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Summary 

A simplified analysis is presented of the subsonic non-periodic flow past symmetrical blunt-trailing-edge 
sections at zero incidence. The pressure distribution is determined, with the base pressure as parameter, by 
an analysis of the inviscid flow past a displacement surface representing the section, the attached boundary 
layer, and the wake. The shape of the downstream part of the displacement surface presented by the wake is 
specified by pressure criteria established from a study of the pressure distribution downstream of a rearward- 
facing step. 

The solution is rendered unique by the estimation of the base pressure. An analysis is made of the flow in 
the wake, invoking the condition that the wake momentum thickness must asymptote to a value at infinity 
downstream which is proportional to the total drag of the section. The viscous solution can be regarded as a 
logical extension to blunt-trailing-edge sections of the method of Squire and Young for the estimation of the 
drag of conventional aerofoils. 

A few examples are submitted to illustrate the application of the method. 
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1. Introduction. 

1.1. The Nature of the Problem. 

The problem of predicting the pressure distribution round conventional aerofoil sections at 

subsonic speeds has to a large extent been solved. For sections of small thickness-chord ratio at 

moderate angles of incidence, attached flow can generally be preserved to a point at, or near, the 
trailing edge, and in many applications consideration of the potential flow past the section (with, 

perhaps, some correction to the theoretical lift-curve slope) yields a pressure distribution which is 

sufficiently close to that of the real flow to make any higher approximation unnecessary. Nevertheless, 
the real flow is distorted from the inviscid pattern by the displacement effect of the boundary layer 
and if accurate predictions of the pressures are required, particularly near the trailing edge, the 
analysis must be taken a stage further. Methods are now available for the solution of the viscous 
flow past two-dimensional aerofoils (see, e.g. Thwaitesl), usually based on parallel calculations of 
the development of the boundary layer and of the potential flow past the displacement surface. 
Iterative procedures are generally employed but under normal circumstances the methods converge 
rapidly and only one or two iterations are apparently required. However the validity, and satis- 
factory convergence, of such methods necessarily depend on the absence of significant regions of 

separated flow on the section. 
In cases where separation is a significant feature of the flow pattern, methods of this type are 

difficult to apply for a number of reasons. 
Firstly, when attached flow is no longer achieved the uniqueness of the flow pattern deteriorates. 

The existence of regions of separated flow presents a degree of freedom which often results in 
unsteady phenomena. Typical examples of this are the buffeting experienced on aerofoil sections 
with rear separation, and, in the present context, the formation of a vortex street in the wake of a 
blunt-trailing-edge aerofoil section. Thus in any particular case it is first necessary to establish the 
relevance and validity of a steady-flow analysis. This point will be discussed later in relation to 

blunt-trailing-edge sections (Section 1.2 below). 
Secondly, if, in spite of the existence of regions of separation, the flow can be considered to be 

non-time-dependent the complexity of the problem lies in the fact that the shape of part of the 
displacement surface is initially unknown. Nor, in this case, can it be assumed even as a first 

approximation for iteration purposes that the displacement surface coincides with the section. The 
literature (see, e.g. Woods ~) contains numerous examples of the analysis of flows with separation 
using 'free-streamline' models. In these methods, on the parts of the displacement surface repre- 
senting the separated regions (the 'free streamlines' as they are usually termed), information is given 
regarding the pressures. The problem is thus specified by mixed boundary conditions, and the 
'solution' is represented by the computed potential flow outside the displacement surface. The 
analysis of flow models of this type started many years ago with the work of Kirchoff, Helmholtz, 
Joukowski and others, and is still being activeiy pursued. The analytical methods have reached an 
advanced state of sophistication and it is now possible to treat problems of general section geometry 
and to impose arbitrary pressure distributions along the free streamlines 2. The application of this 
work has been largely to cavitating hydrofoils 3, 4. In this instance the condition of constant pressure 
along the free streamlines is realistic, and the value of the pressure in the cavity is known at the 
outset in terms of the vapour pressure of the liquid. In aerodynamic applications, hovcever, the 
pressure in the separated region must be determined as part of the solution, and pressure variations 
through the region are frequently too significant to be ignored 5,G. Thus the formal solution of the 



external inviscid flow does not represent an explicit solution of the problem as a whole, and the 

pressure conditions on the 'free streamlines' remain to be determined by some other means. 

In the case of an aerofoil section with separation it would appear that the indeterminacy can be 

removed only by a consideration of the viscous/turbulent processes in the separated region. In its 

most general formulation the complete solution would involve the simultaneous analysis of (a) the 

external inviscid flow and (b) the viscous flow, with compatibilky conditions satisfied at all points 

on the displacement surface. As in the analysis of the viscous attached flow over an aerofoil, the 

pressure distribution considered in the inviscid solution must be such as to be consistent with the 

growth of the boundary layer (attached and separated) to produce the appropriate displacement 

surface. Paying heed to the problem of predicting the development of separated boundary layers in 

an arbitrary pressure distribution, it can be appreciated that the analytic and computational 

difficulties wohld indeed be formidable. 

Nevertheless, there is scope for the development of approximate methods with a limited range of 

validity, and it is in this context that the present work is considered to make a contribution. It 

would seem that in two particular respects restrictions must be placed on the generality of the 

problem. Firstly, the range of possible solutions of the external inviscid flow must be narrowed 

down. This could be attempted by expressing typical pressure distributions through the separated 

region on some sort of similarity basis in terms of a convenient number of disposable parameters. 

The particular inviscid solution corresponding most closely to physical reality would then be selected 

according to the extent to which it was compatible with the development of the viscous region. 

Secondly, the demands of the compatibility criteria must be limited in such a way as to be accom- 
modated by a tractable viscous analysis. 

1.2. Blunt- Trailing-Edge Aerofoil Sections. 

The choice of an aerofoil section of non-zero trailing-edge thickness can be made for one of several 

reasons, either structural or aerodynamic. In the latter context the choice may be made on the basis 

of the aerofoil performance at supersonic speeds 7. (For a swept wing this will refer to the Mach 

number component exceeding unity normal to some typical sweep angle.) In this case the need for 

information on the subsonic characteristics arises in connection with the off-design performance. 

Alternatively, the use of a blunt trailing edge has been suggested 8 as a possible means of delaying the 

onset of shock-associated phenomena (drag-rise, shock-induced separation, etc.) at high subsonic 

speeds. In this case the subsonic phase is clearly of prime importance. In both these instances 
advantages are envisaged from the improvement in the design of the section which can be realised 

by relaxing the condition of zero trailing-edge thickness. The advantages are nevertheless obtained 

at the expense of not preserving attached flow over the rear of the section. At subsonic speeds the 

acceptance of this separation incurs the loss of pressure recovery, and the base pressure which acts 
on the blunt trailing edge is frequently low making a significant contribution to the drag of the 
aerofoil. 

In general the flow past a two-dimensional blunt-trailing-edge aerofoil section at subsonic speeds 
is dominated by periodic effects and the formation of a vortex street 9. The concentrations of vorticity 
in the wake represent a sizeable energy loss which is transmitted to the section partly as a depression 
of the base pressure relative to that which could be supported by a non-periodic wake, and partly 
as a further decrease of the pressures on the part of the aerofoil surface within the region of influence 
of conditions at the trailing edge. The vortex street is thus a major factor in the development of the 
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drag, and its suppression is one of the principal objectives if the potential advantages of sections of 
this type are to be usefully exploited. The use of a splitter-plate 6, lo. 11, la or trailing-edge cavity 6' 1,, 

a high-velocity jet at the trailing edge 11, base bleed 14,15,16, or suction 1"'17, all serve to reduce the 

strength of the vortex street with various degrees of success, and further work is in progress on 

some of these devices. 
In this context the steady condition represents the optimum at which efforts to inhibit the 

periodicity are directed. An analysis of the non-periodic base flow is thus relevant in this connection 

but also has a bearing on other problems and may provide useful information on the characteristics 

of flows which do not exhibit periodic phenomena as a significant feature. Among such problems 

are the flow past two-dimensional aerofoils (and three-dimensional wings) with closed separation 

bubbles, the flow past three-dimensional bodies with base area, and also various interaction problems 

involving the mixing of jets or of a jet with an external stream. Even the simple case of the flow past 

a step has an important relevance to a number of problems both in aeronautics and in other branches 

of engineering. 

1.3. The Object and Limitations of the Present Work. 

The object of the present work is thus to analyse the (strictly-speaking hypothetical) flow past a 
particular type of aerofoil section with separation--i.e, the section with a non-zero trailing-edge 

thickness. The flow is assumed to be attached over the whole of the aerofoil surface up to the 
trailing edge but then to separate leaving the rearward-facing area in a separated-flow region. The 
study is restricted to the case of the symmetrical section at zero incidence, and to the case of a 

turbulent wake. 
It will be the intention of future work to extend the analysis to lifting aerofoils but there are still 

important gaps in our understanding of this problem--particularly regarding the factors which 

control the circulation. 
Essentially, the method is divided into two parts: an analysis of the quasi-inviscid external flow, 

and an analysis of the turbulent flow in the wake. Between them the two analyses yield a unique 
solution for the base pressure, the complete pressure distribution over the section and the profile 

drag. 
The problem of the external flow is of the 'free streamline' type. An important difference exists, 

however, between the present problem and that of the classical 'bluff section'; this is concerned 

with the displacement effect of the attached boundary layer. In contrast to the 'bluff section' 
problem, the displacement thickness of the boundary layer cannot, in general, be neglected in 

comparison with typical section dimensions. This presents a difficulty since the geometry of the 

upstream part of the displacement surface (i.e. that corresponding to the aerofoil and the attached 

boundary layer) is not known precisely at the outset but must be determined as part of the solution. 

