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Summary. 

Existing methods of calculating the incompressible turbulent boundary layer have been critically examined 
and the results that they give compared with a large amount of published experimental data. The investigation 
has shown that different methods of calculating shape-factor development give, in general, widely different 
results and are in some cases very inaccurate. Head's entrainment equation proved generally the most 
satisfactory. 

It was also found that the measured growth of momentum thickness usually disagreed with the predictions 
of the two-dimensional momentum integral equation, even far from separation, indicating the presence of 
substantial three-dimensional effects. However, no overall improvement in agreement with experiment could 
be obtained by using the quadrature formulae proposed by various authors. 
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1. Introductory 

1.1. Introduction 

This examination of existing work differs substantially from previous treatments in giving a large 
number of direct comparisons between the predictions of the various methods and a wide range 
of experimental data. 

It is found that existing methods often give rise to very different predictions, especially for the 
development of shape-factor, and furthermore, that, with the exception of the entrainment equation 
of Head ~5, no shape-factor equation provides satisfactory agreement with more than  one half of 
the measured developments that have been used as a basis for the present comparisons. This 
contrasts with the general impression given by earlier reviews. For example, Duncan, Thom and 
YounglS,.in referring to the auxiliary equations of Spence 6°,61 and MaskelP 5 and others, state 

(on p. 347) that 
'As far as the accuracy of the final formulae is concerned there is little to choose between 

them and the choice must therefore largely turn on relative simplicity and convenience for 
computation. From this point of view, Spence's formula is perhaps the best.' 



It appears that the better known methods have been accepted on the basis of the comparatively 
good results achieved in the very small number of direct comparisons with experiment that have 
been presented by the original authors. Spence's method, as mentioned above, has been given some 
prominence although only two published comparisons were shown in the original papers. Similarly, 
Schlichting 51 describes the method of Truckenbrodt 71 as being 

' . . . .  reasonably well-founded . . . .  ', 
although in this case only one comparison with experiment was considered. 

Such remarks do not reveal the difficulties associated with the calculation of shape-factor and it 
seems that they reflect the fairly widely held opinion that, except perhaps near to separation, the 
existing methods give similar results which are never grossly in error and may be considered to be 
quite satisfactory for practical purposes. Stratford 6~, for example, stated (on p. 13) that 

'The accuracy of Maskell's predictions is probably highly satisfactory for most pressure 

distribmions, . . .'. 
The present results, shown in Figs. 14 to 24, can scarcely be said to support any of the above 

statements, and lead to the conclusion that the existing situation as regards shape-factor calculation 
is very unsatisfactory. This had in fact been suggested previously by Clauser 6 and by Ross 4~, 
although their remarks do not appear to have been widely appreciated. 

The calculation of the development of momentum thickness is usually less seriously in error when 
using the forms of the momentum integral equation adopted by the different authors, but, even in 
this case, appreciable systematic discrepancies can occur, as shown in Figs. 1 to 10, and once again 
lead to conclusions which contrast with the current opinion as voiced by Thwaites 6~, for example, 
who says (on p. 81), referring to the momentum equations of Truckenbrodt, Maskell, Schuh 55, 

and Spence, 
'Experience suggests that any of . . . .  will give values accurate to within about 5 per cent 

even up to the separation point.' 
A few of the existing methods of calculation have been used by different investigators as the basis 

for design predictions in various circumstances (for example, Schlichting a° considers the effects of 
boundary layer growth and separation on the performance of cascades, using Truckenbrodt's method 
of boundary-layer calculation), and some methods have been extended for use in different physical 
conditions (for example, Pechau ~1 investigates suction distributions on aerofoils, using an extension 
of Truckenbrodt's method, whilst Cooke 1° adopts the auxiliary equation of Spence for use in the 
calculation of three-dimensional turbulent boundary layers). 

Now, whilst such applications cannot be criticised in themselves as they are the final aims of any 
attempt to produce a practical method of calculation, the reliability of the various methods does not 
appear to have been properly assessed beforehand. It is therefore hoped that the contents of this 
report will go some way towards clarifying the present position. 

The existing proposals for the calculation of shape-factor and momentum thickness are separately 
examined and also the assumptions for profile shape and skin friction that are involved. Attention is 
given to the problems that arise from the apparently three-dimensional nature of the majority of the 
measured turbulent layers, as may be inferred from the lack of agreement between the measured 
momentum growth and the predictions of the two-dimensional momentum integral equation even 
when far from separation. First, however, the basic equations and variables of the turbulent 
boundary-layer problem are set out, and the necessity for approximate methods of solution, their 
structure and main applications, are briefly discussed. 
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1.2. The Basic Equations of the Turbulent Boundary Layer 

As described fully in the literature (Schlichting 51, Hinze 28, etc.) the Navier-Stokes equations for 
incompressible, viscous flow can be time-averaged for a turbulent flow which is steady in the mean. 
The time-averaged equations can then be simplified by applying order-of-magnitude arguments 
on the basis of the boundary-layer hypothesis of Prandtl. The time-mean flow is assumed to be 
two-dimensional and no difficulty is thought to exist concerning the degree of approximation 
required, except near to separation where higher order terms may be needed (Newman ~, Hewson ~7, 
Ross44). 

The boundary-layer equations, written in terms of the usual rectangular Cartesian co-ordinates 
become, with the order of each term written beneath 

~u Ou dU 1 10-c Oiu '~ - v '~) 
= ( 1 )  

p ~gy ax 

~v '~ I ~p 
- ( 2 )  ay 

tn equation (1) the shear stress r is given by 

au 
- = - o u ' v '  + ( 3 )  

U1, Us are the velocity scales in the x and y directions, L1, L~ are the corresponding length 
scales and the scale of the turbulence velocities is represented by u. It is usually assumed that 

L2 Us ~ 
L1 ~ U19 • 

Thus the turbulent normal stress term is of a lower order than the remainder and can usually 
be ignored. 

The continuity equation for the mean flow, 

0u ~v 
0-; + ~ = O, (4) 

also applies. 

1.3. The Necessity for Approximate Methods of Solution. 

For laminar fl0 w, the existence of a known relationship between the shear stress and the veloeity 
gradient completes the set of partial differential equations and exact solution of the boundary-layer 
equations is mathematically possible. Analytic solutions have been obtained for some simple boundary 
conditions, similarity solutions being especially important. The numerical solution of any general 
problem has always been possible in principle, but has only become practicable with the advent of 
high-speed automitic computers. Relatively simPle methods of calculation, sufficiently accurate for 
engineering applications, have therefore been developed which satisfy the equations of motion only 
on the average, by making use of integrated forms satisfying suitable local boundary conditions. 
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An infinity of such integral forms is entirely equivalent to solving the differential equations of 

motion. In practice, only a very small number of such relationships is needed to describe the 
boundary-layer development quite adequately, and simple approximate methods would not other- 
wise be possible. ~ 

In the case of turbulent flows, no universal expression is known relating the Reynolds stresses 
to the mean velocity distribution, and no exact solutions of the boundary-layer equations are possible. 

The problem can be dealt with in two ways, either of which requires an essentially empirical 
assumption for the missing relationship. We shall consider in turn 

(a) a restricted range of flows where conditions are such that approximate similarity solutions 
of the differential equations may be obtained, and 

(b) methods of solution based upon the integral relationships. 

1.4. Approximate Similarity Solutions. 
Exact similarity solutions are possible for a wide range of external pressure distributions in the 

laminar case as the whole velocity distribution can be represented by one choice of length and 
velocity scales. This is not possible for the turbulent layer on a smooth surface, except in two very 
special cases: 

(1) Favourable pressure-gradient flow in a converging wedge (Townsend6S). 

(2) Adverse pressure-gradient flow with zero wall stress (Stratford 6~, 6~, Townsend69). 

The turbulent layer may be assumed to be composed of two regions, an inner one depending 

solely upon local conditions, and an outer one dependent upon the upstream history of the flow, 
which is mainly responsible for the local overall velocity profile. 

Using the assumption of a constant eddy viscosity in the outer region, the choice of a power-law 
free-stream velocity distribution allows of a similarity solution for this part of the layer, the partial 

differential equation (1) being reduced to an ordinary differential equation of the Falkner-Skan 
type. However, the inner region provides the boundary conditions for this solution and strict 
similarity must be relaxed if matching of the two different regions is to be possible. This leads to a 
solution in the form of predictions for nearly similar (generally termed 'equilibrium' or 'self- 
preserving' ) boundary layers. 

