamline is zero; 
in particular for ¢ = 0 this means heat given up at the walls is convected with the boundary layer 
and delivered to the free stream along the dividing streamline, and vice versa% 

(II) With frictional heating there is a net flux of heat measured by the right-hand side of (8). 

3. High Speeds. 

A solution of the linearised form of (3a) suggested by Wood s, namely, 

~u 2 ~2u~ 
- U - -  U = ½ ( 9 )  ax ~¢2 

has been obtained by Mills s with boundary conditions (4): 

1 2 ~ (sin mm~r ) 
u2(x' ¢) - 4 Z e - ' /m (~ cos ( m x -  ~/m ¢). (10) 

m = l  

This form is invariant at all speeds under the hypothesis/zp = constant; that the velocity profiles 
change with Mach number follows since ¢ involves the density p and the meaning of u in terms of 
the physical co-ordinate y is different. 

e (I) is of course valid regardless of the viscosity-temperature function; furthermore the product/,p would 
appear under the integral signs on r.h.s, in equation (8) if no restriction were placed on this function 
{cf. equation (lb)}. 
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It is well known that the quadratic function T = a ' +  b'u + c'u 2 with 2 c ' +  E = 0 satisfies 
equations (3) when the Prandtl number is unity. We shall take equation (10) to be a sufficiently 
accurate solution of (3a), (4) for the present heat-transfer calculations. (A method of solution of the 

non-linear problem is to be found in Mills3.) 

Adiabatic Wall. 

Suppose the walls of the cavity to be perfectly heat insulating so that u = 0, dT/du = 0; u = 1, 
T = 1 at ~b = 0. Solving for a', b', c', we find the temperature distribution to be given by 

T =  ( l + ½ E ) - ½ E u  2 (11) 

and the adiabatic temperature rise by T~a = 1 + ( 7 -  1)M0e/2 in exact parallel with the well known 
solution for a fiat plate. The uniform temperature of the core becomes Too = 1 + 3(7-1)M0~/8, 
since u -+ ½ as ¢ --> co. 

Heat Transfer. 

Next suppose that heat can be transferred to and from the fluid along the walls and also along 
the dividing streamline. With boundary conditions as in (4) we find the solution 

T = # + (1 - ~ + ½  E)u - ½ Eu s. (12) 

The uniform temperature of the core now becomes Too = ½(l+fi+~E).  The quantities of heat 
transferred along the dividing streamline and walls are respectively 

- [ ' ~ "  . ~ d~ : - ( 1 - ~ - ½ e )  ~od~ (13a) 
QO = J3~/4 O dsn/4 

. d~ : + ( 1 - # + ½ E )  .~'~ 
Qw = J 5~r/4 " ~  0 J81r/4 

where the skin-friction integrals are given by 

~ / 4  (11~l~ 2 °~ sin~mTr 2 ~ / 2 + 1 (  1 1  
%dx = -  % d x -  Z m3m . . . .  2~/2 1 -  ¢(3/2) 

33./4 d5.t4 ,r ~ = i  ~ 23t~/ 

= -, 0.91757 (14) 

on utilising (ld) and (10). ~(3/2) = 2.612375 is the Riemann zeta function for argument 3/2 (see 

Ref. 6). (The first equality of (14) follows since for dynamic eq~dlibrium there is zero net torque on 

the fluid in the cavity.) 

Direction of Heat Flux. 

The direction of the heat flow through the cavity may be determined by adhering to the con- 
vention that the flux is positive if into the cavity, i.e., in the direction of ~b increasing, and noting 
that the shear stress % is negative everywhere along the dividing streamline. With the aid of (13) 
and (14) we may then distinguish the following rdgimes. The upper arrows represent the heat 
transferred by temperature difference, the middle the frictional heat transfer and the lower their 

resultant. 

(i) 0 ~ < p < l - ½ E  ( E < 2 ) .  

Free stream <-- boundary layer -+ walls. 



There is thus a net transfer of heat from free stream to walls. 

