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Summary. 

An extension of the Donnell and Wan analysis for the buckling of a shell with initial imperfections is 
presented for a mode of arbitrary profile. Results for a mode with 26 arbitrary parameters are given with 
charts of the stress-strain characteristics for cylinders with initial displacements of between one-eighth and 
five times the skin thickness of the cylinder. A direct optimisation of the energy function is used. Almroth's 
minimum post-buckled stress for the ideal cylinder (0. 0656 Et/R) is lowered to 0. 0518 Et/R and a critical 
assessment of the value of such figures provided. 
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1. Introduction. 

The difficulty of reconciling observed experimental results on the buckling of thin elastic shells 

in axial compression with the available theoretical estimates has, for a long time, puzzled students 

of applied mechanics. The ideal conditions analysed in theory are not met in practice and numerous 
attempts to refine the theory to allow for experimental difficulties have at best provided a qualitative 

explanation of the disparity between calculation and observation. At the present time it is known 1 
that quite small amounts of initial geometric imperfection can lead to significant changes in the 
load-deflection characteristics for a cylinder but an adequate quantitative solution is not available. 

The persistence of the lack of agreement in results has been largely ascribed to inadequate 
experimental technique and in particular to the inability of experimenters to produce cylinders of 
sufficiently small initial imperfection. Recently, however, some centrifugally cast Hysol cylinders 
of very low initial deformation have been tested 2 in strain-increment loading and have failed at 
about 90% of the classical value. 

Improvements in the experimental procedure are unlikely to be very marked but the analysis 

of the buckling phenomena may be extended considerably now that digital computers are available. 

Since the analysis, using large-displacement theory, of Karman and Tsien ~, successive workers 4 to s 

have included more terms in the approximate mode used with consequent lowering of the minimum 
post-buckled stress. Progress in the solution of the problem is indicated by the following table. 

Year 

1939 

1942 
1948 
1954 
1962 
1962 

Author 

Karman and Tsien 

Leggett and Jones 
Michielsen .. 
Kempner .. 
Sobey . . . .  
Almroth .. 

Ref. No. 

. .  3 

.. 4 

. .  5 

.. 6 

. .  7 

. .  8 

Number of 
parameters 

used 

4 
4 
5 
7 

11 

Minimum post-buckled stress 

No appropriate figure can be given 
owing to interpretation 

o. 19o Et/R 
0- 195 Et/R 
0.1824 Et/R 
0.1496 Et/R 
0.0656 Et/R 

All these efforts have been directed to solving the problem of the ideal cylinder and have been 
concerned primarily with the minimum post-buckled stress. With the exception of Almroth's 
work the minimum post-buckled stress occurs at a strain around 0.4 t/R whereas in Almroth's 



analysis it occurs at about 1.2 t/R. This considerable difference is due to the inclusion by Almroth, 
for the first time, of a term [the (2, 2) term 7] which is known to be importantL The absence of this 
term in modes previously used results in a premature stiffening of  the cylinder, due to an artificial 

constraint, once buckling has taken place. 
Almroth's paper is a significant landmark in the theory, for his minimum post-buckled stress 

is the first one achieved which is consistent with experimental values of the buckling stress. He 

claims that the inclusion of further terms in the modal representation fails to lower the minimum 
post-buckled stress. However an analysis of the constraint system 7 used to maintain the mode showed 

that in order to refine the theory over the range 0.3 t/R to 1.5 t/R (i.e. from the region of minimum 

post-buckled strain to that of minimum post-buckled stress) a further 8 terms are needed of which 

Almroth includes only 3. Furthermore the position and value of the minimum post-buckled stress 
is no criterion of buckling. As Donnell and Wan 1 emphasise, the ideal characteristic is of little 

consequence in practice. Eccentricity effects must be included if practical buckling criteria are to 

be established. 
In the earlier work of the writer 7, a direct minimisation technique is used to obtain the modal 

parameters. If a general mode is to be examined, with an arbitrary number of modal parameters, 
a direct minimisation technique is highly desirable so that by changing only a few parameters in a 
programme (such as the number of degrees of freedom) entirely separate analyses can be evaluated. 
A technique is established whereby the computer produces the logical flow for a general mode 
which is then used as a basis for a high-speed arithmetic programme for modes with up to 26 degrees 
of freedom. 

