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Summary. 

The report presents the results of theoretical calculations of torsional flutter of unstalled cascade blades. 
It is shown that the position of the torsional axis is of great importance, the best position being near the 
quarter-chord point, and the worst position near the threequarter-chord point. An unfavourable axis position 
gives flutter speeds which are exceeded in normal machines. 

An experimental investigation in an annular cascade with twelve blades confirms the existence of this type 
of flutter. Good agreement with the theory is found in some cases, but in others it is thought that three- 
dimensional effects are having a substantial influence. 

The effects of small differences between blades are examined theoretically in an Appendix, and it is con- 
cluded that the effects of mistuning and mechanical damping are always favourable. 

1. Introduction. 

I t  has been well established that for normal designs of axial compressor and turbine blading the 

aerodynamic forces do not have an appreciable effect on the modes of vibration of the blades. This  

is because the mass of the blade is much greater than the mass of fluid in its immediate vicinity. 

In flutter investigations it is therefore sufficient to consider only a single degree of f reedom in the 

motion of each blade, and this report  will be concerned purely with torsional motion of each section 
about a known axis~ 

In an earlier theoretical investigation 1 of flutter of unstalled cascade blades at zero deflection it 

was found that whereas bending vibration was always damped, torsional vibration could be self- 

excited. These  calculations were done using a method of dubious accuracy. In Ref. 2 an accurate 

method of calculation was presented, together with tables of force and moment  coefficients. In  the 

present report  this more accurate method of calculation will be applied to the problem of torsional 

flutter, and an experimental study of the problem will also be described. 

2. Theory for Identical Blades. 

In the theory of Ref. 2 the assumptions are that the system is two-dimensional,  that the fluid is 

incompressible and inviscid, that the blades are flat plates operating at zero mean incidence and 

that the blades do not stall. I t  is also assumed that the blades vibrate, all having the same small 

amplitude, and with a constant phase angle (/?) between one blade and the next. 

e Replaces A.R.C. 26 085. 



The aerodynamic force ( F d  ~°t) and moment about the leading edge (Mo ei°)l) for each unit length 

of blade are then expressed in terms of force and moment coefficients as follows:' 

F = ~ p U c ( q C ~ + ~ U C ~ ) , .  (1) 

Mo = ~p Uc~(qcM~ + ~ u g l y ) .  (2) 

In these expressions, qd 'o~ is the yelocity of the leading edge of the blade due to its vibration and 

ae i°~t is the angular displacement of the blade. The notation is illustrated in Fig. 1. 

If  the blades vibrate in torsion about an axis distant ~c from the leading edge, then the moment  

about this axis M,/ ' ° t  can be expressed in terms of a moment coefficient (CM~)~ as follows: 

= (3) 

It is shown in Ref. 2 that this coefficient is related to .the coefficients for the axis position at the 

leading edge as follows: 

( C~,~),j = C~,~ - ,C_~,o~ - i ;~CMq + iA~CFq ,  (4) 

where A is the frequency parameter (A = Wc/U) .  

In order to find the conditions for self-excited vibration or flutter of the system, these aerodynamic 

forces must be ectuated to the mechanical i%rces. It is assumed that' ali the blades are Mentical, that 

there is no mechanical coupling through the blade roots, and that only torsional motion about an 

axis position given by ~ is to  be considered. Then  the equation of motion for unit length 9 f blade is 

d 2 hobos d M~eiO~ t "" k ~ (ae 'i°~t) + ~ at (°~d°~t) + kw°z (c~d'°t) = 

k = moment of inertia per unit length of blade, where 

co 0 = natural frequency of blade in a vacuum, 

3 = logarithmic decrement due to mechanical damping. 

Using equation (3) this gives 

( ic°°)o~ ~ ) ,  2o 
k - + + = (5)  

• 77" . .  

It is convenient to define a non-dimensional moment of inertia parameter X' as follows:" 

. . X ' . = , k / T r p O "  (6) 

X' represents the ratio of the moment of inertia of unit length of blade to the moment of inertia of a 

cylinder of air with diameter comparable to the blade chord. I t  is generally rather a largenumber .  
For steady vibration both the real and imaginary parts of equation (5) must be satisfied. The real 

part gives . . . .  
¢ 0 0  $ - -  ¢.O 2 

X'A ~ ~° 2 = N(CM~)~ • (7) 

The imaginary part gives 

X,;~ ~ ~o o ,3 _ J(CM~)~.. 
O3 q r  

(8) 

Equation (7) gives the frequency at which flutter can occur. Since X' is large, (~o0~ ~ co 2)'is-small and 

~o is nearly equal to ~o 0 . 