(ii) fl = 1 - ½ E  ( E <  2). 
-__> - +  

Free stream <-- boundary layer -+ walls. 
0 - - >  

There is no flux across the dividing streamline (adiabatic condition there) and a quantity equal to 

the heat generated by friction passes out through the walls. 

(iii) 1 - ½ E < / 3 < l + ½ E  
__> ---> 

Free stream <-- - boundary layer - -> walls. 
<--- - -  - -  -->. 

The direction of the net heat flux depends on whether fl is greater or less than unity, the latter case 
being illustrated by the arrows. When/3 is unity, only frictional heat is involved, half of which passes 

to the walls and half to the free stream. 

(iv) fi = I + ½ E  
.<_- < _ -  

F r e e  stream <- boundary layer -> wails. 
<---  0 

An amount  equal to the heat generated by friction passes out to the free stream and there is no flow 

through the wails (adiabatic wall condition); the wall temperature will rise to the adiabatic value 

T~a quoted earlier. 

(v) 5 > l + l E .  
4 - -  - -  <--- - -  

Free stream ~- boundary layer ~ walls. 
~ _ - -  - -  

This is the reverse of situation (i). 
The above results are not unexpected on a priori physical grounds, for the temperature of the 

core can never increase beyond all bounds for finite Mach number.  We observe that the net flux of 

heat Q0 + Qw is independent of the temperature ratio fi, yet this quantity determines its direction, 

while the proportions of the whole flowing to the walls and free stream depend on both Mach 

number and ft. For fixed E < 2 (M 0 < ~/5, air) the situtation represented by (i) may of course reverse 
itself of its own accord through stages (ii) to (iv) if the heat delivered to the walls is not removed. 

Velocity and Temperature Profiles (Adiabatic Wall). 
For the adiabatic wall condition (iv) the velocity and temperature profiles are shown for various 

Mach numbers, Figs. 2 and 3. The physical co-ordinate y has been retrieved from the stream- 

function representation with the aid of (10) and (11) and the formulae 

J0o  7, (15) 

where H 2 = @/2C) [UoPob/ixo], that is Ir/2C times the Reynolds number  R 0 of the flow based on 

the speed U 0 and fluid properties/z0, Po on the dividing streamline, and the cavity breadth b. The 

profiles may similarly be obtained from (12) in the heat-transfer case. 



Together with the usual oscillatory behaviour of this type of boundary-layer flow, we note the 

flat-plate characteristics of thickening of the velocity boundary layer and tendency to a linear profile 

with increasing Mach number at the wall station 0 (circled). Somewhat similar, but less pronounced 
behaviour is noted at the dividing streamline station 2 (circled). With regard to the temperature 

profiles, Fig. 3, we again observe features akin to those of the ordinary flat-plate case at station 
0 (circled), while in contrast at station 2 (circled) the temperature increases with y until at the 

core a uniform temperature is reached intermediate between the wall temperature and that on the 
dividing streamline. 

4. Low Speeds. 

It is noted in passing that the high-speed case gives correctly zero net flux of heat through the 

cavity when M o ->0 {cf. (I) and equations (13)}. The situations likeliest to be of physical interest 
will now involve arbitrary Prandtl number rather than thelat ter  being (in the neighbourhood of) 
unity. 

Mathematically the problem amounts to finding a solution of the (homogeneous) equation (3b) 
without the frictional term and satisfying boundary conditions (4). Even if (10) is accepted as the 
velocity distribution this linear boundary value problem remains one of some complexity. One 
could replace u in (3b) by its r.m.s, value ½ and determine a solution for the temperature similar in 
form to (10) and involving a square-root dependence on Prandtl number. This suffers from the 
defect, however, that the solution does not satisfy the integral condition (I). We might try to follow 
Lighthill's 7 procedure of replacing the velocity profile by its tangent near ¢ = 0, but this leads to 
difficulties due to the change of sign (under the square root) of the boundary shear stress, and con- 
sequent change in character of the approximated differential equation. Notwithstanding, if we use 
Blasius' value or some weighted equivalent for this stress then we should have a solution for the 
temperature involving modified Bessel functions of order 1/3 as eigenfunctions and a cube-root 
dependence on Prandtl number. 