Direct minimisation of an energy function is a very convenient technique when the effects of 
initial eccentricity of the Donnell and Wan 1 type are included. Only a few programme changes are 

necessary to make this important amendment to the analysis, whereby allowance is made for the 
introduction of an initial displacement which is of the same distribution as the final deflection 
under load but reduced in amplitude. The presence of an initial eccentricity of such a form is 

unlikely in practice although local imperfections in an imperfect cylinder may be represented 

adequately by this form. It is significant that long axial wavelengths are associated with the solution 
to this problem so that initial imperfections arising from imperfect development of a cylinder 

from the flat sheet can be treated by the Donnell and Wan artifice. The solution for a general mode 
of initial displacement when loaded would be exceedingly difficult to analyse and the inherent 
approximations involved in the analysis would make such refinement absurd. 

The numerical analysis of the problem shows that the region requiring careful but extensive 
analysis is that which lies between strains of 0.13 t/R and 0.2 t/R for fairly high stress levels. 
In this region the stress-strain characteristics for a given initial displacement tend to reach their 
maxima over a wide range of initial eccentricities, whereas the minimum post-buckled stress occurs 
at a strain of about 1.5 t/R (or 2½ times the classical buckling strain). Whilst investigations of the 
stress-strain characteristics for strains above about 0.4 t/R have some academic interest, character- 
istics of practical value are obtained only for small values of the strain. It is noteworthy that the 
cylinder continues to unload (stress falling with increase in strain) for a very considerable range 
of strain (from 0-2 t/R to 1.5 t/R) and long before the minimum is reached other considerations, 
such as the inadmissibility of the controlling equations, become serious. For this reason, and 
because the cylinder with initial eccentricity is of greatest practical interest, only the restricted 
region referred to above is analysed intensively. 
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Further progress along the lines indicated in their original paper by Karman and Tsien a is unlikely 
to be made. Furthermore, if such an investigation were undertaken, it is unlikely to be fruitful. 
A new approach to this problem is required if a fuller understanding of the very complex mechanics 
of the buckling of a cylinder, particularly under stress (dead-weight) loading is to be obtained. 

Such a new procedure would, of necessity, have to include the effects of non-uniformity Of material, 
loading and geometry as well as to allow for very large displacements under load. 

2. Development of Energy Function. 

In this section the approximate solution for a mode of general profile is developed and an energy 
approach is adopted to find the optimum mode. To obtain the modal parameters, an energy 

function (strain or potential energy) is required for variation and the analysis of Ref. 7 is extended 
to provide a general expression for this energy for a given mode shape. 

2.1. Basic Equations. 

The equations of Ref. 7 are modified to include the effects of initial eccentricity. The strain 
displacement relations become 

~.~ = ~ + ~  \~-~] - ~  

% = ~y + ~ t ~ y /  - ~ t~ -y !  1 (1) 

~u ~v Ow,~w z ~w o~w o ] 
)'xY =~yy+~xx + ~x ~y ~x 0y 31 

where w o is the radial deflection of the cylinder under no load (i.e. initial eccentricity) and gOa is the 
radial displacement under load. The deflection produced by the load is 

gO = gO~- Wo. (2) 

The analysis of the buckling of the cylinder for any initial form w 0 is involved, being dependent on 
the specific number of waves round the cylinder. The particular case where w 0 is a submultiple of 
w reduces the mathematical complexity enormously 1 and this assumption is adopted. It must be 
emphasized that this assumption is made for mathematical simplification only and that no practical 
cylinder conforms to this assumption. Nevertheless the behaviour of a practical cylinder can be 
interpreted from among the results obtained with a wide range of wo/w , as explained below. 