Equation (8) relates the mechanical and aerodynamic damping, and is the condition for the flutter 
t o b e  just self excited. Flutter can only occur if the imaginary part of (Clvs~)v is positive, and then 
equation (8) can be regarded as giving the amount of mechanical damping required to just stop 
the flutter. 

If there is no mechanical damping, then the condition for marginal flutter is 

S(C~=)~ '= O, 
or, from equation (4), 

- - + A 2 (CF ) = 0 .  ( 9 )  

Now these force and moment coefficients depend on four variables. These are the space to chord 
ratio (s/c), the stagger angle (~), the frequency parameter (;t), and the phasing angle (/7). Since the 
calculation of the coefficients from the four numbers is rather long, it is convenient to regard 

equation (9) as a quadratic equation for the unknown axis position ~1, and it may have two roots, 

~/~, and ~/2- These roots are shown plotted against/7 for a typical case in Fig. 2. It is seen that the 

lines of constant ~ form loops, and inside these loops the imaginary part of (C~±~),1 is positive and 
fut ter  can occur. 

Now if there is a large number of blades in the cascade, flutter can occur at any value of the 

phase angle ft. Taking the example shown in Fig. 2, this means that flutter will occur for any value 
of the axis position ~/ be tween points A and B and also between points C and D. These are the 
critical values of ~1 and a computer programme has been arranged to find them. It operates by 

hunting for maxima and minima in the graphs of ~ against ft. It will be noted that there may also 
be non-significant maxima and minima, in this case at points E and F. 

Theresul ts  for the critical values of ~1 are shown in Figs. 3, 4 and 5, which give the value Of A 
(which is in practice the dependent variable) plotted against ~/. The calculations have been done 
for space to chord ratios of 0.75, 1.0, and 1.5, and for various stagger angles. Flutter is predicted 
if the operating point is below the line drawn, that is if the frequency parameter is less than a 
critical value or if the flow velocity is greater than a critical value. 

The correspondingphase angles are shown in Figs. 6, 7 and 8. The letters A, B, C, D, E and F 
are used to identify the corresponding branches on Figs. 3 to 5 and Figs. 6 to 8, and these letters 
also co rxespond to the maxima andminima shown on Fig. 2. Fig. 5 shows that for stagger angles of 
60 ° and •75 ° the question of which is the significant maximum or n~inimum may change as the 
position of the torsional axis is varied2 This gives rise to kinks in the 'curves' of criti'cal frequency 
parameter against axis position. In these diagrams most of the computed points relating to non-" 
significant maxima and minima have been omKted. 

In the limit h ~ 0  the critical phase angles are either 0 or w. The case fi = 0 can be treated by 
actuator-disc methods% and the .critical axis position is at the centre of pressure for Steady potential 
flOW. 

3. Experimental investigation. 

3.1. Desig n . 

Since the torsional flutter of unstalled blades predicted theoretically in the previous section had 
not been observed experimentally, except in the exploratory experiments carried out by Bellenot 
and d'Epinay 3, an experimental investigation of this effect was planned. 

3 
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The flutter depends upon an interaction of one blade with the res t ,  and therefore an annular 
cascade with 12 test blades was chosen. The number of test blades was kept rather small in order 

to reduce the number of normal modes of the whole system and make the critical flutter mode 
easier to identify. A small number  of blades also eases the manufacture and tuning problems, but 

it does mean that the three-dimensional effects may be substantial. Since the theory is two- 

dimensional the hub to tip diameter ratio was chosen as 0.8. Some of the leading dimensions for 

the experiment are therefore as follows: 

Tip Radius 

Hub Radius 

Hub/Tip  ratio 

Mean Radius 

Number  of blades 

Spacing at mean radius 

Blade chord 

Spacing/Chord ratio 

Aspect ratio (Height/Chord) 

Stagger angle 

6. 675 in. 

5. 340 in. 

0.8 

6. 0075 in. 

12 

3. 145 in. 

3- 145 in. 

1-0 

0. 425 

45 ° 

A diagram of the annulus is shown in Fig. 9. In accordance with the assumptions in the theory, 

the test blades have zero camber and operate at zero incidence. There is therefore a row of 43 inlet 
guide vanes placed upstream of the test cascade, which were designed to give the required air inlet 

angle of 45 °. A row of 94 outlet guide vanes downstream of the test cascade removes the whirl. 