In this respect the problem is similar to that of calculating the viscous flow past a conventional 

aerofoil section (see Section 1.1 above), and the difficulty is overcome in the same way--by an 

iterative procedure. In the present case, however, the iteration converges, not to the final solution, 

but to one possible solution of the external flow corresponding to a particular value of  the base 
pressure. The solution of the problem as a whole remains indeterminate until the solution of the 

external flow is matched to that of the wake. 
These remarks apply to the direct problem of predicting the characteristics of a given aerofoil. 

In the indirect, or design, problem the difficulty regarding the boundary-layer growth would not 
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arise. The pressure distribution over the section (or, more precisely over the upstream displacement 
surface) would be given and the external flow would be completely specified in terms of the base 
pressure by imposing on the wake a pressure distribution of the type considered in the present work. 

The geometry of the upstream displacement surface could then be determined. With the surface 
pressure distribution known the boundary-layer development could be computed and the section 

geometry derived without any need for an iteration. Thus the indirect problem can be regarded as 

solved in principle, but it will not be considered further in this paper. 

1.4. Relevance of Methods Appropriate to Supersonic Flow. 

For the supersonic case, successful methods for the prediction of base pressures have been 
developedlS,19,s0 from those originally proposed by Chapman et a121, Korst 22 and Kirk 23. In these 

methods the pressure rise recovered in the wake ahead of the point of confluence has been related 

to the velocity imparted to fluid particles on the dividing streamlines by mixing in the free-shear 
layers. The pressure recovery accommodated by the wake downstream of the point of confluence 
has been assessed either empirically 18, 2o or by a semi-empirical analysis of the rehabilitation of the 
wake velocity profile 19. Since the wake pressure must eventually recover to free-stream static 

pressure far downstream, the determination of the total pressure rise represents a solution for the 

base pressure. 
The validity of the method of Ref. 18 has been demonstrated in subsonic flow but the difficulties 

associated with the estimation of the downstream wake pressure recovery, either empirically or 
analytically, would seem to preclude the development of the method for general application. 

2. The Flow Model. 

2.1. The Wake. 

The flow model considered in the present analysis is illustrated in Fig. 2. The flow is assumed 

to separate at sharp corners at the trailing edge but to have remained attached over the whole of the 
aerofoil surface ahead of the trailing edge. The most elementary streamline pattern which can be 

constructed to satisfy the flow conditions immediately downstream of the trailing edge is shown in 

Fig. 3. A slowly-circulating vortical flow, or weak eddy is assumed to form on each side of the wake 
centre line, and the presence of this pair of standing eddies demands the existence of a free stagnation 

point which will be referred to as the 'point of confluence'. If mass is neither added to, nor extracted 
from, the region, a single streamline will join each separation point to the point of confluence. If, 

on the other hand, a continuous injection of fluid is maintained through the base (base-bleed) the 
separation streamline will be displaced from that passing through the point of confluence to allow 
the bleed mass flux to escape downstream. In the present paper only the case of zero bleed will be 
considered. The streamline passing through each separation point and the point of confluence will 

be termed a 'dividing streamline'. 
The fluid velocities in the separated region are assumed to be small except close to the dividing 

streamlines. The adjustment of velocity from the low value in the separated region to the value in 
the external stream will thus occur over a relatively small distance, and the flow near each dividing 
streamline can be regarded as a free-shear layer. The two free-shear layers, which have their origin 
in the boundary layers at separation, converge to form the downstream wake in a region which will 
be referred to as the 'region of confluence'. 



Consistent with the assumption of low velocities, the pressure is considered to remain essentially 
constant through the separated region at a value close to the base pressure, Pb. At the downstream 
end of the region, however, an abrupt pressure rise takes place, associated with the confluence of 
the two shear layers. In general the pressure does not recover monotonically to its final value, equal 
to p, far downstream but exhibits an overshoot in the region of confluence (Fig. 2). The pressure 

overshoot is linked with the presence of the stagnation point but the point of maximum pressure 

does not in general correlate with the point of confluence (see Ref. 6). 
As suggested in Section 1.1 above, the intention will be to establish simple criteria for describing 

the pressure distribution in the initial part of the wake, as a basis for the construction of families of 

solutions of the external inviscid flow. This will be done from an examination of experimental 

results. Although the present flow model is, strictly speaking, hypothetical, an experiment could be 

devised to measure the pressure distribution along the wake behind a blunt-trailing-edge aerofoil 

section under conditions in which the effects of the vortex street were minimised. But it is question- 

able whether meaningful results would be obtained and it is very likely that spurious trends would 

be introduced either by residual periodicity or by disturbances set up by the agency used to preserve 

the wake stability. Reference will therefore be made to measurements of the pressure distribution 

through the separated region downstream of a rearward-facing step. This at once raises the question 

of the relevance of these data in the present context. 

For our present purpose the flow past a step, considered together with its image in the plane 

downstream surface, can be regarded as equivalent to that in the wake of a symmetrical blunt- 

trailing-edge section at zero incidence if two conditions are satisfied. Firstly, the wake must be steady 
such that its centre line represents a streamline. This point has already been taken into account in 
the formulation of the problem. Secondly, it must be assumed that the shear stress acting on the 
surface downstream of the step has a negligible effect on the pressure field. This has not been 

demonstrated rigorously, but it seems to be a plausible approximation. Through the separated 
region itself the skin friction is clearly small, at the reattachment point it is exactly zero and far 
downstream of the step it again tends to zero. At short distances downstream of reattachment the 
viscous layer is relatively thick and there is no evidence that shear stresses set up at the boundary 
would be sufficiently strong to influence the pressure field. The only direct evidence there is con- 
cerning the equivalence between the flow past a step and past a blunt trailing edge is that at super- 
sonic speeds base-pressure data obtained from tests on steps and isolated sections correlate fairly 
successfully at least so long as the boundary-layer thickness at separation is not large 18. Thus, while the 

equivalence between the two flows must be regarded as an approximation, it does not appear to be 
a serious one, and until further information is available we shall feel justified in making appeal to it. 

2.2. The External Flow. 

Criteria describing the general form of the pressure distribution in the initial part of the wake 

will be invoked to limit the range of possible inviscid external-flow patterns to a singly-infinite set 

of solutions, each corresponding to a particular value of the base pressure. Thus it will be possible 

to compute, in terms of the base pressure, the pressure distribution over the section, the drag and 

various specific conditions in the wake. The purpose of the viscous analysis wilt then be to determine 

the base pressure and render the solution unique. 
The inviscid solution could be derived by any of the available methods for the treatment of 

mixed-boundary-value problems. Methods based on conformal transformations are the most general 



but for aerofoil sections of arbitrary geometry the computational difficulties were considered to be 

greater than could be conveniently accommodated. It was therefore decided that the present analysis 
should be developed on the lines of linearised theory. The displacement surface is thus generated 
by a source distribution disposed along the chordline and the centreline ot the wake. So long as the 

displacement thickness of the attached boundary layer is not large, the shape of the upstream part 
of the displacement surface (ahead of the trailing edge) can be regarded as known, at least approxi- 
mately, and the corresponding source distribution can be determined at once. When the pressure 
distribution over the section is subsequently determined as a function of the base pressure, a second 
approximation to the boundary-layer growth can be derived, and so on. The process would appear 
to converge rapidly in most cases and only a few iterations are likely to be involved. 

The shape of the downstream part of the displacement surface is not known initially, but is 
specified by information regarding the pressures on it. The strength of the source distribution 
representing the wake is determinable by the solution of a singular integral equation. Alternatively, 
a method is indicated by which the integral equation can be replaced by a set of simultaneous linear 

equations. 

3. Outline of the Method. 
The present method makes use of the fundamental result that, in two-dimensional subsonic flow, 

the wake momentum thickness tends to a constant value, 2®o~, far downstream of the section, 

where ®o~ is a direct measure of the profile drag of the section (see, e.g. Refs. 1, 2). Thus 

c Co , (3.1) 

where C D is the drag coefficient based on the chord, c, of the aerofoil. 

Once the pressure distribution round the section is known as a function of the base pressure 
(from the solution of the external flow) the profile drag can be estimated in terms of the base 
pressure. The profile drag can be calculated in the conventional way by a pressure integral over the 
aerofoil and an integration of the computed skin-friction values over the wetted surface. But an 

alternative approach is suggested which is particularly convenient in the present work. This is to 
express the profile drag as the sum of a pressure integral round a circuit, C, coincident with the 

upstream displacement surface, and a quantity which represents directly the momentum deficit in 
the boundary layers at separation (Fig. 4). Thus 

CD= 4 P°U°~ ~ c ~ Cpd ( ~ ) ,  (3.2) 

where Ae(x) is the local ordinate of the displacement surface, suffix 0 denotes conditions at the trailing 
edge, and the other symbols have their usual meanings. This subdivision of the profile drag is 
similar to that discussed by Cooke in Ref. 24. A formal proof of equation (3.2) is given in the 
Appendix. 