Thorough descriptions of this type of solution have been given by Rotta a5 and Townsend 68, 69, 70, 

the last paper containing a particularly complete discussion with the inclusion of an improved 
inner region solution suitable for large adverse pressure gradients. 

In view of the necessarily completely specified history of the flow, this approach is not useful in 
the general case of a developing layer and will not be considered further in this account. However, 
the experimental flows of this type as measured by Clauser 6 are of interest, as will be seen later. 

It will be recognised that only one or two integral parameters are needed to define quite closely any well 
behaved, continuous curve whose end conditions are also partly specified. For example, the velocity distri- 
butions in the boundary layer can be specified by one or two ratios of the integral moments of that distribution 
taken about the y-axis. Similarly, probability distributions are defined by skewness and flattening factors as 
well as their mean values and end conditions. 



1.5. Approximate Solutions using the Integral Relationships. 

The boundary-layer equation (1) may be integrated, after eliminating v by means of the con- 
tinuity equation (4), and mukiplieation by umy ~. A doubly infinite family of ordinary differential 
equations is obtained and has been considered by Tetervin and Lin% Truckenbrodt 71 and Walz 72, 
but apart from an attempt to use the moment-of-momentum equation by Granville 22 only the first 

two members of this family have been used in calculations. 
These are important because of their physical significance and can be derived in an alternative 

manner by considering the flux, through a control volume, of momentum and kinetic energy 

respectively. They are the momentum integral equation (m = 0, n = 0), 

do ~ - ( H + 2 )  0 ~u1 1 d (~'~-~'~) dy , (5) 
a x - 2  G - a 7  + g .  o 

and the energy integral equation (m = 1, n = 0), 

and 

1 , ,  
-d~ (U13e) = o 

The integral variables, 

8. 
H -  

0 

1 o u (u '~ -v  '2) dy . (6) 

where 8 * =  1 -  u dy, 
0 

E H~ =-0 where e =  0 ~ 1 -  dy, 

appear quite naturally in these equations, and it is for this reason that they are used in the majority 
of analyses. Some authors, thinking particularly in terms of similarity solutions have disparaged the 
use of these parameters (see, for example, Ross 44, Rotta 46, and Kawasaki29). 

It is usually supposed that the distribution of mean velocity through the layer can be adequately 
represented by one local shape parameter and one length scale. Two ordinary differential equations 
are then used to calculate the distributions of these dependent variables along the surface. 

The momentum integral equation (5) is almost always employed to calculate the length scale, 
which then naturally becomes 0. In terms of the scale Reynolds' number (Re), it becomes 

dR o _ U~ c I ( H + I )  RodU1 ~smaller order~ (7) 
dx v X -  U---1 d ~  +[_ terms. .J 

The shape-factor or form-parameter equation (also called the auxiliary equation) is used to 
calculate the development of H(x), or some related parameter, and is of the form, 

~H ( o dvq 
o ~ = F ,H' Ro, G & ]" (8) 

Any one of the other integral equations may be introduced to give the form of this equation if the 
integrals involving the distribution of the turbulence shear stress can be represented in terms of 
the local properties of the velocity distribution. In the momentum equation, the turbulent shear 
stress appears only in as far as it influences the local skin-friction coefficient, c]. Fortunately this 
can be related to the local velocity profile quite accurately, by means of a relationship of the form 

f (c j ,  Re, H) = O. (9) 
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However, the other expressions require knowledge of the whole turbulent stress distribution 
which will depend upon the upstream history of the layer, as the stresses are related more to the 
local flow accelerations than to the local velocities. A fundamental uncertainty thus exists, even in 
two-dimensional flow when the simple boundary-layer approximations are valid, because the exist- 
ing forms of (8), whether derived from the integral equations or obtained empirically, are unlikely 
to allow properly for the upstream influence on the local stress-velocity relationship. The equilibrium 
boundary layer has, however, a well defined history which call be expressed in terms of local 
quantities, and this simplification is the main attraction for the investigation of such flows. 

The description of the mean velocity distribution requires the adoption of a velocity profile 
family. This can be done explicitly, profile shapes being defined most generally by 

U 

Alternatively the family may be implied by any relationship between shape factors such as H and 

H~, or H and Ha_e*. 

1.6. The Application of Calculation Methods 

For solid-wall layers we have in effect a set of equations (7), (8) and (9) from which the distri- 
butions of any three of the variables U 1 , R o , H, c / m a y  be calculated if the initial conditions and 

the distribution of the fourth variable are given. 
Normally, Ul(x) is supplied from a potential-flow solution or by experiment, and calculated 

values of H or c s can be used to indicate the proximity of the layer to separation. The drag of 
aerofoils in unseparated flow can be obtained from calculations of O(x) (Squire and Younga2). 
The displacement thickness ~*(x) can be calculated to allow corrections to the external velocity 
distribution for diffusers and aerofoils and Preston 43 and Spence 59 provide methods of correcting 

lift and drag for aerofoils in this way. 
The calculation of O(x) and H(x) for given Ul(x ) is the orthodox problem and forms the main 

task of any calculation method and it has been used exclusively in this report to test proposed 

methods by comparing their predictions with experiment. 
The so-called 'inverse problem' involves calculation with a different choice of dependent variables. 

Bradshaw ~ and earlier, von Doenhoff and Tetervin 13, have briefly considered the most important 
case where H(x) is given and Ul(x) is to be predicted. Stratford 63, and Fernholz TM have used this 
technique to design 'optimum' diffusers, whilst Wortmann 7~ (195 5) has calculated improved low-drag 

aerofoils on a similar basis. 

1.7. Discussion. 

In order to establish the accuracy of any method of calculation we should ideally examine the 
accuracy of the individual assumptions by making direct comparisons with as wide a range of 
experimental measurements as possible and consider the results of these comparisons along with 
the way in which the assumptions have been used in deriving the final equations. In fact, the major 
problem is that of.predicting the shape-factor variation and it will be shown later that this is most 
profitably done on the basis of experimental R o . The velocity profiles and skin-friction assumptions 
will also be considered. It is believed that this is a more profitable procedure than discussing the 
complete method of calculation given by any particular author, as the effects of individual assump- 
tions may well be lost if only the overall results are considered. 



2. Published Experimental Information on Turbulent Boundary-Layer Development. 

In this section we outline the main features of those boundary-layer measurements which have 

been used later for the comparisons of H and R o development. Detailed re-eiews of the earlier 
experiments have been made by Ross ~4, and Coles s, but some more recent data have been included 
in this investigation. 

The nominally two-dimensional layers may be conveniently grouped as follows: 

2.1. Equilibrium Layers on Flat Surfaces. 

2.1.1. Zero pressure gradient (Klebanoff al, Hama ~4, Dutton 16, Smith and Walker 57, 
Klebanoff and Diehl3~). 

The experiments of Smith and Walker show the largest number of measurements, especially at 

high Reynolds numbers. Their results spread appreciably between different experimental runs and  

some evidence is found of a systematic variation of the inner-law coefficients (A, B) with Reynolds 
number, on the basis of direct measurements of skin friction. 

Their very detailed velocity profile measurements are conveniently tabulated and selected 
examples have been used in this investigation, after the H and R o values had been recalculated. The 
original values and the results of the recalculations are compared in Fig. 14, where it can also be 
seen that the experimental momentum growth is in very good agreement with the calculated result 
for two-dimensional conditions obtained by Coles 7. 

T h e  behaviour of the artificially thickened layer measured by Klebanoff and Diehl 3~ is of some 
importance in the present investigation, as the intemittency measurements of Klebanoff ~1 were 
made in this layer at R o = 7400, where, as seen in Fig. 14, recovery from tile upstream disturbances 
appears to be complete. This conclusion is supported in a recent, very comprehensive review of 
the experimental knowledge of the constant pressure boundary layer made by Coles 9, to which 
reference should be made for further details of this type of flow. 