There are axial gaps between these blade rows of just over two axial chords of the test cascade. 

Fig. 10 shows the rig mounted on one of the two exits of a low-speed wind tunnel. The air enters 

the rig through a contraction (this is shown on Fig. 9, but is not visible in Fig. 10, as it is inside 

the large vessel on the left of the picture), and is exhausted to atmosphere through an annular diffuser. 

Fig. 11 shows one of the test blades. These blades are untwisted, and have a lenticular profile 

(i.e. both surfaces of the blade are circular arcs), 10% thick. This profile was chosen for ease of 

manufacture and because Figs. 3 to 5 show that a symmetrical profile of this type with the torsional 

axis at the mid-point of the chord is susceptible to torsional flutter. This last consideration is of 
very little importance, because in this experiment the position of the torsional axis is determined 
entirely by the mounting, but it was felt that if the type of profile does have any aerodynamic effect, 
then this is the type of profile on which trouble may occur in practice. 

The blade mounting is shown in Figs. 12 and 13. Each blade is carried by four spring-steel strips, 
arranged in the form of a cross. This mounting is comparatively flexible for torsional motion about 
an axis at the centre of the cross, but is rigid for all other types of motion. The frequency of torsional 
vibration could be varied by sliding the block to which the strips were clamped at their fixed end 
in a direction parallel to the axis. This alters the effective length of the strips, and therefore the 
stiffness of the mounting. The position of the torsional axis could also be varied by sliding the whole 
mounting in a direction parallel to the blade chord. The values of ~ available in this way are 

- 0.048, 0-111, 0.270, 0.429, 0.588, and 0.748. 
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Each blade is set up so that the gap between the flat surface on the outside of the casing and the 

corresponding surface on the hub of the blade is 0. 005 in. Since this gap is in a plane normal to the 

axis of vibration, the width of the gap is not altered by the vibration. 

The  motion of the blades was observed by resistance strain gauges stuck onto the steel strips. 

Fur ther  instrumentation consisted of three static-pressure tappings on both the inside and outside 

walls of the annulus in planes upstream and downstream of the test cascade, and provision was 

made for traversing the airflow in these two planes by means of a three-hole yaw-meter.  

3.2. Development. 

During the initial running of the rig two main difficulties were encountered.  The  first difficulty 

was that when the rig was run with the torsional axis near the mid-chord point there was found 

to be a static deflection of the blades in the direction of increased stagger angle. This  was sufficiently 

great to take up the clearance between the blades and the slots in the casing, so that no vibration 

could then be observed. Traversing showed that the mean flow angles both in front of and behind 

the cascade were very close to the design angles of 45 °, but  there was a substantial static-pressure 

drop across the cascade. This  must  be associated with an axial force on the blades, which presumably 

acts at a centre of pressure well forward of the mid-chord point. (For  potential flow the centre of 

pressure is at 22% chord for this cascade.) This  pressure drop can therefore account for the deflection 

observed. The  trouble was cured by increasing the stagger of the inlet guide vanes by 3 ° , so that 

the mean flow angle at inlet to the test cascade was then 48 ° . This  was found to neutralize the force 

on the blades and there was then no steady angular deflection of the blade due to the flow. 

T he  rig was initially designed to be run on the suction side of the wind tunnel, with the idea of 

ensuring a smooth flow drawn straight f rom the atmosphere. Th e  second main difficulty was that 

this arrangement was found to give a very unsteady flow. This  was associated with a leakage flow 

inward through the 0. 005 in. gap between the test blades and the casing, giving rise to separation 

in the corners of the cascade. The  trouble was cured by transferring the rig to the outlet end of the 

wind tunnel, and inserting gauzes behind the outlet guide vanes until the static pressure on the 

outside wall of the casing was just  above atmospheric. Th e  flow through the gap between the blades 

and the casing is then outward, giving a small effect of boundary-layer  suction in the corners of the 

cascade, and the steadiness of the flow was found to be much improved. 

3.3. Test Procedure. 

On each build of the rig the blades were tuned to have very nearly the same frequency in still air. 

This  was done by inserting plugs into some of the spare holes tapped into the hub of the blade. 

These  plugs can be seen in Fig. 12. I t  was possible by this means to get the frequencies the same 

to within + 0 .02  c/s on a basic f requency of about 25 c/s. Th e  frequencies were measured by com- 

paring the signal f rom a freely vibrating blade, with that f rom a decade oscillator, and observing 
any relative phase changes. 