The solution for C D is rendered determinate by an examination of the changes of momentum 
thickness which occur along the course of the wake. At the trailing edge the momentum thickness is 
governed directly by the boundary-layer conditions at separation. The pressure distribution along 
the wake must therefore be appropriate to the development of the wake from this momentum 
thickness to a value, 2Oo~, far downstream which is compatible with the drag according to equation 

(3.1). The wake development is expressed analytically by an integration, along the wake, of the 
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momentum-integral equation applied, not to the whole flow since this integration is implicit in 
equation (3.2) (see Appendix), but to the part of the flow which is orientated throughout in the 
stream direction. Thus the recirculating flow in the separated region is omitted from consideration 

and the integral taken over the part of the wake outboard of the dividing streamline. 
It is shown that by making certain simplifying assumptions the integration of the momentum 

equation reduces to a functional relation between C D (or 00o) and the base pressure. This relation 
and that derived from the solution of the external flow can then be solved simultaneously to yield 

the values of profile drag and base pressure (Fig. 5). The latter can subsequently be used to specify 

the particular pressure distribution round the aerofoil which is consistent with the solution. 

4. The Analysis of the External Flow. 

4.1. Consider an aerofoil section in incompressible flow represented by a source distribution 

ms(x ) disposed along the x-axis over the interval - c < x < 0, the origin lying at the trailing edge 
(Fig. 6). According to linear theory the source strength can be related to the local slope of the 

aerofoil contour, i.e. 
dy 

m~(x) = 2uo~ (~)~ootio.  (4.1) 

At the trailing edge the source strength is related to the boat-tail angle, tan -1 w, by 

ma(x) = 7 2u,~o, (4.2a) 

and the trailing-edge thickness, h, is given by 

f 0 ms(x) 
h = dx. (4.2b) 

- c  Uco 

If the boundary layer is of significant thickness the displacement effect can be taken into account 
by disposing an additional source distribution, me(x), along the chordline, such that 

dS* 
me(x) = 2uo~ dx ' (4.3) 

where 8*(x) is the boundary-layer displacement thickness. 
The upstream displacement surface (i.e. that ahead of the trailing edge) is thus represented by 

the function 
y = ex*(x) 

where 
A* ---- Yscction + 8* 

(x (mo + me) 
= J - o  2u~ dx, (4.4) 

for - c < x < O .  
In the direct problem the section geometry is known and so m a can be regarded as given. But, 

until the surface pressure distribution can be derived, the boundary-layer development cannot be 
calculated and therefore m e is initially unknown. The procedure would be, in practice, to estimate 
the boundary-layer growth to a first approximation and, on this basis, to derive a first approximation 
to the pressure distribution. This would allow a second approximation to the boundary-!ayer 
growth to be calculated, and so on. It is likely that only a few iterations would be required in most 
cases. In what follows it will be assumed that m e is already known. 



The downstream part of the displacement surface (representing the wake) is generated by a 

further source distribution mw(x ) disposed along the positive x-axis. The local value of A e in the 

wake (where it is equal to the conventionally defined displacement thickness) is given by 

(* m,,~ dx (4.5) 
A* = A0* + J 0  2u~ ' 

where A0* is the value of A* at x = 0, given by 

A0 , h (4.5a) = ~ + 30". 

At the chordline the combined source distributions, m~, m~ and mw, induce a velocity su~ in 

the stream direction, where s is given by 

2~u~ ~ x - x '  +~o xZx'  J' 
taking the Cauchy principal values of the integrals. To the linear approximation the pressure 

coefficient at a point on the aerofoil is given in terms of the local value of s by 

C r = - 2s. (4.7a) 

But it has been pointed out by several authors (Refs. 1, 25, for example) that the linear theory can 
be improved, particularly near the leading edge, on the basis of a relation between C~ and s which 

involves the local direction of the velocity vector, i.e. 

Cv = 1 ( l+s )  z (4.7b) 

1 + ~ - x ]  

It has been suggested 88 that equation (4.7b) represents an improvement on equation (4.7a) only 

forward of the crest of the aerofoil and that the latter should be used aft of the crest. For realistic 
sections, however, the difference is small and equation (4.7b) will be adopted in the present work 

for computing the pressure coefficients over the whole section unless otherwise stated. 
The foregoing remarks in this section refer explicitly to the incompressible case. The effects of 

compressibility can be allowed for on the basis of one of the usual 'compressibility laws' discussed 

in the literature. A suitable one for the purposes of the present work is that of Woods 26, namely 

1 2 7 + 1  C~,=~C~,-)~ 1-/3+. 8 ~ C,~?+O(C~,?). (4.8) 

The equivalent incompressible pressure coefficient, C~.i, is related to the induced velocity, s, in the 

same way as before, 

Cv~ = 1 (l+s)Z (4.7c) 

The mixed-boundary-value problem describing the external flow will be formulated on the 
assumption that the behaviour of the incompressible induced velocity, s, is specified along the 
initial part of the wake. (To specify C~ would complicate the procedure since A~(x) is not known 
at the outset for x > 0.) The conditions on the aerofoil surface will be influenced most by the shape 
of the downstream displacement surface close to the trailing edge--in fact by the part of the 
displacement surface roughly corresponding to the region of reversed flow. Downstream of the 
region of confluence the thickness of the wake does not change rapidly with x and it would be 



expected that conditions there would have little effect on conditions on the section. Therefore, to 
simplify the problem it will be assumed that the source distribution, row, representing the wake 
will have vanishing strength for x > l, say, where the length I is some measure of the length of the 
separated region. Equation (4.6) can thus be rewritten as 

1 ~ mw(x')dx' 
s(x) = s,,(x) + ~ - o  -x  ~ x -7 ' (4.9) 

the top limit of the integral being l instead of infinity. [In equation (4.9) sa(x ) represents the first 

term on the right-hand side of equation (4.6).] The problem is therefore to determine mw(x ) given 
that s is specified, equal to sw(x), say, in the interval 0 < x < l. 

Equation (4.9) can be regarded as an integral equation for rn w to be solved by the standard methods. 
The solution is given formally by Refs. 27 and 28. 

E 5 - :1 mw _ 1 ' {x ( l -  x )} ~ {,w(~ ) - sa(~')} ax 
2u~  ~ { x ( l - ~ ) } ' / ~  K + ~ -  x , (4.10) 

0 

where the constant K is chosen to suppress the singularity in m w at the origin. 

In general the integral in equation (4.10) is difficult to evaluate for arbitrary s w and s~ ; but it will 

be instructive to examine a particular solution, namely, for the restricted case of s~ = 0 and 

sw = constant. This could represent a cavitation bubble behind a semi-infinite parallel-sided 

section immersed in 'a flow of liquid. Under  these conditions the value of K is given by 

q-g 

K = ~2 swl 

and the required source distribution, m~, by 

2u~ sw ~ -  x (4.11) 

Alternatively, the right-hand side of equation (4.11) can be expanded in a series to give 

2uo~ - sw 1 + ~ + 2 ~  + ~ + . . . .  (4.12) 

The form of equation (4.12) suggests that for wake pressure distributions which contain a region 

of roughly constant pressure but which are not exactly equivalent to constant s~ (and s~, = 0), the 
expression for the source distribution, rn~, might be suitably generalised to the form 

2uoo-  Z A,~ . (4.13a) 
' / ~=0  

Equation (4.13a) is, however, only suitable for cases where the displacement surface has zero slope 

and zero curvature immediately upstream of the separation point. If  these conditions are not 
satisfied the expression for m w must be of the form 

2 u ,  - ~ A~ - (co'+co"x) (4.13b) 

where 

co \ dx / ~=-o 

, { d~A*] (4.14) 
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The inclusion of the constant in equation (4.13b) is necessary to suppress a singularity in s at the 
origin, and the term in x to suppress a singularity in ds/dx for x = + 0 (ds/dx is generally singular 
for x = - 0 but since s is specified only for x > 0 this is immaterial). I f  the boundary-layer thickness 

at the trailing edge is negligible, ~o' will be equal to o~, the tangent of the boat-tail angle. In that 

case also, o~" will be zero for many typical aerofoils. 
I t  will be recognised that the term in (x/ l)  1/2 in equation (4.14) implies that the curvature of the 

displacement surface is infinite for x = + 0 unless A 0 = 0. A 0 will, in general, be non-zero but 

the singularity is not an embarrassment. Such a behaviour at the separation point is typical of 

'free-streamline' models. 

The induced velocity arising from the source distributions ma, m s and m w is given by equations 

(4.9) and (4.13b): 

s(x) = s & )  + - + 

if + - x ' "  .15)  
77" 0 n ~ O  X - -  

It  will be convenient to group the induced velocity, sa, due to the upstream displacement surface 

together with the terms in that due to the wake which do not involve the coefficients A,,. Thus,  

equation (4.15) is written in the form 

s(x) = g~(x) + - 5", A~I,~ . (4.16) 
"/7" ?~=0 

It will be noted that ga(X) is the induced velocity due to the upstream displacement surface together 

with a rearward 'extension' of quadratic form 

and length I. The surface slope and first derivative of slope are continuous at the junction between 
the upstream displacement surface and the quadratic component of the downstream displacement 

surface. For this reason both g~(0) and (dgo/dx)x= o are finite, although, in general, s,~(0) and dsa/dx)x= o 
are singular. 