A rather surprising variation between the results obtained by different experimenters in what, at 
first sight, may be regarded as a comparatively simple turbulent layer, is shown in Fig. 14, where 
the data of Hama, Dutton, and Ludwieg and Tillmann have been included although they were not 
used in any of the new calculations. It is important to notice, in this connection, that the values of 
H and R o shown, have not been recalculated by one operator using a single method of integration 
and a consistent choice of mean line through the scattered velocity measurements that make up 
each velocity profile. It is the experience of the present author that different operators may obtain 
consistently quite different results for H and R o although they start from the same table of raw 
velocity data. This is especially important because entirely different methods of integration may have 
been used by the above-mentioned authors and this could lead to perhaps one half of the observed 
discrepancy between the results of different investigations shown in Fig. 14. At low values of H, 
the choice of mean curve near to the surface and in the extreme outer part of the profile is particu- 
larly important as the areas under these long 'tails' contribute prot)ortionately more to the total 
areas to be integrated for S'~ and 0 than at high values of H (H > 2.0 say). This, however, cannot 
account for the spread of the values obtained in any individual investigation, as for instance, that of 
Hama alone, or of Smith and Walker alone, although the recent discovery of quasi-periodic spanwise 
variations of time-mean quantities in several layers that displayed no gross three-dimensional 
behaviour, may provide at least a partial explanation for this. 



2.1.2. Adverse pressure gradient (Clauser e6, Bauer 2, Stratford64) • 

Only Clauser's two layers have been used here, and as will be seen later, these do not appear to 
be accurately two-dimensional in spite of the care which was apparently taken in the experiments. 
Clauser's apparatus consisted of a slatted diffuser having a cross-section of low-aspect ratio, the 
boundary layer occupying a considerable proportion of the overall diffuser depth. Transition was 
forced by means of a wire approximately forty boundary-layer thicknesses upstream of the first 

measuring station. 

The developments of H, and especially of R o (as shown in Figs. 1, 2, 15 and 16) exhibit a notice- 
able degree of irregularity, that was not removed by the recalculations undertaken by the present 
writer, and appears to exceed the level that might be expected due to purely random errors in 

measurement and data manipulation. 

2.2. Non-Equilibrium Layers on Flat Surfaces. 

2.2.1. Newman 37 carried out detailed measurements of mean velocity profiles, static 

pressure variation and the turbulence quantities u '~, v '~ and ),'v' on the flat rear upper surface of a 
thick symmetrical aerofoil with the flow near separation at the trailing edge. Natural transition 
occurred behind the pressure minimum and free-stream turbulence was apparently small. The 
Series II boundary layer, although it has been used in later comparisons, again does not appear to 
be accurately two-dimensional. Velocity profiles are very detailed, and Reynolds numbers quite large. 

2.2.2. Schubauer and Spangenberg 54 presented measurements of several boundary layers 

developing in their slatted diffuser and three of these layers, namely 'C', 'D'  and 'E', have been 
used in this investigation. In order to force the boundary layer on the floor of their contraction out 
through a slot underneath the leading edge of their working wall (and thus to create a new boundary 
layer in which measurements could be made) they placed a gauze at the leading edge only twenty 
boundary-layer thicknesses (approximately) upstream of the first measuring station. Profile measure- 
ments are satisfactory, except close to the surface, but the values of H and R o become rather 
scattered, especially as separation is approached in distribution 'E' (see for example Fig. 6). Of these 

layers, only 'D' appears to be closely two-dimensional. 

2.3. Non-Equilibrium Layers on Curved Surfaces. 

2.3.1. Schubauer and Klebanoff 53 measured the turbulent boundary layer on a large 

simulated aerofoil in a wind tunnel having a circular cross-section. They obtained high Reynolds' 
numbers (1500 < R o < 77000) and detailed velocity profiles up to separation, and for these 
reasons their data has been widely used to obtain the correlations required for various calculation 
methods although the values of R o and H (shown in Figs. 7 and 21) appear to be rather scattered, 
even after recalculation by the present author. The flow appears to be closely two-dimensional in 
the initial region of falling pressure. In the adverse pressure-gradient region, however, the flow 
becomes less accurately two-dimensional as separation is approached as indicated by the failure of 
their measured turbulence terms to account adequately for the rapid growth of momentum thickness 

in this region. 

Additional information relating to their investigations has been supplied by Prof. B. G. Newman, 
Dr. F. H. Clauser, and by Dr. G. B. Schubauer and their co-operation is gratefully acknowledged. 



The  surface has a convex curvature between x = 0.5 ft and x = 6.0 ft With a radius R = 23 ft, 

and also between x = 16.0 ft and x = 26.0  ft with R = 31 ft. For  the measured layer 

0 < ~ < 0.024. 

2.3.2. yon Doenhoff  and Tetervin  18 carried out many measurements on various aerofoils 

at rather low Reynolds numbers.  The i r  velocity profiles are not accurately defined and some care 

in the use of their data is required. Three  layers were chosen for the present purposes, all of which 

were measured on all aerofoil designated NACA 65 (212)--222 (approx.) The  layers corresponded 
to the conditions 

R e =  0 . 9 2 x  106 , ~ =  8.1°. 

R e =  2 . 6 4 ×  106 , ~ =  10.1 °, 

R e = 2 . 6 7 ×  106 , c¢= 8.1 ° . 

The  ranges of R o and ~/R were approximately, 

750 < R 0 < 1700; 0.007 < ~ < 0 .023.  

Transi t ion was forced by a band of carborundum roughness extending from x/e = 0.025 to 

x/c = 0.05. The  overall velocity profiles were, so far as could be ascertained, fully turbulent  at the 

starting position for the calculations (x/c = 0.075) which was only of the order of ten boundary-  
layer thicknesses farther downstream. 

This  aerofoil data has been extensively used as a basis for earlier calculation procedures because 

of the lack of alternative information. I t  still represents the most detailed investigation of aerofoil 

boundary layers except perhaps for the measurements of McCullough and Gault  36 and Altman and 

Hayter  1, which however appear to be rather scattered. (See Norbury39). 

2.3.3. Schmidbauer  5~ measured the developing layer on the convex wall (R = 150 cm) 

of a curved channel of rectangular cross-section with the unusual condition of initially rising and 

then falling pressure. Examination of the mean velocity profiles suggests that the natural transition 

is complete at x -- 46 cm, which has been chosen as the starting point for the calculations described 
later. 

The  range of variables was approximately 

1000 < Ro < 5000 ; 0.007 < ~ < 0 .023.  

T h e  foregoing twelve measurements of boundary-layer  development form the basis for the 
comparisons with experiment given in later sections. 

3. Methods of Calculating Momentum Thickness Development. 

3.1. Calculations Performed. 

For  all the experimental pressure distributions used in this investigation, step-by-step calculations 

of momentum thickness development have been carried out using the simple two-dimensional form 

of the momentum equation (7) together with experimental H(x) values, and skin-friction values 

f rom a new relationship suggested by Sarnecki ~9 which in fact gives values very similar to the 

familiar Ludwieg-Ti l lmann relation. These  calculated results are compared with experiment in 

Figs. 1 to 10. Fur ther  calculations using modified forms of the momentum equation as given by 

Maskell aS, Truckenbrod t  71, Ross 4a, and Rubert  and Persh 47 are also shown for several cases. The  

results are presented as Ro(x ) because this is independent  of arbitrary length scales and, in addition, 
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the Reynolds number gives some indication of the nearness of the boundary layer to transition 
conditions and hence whether the boundary layer is likely to be fully turbulent. The mean lines of 
experimental H(x), Ro(x ) and the initial values used correspond to values of H and R o recalculated 

from the original velocity profile data given by the various authors. 

3.2. The Results of the Calculations. 
The first series of calculations, involving straightforward step-by-step integration of the 

momentum equation, reveal serious differences between the growth of R o as predicted by two- 
dimensional theory and that obtained in nearly all the experiments analysed, even far from 
separation.* This effect is important with regard to the prediction of shape-factor, as some auxiliary 
equations appear to be fairly sensitive to the assumpt.ion for Ro(x) that is used in a calculation. As 
found in previously published comparisons, most of the calculated developments lie below the 
experimental values (e.g. Clauser II, Newman II, Schubauer and Spangenberg 'E', yon Doenhoff 
and Tetervin aerofoil boundary layers, and Schubauer and Klebanoff (adverse pressure-gradient 
region)). However, the zero-pressure-gradient layer, assuming the mean line suggested by Coles 7, 
and the layers of Schmidbauer, and Schubauer and Spangenberg 'D' appear to be reasonably two- 
dimensional, whilst marked deviations in the opposite direction are shown for Clauser I and 

Schubauer and Spangenberg 'C'. 
The remaining calculations may be divided into two groups: 
(a) Step-by-step calculations using equation (7) but with extra terms added nominally to account 

for the influence of the normal turbulent stresses (e.g. Rubert and Persh47). 