T h e  mechanical damping of each blade was then measured by taking a photograph of a free 

vibration. A typical example is shown in Fig. 14. Th e  logarithmic decrement,  5, was determined 
from the equation: 

= ( l / N )  log~ (al/a~). 

where a 1 and a~ are the initial and final amplitudes, and N is the number  of cycles observed. In a 

typical build 3 was found to vary from about 0- 008 to 0. 020 on different blades. This  is a variation 

of near ly  3 to 1, although the actual values are reasonably small. Close examination of the records 

5 
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shows that S depends appreciably On the amplitude of vibration, but this effect has been neglected. 
It will be shown in the Appendix'that it is permissible to take an arithmetic mean value of 3 for all 
the blades in any build. 

The air flow was then turned on and the motion of ten of the blades was observed on ten-channel 

strain-gauge equipment. As the airspeed is increased the vibration is at first small and of a random 
nature, but when the axis was toward the back of the blade it was found that the amplitude became 
large and was very nearly steady. This was recorded as the flutter point. A record from the ten- 

channel strain-gauge equipment is shown in Fig. 15. This equipment is only suitable for qualitative 

work, as the time scale is non-linear, and there is considerable interference between one channel 

and the rest. This is illustrated in Fig. 15 by the sixth line which is a dummy channel and should 

not show any vibration, but indicates an amplitude of nearly half that of the other ten channels. 

Nevertheless this photograph does show how the blades vibrate with similar amplitudes on each, 

and with a small phase change between one blade and the next. 

In computing the results the air velocity was obtained from the difference between the reading 

of a total pressure probe in the UPstream plane and the mean of the six wall static-pressure tappings 

in the downstream plane. This therefore gives a mean air yelocity between the wakes in the down- 

stream plane, and was thought to be the most representative velocity to use, since the flutter effect 

depends on the rate at which vorticity is carried downstream behind the cascade. 

The values of X' have been calculated from the stiffness of the spring mounting measured in a 

preliminary experiment and from the measured static frequencies. This enables the moment of 
inertia to be calculated, and hence X'. 

3.4. Results and Comparison with Theory. 

The experimental results obtained are given in the 'Table of Results', and are compared with the 
theoretical expectations in Figs. 16 and 17. 

These theoretical calculations differ from those in Section 2 in that only those axis positions 
which are available in the experiment have been considered , and also since there are 1,2 blades in 
the cascade the only allowable values of ]3 are multiples of 30 ° , giving 12 possibleva!ues of/3. Of 

these 12 vaiues, the one which gives the greatest value of the imaginary part of (CM,)~ is the one 

which will give flutter. Fig. 16 shows the imaginary part of (Q~),l plotted against ~ for these values 

of ~ as full lines. Dotted lines refer to a value of ~ which does not give the maximum value of 

J(C~,~)~. The corresponding values of the real part of (C~,~)~ are shown on Fig. 17. It may be 

noted that the restriction to 12 values of the phase angle has only a slight effect on the' flutter 

condition with zero mechanical damping. For instance, for ~ = 0.588 Fig. 16 indicates that the 

flutter condition for zero mechanical damping ~J(CM~)~ = 0} is at ;t = 1. 025, with p = 60 °, 

whereas Fig. 4 gives ;~ = 1.08 with unrestricted phase angles. Fig. 7 shows that the corresponding 

critical phase angle is at/3/2~r = 0" 125, or/3 = 45 °, so that this indicates the maximum possible 
effect due to restriction of phase angle. 

The real and imaginary parts of the moment coefficient have been calculated from the experimental 
results using equations (7) and (8) and are also shown on Figs. 16 and 17. 

For ~/ = 0.588 there are experimental points for three different frequencies. These three points 
agree well with each other, and with the theoretical results. The theoretical calculations show that 
the most critical phase angle should be ~ = 60 °, whereas in fact flutter was observed with j~ = 30 °. 
The theoretical line for/3 = 30 ° is also shown dotted on Fig. 16 and is seen to be only slightiy lower 



than the/3 = 60 ° line. Two of the experimental points lie almost exactly on the ~ = 30 ° line, whereas 

the third is nearer the/3 = 60 ° line. Fig. 17 shows that the flutter frequencies agree quite well with 
the ]3 = 30 ° theoretical prediction. It is interesting to note that even the quite small amount of 

mechanical damping present drops the critical frequency parameter from just over 1 to about 0.6. 