Following Donnell and Wan 1 it is convenient to introduce an eccentricity factor 

2 w  0 
K = I + - -  

gO 

so that on substitution equations (1) become 

% = ~ + g  
and 

~u ~v ~w ~w 
r.~ = ~ + ~ + K~-~y .  

(3) 

L f- (4) 
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The stress equilibrium equations 7 in the tangent plane are unchanged by the presence of 
displacements w and are given by 

a~ -+  ay - 0 ,  

and / (5) 
~rxu 0% 
Ox + ~fy = O. 

These equations are automatically satisfied if an Airy stress function F is introduced where 

~2F O~F O2F 
~x = ~ ,  ~x~ = ~ y ,  ~ -  ~ (6) 

and the equation governing F, which is found by eliminating u, v from (4) takes the form 

t 1 1 v~ F = K [ (7) 

2.2. Development of Energy Function for an Arbitrary Mode w(x,y).  

The deflection w(x, y) is given a general representation of the form 

or equally 

m ~r x tory 
w(x,y) = t ~ ~ Wm, ~ COS - -  COS ---- + constant term 

mTrx n ~ y  
w(x,y) = t E wi cos cos + constant term, (8') 

where, with each value of i, a specific pair of integers m, n are to be associated. We seek an 
expression for the total potential energy of the loaded system in terms of the parameters Wm,~ and 
the wavelengths Zx and hy. 

If the axial strain is fixed, variation of these parameters will lead to variations in the strain energy 
which consists of two parts, U 1 and U2, where U1 is the strain energy due to bending, and U 2 is 
the strain energy due to stretching of the shell. 

U 1 = . (V~w) ~ + 2 (1 -u )  dxdy (9) 
0 d 0  

which reduces, for the mode given in equation (8) to the form 

°?;? = ( w ~ ) ~  ax 4 '  u1 g o 

where L is a complete number of axial waves, a a. 
The extensional strain el~ergy is 

U= = . (VZF) = + 2(1 + v) 
0 , 1 0  

When w(x,y) has the form of equation (8) the corresponding form for F consists of a periodic 
component of similar form to w together with terms which represent the mean stresses in the 
unbuckled state. In consequence the terms in { } in (10) can be ignored. 



In  developing the energy expression U~, it is necessary only to evaluate V2F and not F itself. 

F rom equation (7) we find on substi tuting f rom equation (8') for w(x,y) 

~ v ~ V 4 F  1 2v [ 2m~rx 2mry~ 1 ~v mrrx tory 
- 2 i~=~ mZn2wiu [c°s - ~ x  + cos ~ - - ]  + 2~ m2wi cos cos =~t~EK 

4 Z E wiwj [mq-np] 2 cos 
i = 1  y =i-t-1 " ~  

(m + p)Trx } 
cos (n + q)~y + cos- 2, x ~ + 

( m - p ) ~  (n+ f)~y 
+ [mq + rip] ~ cos ~x cos / ~  + 

(m+p)~-x (n-q)zryt~ +cos ~ cos ~ )j 

where V = 7r 2 Rt/Ay ~. 
This  equation can be integrated to give 

(RKEtlxz~7)(VzF_ERCr~") 1 -~ =g X 
i = 1  

md'nv~O 

( n - q ) ~ y  
c o s -  + 

2nrry n ~ 2mrrx] 
: c o s  + c o s  - 

N m2wi mTrx tory 
- ,=:I: K~(m~: + : )  cos ~ ; - cos  ~ + 

1 2v ~v 
+ ~ E E wi% x 

i = 1  j = / + l  

(mq- rip) ~ (m -p)Trx (n - q)~ry 
x cos cos + 

(m _p)2/~2 + ( n -  q)2 A~ Ay 

(mq- np) ~ (rn +p)rrx (n + q)~ry 
+ cos c o s -  + 

(m+p)~: + (n+q) ~ Z~ G 

(mq + rip) ~ (m -p)rm (n + q)~y 
+ cos cos - -  + 

(m _p)Z/~2 + (n + q)~ Zx ~u 

(m e + rip) ~ (m +p)Trx (n -q)zry t 
+ (m +p)2/,z + (n--q)Z cos Ax cos Av ) (11) 

where  ff = )v/;~x and the Fourier  series in w(x, y) has been s u m m e d  under  a single summation.  