(b) Quadrature or algebraic solutions obtained by several authors, using experimental correlations 

to eliminate the explicit effects of H and c I (e.g. Truckenbrodt, Ross, etc.). 
In all cases (a) yields a more rapid rise of R o in adverse pressure gradients than the two- 

dimensional theory with turbulence terms neglected but gives no systematic improvement in the 
level of agreement with experiment, giving a rate of growth which is too large for Schubauer and 
Spangenberg 'D', Fig: 5, but too low in the case of Newman II, Fig. 3. 

The calculations (b), performed by quadrature, spread widely about the two-dimensional result, 
with Truckenbrodt usually lower, and Maskell, Spence in agreement or larger. Again no definite 
relationship to experiment is observed for the selected cases shown in Figs. 1 to 4. The algebraic 
form given by Ross is appropriate to severe adverse pressure gradients and predicts very large R o 
values for the cases of Clauser I, Fig. 1, and Schubauer and Spangenberg 'C' and 'D', Figs. 4 and 5, 
but is quite good for Clauser II and Newman II, Figs. 2 and 3, where the experimental R o values 

exceed those of the two-dimensional results. 

3.3. Discussion of the Results of the Step-by-Step Calculations Using the Simple Momentum 

Equation. 
The disagreement between experiment and the two-dimensional theory might be attributed to 

any of the following causes: 

(1) The inaccuracy of the skin-friction law used. 
(2) The omission of terms involving the normal Reynolds stresses and terms involving the 

static pressure gradient normal to the surface. 
(3) A departure from two-dimensional flow in these experimental boundary layers. 

The results of an earlier investigation by Coles s would lead to the same conclusions but are somewhat 
obscured by the method of presentation. 
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(1) Cannot explain the large discrepancies observed in Figs. 1, 2 and 3 unless the skin-friction 
law were in error by at least 100 per cent, which for either the new law or that of Ludwieg-Tillmann 
is very unlikely except for the very low values, close to separation, where the term involving c I is 
negligible in comparison to the pressure-gradient term. Fig. 11 shows that for the layers of Clauser I 
and Newman II, quite unreasonable values of skin-friction are needed if the experiments are 

supposed to be two-dimensional, The slope of the curve of ~x cl , i  2 dx (left as an integral to minimise 
i /  

calculation errors) is negative for Clauser I, if calculated from the two-dimensional equation, a 

negative value of skin friction therefore being required to give agreement with experiment. The 
new skin friction-law due to Sarnecki predicts quite plausible values, giving very small c I for 
Newman at x = 5.0 ft, under near separation conditions. 

(2) Was thought to be the explanation by Ross 4., and Rubert and Persh .7, following Bidwell 3 and 
Goldschmied 21 who used the hot-wire measurements of Schubauer and Klebanoff to calculate these 

extra terms near to separation. The contributions of the measured terms obtained in the above 
experiment, and also as found by Newman 8v, are shown in Figs. 7 and 3, respectively, from which 
it may be concluded that this is an incomplete explanation of the discrepancy in Ro(x ). 

(3) Appears to be the real explanation, as was suggested by Tillmann when discussing the experi- 
ments of Weighardt and Tillmann va, Ludwieg and Tillmann 33 and Kehl 8°, who all used diffusers 

of a rectangular cross-section. These were of low aspect ratio and the boundary layers formed an 
appreciable portion of the whole flow. This leads to strong secondary flows which might also be 
expected to be present in the layers of Schubauer and Spangenberg, and also Clauser. Clauser 6 
supports this conclusion after finding, in addition, the effect of instrument errors in his strongly 
turbulent conditions to be small. Norbury 40 in a thorough series of diffuser measurements also 
found strong three-dimensional effects on dRo/dx. The evidence thus suggests that most of the 
available supposedly two-dimensional experimental boundary layers are in fact three-dimensional 
with (usually) larger rates of growth indicating convergent flow. Two cases, Figs. 1 and 4, as already 
mentioned, exhibit divergent characteristics, a feature which does not appear to have been noted 
previously in the literature. 

Where the geometry of the external streamlines can be specified then an approximate allowance 
for the secondary flow can be made and several authors have attempted to do this, Kehl for wedge 
flows and Norbury 39 for the flow in a plane of symmetry of his diffuser, but in general there is a 
component of the local velocity in the boundary layer normal to the tangent of the curved external 
streamline, and no direct measurements are available which are wholly suitable for testing calculation 
methods. This problem of cross-flow will be dealt with in a later report in connection with proposed 
new auxiliary equations. 

3.4. Discussion of the Results Obtained by Using Alternative Forms of the Momentum Integral 
Equation. 

Various authors have used the two-dimensional equation (7), solving it simultaneously step-by- 
step with their auxiliary equations, in conjunction with different assumptions for the skin-friction. 
We shall briefly discuss the particular assumptions made by these authors. 

Gruschwitz 28 found that a constant value of c/ = 0. 002 gave acceptable results for his rather 
small range of H, R o . 
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yon Doenhoff and Tetervin la used Squire and Young's formula, 

cf = 2 [5. 890 lOglo (4" 075 Ro)] -2 , (11) 

thereby neglecting any dependence of c I on H. 
Garner 2° used Falkner's expression, which similarly neglects dependence on H, thereby leading 

to large c s values near separation. This procedure has been justified as making an allowance for the 
neglected turbulence terms in the equation but it is an arbitrary procedure which can scarcely be 
recommended. 

Head ~5 used the Ludwieg-Tillmann law which is generally satisfactory, and Kawasaki 29 assumed 
a very similar relationship obtained from Coles' profile family. 

Rubert and Persh 47 added an extra term to equation (7), which became 

~R dO _ c I 0 dU~ ( H + 2 )  + (12) 
dx 2 U 1 dx 2q ' 

where -rR/2q [ = f (O dH/dx)] was an empirical allowance for the turbulent normal stress terms. This 

is not generally satisfactory as demonstrated by Fig. 3, which shows the difference between this 
equation and the two-dimensional result with addition of measured turbulence terms for Newman II. 

In fact, it seems reasonable to conclude that it effectively attempted to allow for the lack of two- 
dimensionality of the experimental layers analysed (Schubauer and Klebanoff, Wieghardt and 

Tillmann, yon Doenhoff and Tetervin). Regardless of its interpretation, however, it is clear that 

this equation cannot account for the existence of two-dimensional resuks lying above experiment in 

Clauser I, and below experiment in the case of Clauser II, as in both these layers, d H / d x  is negative. 
Ross 44 followed Dryden 14 in attempting to take account of the normal stress term in the momentum 

equation. He used the data of Schubauer and Klebanoff 5a and Granville's assumption that 

f" 
to obtain the following form of the momentum integral equation, 

C/ 
dO 2- + (2 + 0.97H)I'1 + 0.016 0 d H  

a x .  (13) 
dx - 1 - 0 .016H 

This equation is simplified by Ross for both large and for small pressure gradients. In the latter 
case equation (13) becomes 

0 - U1 , 
(14) 

whilst for large pressure gradients he finds that, for the convergent data of von Doenhoff and 

Tetervin, Gruschwitz and Weighardt and Tillmann i f - -  > , 

cl 0 d H  G ~ 2 . 8  H + ~ - -  0"0!6 dx = ( i s )  
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Thus, by fitting a straight mean line to the rather scattered data on the log-log plot shown in 
Fig. 12, he obtained the simple expression 

0 ( U I ~  ~+~ (i denotes initial position). = ' 

An attempt to improve accuracy is made by expressing G as a function of initial R o ( = Ro~), but 

as seen in Fig. 13 there is considerable scatter about the curve chosen. 'This  method cannot be 

considered to be a reliable representation of all the data used in these correlations, and in fact 

discrepancies of up to + 20 per cent are seen in Fig. 12 and of + 16 per cent in Fig. 13. No 

direct comparisons with experiment are given by the author who states however that 'The  (calcu- 

lated) results should usually be accurate to within about + 10 per cent'. This statement is scarcely 
borne out by the results of calculations presented in Figs. 1, 4 and 5, although quite good agreement 

with experiment is seen in Figs. 2, 3 and 10. The condition F1/c I > 1/4, restricts application to the 
ranges of x shown, and to x > 19 ft for Schubauer and Klebanoff. 