With the axis position at ~ = 0"429 flutter was again observed, but at a frequency parameter 

considerably lower than that predicted by theory, as indicated onF ig .  16. The experimental phase 

angle of '/3 = 60 ° agrees with the theory and Fig. 17 shows that the flutter frequency also agrees 

very well. 
With the axis position at ~7 = 0. 748, flutter was again observed, but the mod'e was such that the 

blades on one side of the rig were vibrating with large amplitude, whereas the amplitude of the 

blades on the other side of the. rig was comparatively small: This made the determination of the 
mean phase angle uncertain. Fig. 16 shows that the critical frequency parameter was considerably 

below the theoretical prediction, but  Fig. 17 shows that agreement on the flutter frequency is good. 

It  is interesting to note that according to the theory the/3 = 30 ° and ~ = 60 ° modes are almost 

equally critical in this case, and in fact there is a changeover at ) = 0.6. 

With the torsional axis at positions given by ~ = 0'.270, 0.111, and - 0 - 0 4 8  no steady flutter 

could be observed. The airspeed was increased until the amplitude of the random ,~ibration was 

large enough for some of the blades to hit  the sides of the slots in the casing. These points are plotted 

on Fig. 16, and it will be observed that in each " case the theoretical flutter velocity was exceeded. 

No :measurements of phase angle or of frequency, accurate enough to enable the real part of the 

moment coefficient to be calculated, could be made. 

'A further interesting observation was made when the tunnel was run at an air velocity just below 

that required to give flutter. I f  one of the b ladeswas set vibrating it was found that although this 

blade decayed fairly quickly, the vibration was passed onto 'one of its neighbours, and then onto 

the next blade, and could in fact be followed about half way round the rig. The motion therefore 

takes the form of a wave of vibration which decays as it moves round the rig. As the airspeed is 
increased the wave decays less rapidly, and when the flutter speed is reached the cascade is in 

continuous vibration. The motion can then be stopped by holding any one of the blades, so that 
the wave cannot progress round the annulus. The direction of motion of the wave is upwards and 

to the right along the cascade as drawn in Fig. 1. This is consistent with the idea that the wake of 

each blade excites the motion of the blade nearest to it. 

4. Conclusions. 

The principal conclusion is that torsional flutter of unstalled blades can occur if the flow velocity 
exceeds a certain critical velocity given by Figs. 3, 4 and 5. The  position of the torsional axis is 
shown to be of great importance. The opt imum position for the axis is near the centre of pressure 

for steady potential flow, that is at about 25% chord for widely spaced blades and further forward 
as the spacing is reduced. The worst place for the axis is at about 75% chord. The flutter requires 
a phase difference between adjacent blades, and if the blades were made to move in phase, for 

instance by connecting the tips together by a pair of lacing wires, then this type of flutter would be 

prevented. 
I t  is interesting to compare these results with criteria that have been given for torsional flutter of 

stalled blades. Shannon 4 concludes that the average value of the frequency parameter at which 

stalled flutter starts is 1.5, whereas Armstrong and Stevenson 5 give a value of 1.6. 



The experimental work confirms the existence of this type of flutter. Agreement with theory, 

after making an allowance for the average mechanical damping, was good when the axis position 

was at 58.8% chord, but at the two neighbouring axis positions the experimental airspeed for 
flutter exceeded the theoretical airspeed, and at the three most forward axis positions only random 
vibration could be observed. 

It was thought that these discrepancies might be due to the small differences in mechanical 

damping and natural frequency between the blades, and this is examined theoretically in the 
Appendix. It is concluded that these effects have no appreciable effect on the stability of the system, 

although they do affect the relative amplitude and phase of the blades in the flutter mode. This 
applies to blades tuned to the same frequency to Within about + 0- 2o/o . If the blades are not tuned 

accurately there is likely to be a considerable stabilizing effect. In a preliminary experiment it was 

found that the critical frequency parameter was 0.38 with blade frequencies within _+ 3.0%, and 
this rose to 0.57 with the blades tuned to + 0.3O/o . 

It is thought that the discrepancies between theory and experiment must be due either to three- 
dimensional effects or to the presence of outlet guide vanes about two axial chords downstream of 

the trailing edge of the test cascade. Since there are only 12 blades in the cascade, and the hub/tip 

ratio is 0.8, the system is not very two-dimensional. The discrepancies occur at the lower values of 
the frequency parameter, which is where the wave length of the disturbances in the wakes of the 
blades is greatest, and so where these geometrical effects might be expected to have greatest influence. 