To  each index i (or j )  are associated periodicities m and n (or p and q). The  mean axial stress in 

the undeflected condition is cr or ee Et/R where ee  is a reduced stress coefficient. When  all the 

w i are zero, equation (11) reduces to V2F = Etee/R, as it should. 

On the r ight-hand side of equation (11) all terms are periodic in either x or y or both  and 

equation (11) can be wri t ten in the form 

R (  EtR~.. ) ~v' mqvx n'~y 
KEttz~7 V~F - = 1: f~ cos m cos (12) 

i = 1 h x hy  

where the range of summat ion  is over every te rm in equation (11) and N' may be much  larger than N. 

Each f i  is the sum of te rms in equation (11) which have like periodicities in x and in y and the 

parameters  rn' and n'  are ranged over all the combinations of m + p and n + q respectively. 



Equation (12) is a convenient representation of V2F since we require in forming U z to evaluate 

0 ,J O 

and every term in this expression other than those which involve squares of the fi is zero. 

Whence 
2¢" 1¥' } 

U 2 -  7rLEt84R { 4(r*z + K~/xan~ ~=~Z )(,2 + 2K2tz4.q2 i=xZ f 2  . (13) 

m'~£ ~ ~ d # 0  m'  or ~ ' = 0  

Substituting in 

D f L  f2"R(V2w)2dx dy for w, 
U 1 = 2 -  0 o o  

¢rLEt a ~?~ { N ar 
Ul = R 2 E (m2/~ 2 + nZ)2w¢ 2 + F~ 

' i=1 i =1 

m o r n = O  m ~ g ' n # O  

The total strain energy is U = U1 + U2 as given by equations (13) and (14). 

(m2tz 2 + n2)wi2}. (14) 

2.3. Restriction on the Variables. 
The variables AS, 2v, w i and the mean axial stress and strain are not free to take arbitrary values 

since the displacements are continuous round the cylinder and the mean axial strain introduces a 

restriction on the variables. 
The mean inward contraction is determined by the condition of continuity of displacements 

around the cylinder and is not considered here. The mean axial strain, however, is given by 

e = e ~  R _ l fLC ' au 2~LR o Jo 7xdxdy"  (15) 

On substituting from equations (1), (4), (6) and (8') this reduces to 
N N 1 ( ) 

e * -  ~* = g ~ v K  2 E m=w~ ~ + E rn2w~ . ( 1 6 )  
i = 1  i = 1  

A l l  r~ ze ro  A l l  ~ # 0  

When the mean axial strain is given, corresponding to a specific value of the coefficient e*, the 

stress coefficient a* is given in terms of e *, t~ 2, V and the w i by equation (16). The  total strain 
energy is found by substituting this value of a* into equation (13) and we can write U in the form 

U = U(I~ z, ~?, w i , . . . . ,  wN) (17) 

where the explicit value of U corresponding to a given set of the parameters /z 2, V, w i can be 

determined by synthesising the f~. 

2.4. Approximate Solution for Buckled Form of Cylinder. 
In Section 2.1 the equations of equilibrium in the tangent plane, compatibility of strain and 

stress strain were developed and the resulting stress function F ensures that conditions in the 
tangent plane of the cylinder are correct. Any trial mode w of  equation (8') is, however, only an 
approximate solution since equilibrium conditions in planes normal to the surface of the cylinder 
are not satisfied. To satisfy, in an approximate manner, t h e  condition of radial equilibrium the 
parameters/~, ~7 and the w i are chosen so as to minimise the energy. The other conditions arising 

from the third dimension are easily satisfied. 



Two equivalent forms of the approximate solution of the problem are obtained by minimising 

U with respect to/~, ~1 and w i for e ~ and by minimising U - 27rLEt3cr%*/R when ae is given. Both 
problems lead to identical equations for the stationary value of the appropriate energy function. 