The remaining methods to be considered are all derived from equation (7) with no explicit 
allowance for any turbulence terms or three-dimensional effects. By the use of suitable assumptions 
equation (7) is reduced to a directly integrable form for 0 as a function of Ul(x  ). 

a 
Putting c I - and H = constant, equation (7) becomes 

Rolln , 

d (ORolln) n + 1 [ 1 
- -  - ~ -  2 +  
dx n n 

which integrates to give 

[ ; O Ro 1In = UI -a  c 1 +  c 
x 1 

where 
n + l  1 

d - - - H + 2 + - ,  
n n 

and 

n + 1 ~'] ORo ~I~ d U t  
+ - -  ~_j - (16) 

n U 1 d x '  

vl dx I , (17) 

n + l  
C - -  0¢ .  

n 

The values of c and d thus depend on the skin-friction law and (constant) value of H assumed. 

The original at tempt by Buri 5 to calculate the turbulent boundary layer using an analogous 
approach to that of Pohlhausen 42 for the laminar layer involved the assumptions 

_. O Ro 11~ d U  1 
cl f l (F)  H "= f2 (P only), where F - 

Ro lfn ' U 1 dx " 

He found by experiment that d(OR) l~) /dx  = F(F) = c - dF for a limited range of data and was 
thus able to integrate the momentum equation in the form (17). 

In view of the use of an empirical correlation for F(F) the method does not assume a unique 
dependency of profile shape on local pressure gradient as far as momentum thickness prediction is 
concerned. 

Maskell's 35 treatment is less restrictive and involves the transformation of equation (7) in a 

manner suggested by the Ludwieg-Ti l lmann skin-friction formula. He uses more comprehensive 
experimental data than Buri and matches the Ludwieg-Til lmann results for boundary-layer develop- 
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ment in zero pressure gradient. Empirical correlations are shown only for 1.2 < H < 2.0 and, 
whilst these appear to be satisfactory at first sight, they are based entirely upon measurements in 
convergent layers, although the less reliable measurements on the nose-opening aerofoil of yon 
Doenhoff and Tetervin are not matched closely. The results shown in Figs. 1 and 4 reveal the more 
rapid rise of calculated R o compared to two-dimensional theory, as may be expected for a method 
matched to convergent flow, although better agreement is found in Fig. 2. 

Truckenbrodt 71 (1952) used the energy integral equation (6) with Rotta's 4~ analysis of the data of 
Ludwieg-Tillmann and Schultz-Grunow for the dissipation integral. (Assuming no contribution of 

the flux of turbulence energy, this is equal to the shear-stress work integral - - -  
0 p g l  ~ ay dy). 

He thus obtained a similar quadrature form to (17) the approach being only formally different (as 

remarked upon in his Appendix). 
However, Rotta's treatment allowed for three-dimensional effects in the boundary layers con- 

sidered, as described later in Section 4.5.4, and should therefore be used in conjunction with the 
corresponding three-dimensional form of the energy equation. The fact that this was not done means 
that the empiricism in Truckenbrodt's derivation might again be influenced by three-dimensional 

effects. His correlations are however difficult to comment upon as no experimental points are shown. 
His calculation seems to predict lower values of R o than are obtained from the two-dimensional 

theory, Figs. 1, 2 and 4, and this may indicate that a form of the quadrature equation could be 
arranged to agree with the two-dimensional results. The saving in computational labour may not be 
important, however, especially if a digital computer is available. 

Spence 61 after summarising the quadrature methods (including his own, which again used 
" different values of c and d), considered (as did Ross) that the appeal to experiment effectively allowed 
for the normal-stress terms and he suggested that there was little to choose between the different 
versions, all being quite satisfactory. The evidence presented here does not support this conclusion 
and the results given by Spence's own equation, are in fact usually higher than the two-dimensional 
result, as shown in Figs. 1 and 4. 

3.5. Conclus ions .  

The use of any of the empirically modified equations can scarcely be justified, as, whilst containing 

no explicit allowance for secondary flows, they have been matched largely to resuks obtained in 
convergent flow and are therefore incapable either of predicting the growth correctly in a divergent 

flow (as seen in Figs. 1 and 4) Or of allowing for the range of cross-flow that is possible with a 

given external pressure distribution. On engineering grounds, if the restriction to convergent or 
two-dimensional flow is specified the results might be of value, but an attempt to correlate the 

extent of cross flow with such factors as the aspect ratio of the duct in which the layer is developing, 
and the ratio of boundary-layer thickness to duct dimensions might be of more use in obtaining a 
correction to the two-dimensional equation. More measurements of turbulence and static pressure 
effects are needed as well as a more complete knowledge of the three-dimensionality of the flow in 

order to evolve accurate calculation techniques. 
Kehl's equation is of use only when the external streamlines are nearly straight, but has been 

adopted by Rotta when using the energy integral equation to make approximate corrections to some 
earlier German data. 
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The addition of turbulence terms to the equation (7) in layers developing towards separation 
seems always to increase dRo/dx whereas secondary-flows may either increase or decrease dRo/dx. 
Thus no empiricism on the grounds of allowing for turbulence effects, in order to fit experimental 
results, is justified. 

4. Methods of Calculating Shape-Factor Development. 

4.1. The Basis for Comparisons of Shape-Factor Calculations. 

4.1.1. The choice of momentum thickness distribution.--The calculation of shape-factor 
can be based upon the momentum thickness obtained from 

(i) two-dimensional theory {equation (7)}, 

or (ii) tl~e empirically modified form of equation (7) appropriate to a particular complete calculation 

method, 

or (iii) experimental measurements. 

In predicting boundary-layer development for new circumstances where no experiments are 
available, then strictly two-dimensional conditions may be assumed and (i) is the correct choice, 

including second-order terms near to separation. 
If the complete calculation procedures of different authors are to be compared then the appropriate 

example of (ii) must be used. 
For the purposes of the present investigation, the predictions of the auxiliary equations were to be 

compared with measured shape-factor developments as well as with each other. 

If calculations are carried out on the basis of U,(x, z~), H i and Ro~ alone, then no information 
concerning the nature of any real secondary flows, which appear to be present in the measured 
layers considered here, is incorporated in the calculation and there is no reason to expect that the 
use of (i) or (ii) will give satisfactory results unless the calculated H(x) is very insensitive to the 
choice of Ro(x)*. Consequently it is only possible, in'the absence of direct measurements, to take 
some account of the real three-dimensional character of the flow by using the appropriate experi- 
mental R o development as a basis for the shape-factor calculations. This is necessary because a 
family of secondary flows could be associated with the given boundary values Ul(x, z~), H e and Ro~ 
and each of the members of this family would give rise to a particular combination of Ro(x , zi) and 
H(x, z~). Hence, in order to predict H(x) correctly, the corresponding Ro(x ) development must be 
used, and not some other (e.g. the 'two-dimensional') values that are appropriate to a different 

member of the family of possible flows. 
The third alternative, of using experimental Ro(x), has thus been adopted in this investigation to 

judge the relative merits of existing equations. It is not suggested that it can provide more than an 
approximate account of the lack of agreement with the idealised two-dimensional flow, but it appears 
to be the only satisfactory procedure until more detailed measurements become available. 

It is also assumed that the velocity profile family and the skin-friction law are not too greatly 
affected by the presence of secondary flows. This is the usual assumption for the streamwise 

e This is only true for a few auxiliary equations (for example Spence, Rubert and Persh) in which a 
dependency of the various coefficients, on H alone, is assumed for the sake of simplicity. The more reliable 
equations (such as Head 25) give results which depend noticeably on the assumed distribution of Ro(x), as 
seen in Figs. 36 and 37. Further consideration of this point is given later, in Section 4.6. 
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properties in a three-dimensional layer and is well supported by the results of comparisons carried 
out by the present author, between a new two-parameter profile family and measured profiles. 

Fortunately, where many comparisons are to be made, the use of (iii) constitutes the simplest 

numerical technique, and for this reason it has been used previously, without any attempt at a direct 
justification, by Norbury a9 and by Head ~5, as the basis for comparing their equations with 

experiment. I 
4.1.2. The choice of initial values.-- 

(i) For the present purpose of comparing auxiliary equations with experiment, and in general 
for testing or calibrating a new auxiliary equation, the initial values of H and R o are taken 

from experiment. 
(ii) For full calculations in new circumstances where no experiments are available, a laminar 

solution is normally used with an assumed sudden transition specified by some empirical 
rule. R o is assumed to be continuous and is thus known, the problem being to calculate the 
fall in H value at transition so that at the end of the physically real transition zone the 
turbulent solution will proceed correctly downstream. Again, various empirical rules are 
available, but are not generally satisfactory. 