The type of flutter discussed here may well be of importance for transonic compressor blading, 

as this type of blading often has a nearly symmetrical section with the torsional axis near the mid- 
chord point. This flutter may also be of importance on shrouded turbine blades, if the effect of the 
shroud is to shift the torsional axis ai~t along the chord. In this case the trouble could be cured by 
altering the design of the shroud to shift the torsional axis further forward. 



C 

k 

P 
qei~Ot 

r ,  $ 

g 

l 

Y 

C 

E 

f f  eiwt 

I 

Mo d~t 
i y e  i°jt 

M 

N 

U 

X 

Y 
o~e io,t 

Y 
3 

~c 

h 

P 

X' 
(.o 

o) o 

J 

} 

NOTATION 

Blade chord 

Moment of inertia of blade per unit length 

Velocity of leading edge of blade due to vibration 

Integers 

Spacing of blades 

Time 

Amplitude of 'aerodynamic mode' 

Force and moment coefficients defined by equations (1) and (2) 

Diagonal matrix of moment coefficients 

Square matrix with elements exp (2~irs/N) 

Force per unit length of blade 

Unit matrix 

Moment per unit length of blade about leading edge 

Moment per unit length of blade about torsional axis 

Diagonal matrix with elements (7s + i3J~) 

Number of blades in cascade 

Fluid velocity 

Column matrix with elements a s 

Column matrix with elements Yr 

Angular displacement of blade 

Phase angle between one blade and the next. 
radians, but is sometimes quoted in degrees) 

Deviation of blade stiffness from datum 

Logarithmic decrement of blade 

Distance of torsional axis from leading edge 

Frequency parameter (A = mc/U) 

Stagger angle 

Fluid density 

Moment of inertia parameter (X' = k/1rP c4) 

Angular frequency of flutter 

Angular natural frequency of blade in vacuum 

Indicates real part of complex quantity 

Indicates imaginary part of complex quantity 
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APPENDIX 

The E~fect of Small  Differences Between Blades 
General Theory. 

An annular cascade of N blades will be considered. These blades differ slightly in their natural 

frequencies and in the mechanical damping of each of them, and it Will be' supposed that the 

differences in natural frequency arise from small differences in the elastic spring force, the inertia 

force being the same. 

If conditions are such-that the cascade is capable of steady torsional oscillation, then the angular 

deflection of the sth blade will be 
as eiwt . 

This is a marginal flutter condition. . . 
The moment of the mechanical force about the torsional •axis for the s~h blade is then given by 

d 2 ' ~038 d ] 
- k [ - -  (a e i°'t'~ + ----  (%e ~t) + Wo2(1 +7~)%e i°~t 

( dt2 ~ s J Tr dt l 
where 3s is the logarithmic decrement of the blade, and 7~ represents the small change in stiffness 

from a datum stiffness. 

If 
( 0 2  - -  0 ) 0 2  

P = " 2 , (A1) 
O9 o 

representing the small difference between the datum frequency ~Jo and the flutter frequency oJ, then 
the moment of the mechanical force can be written t 

: , - koj0~{y ~ + (i381~r) - ,p}  %ei~ t , 

where the difference between co and ~o 0 has been neglected in the y and 3 terms. 

If X is a column matrix of all the values of % for 0 ~< s ~< ( N -  1), and M is a diagonal matrix, the 

elements fn the main diagonal being the corresponding Values of (7~ + i38/rr), then the column matrix 

of the moments of the mechanical forces is given by 

- k~oo ~ { M  - p I }  X e  ~°~ , " (A2) 
where I is the unit matrix. 

It is next necessary to express the moments of the aerodynamic forces in the same form. In Ref. 2 

the aerodynamic forces and moments are calculated for "aerodynamic modes' in wlaich all blades 

hay& the same amplitude, and with a constant phase angle between one blade and the next. If the 

amplitude of the rth 'aerodynamic mode' is y~{0 < r ~< (N ~ 1)}, the corresponding amplitude of  the 

sth bl~/de i's " 
% = yre2~irs lN,  

. i 

since the phase angle between one blade and the next is 2~r/N. 

The flutter mode will in general contain components of all the 'aerodynamic modes'. The 
amplitude of the sth blade can }herefore be written 

: N - - 1  

o~ s ~-- ~ y r  e2nirslN. 

r = 0  
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This can be written in matrix form 

x = E Y ,  (A3) 
where Y is a column matrix of all the values of Yr, and E is a square matrix with elements 
exp (2zdrs/N) in the sth row and rth column. 

Equation (A3) can be inverted to give 

Y = E-1X .  (A4) 

The elements of E -1 are ( l /N) exp (-2virs /N).  