The integrals in equation (4.15) have been written as functions of x/l  in equation (4.16): 

( / )  f t  (~)(2~+,),~ dx' (4.18a) I~b ~ X t "  
0 x - -  

The functions I s can be evaluated explicitly and are conveniently expressed in the form 

( / ) ~  1 ( / )  ~-~ 1 ( / )  ~-2 1 (4.18b) 
I , ~ =  I o - 3  - g  - "  . . . . .  - 2 n + i '  

with 

I 0 = -- cot -1 -- -- 1, for x < 0 

= tanh -1 - 1 ,  for 0 < x < l  . (4.18c) 

= coth -1 - 1, for x > l 
J 

The functions Io, 11 and I~ are tabulated in Table 1 for values of x/ l  between - 5 and 1. 
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At x = 0 the value of s becomes {from equation (4.16)} 

2 ~ A ~  
s(O) = ~(0) 

7 r , = o 2 n + l '  

and s(O) is related to the base-pressure coefficient by 

{1 + s(O)} '~ 
( C±,b) i = 1 1 + a) '2 

together with equation (4.8). 

(4.19a) 

(4.19b) 

4.2. It will now be necessary to consider the details of the downstream displacement surface 

(representing the separated region). Equation (4.13b) contains m + 1 disposable coefficients, d ~ ,  

and an equal number  of conditions are required to specify them. Of these conditions, one is furnished 
by geometric compatibility in the wake, and the remainder can relate to the pressure distribution 
to be imposed on the wake. 

The geometric compatibility condition arises from equation (4.5). If  At e is the value of A e at 
x = l  

f l  ?flw Ao e - A t e  = - ~ d x  
0 

m A n  w,,l  2 
= - 21 Z 2 n ~ 3  + ~o'l + ~ -  (4.20) 

I~=0 

The approximation that was made that m~ z 0 for x > l does not necessarily imply that 

and that 

f o~ m w d x  = 0 
l 

A l e  ~ / \ c o  e . 

If this were so, Ate could be related to ®~ by means of an appropriate wake shape factor. But there 
is no apparent reason for equating Ate to Ao~e and the present calculations have been made on the 
assumption that 

Ao~ -- A t = h / 2 ,  (4.21) 

which takes account of the most important contribution to At e . Equation (4.21) implies that the 

wake displacement thickness at x = l is equal to the boundary-layer displacement thickness at 
separation. The difference in the computed value of CD due to equating At e to A0 e - ½h rather 
than to Aw e does not appear to be large, amounting to a few percent when the boundary-layer 

thickness at separation is zero. Since this is a matter on which future work will probably give 
guidance, Az e will be left in the analysis as it stands. 

Thus m conditions remain to be imposed on equation (4.13) to determine the coefficients A,~,  

and these will be determined from a consideration of the pressure distribution (or, more correctly, 

the s w distribution) along the wake. It will be recalled that the main purpose of the analysis of the 
external flow is the derivation of the pressure distribution over the aerofoil surface. Therefore the 

wake pressure distribution must be defined fairly precisely close to the separation point where it 
will have most influence on the pressures on the aerofoil. Further  downstream in the wake the 

details would appear to be rather less important. The essential features of the wake pressure 
distribution will be established from an examination of the pressure distribution through a typical 
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region of separation, i.e. that downstream of a rectangular backward-facing step. The equivalence 
between the flow past the step and that in the wake of the aerofoil is to be regarded as one of the 

basic assumptions of the present method. 
For a rectangular step in an otherwise plane boundary, an elementary similarity form of the 

pressure distribution could be constructed Oll the basis of a relation between 

s(x) and s(O)x (4.22) 
s(0) zX0~ - Az*" 

This would be consistent with the assumption that the displacement surface representing the 

separated region is of a particular geometry and that variations from one condition to another are 

accommodated by nothing more than changes of scale in the Cartesian directions. Experimental 

results do, in fact, confirm this assumption in broad terms and a correlation of the data of Ref. 29 

on this basis is shown in Fig. 7 t .  The  scatter is considerable but not too great to obscure.the general 

trend of the results, and this correlation should provide an adequate indication of the form of the 

pressure distribution to be expected in more general cases. 
For a rectangular step in an infinite wall co and sa(x ) are both zero, and if the boundary layer is 

not too thick ~o' and o£' can be neglec.ted. Thus ga(x) is effectively zero, and the incompressible 

induced velocity in the neighbourhood of the step is given by equation (4.16a): 

and at separation 

s(x) = _  2 Z A~I~ (4.23a) 
77" ~ = 0  

2 -~ A~ (4.23b) 
s(0) = ~ ,~0 an + 1" 

Hence, with the condition of geometric compatibility {equation (4.20)} satisfied 

and 

s(x) Z AJ~ 

s(O) Z A~, 
2 n +  1 

"~ A~ 

s(O)x 1 ,~=0Z 2n + 1 x 

A 0 * -  A~* 7r ~ A .  l 
Z 2 n + 3  

(4.24a) 

(4.24b) 

Equations (4.24a) and (4.24b) thus represent an analytical 'pressure' distribution due to a rectangular 

step, and contain m disposable constants. It will now be the intention to fit this distribution to the 

experimental correlation in Fig. 7. 

]- The model used in these experiments was similar to the step model described in Ref. 6, but the step height 
was variable from about 1½ times to 5 times the boundary-layer thickness. Data obtained over a Mach 
number range of 0.4 to 0' 8 are included in the correlation. 

The values of s were derived using equations (4.8) and (4.7c). Since the shape of the displacement surface 
was unknown, however, the term (dAe/dx) 2 in equation (4.7c) was neglected, dA~/dx was, of course, nearly 
zero at separation (since the step was rectangular) and was unlikely to be large further downstream. 
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The form of equation (4.23a) is such that unless 

m 

?g n~  = 0 (4.25) 
' / ~ = 0  

s is logarithmically singular at x = 1. In practice, in view of equation (4.20), the summation in 
equation (4.25) is usually negative and s -> - co at x = l indicating the presence of a stagnation 
point (of. the trailing-edge singularity in classical aerofoil theory). This behaviour can be usefully 
exploited if the singularity can be identified with the overshoot in the pressure distribution. I f  this 

is done it is then necessary to impose only two further conditions to define a function s(x) which 
exhibits the same trends as the data in Fig. 7. These are 

0 (i) 7/x x=+0 
(4.26) 

(ii) (s)x=t/~ = s(0) 

Equations (4.26) ensure that s is essentially constant over the initial part of the separation bubble. 

Thus  m in equation (4.13b) can be taken as 2 and the values of the three coefficients A0, A 1 and 

A 2 are given by equations (4.20), (4.23a), (4.23b) and (4.26) which, together with the definitions of 
the functions/ ,z (equations (4.18)), lead to the matrix equation 

where 
[M~] [A~] = [M~], (4.27) 

1 
1 - 1  

3 

1 1 1 
[M1] = ~ g 

1 + I o  ~ + / a  g + h  

I° 1 
and [A~] is a column matrix of the coefficients Ao, A 1 and A 2 . The function s(x) defined by equations 
(4.23a) and (4.27) is shown, in the similarity form {equations (4.24)}, in Fig. 7 along with the 
experimental data. When further experimental results are available, it may be possible to revise the 
criteria {equations (4.26)} for determining the coefficients A~ but at present it would seem that there 
is little possibility of improvemer~t. By retaining more terms in the expansion for m w {equation 

(4.13b)} the singularity in S at x = l could be suppressed, but then further restrictions on s would 
need to be imposed and this would tend to limit the generality of application. In their present form 
equations (4.26) are sufficient to define the behaviour of the function s(x) without unduly restricting 
its generality. 

4.3. In the general case when co', ~o" and s,(x) do not vanish [i.e. when g~(x) is non-zero] the 
similarity form of the wake 'pressure' distribution is no longer valid. Nevertheless it will be assumed 
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that the general form of the distribution is the same as that illustrated in Fig. 7 and that the criteria 
stated in equations (4.26) can still be invoked. Hence, taking m -- 2 as before, the condition that 
equations (4.20) and (4.26) be satisfied leads to the matrix equation 

[M1] [&]  = [M3], (4.28) 

where [21//1] and [An] retain their definitions as in equation (4.27) and [M3] is a column matrix 

defined by 

2 \dx/~=+o 

{ ~°"l A ° * - A ~ }  
[Ms] = ½ co'+ 2 7 

It will be noted that [3//3] reduces to [M2] if co' = co" = 0 and g~ - 0. 

4.4. Equation (4.28) effectively completes the solution of the external inviscid flow. The 
coefficients, A,~, are determined in terms of the section geometry and the length, l, of the separated 
region. The induced velocity over the aerofoil is thus given as a function of I by 

2 {AoIo (~) +AI,1 (l) +A212(1) } (4.29a) s(x) = *a(x) + 

with [.equations (4.15) and (4.16)] 

1{ x } (4.29b) ga(x) = sa(x) + - oJ l  - (co'+ co'x) log /----x " 

The length l can, in turn, be related uniquely to the value of s(0), since 

( s(0) = ~(0) - 2 A0 + + (4.30) 

and ~(0) is a function of I as is seen from equation (4.29b). 
Hence, using equations (4.19b) and (4.8), the pressure distribution over the aerofoil (or the 

upstream displacement surface) can be expressed as a singly infinite family of solutions, each 
corresponding to a particular value of the base pressure. For a range of values of Cpb the pressure 
distribution can be computed and the profile drag derived, using either equation (3.2) or the more 
conventional method. Thus, from an analysis of the external flow, one relation between C D and 
C~b is established. A second such relationwill now be derived from a consideration of the turbulent 
flow in the wake. 

5. The Analysis of the Wake.  

5.1. Consider the flow in one half of the wake outboard of the dividing streamline CD. [For 
the purposes oi the present discussion ~D will be taken to denote the streamline linking the separation 
point and the point of confluence (Fig. 3), and also its extension downstream along the wake centre 
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line (Fig. 8)]. Thus the recirculating flow in the separation bubble is omitted from consideration. 