In either case, an uncertainty exists as to the correct choice of starting values for H ( =  Hi) and 

for R o (= Rol ). 
To check that transition was complete for the chosen initial conditions measured profiles were 

compared with a new two-parameter family which will be described in a subsequent report. Where 
overall agreement between the calculated and experimental profiles was obtained, and where, in 
addition, the inner portion of the experimental profile agreed with the assumed universal wall law, 
the influence of transition was assumed to be negligible, as a definite family of inner' and outer 
profiles was satisfied which contained no explicit reference to the transition conditions. 

Even when the most upstream position permissible for starting a calculation is found, the actual 

value of H i is uncertain, due to experimental errors and also due to errors in the manipulation of 

the data. 
Recalculations of H and R o have been made for the velocity profiles of all the layers needed in 

this investigation, and as shown in Figs. 1 to 10, and Figs. 14 to 24, these values usually showed 
some disagreement with the values quoted by the original authors. The recalculated values were 
used throughout as they have been analysed by a consistent and, it is believed, accurate numerical 

procedure. 
Ideally therefore, a comparison with experiment should cover the range of uncertainty in H i 

(Roi is less critical), because, as is shown later, the calculations of H(x) are often strongly dependent 
on the choice of initial conditions, particularly in severe adverse pressure gradients. A good auxiliary 
equation should give agreement with experiment for at least part of this range of H i , but the degree 
of dependence of the solution on H i is not yet fully understood, as the stability of the development 
of the real flow (where of course R o would be free to vary) to such disturbances is not yet known. 
Clauser 6 shows that in strong adverse pressure gradients the downstream flow may not recover from 
a sudden disturbance. Further discussion of this problem is given later where it is shown that several 
existing equations give predictions which depend to an implausible extent on H i . 

In the case of (ii), the uncertainty is more serious, especially for Hi ,  as transition behaviour has 
yet to be calculated. Whilst this problem is outside the scope of this investigation, some empirical 
rules for estimating H i will be mentioned. 
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Truckenbrodt  71 suggests the relationship between transition Reynolds number (Rot) and the fall 

in shape-factor, AH ( =  H l a , m i n a r - H i t u r b )  , from the calculated laminar value at transition. No 
justification is given from experiments, except for zero pressure-gradient conditions. 

MaskelP 5 tentatively proposed that 

VORo°'268. dUl~ 
AH=UL U A' 

on the basis of a dimensional analysis for natural transition, in adverse pressure gradients for 

R o < 2500. He suggests the use of flat plate values, that is H~ = Ho(Ro) , in favourable or zero 
pressure gradients. Various other authors (Spence 6°, 61, von Doenhoff and Tetervin 13 have assumed 

the latter rule for all pressure-gradient conditions for want of a better assumption. 

Garner 2° considered that dH/dx  < 0 indicated incompletely turbulent flow but this supposition 

is not substantiated in the present report and, Maskell in particular, has disagreed. 

Thus  for new calculations a rule is needed for both transition position and AH. Th  e following 
effects should be taken into account (and in fact may have affected Maskell's approach, as he 

included the data of yon Doenhoff and Tetervin Where forced transition was employed): 

(a) The method of causing transition (e.g. laminar separation, natural transition on the surface, . 
wire, serrated strip, surface roughness, air jets, etc.). 

(b) The level of vorticity (turbulence) and non-uniformity of the free-stream. 

(c) The pressure distribution over the finite length of the (real) transition. 

4.2. The Generalised Auxil iary Equation. 

The purely empirical equations of yon Doenhoff and Tetervin 1~, Garner 20, Maskel135, SpenceG1, 
and others; the energy equations of Truckenbrodt  vl, Rubert and Persh 47, and Kawasaki 29, and the 

entrainment equation of Itead 25 can be reduced to a generalised auxiliary equation discussed by 
Spence 61, who introduced it from shear-stress considerations. T ruckenbrod t  71 had previously 
mentioned a similar analysis. 

The generalised equation was written by Spence as 

O 7= H * ( H )  . r - ' r (H) ,  (as) 

(9. d U  1 
where ® = ORo 1.''~ and F - U~ dx ' with the value of n effectively determined by the skin- 

friction assumption used in each case. 

It is now rewritten as 

where F 1 - 

used. 

W(H) dH • (H) ,  F 1 , (19) 
0 ~ -  = Roll n 

0 d U  1 and can be directly related to experiment since no explicit value of n is 
U I dx 
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The newer equations (Head, for example) necessitate the dependence of q~, ~F on R o also, and so 
the equation is used in the form: 

(H, Ro) o dH = O(H, Ro) P l - .  (20) 
dx " Ro 1''~ ' 

i.e. 

odH=e r l + O  (2a) 
d x  " ~ " 

This equation is a purely mathematical representation of the results of different analyses, and 
provides a concise summary of the comparative properties of different equations. It allows one to 
forecasts qualitatively, the relative behaviour of different equations under given circumstances, but 
the absolute level of agreement with experiment cannot be determined unless some direct calculations 

are first performed. It cannot reveal any of the physical or experimental details used in the derivation 
of any individual equations and so is quite unable to provide reasons for the form of the P, Q curves, 

shown in Figs. 25, 26 and 27. 
Hence, whilst with experience of some selected calculations, {t can save labour by forecasting the 

relative merit of different methods (and has been used to show in which range of H, R o the cause 

of apparently anomalous behaviour lies), it cannot suggest ways of improving agreement with 

experiment nor is it applicable in situations requiring the introduction of new variables, such as 

suction or blowing. 
Thwaites G7 for Spence's 61 method, Head ~s and more recently Kawasaki 29, have shown limited 

comparisons of P, Q but without detailed discussion. 
As will  be shown later, the generalised form can be used to indicate the stability of various 

equations in unfavourable pressure gradients. In these conditions all equations Will show divergent 
behaviour following a change in the initial H value (or an error in the calculated H value at some 
intermediate step) if the pressure gradient parameter I~1, exceeds a certain critical value appropriate 
to the equation concerned. 

4.3. The Shape-Factor Calculations. 

The selection of particular comparisons was not obvious in the initial stages, but the saturation 
of the problem by applying all proposed calculation methods to all experimental cases was obviously 
impracticable. Some of the earlier equations were rejected as being based on an insufficient range of 
accurate data and correlations, and some on the basis of published comparisons (for example, 
Spence showed the poor agreement given by yon Doenhoff and Tetervin's method for Schubauer 
and Klebanoff's boundary layer). 

Following a rather arbitrary selection of preliminary calculations in order to gain experience, a 
more comprehensive series of calculations was made, using the equations of Head ~5, Spence 61, 
MaskelP 5, Rubert and Persh 47 and Truckenbrodt 71. Only Head ~5 and Spence 61 have been applied to 

all the experimental cases considered. Consideration of the generalised coefficients P, Q of these 
equations allowed their relative behaviour to be estimated and only a few selected cases were 

calculated to check this and to bring out the particular idiosyncrasies of each approach. Other 
equations not included in this series of direct comparisons are however dealt with in section 4.5 
and their relative usefulness can be estimated for similar conditions by considering their P, Q curves. 
In particular, the equations of Walz 72, and of Kawasaki 29 would appear on this basis to offer no 
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advantages, in their present forms, over Truckenbrodt for example. However, the equation of 
Gruschwitz 23 appears likely to yield results comparable to those of Head, but only for H < 2.0; 

R o <<. 3000. 
Figs. 14 to 24 show the comparisons between calculated and experimental H(x). The experimental 

H values given by the original authors are shown together with the recalculated values which are 
thought to be more reliable as a basis for the comparisons. 

The experimental mean lines of Ro(x ) are shown in Figs. 1 to 10 and have been discussed already 

in Section 2.3. 
Fig. 35 shows, for some of the equations, the effect of different H i values on the calculated H(x) 

development and will be discussed in Section 4.6. The influence of the assumptions for momentum 
growth on calculated H(x) is indicated in Figs. 36 and 37, for two rather differedt auxiliary equations. 