Now due to the rth 'aerodynamic mode' the aerodynamic moment on the sth blade is 

rr ; U ~c~ C M~( 27rr / N )e~'irs/Nyrd~t , 

where CM~ (fi) is the moment coefficient fbr a phase angle fl, and is also a function of space to chord 
ratio, stagger angle, frequency parameter, and axis position. 

If C is a diagonal matrix, the elements in the main diagonal being CM~ (27rr/N), then the aero- 
dynamic moment due to all the 'aerodynamic modes' is 

7r p U 2c~E C Ye ~ 

= zrp U~c~ECE-1Xd ~t. (AS) 

For steady vibration the total moment must be zero. 

Equations (A2) and (AS) then give 

{ -  kcoo2(M-pI) + rrp U2c~ECE -~} Xe i~ = O, 
o r  

This equation shows that p is an eigenvalue and X is an eigenvector of the complex matrix 
{ M -  (1/A~X ') ECE-1}. For a marginal flutter condition the imaginary part of p must be zero and 
the real part gives the flutter frequency from equation (A1). 

Now suppose that in an actual case the matrix {M - (1/~X ') E C E  -1} has been calculated and its 

eigenvalues and eigenvectors found. It is likely that none of the imaginary parts o.f p are zero, so 
that steady vibration is not possible. But if the mechanical damping on every blade was increased 

by the same amount, so that the elements of the diagonal matrix M become (~  + i3,/zr + ie), then the 

imaginary parts of p will all be increased by an amount e. If the extra damping is made very large, 

then the imaginary parts of p will all be positive, and the system will certainly be stable. As e is 

gradually reduced from this extreme, the imaginary parts of p will all drop, until one of them 
becomes zero and flutter is then possible. For stability the condition is that e must be large enough 

to make all the imaginary parts of p positive. In the initial case the condition for the absence of 
flutter is that the imaginary parts of the eigenvalues of the matrix {M - (1/A2X ') E C E  -1} must all 
be positive. 

A slightly different formulation in terms of the 'aerodynamic modes' is also possible. Equation (A6) 
can be written 

{ ( E - 1 M E  - 1-A~X, C) - p I }  Y =  O. (AT) 

This shows that p is also an eigenvalue of the matrix {E-1ME - (1/AsX ') C}, and the corresponding 
eigenvector is Y. 
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Bounds  on the Eigenvalues.  

It will be convenient to use the symbol ' to denote a conjugate matrix and the symbol* to denote 

a transposed matrix. 
Then from equation (A3): 

X * ' X  = Y * ' E * ' E Y .  

But E' has elements exp ( -  2rrirs/N),  so that 

Hence 
E*'  = N E  -1 .  (A8) 

x e ' x  = N Y g ' Y .  (A9) 

Also from equation (A6) on premultiplying by X*': 

X * ' M X  - 
1 

X * ' E C E - 1 X  - p X * ' X  = O. 

Using equations (A4) and (A8) this can be written: 

or, using equation (A9) 

X o ' M X -  --N y v ' c y  - p x e ' x  = 0, 
., )~X' 

X e ' M X  1 y v '  c y  
P -  X * ' X  ,~2X, y . , y  (A10) 

Writing this in the form of summations 

N - - 1  N - - 1  

Y' {l%l~ff'+iad~)) 1 Z {ly~l~ou~(2~,'/x)} 
8 = 0  ~*'=0 p ~ - - _  

N - 1  N - - 1  

x I+++l + a=x' x ly l 
s = 0  r = 0  

(All)  

Consider the real part of this equation. If (Ys)max is the greatest of the values of 7,, and ~ (  Clu~)mi n 
is the least of the real parts of CM~ , then 

Similarly 

1 
- -  - - - -  ~ (  C2¢/o~)mi n . ( A 1 2 )  ~ ( P )  < ( ~ ' s ) m a x  r 2  X,  

1 
~ ( P )  > (r,)m~ - a~x--~ S~(C~)m~, (A13) 

and 

1 1 
J ( p )  < - ( 8 , ) ~  - - -  J(CM~)m~, (A14) 

w k~X ' 

1 1 
, f i r ( p )  > _ ( a s ) m i  n _ _ _ _  

Of these bounds to the eigenvalues, the most interesting is (A15). If all the imaginary parts of 
C~vz, are negative, so that a system with identical blades cannot flutter, this shows that the imaginary 
parts o fp  are all positive, and the system is always stable. This proves that the effect of mechanical 
damping and mistuning of the blades is always stabilizing. 
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Approximations to the Eigenvalues. • 

Equation (All) can sometimes be used as an extension of Rayleigh's Principle to obtain approxi- 
mations to the eigenvalues. If the form of the eigenvector can be guessed then this equation will 

give an approximate value for p. 
In particular, if the mechanical differences between the blades are very small, it may be supposed 

that the flutter mode will not differ much from an 'aerodynamic mode' in which [as] is the same 
for all blades, and all the values o f y  r are zero except for one. Then equation (All) gives. .  