In the light of the above remarks the present author was forced to consider an Oseen linearisation 
of the energy equation, namely (in dimensional quantities), 

aT /~ a~T 
Ox - apU Oy2 U = ½Uo (16) 

which correctly yields zero net flux of heat through the cavity. The solution of (16) satisfying 
T = T o along the dividing streamline and T = Ta, along the walls may be written 

T -  T~o 1 2 ~ [sin}m~r\ 
O -  T o -  T ~ -  4 ~r.~l  \l e-VmY(cO cos (mxe--%/m Y)  (17) 

where 

[~rU°bp] lt~y and x e is defined as earlier. 
Y = - } ~ / ~ L  2/. ] 

Temperature profiles derived from this equation are shown in Fig. 4 for a range of Prandtl 
numbers. We observe that the thermal boundary layers become thinner with increase in Prandtl 
number as in E. Pohlhausen's solution for a flat plate. That the thermal and velocity boundary layers 
do not reduce to the same curve when ~ = 1 is a consequence of the different forms (Mises, Oseen) 
of the linearised differential equations solved for the velocity and temperature. 



On evaluation of the local heat-transfer rate--k(aT/ay)o from (17), it is found with the aid of (14) 
that the Nusselt numbers for the dividing streamline and walls take the forms 

,/(2) 
(Nu)o,w = + ~ 0.91757 v/R~/~r. (18) 

Heat Transfer--All Speeds. 
In view of the principal corollary of the /,p = constant hypothesis, viz., constancy of ~- and q 

we now propose with the aid of (13), (14) and (18) the following heat-transfer coefficients validfor 
all speeds, 

(Nu)o,~ = +0"91757/(2---Cr)~/Ro~/C~[1-/3-7-7~-2-1~/GMo~l (19) ~ 

where A T is some suitable non-zero temperature difference. (The low speed A T = T O - T w would 

cease to give a meaningful result at high speeds for/3 = 1.) Conversely (18) represents the correct 

limiting case of (19) for zero Mach number and constant fluid properties (C = 1). Equation (19) 

with ~ = 1 follows directly from (13), (14). 

5. Concluding Discussion. 
The solutions developed for high speeds while retaining the inherent oscillatory character of this 

type of flow show features akin to compressible flow over a flat plate with constant pressure: 

thickening of the velocity boundary layer and an almost linear profile as the Mach number becomes 

large, particularly at the wall station 0 (circled) in the adiabatic case. The ultimate temperature of 

the core has been shown to be a simple function of both Mach number and temperature ratio fi, 
and certain conditions have been derived which determine in direction and proportions to the walls 

and free stream the net flux of heat through the cavity. Heat-transfer coefficients have been developed 
for all speeds. 

The particularly simple form of these results arises from the assumed constancy of the density x 
viscosity function at all speeds. A more accurate representation of the viscosity-temperature function 
will involve an analysis of greater complexity but this will still contain the same crucial information 
regarding the heat flux through the cavity. 

The interaction process between the main stream and the cavity flow region and the resulting 

high rate of mixing must certainly influence the various exchanges of heat energy. However, it is 
felt that embedded in the more complex phenomenon including the mixing process will still be 

found the basic mechanism of heat exchange via the inner boundary layer as illustrated above. 

Another neglected factor will be the complex of shock waves and shock-wave boundary-layer 

interactions that must attend separated flows of this nature. There may also be a tendency to enhance 

the local separation and re-attachment effects in the cavity corners which are already present in the 

low-speed case 2,~. Then there is the question whether the boundary layer is laminar or turbulent 

and the intricate inter-relationships between this circumstance and the shock-wave boundary-layer 

-e The frictional part of (19) exhibits the correct dimensional dependence on G, E as demanded by the integral 
condition (8). Numerically, the condition will not be exactly obeyed since a linearised solution, equation (10), 
has been used for the velocity distribution. Inverting the argument, (8) might prove to be a useful condition for 
rendering unique any approximate attempt at a comprehensive solution u (x, ~b, G, E), T(x, ~, G, E). 