Let 0 be the momentum thickness of the part of the viscous layer between CD and the external 

stream, i.e. 

puO = (1 -ue)d, ,b (5.1) 
CrD 

where 
/ ,  

¢ = J pu dy. (5.2) 

The momentum thickness 0 varies from 00 at the separation point to 0oo far downstream. 
The momentum-integral equation4a can be applied to the part of the wake under consideration, 

dO 1 du r 
+ O ( H + 2 - M 2 )  u dx - pu 2' (5.3) 

where 0 is defined as in equation (5.1) and H is the appropriate shape factor t .  It may be verified 

that the momentum-integral equation retains its usual form even though the velocity on CD is 

non-zero. The shear stress "r acts along the dividing streamline between the separation point, S, 

and the point of confluence, R (Fig. 8). Downstream of R the shear stress vanishes on account of 

the symmetry of the wake. The distance SR will be denoted by l'. 

The momentum-integral equation may be formally integrated along the wake from S to infinity 

to give 

if ' Ar 
A ® ® ~  = AoO o + dx (5.4a) 

o P> 

where the integrating factor A is defined by 

log A = (H + 2 - M 2) - - ,  (5.4b) 
u 

there being no contribution to the integral in equation (5.4a) for x > l' since the shear stress is zero. 
In general the evaluation of the integrating factor would require a knowledge of the variation of 

H and u along the wake. However, H plays only a secondary r61e in equation (5.4b) and little 

accuracy will be lost if H is regarded as a function of Mach number alone. For unit Prandtl number 
and zero heat transfer the shape factor H can be related to an equivalent shape factor H~ in incom- 

pressible flow by the expression a* 

T, 1 (5.5) , 

where T and T t are the static and total temperatures, respectively, appropriate to the Mach number 

M at the edge of the wake. In the context of the present problem H i varies between extremes of 

2 to 2½ at the point of confluence (i.e. equal to a typical separation value), and unity far downstream. 

At the separation point the value of H i is about 1.2 to 1.4, depending on Reynolds number, and in 

the free-shear layer approximately the same. Hence it will be reasonable to give H i a mean value 

of about 1.5. 

t In equation (5.3) x is, strictly speaking to be measured along the dividing streamline. For moderate boat- 
tail angles and typical values of C~b there is, however, little loss of accuracy by taking x as the projection of 
this distance on the wake centre line. 
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Thus, i f  H i is considered constant equations (5.4b) and (5.5) give 

A (5.6) 
A ~  \ M ~ I  \ r ¢ o l  " 

The evaluation of the integral in equation (5.4a) in an approximate form is not difficult. The 
pressure distribution between the points S and R (Fig. 8) can be idealised into a region of constant 
pressure followed by an abrupt pressure rise. Thus, if the pressure is assumed to start to rise at 

x = l", the integral can be written 

o p u2 poUo 2 o r" ~[~ poUo 2] 

where e(x) is the variation of ~- with x corresponding to the development of the shear layer at constant 
pressure. The essential point of the approximation to be made is that, if the pressure rise is 
sufficiently abrupt, I" -+1', and the second term on the right-hand side of equatio n (5.7) is small 

compared with the sum of the first term and the quantity A000 which appears in equation (5.4@ 
Thus, to a first approximation, equation (5.4a) becomes 

A0 fz' - - -  & .  (5.8) A~O~o = A00o + P°u° 2 o 

The integral involving e can be evaluated from the momentum-integral equation appropriate to the 

condition of constant pressure, i.e. 

dO 

dx  poUo ~' 

f t e dx  poUo~(O - (5.9) 0o), 
0 

say. The quantity 0 in equation (5.9) is interpreted as being the value which the momentum thickness 
0 [as defined in equation (5.1)] would reach if the shear layer developed over a length 1' at a constant 
pressure equal to the base pressure. The asymptotic momentum thickness of the wake is thus given 

by equations (5.8) and (5.9): 

= --A° 0. (5.10) 
Ao~ 

In incompressible flow the quantity A (equation (5.6)} reduces to a power of the velocity at the 
edge of the wake and equation (5.10) can then be written 

_ -  0. (5.11a) 
\U~o/ 

It may be noted that if the trailing-edge thickness of the aerofoil tends to zero, l' also tends to 
zero and 0 is equal to 0 0 {see e.g. equation (5.9)}. In this case equation (5.11a) reduces to 

-- 0o, (5.11b) 

which is of the same form as the wake solution given by Squire and Young 3° for the sharp-trailing- 
edge aerofoil, H i being, as in the present work, a mean value along the wake. Similarly, equation 
(5.10), with 0 replaced by 00, forms the basis of the method of Ref. 37 for the prediction of the 
profile drag of conventional aerofoils in compressible subsonic flow. 
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5.2. The value of 0 can be readily determined, as a function of the momentum thickness of the 

boundary layer at separation and the distance, l', from the separation point, if it can be assumed 

that the flow in the outer part of the shear layer is not significantly influenced by the presence of 

the other shear layer and the reversed flow in the separated region. In this case the shear layer can 

be regarded as equivalent to that generated by the mixing of a stream with a quarter-infinite fluid 

at rest. Some calculations have been made of 1he variation of 0 with 00 and l' for incompressible 

flow and the results are presented in Fig. 9. The calculations were based on the theoretical velocity 

profile of Tollmien for the case of the shear layer growing from zero thickness, together with the 

approximate method of Kirk 23, a~ for dealing with the effect of the initial boundary layer~. Also 

shown in Fig. 9 is the variation of the velocity ratio, UD ~, on the dividing streamline with 00 and l'. 

The results involve the constant ~ which relates to the rate of spread of the asymptotic layer (i.e. the 

layer developing from zero thickness at separation). The measured value of ~r is about 12 at low 
speeds. 

The derivation of equivalent data for Mach numbers other than zero must depend on some 

assumption concerning the effect of compressibility on the development of the asymptotic free-shear 
layer. It has been established experimentally that the rate of spread of the turbulent shear layer is 
smaller at supersonic speeds than in incompressible flow (although the published data on the 
associated increase of ~ with Mach number is far from coherent). At subsonic speeds, however, the 
most reliable evidence 39,4° suggests that there is little increase of cr above the level appropriate to 

zero Mach number. Similarly, the shape of the velocity profile could be expected to be substantially 
unaltered from its low-speed form. Thus there can be some confidence that the data illustrated in 
Fig. 9 will be approximately valid throughout the subsonic speed range. The calculations in the 
present work have been based on this assumption. 

5.3. It remains to attach some value to the effective length, I', of the free-shear layer. In 
general l' will not be equal to the length, l, of the source distribution representing the separated 

region in the analysis of the external flow (see Section 4, above). In fact, experience has shown that 

l' is usually equal to about 0-9 l or 0.95 l depending on conditions. Values of this order could be 
used as a first approximation. 

More precisely l' may be determined in a particular case from a consideration of the acceleration 

and subsequent retardation of the fluid on the dividing streamline in the free-shear layer. ]f the 

compression up to the point of confluence can be regarded as quasi-isentropic the pressure rise may 
be related to the velocity ratio uD * by 

,,__- / 

where Pr is the pressure at the point of confluence; or if the Mach number is small 

c o,, = ( 1 -  + O ( M J ) .  (5.12b) 

t Recent work by McDonald and Acklam 41 has shown that values of 0 calculated using Kirk's approximation 
and the error-function velocity profile are indistinguishable from values calculated using the theory of Ref. 32. 
Thus, there seems to be considerable justification for using Kirk's approximation together with the more 
accurate velocity profile of Tollmien. 
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Either of these equations, together wkh values of Up ~ from Fig. 9, represents a relation between 
Cpb, C~r and l', since 00 can be considered known. A second relation between these quantities is 
furnished by the analytic wake pressure distribution derived as part of the analysis of the external 
flow. Thus for particular values of 00 and C~b a wake pressure distribution is specified and it is a 
simple matter to find the point on it where the pressure coefficient is equal to C~r as given by 
equation (5.12a) or (5.12b). Since the pressure rise through the region of confluence is abrupt the 
derived value of l' is insensitive to small errors in Cpr and equation (5.12b) can probably be used 
without significant loss of accuracy throughout the speed range under consideration. 

5.4. This completes the analysis of the wake. The variation of l' with base-pressure coefficient 
is obtained, as described in Section 5.3, from the analysis of the external flow appropriate to the 
particular aerofoil being considered. For each value of Cvb , and the given value of 00, the value 
of 0 is determined from the data in Fig. 9. The wake momentum thickness at infinity (an d hence CD) 
is then given by equation (5.10), the ratio A0/A ~ being a function only of C~b and the Mach number. 
Thus the analysis of the wake yields a second relation connecting the profile drag coefficient and 
the base-pressure coefficient. This relation and the one derived from the analysis of the external flow 
can then be solved simultaneously to  give C D and Cpb (see Fig. 5). 

6. Some Computed Results. 

6.1. Semi-Infinite Parallel-Sided Section. 

This is the most elementary example of a blunt-trailing-edge section and can be considered to 
illustrate the effect of the boundary-layer thickness on base pressure, and also the variation of the 
latter with Mach number. 