4.4. Discussion of Results. 

All equations were applied to Clauser I and II, Figs. 15 and 16, because this data had not been 
used previously and was rather different in character from other measurements in rising pressure 
conditions, with very small variations in H. It was considered that these cases would provide a 
severe test of the equations. This established some general trends~ which could be related to the 
P, Q curves of each equation, and which were further confirmed by the results shown in Fig. 17. 
The principal conclusion reached from an examination of Figs. 15, 16 and 17 is that, for H > 1.45 
and I? 1 > 0.001 (approximately), the predictions of the different equations, in order of descending 
dH/dx and hence of increasing accuracy, are: Spence, Maskell, and Rubert and Persh, Truckenbrodt, 
Head. (With the exception of the range of negative P for low R o and H m 1.6, for Rubert and Persh, 
who then predict the lowest dH/dx). 

This result is due to the~ relative magnitude.of the P coefficients in the generalised form which 
multiply the pressure gradient parameter (Pl) and tend to raise dH/dx in rising pressure conditions. 

P falls off progressively in the order: 

Maskell (large 17, where Maskell defines 17 - 0.246 0 dUl~ c I U~ dx ] ' Truckenbrodt, Rubert and Persh 

(R ° = 105) , Head / Spence] ' Maskell (small 17), and Rubert and Persh (Ro = 103). 

The Q term = 0 -dx- rl=° in all cases tends to lower and thus opposes the effect of P. 

is very small for Spence and for Rubert and Persh, and thus their calculated values of dH/dx 
are seen to be much too large, except where P < 0 for Rubert and Persh. 

Head's value is much larger and, in conjunction with a similar P value to that of Spence, accounts 
for the prediction of much lower values of dH/dx. 

Truckenbrodt and Maskell by similar arguments can be seen to be intermediate in behaviour. 
The remaining cases were calculated using the equations of Spence 61 and Head 2a, which usually 

represent the upper and lower limits to calculated H(x), as indicated by the above. However, for 
Schubauer and Klebanoff, and Schubauer and Spangenberg 'C', 'D'  and 'E', the calculations start 
below H = 1.45, in a region where the relative magnitudes of P, Q of different equations have 
changed (again refer to Figs. 25, 26 and 27). 

Typical predictions of H in this range showed that Head now gives an unreasonably large rate of 
growth of H in adverse pressure gradients, whilst Spence now shows the least tendency to rise. 
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The other methods also change their relative behaviour in this range if I~1 is large enough. For 
example, if H < 1.4 for all R#, Rubert and Persh show an excessive variation of H with r l ,  but 
for H/> 1.4, the behaviour depends critically upo n R o . The behaviour at larger H, R 0 values will 
produce a trend towards the same relative order of separation prediction as described for the earlier 
cases although this is not quite achieved in Fig. 19. 

Two unexpected results should be noted: 

(1) If Spence's calculation is started in a favourable pressure gradient, the calculated H falls as 
expected, rather rapidly since P > 0, but, in contrast to Head, Q < 0 (for H < 1.4) and this 
depresses H as well, almost asymptotically towards H = 1.21 where P = 0 and Q is very small 

d H  
and thus dxx ~ 0. This is clearly shown in the calculated result starting at x = 1 ft for Schubauer 

and Klebanoff, Fig. 21, and this further demonstrates that as P = 0, no subsequent adverse pressure 

gradient can raise H again. ~ Because of the large value of P for H < 1.4, the method of Rubert and 
Persh will be poorer than that of Spence in this example. 

(2) Fig. 24 shows the result of  applying l~askell's method to the experimental data of Schmid- 

bauer s2 where the pressure gradient changes from adverse to favourable in the course of the 

boundary-layer development. After a rather rapid rise of H in the adverse pressure-gradient region, 

the use of H = H0(Ra) as proposed by Maskell for all favourable pressure-gradient regions, causes a 
discontinuity in the predicted H(x)  to appear at x = 110 cm where the pressure gradient changes sign. 

Finally, the flat-plate zero pressure-gradient results of the different methods are compared to 
Coles' similarity solution in Fig. 14. The large scatter of experimental H = H o (Re) values is clearly 

shown, although it should be remembered that the scale of H is larger than in the other figures. 
The discussion of these results will be continued during a chronological review of the different 

auxiliary equations which are now classified either as being purely empirical or in terms of their 
physical basis. 

The following points may be mentioned at this stage; the wide range of predictions shown by 
the use of different equations for any experiment considered; the generally reasonable agreement 
with experiment given by Head but the indifferent to very poor agreement given by the other 
equations, except for the data of yon Doenhoff and Tetervin, Figs. 22 and 23, which had in many 
cases been used in obtaining the original correlations. However, the newer measurements of 
Clauser and Newman are not well represented even by Head's equation which is, nevertheless, 
rather better than the remainder. 

Rotta ~6 has compared a large number of auxiliary equations in terms of the coefficients of the 
generalised form and confirms, independently, the present results which show the striking 
differences between many of the existing equations. However, Rotta shows no direct comparisons 
between calculated H development and experiment, mainly confining his treatment to an approxi- 
mate analysis of 'equilibrium' conditions, where d H / d x  = 0 and a mean value of Ro = 10 ~ was 

assumed (see his Fig. 22.1). This approach, however, leads to the erroneous conclusion that Head's 
equation Will predict accurately, the shape-factor development for Clauser II (in contrast to the 
result shown in Fig. 16), although it clearly agrees with the present conclusions regarding the very 

It should be remembered in connection with this example, that Spence started his calculation at the 
beginning.of the adverse pressure gradient region, Fig. 21, giving a good separation prediction. This further 
demonstrates the need to calculate as many cases as possible and to study the forms of proposed P, Q curves. 
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poor performance of the majority of the other equations under these conditions. For non-equilibrium 
layers, it is difficult to draw any definite conclusions from Rotta's analysis although his general 

remarks concen{ing the difficulties of shape-factor calculation are in agreement with the conclusions 

of the present investigation. 

4.5. A Review of Existing Auxiliary Equations and Further Discussion of the Comparisons with 

Experiment. 

The earlier methods, although not used in the present calculations, are described, as they show the 
order in which the physical features of the flow were appreciated. Difficulties encountered in obtain- 

ing quantitative relationships from experimental data are also shown clearly by these earlier attempts 

and enable general conclusions to be drawn which also apply to more recent investigations. 

4.5.1. Early empirical equations (1930-1943).--As already mentioned, the first attempt at 

a complete calculation procedure was made by Buri ~ by analogy with the method for laminar flow 

due to Pohlhausen 4~. Buri's method can be seriously considered only as a method of calculating R o ; 

the assumption that P is a form parameter is inadequate as it effectively requires that the surface 
boundary condition (3~-/Oy)o specifies the, complete (local) distribution of shear-stress, and further, 

that this specifies the local velocity profile completely. This neglects the finite time taken for the 

outer part of the boundary layer to feel the influence of surface conditions. 
Buri's assumptions appear to work over a limited range of his favourable pressure gradient data 

but required modification to fit the diffuser experiments of Nikuradse 3s. 
Gruschwitz 2~ recognised that  the pressure gradient does not determine the local velocity distri- 

bution but only controls its rate of development, and derived the following auxiliary equation by 

considering the energy exchange at y -- 0 ; 

0 dgl 
- F(~,  Ro) .  

q d x  

In this equation, which is obtained from dimensional arguments, 

~ = 1 -  _ g 0 - - g l  (22) 
y=O q 

q = local free stream dynamic pressure, 

= ½-pU1 ~ , 

go = free stream total pressure, 

gl = total pressure at y = 0. 

is the chosen form parameter, i.e. ~ . =  f , ~ . 

From somewhat limited experimental data Gruschwitz found a linear dependency of F on ~) only, 

i.e. for 250 < R o < 4500; 1.2 < H < 2-0, 

0 dg t 0 dq~ 
- - A ~ 7 - B ,  

q dx q dx 
o r  

where A = 0"00894 

- I 2 oduq  0 d~/ A + + B,  (23) 
dx G W J  

and B = 0.00461. 
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However, Kehl s°e showed that B depended upon Ro, and from an analysis of his much wider 

range of very careful measurements obtained the following relation: 

B - m 
0.0164 0.85 
log10 Ro R o -  300 (25) 

250~< R o<~ 35000; 1.1~<H~< 1.8.  

Fig. 28, that a singly infinite family of velocity profiles is not a good 

for 

Further, he showed, 

assumption, his new results generally disagreeing markedly with the mean line chosen by Gruschwitz. 

This is a clear example of the frequently observed inability of a purely empirical approach to extra- 

polate beyond the range of the original data. 

Schmidbauer 5z adapted the Gruschwitz method to account for different rates of boundary-layer 

growth due to convex curvature of the surface in a streamwise direction. 