1 N-1 1 ,  
P = N s=o2 (7s+i88/re) - Y t~  CI~,s~. (A16) 

This shows that the values of p correspond to the values of C~,s~, modified by the arithmetic 

mean of the mistuning and mechanical damping effects. It will be noted that Spurious components 

of other 'aerodynamic modes' will have only a second-order effect. 
Alternatively if the aerodynamic coupling between'the blades is very weak, it may be guessed 

that the flutter modes will not differ much from the motion of single blades. All the values of a s are 

zero except for one and l Yrl is the same for all 'aerodynamic modes'. Then equation (All)  gives 

P = 6'~ + i ~ / ~ )  1 1 :+-1 , h2x, N Z Cz,z~(2~r/N). (A17) 
'~'=0 

This shows that the mechanical properties of each blade are modified by an arithmetic mean of 
the aerodynamic coefficients. Again spurious components in the mode will have only a second-order 
effect. 

Numerical Results. 

The experiments reported in the main body of the report showed that in some cases flutter was 
not observed under conditions in which it should theoretically occur. It was thought that this might 
be due to the effects of residual mistuning and different amounts of mechanica! damping on each 
blade. A computer programme was therefore written to evaluate the matrix { M -  (1/A~x)ECE-1 } 
and find its eigenvalues and eigenvectors. The method used to find the eigenvalues is a generalization 

of the Jacobi process for real symmetric matrices, and operates by successive iterations in which 
the matrix is gradually reduced to diagonal form, with the eigenvalues in the leading diagonal. 

Some typical results are shown in Fig. 18, which shows the eigenvalues plotted on an Argand 
diagram as circled points. These are really twelve distinct points; but Since they lie very nearly on 

a continuous loop a line has been drawn through them. 
Also shown as triangles are the values of (~'8 + iSJTr), and these form a cluster just above the origin. 

These points are the eigenvalues of the diagonal matrix M, and represent the mechanical effects only. 
The points shown as crosses are the values of - (1/A~x')CM~(2~rr/N) and these do lie accurately 

on a continuous loop. These points are the eigenvalues of the matrix - (1/;t2X ') E C E  -1 and represent 

the aerodynamic effects only. 
It is seen that the combined effect can be obtained accurately from equation (A16); that is by 

shifting the curve for the aerodynamic effects bodily through a distance giveri by the arithmetic mean 
of the points for the mechanical effects only. This was true for alt the cases computed, and the other 
results are therefore not presented here. 
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Fig. 18 shows that if aerodynamic effects only are included there are four points with negative 

imaginary parts, indicating instability. When the effects of mechanical damping and mistuning are 
included, there are still three points indicating instability. This is for a frequency parameter of 0.4, 

whereas it was found in the experiment that the frequency parameter had to be reduced to  0. 335 
for the flutter to appear. It is concluded that the effects of mistuning and differences in mechanical 
damping will not account for the discrepancy between theory and some of the experiments. 

Fig. 19 shows the eigenvector corresponding to the least stable circled point on Fig. 18. This is 

the flutter mode associated with r = 2 (/3 = 60°). Fig. 19 shows that the phase angle between one 
blade and the next is approximately 60 ° , but that there is an appreciable variation of amplitude and 

phase angle on moving around the cascade. It is concluded from this and other cases that whereas 

the effect of small differences between blades on the stability of the system can be adequately 

accounted for by using a mean mechanical damping factor, these small differences do have an 

appreciable effect on the nature of the flutter mode. 

It will be noted that although this Appendix has been written in terms of torsional vibration, 

exactly the same arguments apply to bending vibration, or to flutter in which two or more modes 

are aerodynamically coupled. 
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FIc. 10. General view of rig. 

Fic. 11. Test blade. 
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FIc. 12. Blade mounting. 

Fic. 13. Blade mounting. 
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Ftt~. 14. Decay of vibration in still air (~/ = 0.27, f = 28-4 c/s, 
Blade No. 5, 8 = 0.012). 
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