The asymptotic wake momentum thickness is given by equations (3.1) and (3.2): 

~)oo - p0zt02 0o h + 230 *~ 
p~ou~ 2 4 C~b (6.1) 

the pressure integral in equation (3.2) reducing to the trivial product of the base-pressure coefficient 
and the total thickness of the displacement surface at the trailing edge. If H o is the shape factor of 
the boundary layer at separation, equation (6.1) may be written 

00 1 0o~ _ ( poUo 2 H°  Cvb - Cv~ (6.2) 
h . _ _ ¢ ~  ~ p ~ u ~ o  2 ~ ~ " 

The matrix equation for the coefficients A~ defining the source distribution which represents the 
separated region is as given in equation (4.27), A0 ~ - Az ~ being taken as ½ h. 

The viscous solution is represented by equation (5.8) with values of 0 derived from Fig. 9. The 
values of l', the effective length of the shear layer were obtained in the calculations by the method 
suggested in Section 5.3. 

The predicted base-pressure coefficients are presented in Fig. 10, C~b being shown as a function 
of the ratio, h/Oo, of the trailing-edge thickness to the momentum thickness of the boundary layer 
at separation. Calculations were made for Mach numbers of 0, 0.4, 0.6 and 0.8. Also shown in Fig. 10 
are the results of base-pressure measurements on backward-facing steps. It is seen that, although 
there is some deviation the theory accords well with the experimental results. In particular the 
insensitivity of the base pressure to changes of trailing-edge thickness, for values of h/O o greater than 
about 20, is reproduced--and indeed exaggerated--by the theory. For small values of h/O o the 
validity of some of the details of the analysis becomes increasingly questionable, and the agreement 
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between the predicted values and the measurements by Wieghardt is certainly as good as could be 
expected. For a more critical assessment of the accuracy of the method, more reliable experimental 

data are urgently required over the whole range of conditions. 
The variation of base-pressure coefficient with Mach number indicated by the theory is shown 

in Fig. 11 in comparison with the measurements of Ref. 29. The agreement is again satisfactory and 

there is reason to suggest that the small discrepar/cies might be attributed as much to inadequacies 

in the test conditions as to those in the analysis. When sonic velocity is reached locally at the trailing 

edge the theory ceases to be valid. This is chiefly a result of the interruption of the direct relationship 

between the drag and the asymptotic momentum thickness of the wake. When regions of supersonic 

flow exist in the flow-field wave drag is generated which is not accounted for in the momentum 

deficit of the wake as such. An examination of the present solution indicates that as O~o represents 

a progressively smaller fraction of the total drag of the section the base pressure falls. This behaviour 

is qualitatively consistent with the observed variation of base pressure at transonic speeds. 

It might be thought that the comparison between theory and experiment in Figs. 10 and 11 is 

not a valid one since empirical data from the same experiments are already used in the analysis. 
However this is not so. For the simple case of a semi-infinite, parallel-sided section the analysis of 
the external flow, which contains the empirical information, plays a trivial r61e, entering only ~ia the 
relation between l' and C±,o. This relation could easily have been obtained by some other means, 
for instance, by assuming that the separated region could be represented by a parabola as far as the 
external flow is concerned. 

6.2. Semi-Infinite Parallel-Sided Section with Boat-Tailing. 
We now consider the flow past a semi-infinite, parallel-sided section with a truncated-wedge 

afterbody. This is a somewhat artificial example in so far as, in a real flow, boundary-layer separation 
would be likely to occur at the shoulder of the section where there is a discontinuity of surface slope. 
Nevertheless it will serve to demonstrate the extent to which base drag can be reduced by modifica- 
tion of the section geometry. To simplify the analysis it will be assumed that the boundary-layer 
thickness at the trailing edge is zero, and the calculations will be performed for incompressible flow. 

The source distribution representing the afterbody, which will be assumed to be of length l,, can 

be written 
m~(x) = - 2uo~co, (6.3) 

where (tan -1 co) is the boat-tail angle, and will be disposed over the interval - lo, < x < 0. The 

induced velocity g~ (equation (4.16), due to the afterbody and the constant component, - 2u~co, of 
the source distribution representing the initial part of the wake, is given by 

co x +l~ 
g~ - log , (6.4) 

7/" l - - x  

and the column matrix [Ms], (equation (4.28)), becomes 

h 
_ _  _ _ _  

2col 

~o l 

log ( l  + 

(6.5) 

2O 



The coefficients d0 ,  d 1 and d2 ,  defining the non-linear component of the source distribution 

representing the separated region, are thus determined. For a given value of s(0), the induced 

velocity field s(x) over the afterbody can then be written in the form 

(;) (;) (;)}? s(x) = 7  log x ~ ,  + -o~ A°I° + dlI~ + A212 (6.6) 

with I related to s(0) by 

s(0) 6o log 0 + + 
7/" l a  6O .) 

The pressure distribution over *he afterbody can be derived from the induced velocities using 

equation (4.7b), which reduces to 

{1 + s(x)} 2 
C~, = 1 1 + 0,2 (6.8) 

The drag is then given by an integration of the pressures over the section. If  C D is the drag coefficient 

based on the maximum thickness of the section, 

f0 } C D = - ~  hC~, b - 2 o ,  C~,dx . (6.9) 
- I  a 

In the present calculations equation (6.8) was linearised to the approximate form 

C2~ = - 2s(x), (6.10) 

yielding a pressure distribution which is readily integrable analytically. Thus  

( CD=72 hs(O)-26o sdx , (6.11) 
d --l a I 

f0 <[(  d ) ( ; ) h  , s dx = - -  1 + log 1 + - log + 

From geometric considerations t can be expressed in terms of the other section parameters, 

t = h + 2M.. (6.13) 

The drag coefficient of the section can thus be determined as a function of l, and hence of base 

pressure {equations (4.18b) and (4.8)}, and the asymptotic wake momentum thickness is given by 

t Cz, (6.14) 0 ~ = 7 ~  • 

The viscous solution [equation (5.10)] takes a simple form in incompressible flow. The ratio 

A0/A~ o is expressible as a power ot the local velocity u 0 at separation, as in equation (5.11a), or, 
alternatively, as a function of the base-pressure coefficient: 

Ao _ ( Uo ] ~±i+2 
A~ \ z ~ /  (6.15) 

= ( 1  - C~,o)(I~i +2)/~ 

= (1 - C~,b)m , (6.16) 
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for H~ = 1.5. Furthermore, since the boundary-layer thickness at separation is zero, the momentum 
thickness, 0, of the part of the shear layer outboard of the dividing streamline can be expressed in 
its asymptotic form 

~0 
l~- = 0.14, (6.17) 

the value of the constant being appropriate to the velocity profile of Tollmien. In the present 
calculations l' was taken equalto 0.9 l. 

Two exercises were carried out to demonstrate the effect of boat-tailing on the base pressure. In 

the first, the boat-tail angle was held constant at 5.71 ° (i.e. for which m = 0.1), and the trailing-edge 

thickness varied at the expense of allowing the length of the afterbody to vary. The predicted base- 
pressure coefficient and drag are shown as functions of trailing-edge thickness in Fig. 12. In the 

second exercise the length of the afterbody was held constant and changes of trailing-edge thickness 

were accommodated by allowing the boat-tail angle to vary. The results of these calculations are 
illustrated in Fig. 13. 

The results of both exercises are broadly similar, and indicate that useful reductions in drag can 

be achieved by decreasing the trailing-edge thickness, compared with the maximum thickness of 

the section by boat-tailing. In the first case the initial rate of reduction in drag is somewhat greater 

than in the second, and this can be attributed to the fact that for equal values of h/t, near unity, the 

boat-tail angle is greater in the first case than for the constant-length afterbody. When the value of 

h/t is reduced to about 0.4 the base-pressure coefficient is observed to become positive. At this 
condition there is no 'base drag' as such but full pressure recovery does not occur over the afterbody 

and a net drag remains. In the limit of a sharp trailing edge (i.e. h = 0) the calculations indicate 
zero drag and the presence of a rear stagnation point. This is, of course, a consequence of the 
assumption of zero boundary-layer thickness at separation. 

In practice a wedge afterbody would not be a suitable configuration, and the section would need 
to be designed as a whole, taking proper account of the boundary-layer growth. On the basis of the 
present calculations it would seem beneficial, from a drag standpoint, to keep the trailing-edge 

thickness reasonably small compared with the maximum thickness of the section thus incorporating 
some degree of boat-tailing. Nevertheless, it cannot be assumed without proof that in any given 
case the minimum drag is realised when the trailing-edge thickness is precisely zero. Further work 
is needed to investigate whether, and if so under what conditions, a drag minimum can occur for 
non-zero trailing-edge thickness. 

6.3. Truncated RAE 103 Section. 

This example is chosen to illustrate the application of the present method to realistic aerofoil 
shapes. The calculations are again performed for the restricted case of incompressible flow and 
zero boundary-layer thickness at the trailing edge. 

A comparison is made between the characteristics of the basic RAE 103 aerofoil section a4,35 of 

10 per cent thickness-chord ratio and two 10 per cent thick blunt-trailing-edge sections defined as 

follows: Aerofoil I is derived by the truncation of a 9 per cent thick RAE 103 section at 0.9 chord, 

Aerofoil t I  by the truncation of an 8 per cent thick RAE 103 section at 0.8 chord. 

The RAE 103 section has a constant surface slope aft of 0.787 chord, and this property allows a 

simple determination to be made of ~,~ for the truncated sections from the induced velocity distri- 

bution, s• say, appropriate to the basic section from which each is derived, s B can be computed by 
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any of the standard methods, that due to Weber 25 being used in the present calculations. Now 
consider one of the truncated sections whose chord occupies the interval - c < x < 0 of the x-axis. 