The energy function in the latter problem includes the potential energy of the moving load source. 

3. Numerical Analysis. 

3.1. Optimisation of Energy Function. 

The two wavelength parameters /z and ~ and the amplitudes w~ of the mode w(x, y) must be 
chosen so that the total potential energy of the cylinder, U, is a minimum. The values of these 
variables can be obtained by deriving the stationary conditions 

~U ~U OU 
~t* ~n 3wi 0 (i = 1, 2 , . . . ,  N) (18) 

and by solving these equations (which are non-linear in the variables) by trial and error using, for 
example, the Newton-Raphson method s. A superior technique is to find the minimum of U directly 

with an optimisation routine. Such a procedure was adopted in Ref. 7 where the function minimised 
had 7 degrees of freedom and the Rosenbrock 9 process was used. When the number of variables is 

large, say 20 or more, the Rosenbrock process is not suitable partly because the gradient vector 

of U is found by finite difference methods and partly because the search strategy down the line 

of steepest descent is uneconomical in computing time. Convergence to.wards the minimum is 

initially fast but progress becomes increasingly more sluggish as the procedure continues since 
the gradient is ill-defined in the neighbourhood of the minimum point. 

3.2. The Fletcher-Powell Method. 

The difficulties encountered with the Rosenbrock process are avoided when the gradient vector 

is defined analytically. Even so the difficulties experienced by the poor definition of the gradient 

vector near the minimum point will persist because in that neighbourhood the second-order terms 

in the Taylor expansion of U about its minimum point will dominate. A method due to Fletcher and 

PowelP ° incorporates the influence of these second-order terms by constructing, by means of a 

clever synthesis, the inverse Hessian matrix of U (that is the inverse of the matrix of second 

derivatives of U). For a quadratic form in n variables, the process converges in exactly n steps. 
As a consequence, a complex function like U will converge initially rapidly towards a minimum 

point and progress towards the minimum will continue progressively more slowly until the function 
U is dominated by its second-order terms when the final convergence on to the minimum itself 
will be very rapid. 

3.3. Serial Computation. 

The considerable merit of the Fletcher-Powell optimisation routine is enhanced by the fact that 
if a single parameter, say K or e *, is changed but slightly, the constructed inverse Hessian matrix 
is an excellent starting approximation to that of the subsequent case, so that convergence in this 
latter case is accelerated by the use of information derived in the former. In this way a whole 

series of cases may be analysed in sequence to enable a complete stress-strain characteristic to be 
evaluated. Such economy in calculation is of considerable value when many variables are used and 

contrasts markedly with the Rosenbrock or Newton-Raphson process even when excellent trial 
starting values for the variables are available. 



3.4. Analysis of a K-Characteristic. 

A K-characteristic is defined as the stress-strain locus for a fixed value of K, the eccentricity 
parameter {equation (3)}. When K --- 1, the cylinder is perfectly formed. For values of K > 1, 

each point of a K-characteristic corresponds to a point of a stress-strain locus, or W-characteristic 

for a cylinder with specific initial displacement. As the K-characteristic is followed from the origin 

to large values of strain the corresponding initial displacement w 0 increases steadily. The 

W-characteristics are formed by interpolation from among the K-characteristics. 

Each K-characteristic consists of 3 distinct parts. The first, corresponding to very small total 

displacements, joins the origin in the stress-strain plane to a point (P) of locally maximum stress 

and strain and this portion of the characteristic lies only slightly below the line of uniform pre- 

buckling compression of a perfect cylinder. The second portion of the K-characteristic is associated 

with falling stress and strain to the minimum post-buckled strain (Q). In the third part the 

characteristic is continued from Q through the region of minimum post-buckled stress and on into 

a region of positive stiffness with stress rising with increasing strain. As K increases from unity 

the K-characteristics nest within each other and fill the region between the zero stress axis and the 

characteristic for the ideal cylinder. 