interactions. In a gross manner a turbulent boundary-layer flow of the present type could be 
analysed by employing an eddy viscosity and eddy heat conductivity with some attendant hypothesis 

of very simple form (see low-speed case d, 8). 
At low speeds the linearised Mises forms of the boundary-layer equations though yielding a 

reasonably accurate description of the velocity boundary layer 8 fail to describe correctly the heat 
flux through the cavity, and resort to an Oseen linearisation is necessary to preserve this cardinal 

feature of the thermal phenomenon. It does not appear possible to predict the constant temperature 
of the core from the exact thermal equation without first determining the details of a solution. This 
contrasts with our ability to determine the constant vorticity of the core directly from the exact 
momentum equation (via the value of the velocity at the outer edge of the boundary layer). The 
value ¼ for 0~ (or To~/T o = } + ~13) as yielded by the Oseen linearisation then may reasonably be 

in question; it could readily be tested by experiment, however. 
Finally, it may reasonably be questioned whether the assumptions of (a) constant velocity, 

temperature along a (straight) dividing streamline (b) constant pressure within the cavity would 
seriously impair the correspondence of the present analysis to reality. In an actual cavity significant 
departures from (a) may occur at low Reynolds numbers and from (b) at high speeds due to abrupt 
flow direction changes at corners. However, it should still prove possible to take these effects into 
account in an analysis of the present type. To this end we note that the present methods, though 
applied for definiteness to a square cavity, are in fact independent of the boundary shape inasmuch 
as the boundary layer encircles a single vortex and remains attached to the cavity walls; and further- 
more we can encompass readily non-uniform velocity U0(x ), temperature To(x ) and pressure p(x) 
(at least at low speeds) by expanding these in Fourier series (for an example of this see Ref. 3). 
For high speeds some progress should be possible in this direction on first utilising an Illingworth 

transformation. Thus in principle we can continuously deform the boundary streamline ~b = 0 so 
as to approach more realistically that in an actual cavity and at the same time incorporate these 

arc-distance (x) dependences into the solution. In fairness, however, a full solution of this nature 
would be a difficult undertaking even using linearised equations, for in surmounting the usual 

difficulties we have additionally to find a solution of 'shear-wave' character, as distinct from a 

'similarity' solution. 
Nevertheless, it is hoped that the present much simplified analysis may give a useful overall 

description of this somewhat complicated (thermal) phenomenon, and that the heat-transfer 

coefficients may be of some guidance in practical situations. 
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LIST OF SYMBOLS 

Breadth of cavity 

Orthogonal curvilinear co-ordinates 

Stream function 

Velocity component in direction of x 

Temperature 

Local heat-transfer rate 

Shear stress 

N . B .  

Constant velocity and temperature along dividing streamline 

Constant velocity at edge of boundary layer and constant temperature of core 

Density, coefficient of viscosity and coefficient of thermal conductivity of fluid 

Constant-pressure specific heat of fluid 

Ratio of latter to constant-volume specific heat 

Constant in density x viscosity function 

_ /zC~ Prandtl number 
k 

Dividing streamline Mach number 

= (7-1)]140 ", Eckert number 

= Tw/To ,  wall to dividing streamline temperature ratio 

Constants in quadratic temperature function 

Quantities of heat transferred along dividing streamline and walls of cavity 

Uobpo 
R o - , dividing streamline Reynolds number 

/% 

2Vu = Q / k o A T  , average Nusselt number; AT temperature difference 

T - T~ low-speed temperature ratio. 
0 - T o  - Tw, 

(i) Quantities not dimensionless in above list are made so according to the scheme of 
equation (2) and are used in the text without a distinguishing mark for convenience. 
Reversion to dimensional quantities is mentioned explicitly. 

(ii) Suffices 0 and ~o refer to conditions along the dividing streamline and walls respectively. 
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