The chord of the corresponding basic section is longer and will extend from x = - c to x = c B - c ,  

say. The  source distributions representing the basic and truncated sections differ only by the 
constant component of strength - 2zt~co disposed over the interval 0 < x < (c B -  c). But sa is the 

induced velocity due to the truncated section together with the constant term in the source distri- 

bution representing the separated region which extends from the origin to x = I. Thus  ~ will differ 

from s B only by the induced velocity due to a constant source distribution of strength - 2u~o~o 
disposed along the x-axis from x = l to x = c B - c, i.e. 

¢0 X [ 
g ~ = s  B + - l o g  x I" (6.18) 

- c) 

The terms of the matrix [Ma] in equation (4.28) can thus be determined, and the induced velocity 

distribution s ( x )  subsequently derived in terms of the value s(0) at the trailing edge [equations 
(4.29a), (4.29b) and (4.30)]. 

In the present example the pressure distribution round the section cannot be integrated 

analytically, and the precise relation between C~ and s {equation (4.7b)} is used. The computations 
otherwise proceed as in the previous example (Section 6.2 above). 

The  chordwise pressure distributions for the RAE 103 section, and Aerofoils I and II,  are shown 

in Fig. 14. The suction on the forward part of Aerofoils I and II  is lower than that on the RAE 

section of 10 per cent thickness-chord ratio, and the 'rooftop' extends to a more rearward chordwise 

station. This is because the three aerofoils are of equal thickness but the truncated sections have 

longer basic chords. The pressure distributions on Aerofoils I and II  are broadly similar to those of 

the basic sections from which they were each derived, except close to the trailing edge within the 

region of influence of conditions on the base. Fig. 15 shows the pressure distributions plotted in 
terms of the ordinate, y ,  measured normal to the chordline. This presentation accentuates the 
difference between the pressures over the rear of the truncated sections and those on the sharp- 

trailing-edge section. Whereas in the latter case full pressure recovery takes place over the rearward- 

facing area (a consequence of the assumption of zero boundary-layer thickness), in the former, full 
recompression is inhibited and the pressure remains constant over the base making an appreciable 
contribution to the drag. 

The  base-pressure and drag data can be summarised as follows: 

Section 

RAE 103 . . . .  
Aerofoil I . . . .  
Aerofoil IT . . . .  

t/c (%) 

10 
10 
10 

h/c (%) 

0 
2.0975 
4.1950 

C~ 

0.0080 
-0-0822 

% 

0 
0.0026 
0.0063 

The resuks confirm the conclusions of Section 6.2 above in that the base pressure on a section 

truncated well aft of its position of maximum thickness can be substantially higher than that on a 

section without  boat-tailing (for which C~) b ~ - 0.2). The  values of the drag coefficient, C9,  must, 

of course, be interpreted in the context of the neglect of the boundary-layer growth on the section. 

Thus the skin-friction drag has been neglected, and also form drag associated with the displacement 
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effect of the attached boundary layer. The skin friction drag component is likely to be approximately 

the same for the three sections, but the form drag increment is likely to decrease the further forward 
the position of truncation. Since much of the rear pressure recovery on Aerofoils I and II has 

already been lost the boundary-layer growth would presumably be less than on the basic section 

and less additional form drag would be developed. Thus, to add to the values of C D indicated in the 
table an increment equal to the total dragt of the RAE 103 section would seem to yield pessimistic 

estimates of the true drag values of the truncated sections. 

7. ConchMing Remarks. 

An analysis has been formulated of the subsonic non-periodic flow past a two-dimensional, 
symmetrical, blunt-trailing-edge aerofoil section at zero incidence. The problem stated is to some 

extent hypothetical, but is considered to provide a basis for a study of the characteristics of sections 

of finite trailing-edge thickness when the vortex street has been partially or wholly suppressed. The 
analysis may also find an application in other problems involving separated flow. 

The analysis involves parallel solutions of the external inviscid flow" and of the turbulent flow in 

the wake. The analysis of the external flow, which is a mixed-boundary-value problem, is concerned 

with the derivation of the surface pressure distribution over the aerofoil as a function of the base 

pressure. For the purposes of the solution the pressure distribution along the initial part of the wake 

is specified in general terms by criteria which have been established from an examination of the 

pressure distributions downstream of rearward-facing steps. 

Knowledge of the pressure distribution over the aerofoil in terms of the base pressure permits the 

computation of the profile drag as a function of base pressure. The solution is subsequently rendered 

unique by the consideration of compatibility requirements in the wake. 

In subsonic flow the momentum thickness, @~o, of the wake at infinity downstream is known in 

terms of the profile drag of the section. Thus the wake momentum thickness must change from its 

known value at the trailing edge to @~o far downstream after negotiating the changes of pressure, 
along the wake, from the base pressure to freestream static pressure. The wake analysis is based on 

the work of Squire and Young but is formulated to take into account the region of reversed flow 

immediately downstream of separation. 
The application of the method is illustrated by a number of examples. Computations have been 

made of the variation, with Mach number and boundary-layer thickness, of the base pressure on a 
long, parallel-sided section. The results are compared with measurements of the base pressure on 

rectangular backward-facing steps, and satisfactory agreement is obtained over the range of validity 
of the theory. The analysis ceases to be valid when local supersonic flow exists at the separation 
point. This is chiefly a result of the interruption of the direct proportionality between the drag and 
the asymptotic wake momentum thickness. It is shown that the subsequent relationship between 
®o~ and the drag would lead to a variation of base pressure with Mach number which is qualitatively 

consistent with the observed behaviour at transonic speeds. 

t A comput~ion ofthe drag ofthe basic RAE 103 section of 10 per cent thickness-chord r~io was made 
by themethod of Ref. l, on the assumption oftransition at l0 per cent chord. The result was as fol~ws: 

R~ = 106, C D =  0"0108 

= 107, = 0.0065. 
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Calculations have also been made for two further types of configuration for the restricted case of 

incompressible flow and zero boundary-layer thickness at separation (i.e. for infinite Reynolds 
number). 

The first is a long parallel-sided section to which has been added a truncated-wedge afterbody. 
The results indicate a rapid increase of base pressure, and a similar decrease of total afterbody drag, 
as the trailing-edge thickness is reduced below the thickness of the parallel forebody. For a given 
ratio of trailing-edge thickness to forebody thickness, the base pressure is found to rise with increase 
of the boat-tail angle. [However, since the boundary-layer growth on the afterbody was omitted 
from consideration in the calculations, the results do not indicate the maximum usable boat-tail 
angle which would be determined by incipient separation.] 

The second configuration discussed is a truncated aerofoil of RAE 103 section. Calculations have 
been made of the pressure distribution and profile drag of two blunt-trailing-edge sections of 
10 per cent thickness-chord ratio derived, respectively, by the truncation of a 9 per cent thick basic 
section at 0.9 chord (Aerofoil I), and an 8 per cent thick basic section at 0.8 chord (Aerofoil II). 
The chordwise pressure distributions (Fig. 14) correspond closely to those of the basic sections 
from which the aerofoils were derived except towards the trailing edge where the expansion takes 
place associated with conditions on the base. The base-pressure coefficient on Aerofoil I, which has 
a trailing-edge thickness of about 2 per cent of the chord, is approximately zero and the drag 
coefficient equal to 0. 0026. On Aerofoil II, with a trailing-edge thickness of about 4 per cent, the 
base pressure coefficient is about - 0.08 and the drag coefficient 0.0063. On the assumption of 
zero boundary-layer thickness, the corresponding drag of a sharp-trailing-edge section would, of 

course, be zero. In a real case it would be expected that the drag coefficient of the truncated aerofoils 

would be slightly less than the sum of the values mentioned above and typical values of CDfor the 

basic 10 per cent thick RAE 103 section, under similar conditions of Reynolds number and 
transition position. 
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NOTATION 

Cartesian co-ordinates (origin at trailing edge) 

Chord 

Maximum thickness of section 

Trailing-edge thickness 

Tan (boat-tail angle) 

Length of afterbody 

Length of separated region 

Velocity 

Mach number 

(1 - M )lf  

Isentropic index 

Pressure 

Density 

Temperature 

Stream function = pu f peztedy 

Reynolds number based on chord 

Momentum thickness 

Displacement thickness 

Shape factor (ratio of displacement to momentum thickness) 

Shear-layer parameter (inversely proportional to rate of spread of asymptotic layer) 

Shear stress 

Function defined in equation (5.3a) 

Non-dimensional induced velocity (equivalent to s (1) of Ref. 25) 

Source strength 

Coefficient in equation (4.14) 

Function defined in equation (4.17) 

Matrix 
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C~ 

Subscripts 

co 

0 

b 

1 

i 

D 

B 

NOTATION--continued 

Pressure coefficient 

P-Po~ 

Drag coefficient 

Drag 
C z ~ = - -  

C• = Drag 
lp~u~o2t 

Note: Symbols such as u, p, M, T refer to quantities measured at the edge of the 

viscous layer (boundary layer on wake). Ratios of velocky and density in 
the viscous layer to values at the edge of the layer are denoted by u*, p*. 

The definitions of some of the symbols are illustrated in Fig. 1. 