Of the three parts of a K-characteristic, the third is the most easy to evaluate since, for a given 

large strain, the solution sought is one with absolute minimum energy. The characteristic can be 

followed all the way back to Q by serial computation even though, in the region of Q, there are 

equilibrium states with lower strain energy (corresponding to points on the first and second part 

of the K-characteristic). In the first two parts of a K-characteristic minima occur of lower energy 

than the solution sought and special artifices have to be employed to recover some of these parts. 

However a large part of the second region of a K-characteristic can be recovered using stress as 

independent variable and minimising the total potential energy. Even so, it is advisable to introduce 

restraints into the optimising process (see Section 3.5) to prevent the search procedure from seeking 

false minima. 

3.5. Use of Penalty Functions. 

Those parts of a K-characteristic for which the minimum sought is not the absolute minimum 
can be.recovered using penalty functions. These are functions introduced to compel a variable to 
lie within a certain range. Suppose, for exampie, that the variable wj is to be confined to the region 
a ~< wj ~< b. Then U is changed to the function U + Ct(w j -  a) 2 + C2(wj-b) a, where C 1 is zero if 
wj > a and Ca is zero if b > wj. Otherwise C1 and Ca are made positive and large enough to ensure 
that U has a true minimum in the range (a, b). It is possible that a solution for w~ very close to 
a or b may be found in which case i t  is most likely not to be a true minimum and the indicated 
solution is rejected. The limits (a, b) have to be changed empirically to trap the solution. This is 
frequently difficult, particularly with small amplitudes since the vanishing of all the w i is a 
theoretically possibie minimum which must be Constrained not to appear. 

In practice the variables #, and ~/must be restrained from becoming too small and at least one of 
the w~ must be bounded. The most significant of the w i is the (1, 1) term (which occurs in the 
linearised solutioil as the only periodic one) and this is bounded above-and below to recover points 
on the PQ part of  the characteristic. Owing to the intrinsic difficulty of recovering those points 
whose minimum energy is not the lowest possible energy state for the given stress or strain, only 
such points of' K-characteristics as are needed to define the W-characteristics for low values of 
w 0 have been computed. 
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4. Results. 
From the aggregate of points which comprise the set of K-characteristics, the W-characteristics 

are derived. Each K-characteristic is a mathematical locus corresponding to no real structure but 

the W-characteristics which are developed from them correspond to the stress-strain loci of a 

practical cylinder. 
For very large w0, say for w 0 greater than about 7t, the W-characteristic rises steadily with no 

apparent maximum in the strain range computed (i.e. up to 1.5 t/R). For intermediate values of 

Wo, say 7t down to 0'25t, the stress-strain characteristic rises to a maximum stress continues to a 

minimum and rises again so that for any given strain there is one and only one value of the stress. 

For very small values of w 0 (~< 0.25t) the W-characteristic is reflex (i.e. there are intermediate 

values of strain for which there are 3 values of the stress). 

4.1. The ldeal Cylinder. 
The stress-strain characteristic for the perfect cylinder using a mode with 24w i is shown in 

Fig. 2 together with the characteristics of Almroth a and an earlier one of the writer 7. It will be 

noticed that the minimum post-buckled strain and minimum post-buckled stress are both reduced, 

and in particular the region which bounds the available space occupied by W-characteristics is 
much reduced in area. The minimum post-buckled strain is a little under 0.21 t/R and the 

minimum post-buckled stress is 0.0518 Et/R or about 79~/o of Almroth's value of 0.0656 Et/R. 
The point of minimum post-buckled stress occurs at a strain of about 1 .5  t/R compared with 

1.2 t/R in Almroth's case. 
The characteristic falls for a large range of strain (0.21 t/R to 1- 5 t/R) and throughout the whole 

of this region the cylinder has negative stiffness. The associated displacements increase from about 

10t to 60t over this region. Because of these very large displacements the basic Donnell equations 

are suspect unless the value of R/t is very large. It is generally accepted that about 4 complete waves 
must occur peripherally in the buckled state if the Donnell approximations are valid, so that R/t 
must exceed 400. 