Condkions in free stream 

Condkions at separation 

Conditions on base 

Conditions at x = l 

Conditions reduced to incompressible flow 

Conditions on dividing streamline (except CD, which see) 

Conditions on median streamline 

Conditions relevant to basic sharp-trailing-edge section 

Subscripts to source distributions, see Section 4 
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APPENDIX 

Derivation of Expression for C D 

Consider the flow in the upper half plane (Fig. A1), downstream of the trailing edge. Let A* be 

the displacement thickness of the wake, defined by 

A *  = (1 - p * . * ) d y  , (A.1) 
0 

and O the momentum thickness, defined by 

0 = p'u*(1 - u * ) d y .  (A.2) 
o 

At the trailing edge the values of A ~ and O can be related directly to the displacement thickness, 

30" , and momentum thickness, 00, of the boundary layer at separation: 

Ao* = 3o* + ½h, ] 
and ) (A.3) 

Go = 0o- 

Far downstream of the section A* and 0 tend to constant values, A~* and @o~, say, and it may be 

verified that their ratio tends to a value 

A~o* 
- 1 + ( y - 1 ) M ~  2, (A.4) 

for a Prandtl number of unity. The asymptotic momentum thickness is a direct measure of the 

drag of the section (see, e.g. Woods2): 

c CD. ( i .5)  O ~ = ~  

The momentum-integral equation for the flow in the wake can be written 

_d (pu2®) = A* dp_ (A.6) 
dx dx ' 

since the shear stress vanishes along the streamline forming the centre line of the wake. This 
equation may be integrated from the trailing edge to infinity downstream to give 

f 0¢o - P°%2 O@ Ao* 1 Cp -dxx dx, (A.7) 
P ~ u o~ ~ - - 2 o 

where the subscript 0 denotes conditions in the external stream at the separation point, and C~b is 
the base-pressure coefficient. The external flow is equivalent to an inviscid flow past the displace- 
ment surface, and it is clear that the integral of the pressures, resolved in the stream direction, over 

the complete displacement surface must vanish z. Thus 

and therefore 
f 

~ dA* 
-c Cp -~x dx = O, 

f@ dA * f dA * C~ ~ -  dx = - C~ -dx-x dx.  
--C 0 
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Hence from equations (A.3), (A.7) and (A.9) 

®~ _ poUo ~ Oo h + 2 3 o  e l f°  dA, 
p~u~  2 4 C~'b + 2 C r ~ dx .  (A.10) 

- - C  

The last two terms can be replaced by an integral taken round a circuit C comprising the part of 
the displacement surface upstream of the trailing edge and a line through the trailing edge normal 
to the chordline (Fig. A1): 

o  0. 00 p~u¢o~ - -4 C~d . (A.11) 

Equation (A.11) expresses, in effect, the total drag of the section as the sum of two terms, one a 
'form drag' and the other the momentum deficit in the boundary layer. It is, in many respects, 
similar to the result derived by Cooke 24. The result expressed in equation (A.11) is not, of course, 
restricted to aerofoils with thick trailing edges nor to symmetrical sections at zero incidence. 
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T A B L E  1 

I--Functions 

x/l Io(~/l) I~(~ll) I,_,(~/0 

- 5 . 0  
- 4 . 9  
- 4 . 8  
- 4 . 7  
- 4 . 6  
- 4 - 5  
- 4 - 4  
- 4 - 3  
- 4 . 2  
- 4 . 1  
- 4 - 0  
- 3 - 9  
--3.8 
--3.7 
- 3 . 6  
- 3 . 5  
- 3 . 4  
- 3 . 3  
- 3 - 2  
- 3 . 1  
- 3 . 0  
- 2 . 9  
- 2 - 8  
- 2 - 7  
- 2 - 6  
- 2 - 5  
- -2 .4  
--2.3 
- 2 . 2  
- 2 . 1  
- 2 . 0  
- 1 . 9  
- 1 . 8  
- 1 - 7  
- 1 - 6  
- 1 - 5  
--1-4 
--1.3 
- 1 . 2  
£1 .1  
- 1 . 0  
- 0 . 9  
- 0 . 8  
- 0 . 7  
- 0 - 6  
- 0 - 5  
- 0 - 4  

-0 .0597  
-0-0608 
--0.0619 
--0.0630 
--0.0642 
--0.0654 
-0 .0668  
-0 .0681 
-0 .0696  
-0 .0712  
-0 .0728 
--0.0744 
-0 .0760  
-0 .0779  
-0 .0798  
-0-0816 
-0-0838 
-0-0859 
-0-0882 
-0 .0906  
--0-0931 
--0.0957 
--0.0986 
-0 .1017  
-0 .1049  
-0 .1084  
-0 .1120 
-0 .1159  
-0-1201 
-0-1247 
-0-1296 
--0-1349 
--0.1407 
-0 .1469  
-0 .1538  
-0 .1614  
-0 .1697  
-0 .1791 

- 0 . 0 3 4 8  
-0-0354  
-0-0362 
-0 .0372  
-0 .0380  
-0 .0390  
-0 .0394  
-0 .0405 
-0 .0410  
-0 .0414  
-0 .0421 
-0 .0432  
-0 .0445 
-0 .0451 
-0 .0461 
-0 .0477  
-0-0484 
-0-0499 
-0 .0511 
-0 .0525 
-0 .0540  
-0 .0558  
-0 .0573 
-0 .0587  
-0 .0606 
-0-0623 
-0~0645 
-0 .0668  
-0 .0691 
-0-0715 
-0-0741 
-0-0770 
-0 .0801 
-0 .0836  
-0 .0873 

, -0 .0912  
-0 .0958 
-0 .1005 

-0 .0249 
-0-0253 
-0-0258 
-0-0262 
-0 .0267  
-0 .0272  
-0 .0278  
--0"0284 
-0 .0289  
-0 .0296  
-0 .0302  
-0 .0309 
-0 .0316  
-0 .0323 
-0 .0331 
-0-0341 
-0 .0347  
-0-0353 
-0-0365 
-0-0373 
-0-0380 
--0.0382 
--0.0396 
--0.0415 
-0 .0424  
-0 .0443 
-0 .0452  
-0"0464 
-0"0480 
-0"0499 
-0-0518 
-0-0537 
-0 .0558  
-0 .0579  
-0 .0603 
-0-0632 
-0 .0659  
-0 .0694  

-0 .1894  
-0-2012 
-0-2146 
-0-2299 
-0-2477 
-0-2687 
-0 .2936  
-0-3245 
-0 .3632  

-0 .1061 
-0-1120 
-0-1187 
-0-1264  
-0-1352 
-0 .1452  
-0 .1572  
-0 .1711 
-0 .1881 

-0 .0727  
-0 .0768 
-0-0813 
-0-0862 
-0-0918 
-0-0984 
-0-1057 
-0 .1145 
-0 .1248  
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T A B L E  1--continued 

- 0 " 3  
- 0 " 2  
--0"1 

0 
0"1 
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- 0 - 4 1 4 2  
- 0 - 4 8 5 6  
- 0 . 6 0 0 2  
- 1.0000 
- 0 . 8 9 6 5  
- 0 . 7 8 4 8  
- 0 . 6 6 3 1  
- 0 - 5 2 8 4  
- 0 - 3 7 6 8  
- 0 - 2 0 0 8  

0.0124 
0.2911 
0.7253 

oo 

- 0 - 2091  
- 0 - 2 3 6 2  
- 0 . 2 7 3 3  
- 0 . 3 3 3 3  
- 0 . 4 2 3 0  
- 0 . 4 9 0 3  
--0.5323 
--0.5447 
--0.5217 
- 0 . 4 5 3 8  
- 0 - 3 2 4 7  
- 0 - 1 0 0 5  

0.3194 
oo 

- 0 - 1 3 7 3  
- O- 1528 
- O. 1727 
- O. 2000 
- O. 2423 
- 0 . 2 9 8 1  
- 0 . 3 5 9 7  
- 0 . 4 1 7 9  
- O. 4609 
- O. 4723 
- 0 - 4 2 7 3  
- O- 2804 

O- 0875 
oo 
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FIG. 1. Definitions of certain symbols. 
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The flow field and the pressure distribution in the 
wake (schematic). 

FIG. 2. 
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Fro. 3. Streamline pattern downstream of trailing edge (Schematic). 
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FIG. 4. Method of determining C D from pressure distribution. 
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FIG. 52 Solution for C2) and C~b 
to satisfy external flow and wake 

development (schematic). 
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FIG. 6. 
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Model for analysis of external flow. 
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FIG. 7. The pressure distribution downstream of a step--correlation of experimental data. 
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FIO. 9. Computed results for the pre- 
asymptotic turbulent free-shear layer. 

(up* = velocity on dividing streamline 

00 = momentum thickness at separation 
= o )  

0 = momentum thickness of shear layer 
outboard of dividing streamline at 
x =  l'). 
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FIG. 10. Variationof base pressure with ratio 
of base height to boundary-layer momen-  
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on base pressure--constant 

boat-tail angle (=  5.71°). 

0"2 

+O' l  

-0-1 

~ ~-~ / -~"Pb 

/ 
M==0 

0o = 0 

FIG. 13. Effect of boat-tailing 
on base pressure--constant- 
length afterbody (=  2½ x max. 

thickness). 



l -0'3 t 

-0"  

0 

+0"1 

0-2 

FIO. 14. 

Aerofoi= t, (h/c = z.t %) 

~- '~ .  - / / A e r o f o i l  ~, (h/c=4'2%) 

R AE I03 aerofoil 

0:2 o.+ 0.6 ~ o.8"~"-.u=.o 

CM®=o, Oo=O) 

Predicted pressure distributions round three 10 per cent 
thick aerofoil sections. 

-0-3 'fo 

+0.1 / ~ ~ R A E  103 acrofoil + - 
0.2 

FIG. 15. Predicted pressure distributions in terms of ordinate 
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