However for cylinders of smaller R/t the characteristic will be valid for a restricted range of 

strain. For example for R/t = 200 the solution is valid up to e = 0.4 t/R and for R/t = 150 the 
solution is only just applicable in the region of minimum post-buckled strain. When the imperfect 

cylinder is analysed, it is clear that the validity of the controlling equations and the analytical 

procedure is suspect only for cylinders of such low R/t that inelastic considerations may become 

important. 
Figs. 3 to 6 show the variation with buckle amplitude of the modal parameters used. Some of 

the 24 amplitudes used in the mode are not significant at any point of the characteristic but it is 
interesting to note how several of those predicted ~ as likely to be significant are important. In 

particular the (2, 2) and (4, 0) terms are large, as also are the (5, 1) (4, 2) (3, 3) and (5, 3). The 
importance of some of these terms was also indicated by Cox it from Fourier analyses of a polyhedral 

mode. In particular the order of significance of modal parameters in the region of minimum post- 

buckled strain (Amplitude of 8t to 20t, say) is quite different from that which prevails in the 

moderately developed form. 
The mode of the cylinder in the region of minimum post-buckled strain (Q) is shown in Fig. 7. 

The portions of the skin which move radially inward are associated with nearly circular contours 
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and well rounded profile whilst the parts of the skin which move outwards are of lozenge shape. 

T h e  nodal lines are curvilinear, running almost axially and circumferentially. No comparison with 

observed modes is available. 

4.2. Cylinders with Initial Imperfections. 
Results are presented, in Fig. 8, for the W-characteristics of cylinders whose initial deformation 

is a proportion of the final mode. Such an initial deformation is most unlikely to occur for cylinders 

of practical value but nevertheless results presented here are believed applicable to cylinders whose 

initial deformations are of the same order but of different distribution 1,12,13. 
As expected, only a small amount of initial deformation is necessary to produce significant 

reductions in the buckling load and to eliminate the reflex character of the stress-strain curves. 
For a given strain, e ~, in excess of 0.21 there will be three stress levels corresponding to zero initial 

deformation and for stress levels between the highest two there will correspond small initial 

deformations. It follows that for some value of the initial displacement w o the variation of stress 
with displacement will have a vertical tangent at the point of inflection. This appears (Fig. 8) to 

occur for a strain of 0.20 t/R and is associated with initial displacements of the order of 0.25t. 

For initial irregularities of smaller amplitude the W-characteristic is reflex and qualitatively is like 

that of the ideal cylinder. In particular, arguments about the possibility of 'snap-through' buckling 

which have been adduced for the perfect cylinder apply to cylinders with initial displacements of 

less than 0.25t. For all cylinders with greater initial displacement than 0.25t snapping will not 

occur in strain-increment loading. Furthermore for dead-weight loading the maximum stress is 

also the upper limit of the buckling load in dead-weight loading 13. 

If the (a s, w0) loci for given e ~ are plotted (Fig. 9) the curves have an envelope which will be the 

locus of the peak stress which a cylinder with given w 0 can carry versus w 0. This locus gives the 

stress at buckling for all cylinders with initial deformation greater than 0.25 t/R and for smaller 

deformations will give an upper limit to the stress on buckling 7. It is interesting to note that the 

stress levels at which buckling occurs are all very low as the following table shows: 

wolt ~buokli~g RIEt 

O. 125 O" 200 . . . .  (With possible snap through 

0.25 0.176 at a lower strain level in 
strain-increment loading.) 

O" 5 O" 154 

0- 75 0. 139 

1 0. 1275 

1.5 0. 109 

2 0. 0950 

3 0. 0749 

4 0.0621 

5 0. 0534 

Of all the numerous tests conducted on cylinders in axial compression, which have been 

collocated by several writers 1,12, the range of buckling stresses shown embraces nearly every 

cylinder tested under stress loading conditions. Few specimens have failed at stresses as high as 

11 



those at the top of the table and few have been of such poor quality that they have failed at stresses 
like those at the bottom of the table. Initial deformations as great as 5t are, of course, unlikely to be 
found in nominally ideal cylinders. The variation of buckling stress with initial displacement is 
shown in Fig. 10. 

In Fig. 11, the strain energy of the cylinder with given initial eccentricity is shown as a function 
of the square of the mean axial strain. For cylinders immune from snap-through in strain-increment 

loading (w 0 > 0" 25t) the cylinder behaves as a non-linear spring whose stiffness falls with increasing 

load in the range of strain shown. Once snapping is possible the double cusped energy characteristics 
of the perfect cylinder begin to appear and it is notable that the energy level for the ideal cylinder 

lies well above that for the 0.25t initial displacement. That it appears disproportionately so is due 

to the very large spike on the reflex stress-strain characteristic and the removal of the cusp on the 

energy characteristic to a very large strain value. No accurate data could be interpolated for this 

region. 

5. Conclusions. 

Improved stress-strain characteristics for the initially imperfect cylinder loaded in axial 
compression are presented and represent a comprehensive analysis of the buckled cylinder. The 
inclusion of additional terms in the mode may produce very small changes in the characteristics in 
the low strain (0.13t ~ 0.2t) region with consequent adjustments to the W-characteristics presented 
but such requirements are not likely to be worth consideration. Modifications to the analysis, 
particularly for cylinders of low R/t, are more pressing and the results presented here represent 
a limiting synthesis of the characteristics of a buckled cylinder as initiated by Karman and Tsien 
and by Donnell and Wan. 

The presentation of an optimal solution to an essentially non-linear mechanical problem has been 
given in detail and may well be useful to students of mechanics in other fields. The use of direct 
minimisation ensures a physically meaningful solution and avoids spurious solutions of the non- 

linear equations of stationary energy that might occur with other techniques. Application to other 
problems in the structural field is anticipated and the computational restriction which has hindered 

analysis of this and other problems is overcome. 

6. Acknowledgements. 

The author wishes to acknowledge with gratitude his indebtedness to Dr. M. J. D. Powell of 
A.E.R.E:, Harwell for providing a copy of his optimisation programme and to Mr. R. T. Robinson 
of  Mathematics Department, Royal Aircraft Establishment for translating this programme from 

Fortran into Mercury Autocode. 

12 



X,  Y, Z 

P 

E 

t 

R 

ex, ¢u, Yxy 

U, V 

WO 

Wl 

K 

%, %, %y 

F 

gd)m, n,  Wi ,  Wy 

~tx, Ay 

u , G , G  

D 

L 

V 2 

ff 

N , N '  

e 

e ~ 

m, n, p, q 

m r ' n r 

f, 

SYMBOLS 

Cartesian coordinates (Fig. 1) 

Poisson's ratio (assumed equal to 0.3) 

Young's modulus 

Thickness of cylinder 

Radius of cylinder 

Direct and shear strains in tangent plane of cylinder 

Tangential displacements in x, y directions 

Initial radial displacement under no load 

Total radial displacement under load 

w~ - w0, deflection produced during loading 

2w 0 
1 + , initial deformation parameter 

w 

Direct and shear stresses in tangent plane 

Airy stress function 

Coefficients in the arbitary mode w(x, y)  

Wavelengths in x, y directions 

Total, bending and extensional strain energies of loaded cylinder 

Flexural rigidity = Eta~12(1 - ~) 

An axial length of several wavelengths 2L x 

The operator ~2/~x~ + 3~/~y 2 

7r~ R t / Ay ~ 

;~,1~ 
Limits of summation in the series expansions for w and for F 

Mean axial stress 

Reduced stress coefficient R~/Et  

Mean axial strain 

Reduced strain coefficient Re/t 

Periodicities of terms in w(x, y) 

Periodicities of terms in F 

The regrouped Fourier coefficients in the development of F {equation (12)} 
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FIG. 1. Cylinder and coordinate 
system. 
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