He obtained good agreement with his own experimental Re, ~q distributions on the basis of two 

empirical correlations, supported by physical arguments concerning the change in turbulent mixing 

due to flow curvature. .  
He calculated c/{from the momentum integral equation (7)} and found 

c I = f(O/R) only, for 0. 001 ~< O/R <~ O. 004, 

where R is the radius of curvature of the surface. He neglected the effects of H, Ro, as had 

Gruschwitz when calculating Ro(x ). 

The auxiliary equation (23) was modified to incorporate a dependency upon O/R, and whilst this 

may be quite acceptable on physical grounds, the significant variation of skin-friction with 0/R is 

very similar to the change that would be expected on a flat surface if the variation with H is allowed 
for, using any one of the accepted relationships found later such as that of Ludwieg and Tillmann. 
Furthermore,  if Schmidbauer 's  velocity profiles are checked on a Clauser plot a reasonably-well 
defined logarithmic inner profile is found, corresponding to these skin-friction values, with no 

need to postulate any effect of wall curvature, and it can in fact be shown from other experimental 
resuks that the overall velocity profiles are not !ikely to be appreciably affected by wall curvature for 

IO/RI .< 0 . 0 0 4 .  

e Kehl made the first measurements for convergent or divergent radial flows with various pressure distri- 
butions. He presented the appropriate form of the momentum equation for this type of flow, namely 

dO_ c I (H+2) 0 d g  1 0 (24) 
dx 2 ~ dx (x + Xo) ' 

where (x + %) is the distance along the plane of symmetry measured from the virtual origin of the radial flow. 
Owing to the growth of the side wall boundary layers, and the sudden start of the wedge-flow region there 

is some slight extra secondary flow associated with the curvature of the external streamlines, not accounted 
0 

for by the term (x+xo~ , as pointed out by Wieghardt and Tillmann v3. The nature and magnitude of these 

cross-flows was thought by Kehl not to have affected the overall streamwise velocity profile shape or the 
form of the auxiliary equation. As mentioned above, he successfully made a new correlation in terms of R o 
and thereby avoided the need to start his shape-factor calculation at the artificially low value ~7 = 0" 1, in 
the transition region. This had been an objectionable feature of the Gruschwitz method. 
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For his comparatively restricted range of measurements, it therefore seems probable that the 
values of H and O/R were fortuitously correlated; the larger H values being associated with larger 
O/R and hence his lower c! values. 

This illustrates the importance of clear physical understanding and the use of enough experimental 
information to allow separation of the effects of different variables before correlating data. 

4.5.2. Later empirical equations of von Doenhoff and Tetervin, Garner, and Maskell.-- 
yon Doenhoff and Tetervin 18, were able to derive an improved auxiliary equation using, in particular, 
their own newly available series of measurements of boundary-layer growth on aerofoils. Again, in 
contrast to Buri, they correlated rate-of-change of shape-factor against local pressure gradient. 
They also introduced a dependency on H, yielding 

[ 1 0 - 2 7  = f q a= % " 

Their correlations for H ~< 1.4 are not completely satisfactory, Fig. 29, and in addition no direct 

measurements in favourable or zero pressure gradient were employed; their assumption of the 
1/7th power law profile for these conditions may also lead to some inaccuracy. Their equation was 

0 ~dH = e,.68(n_~.o,5) _[ qO dxdq 2q.ro 2.035 ( H -  1. 286)1 (27) 

where, for dq/dx = O, H = H o and tends towards the limiting value 1.286. 
Skin-friction values were obtained from the well-known Squire-Young relationship (11). 
They presented the first explicit profile family, based on the one parametec H, i.e. 

U 1 -  f , H  , for 1. 286~<H~<2.6 .  (28) 

This was presented as a contour plot of their measurements, which covered only a small range of 
Ro, except for the nose-opening aerofoil data which they acknowledged to be somewhat unreliable 
due to secondary flows. 

They briefly considered the effects of different initial values. 

Garner ~° re-analysed the same data using Falkner's skin-friction formula, and obtained a simpler 
analytic form for the auxiliary equation with the assumption that, for dq/dx = O, H tended towards 
the limiting value 1.4. 

For the case dH/dx = 0, Fage and Raymer 17 obtained very different results when comparing 
these two methods and attributed this to an insufficient range of data used in obtaining the original 
correlations. 

The equation of Maskel185 is the first of the existing equations considered in the calculations 
presented above. 

Maskell wrote his equation in a similar form to that of yon Doenhoff and Tetervin, i.e. 

ORo TM ddH = • (P, H) ,  where P -- 
0" 246 0 dU1 

c I U 1 dx 
The earlier difficulties in wholly zero pressure-gradient conditions were avoided by matching the 

distribution of H = Ho(Ro) to experimental values given by Ludwieg and Tillmann 83. Hence 

O(0, H) = ¢ ( 0 ,  H0), for H <  1.4;  1 0 8 < R  o < 4 x  104 . 
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Outside this range, the function q) (0, H) was derived by extrapolating to P = 0 the correlations 

for adverse pressure-gradient data which took the form 

q) (F, H) = • (0, H) + F .  g(H) .  

Two such linear relationships were needed, one for large values of F, (r  > Pi), the other for small 
values of P (P < Pi), the changeover function Pi = Pi (H), being given from experiment. (The 

suffix i in this case is Maskell's own notation and does not here refer to initial conditions). 
The correlations for • (P, H) are shown only for 1.4 ~< H ~< 1.9 and exhibit considerable scatter 

due to the graphical differentiation employed. The choice of a non-linear overall variation of dH/dx 

with pressure gradient is less restrictive than the assumption used in other empirical equations and 

is suggested by the form of the yon Doenhoff curve at low H, Fig. 29, but the best choice of 

relationship is not immediately obvious and any assumed curve can be justified only by the results 
of direct calculations. The correlation at large F depends entirely upon the possibly inaccurate 
nose-opening aerofoil data of yon Doenhoff and Tetervin, and in fact the only new measurements 

used are those of Schubauer and Klebanoff ~3. 
(0, H) and Fi(H ) were shown only for 1.25 ~< H ~< 1.7 and in the present calculations it has 

been necessary to extrapolate to considerably higher H values, which may explaiu the rather poor 

results in certain circumstances. 
For all zero or favourable pressure-gradient conditions, regardless of the previous history of the 

layer, this approach assumes that H = Ho(Ro) from Ludwieg and Tillmann's flat plate results. * 
As already shown in Fig. 24 this causes a discontinuity in the predicted H(x) if the local pressure 

gradient changes sign, and again emphasises that the local pressure gradient cannot specify the 

whole velocity distribution at that position. 
The comparisons in Figs. 15, 16, 17 and 19 show that Maskell's equation predicts excessive 

dH/dx values in rising pressure conditions, leading to the unacceptably early separation predictions 
shown. Consideration of Maskell's own Figs. 3, 4 and 5 and 10, 11 and 12 indicates that if his 
calculations were repeated for the experimental H i values used in the new calculations of yon 
Doenhoff's aerofoil layers, and if experimental Ro(x ) was used throughout, for both his calculations 
and those of yon Doenhoff and Tetervin, then his results would generally be poorer than those of 

the latter authors and would predict as usual, an early separation. 
However, the excellent result for Schubauer and Klebanoff, confirmed in Fig. 21, would appear 

to indicate that Maskell's approach is better than the earlier one, for larger values of R o . A study 
of the P, Q curves suggests that for H > 1.8, yon Doenhoff's equation predicts an excessive 

variation of H with pressure gradient and is unsatisfactory in showing little dependency on R o . 

All these purely empirical equations suffer from the need to rely upon rather scattered direct 
correlations which are, in the absence of any physical guidance, open to a range of alternative 
interpretations regarding the choice of mean curves. Agreement with experiment has been sought 
on the basis of calculated R o and sometimes only achieved through the use of specially chosen 

initial H values. 

In Fig. 5 of Maskell's paper, the favourable pressure-gradient H values for the same R o values (as quoted 
from Schubauer and Klebanoff) lie above the flat plate results. This discrepancy is removed if the recalculated 
H values of this investigation are used. 
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4.5.3. The equations of Spence and Norbury.--A thorough eva!uation of Spence's auxiliary 
equations is of some practical importance, as they have been used in recent methods of calculating 
shape-factor development in three-dimensional layers (Cooke 11) and for the two-dimensional layer 

with distributed suction (Dodds*=). The final form of Spence's auxiliary equation (Spence61), used 
in the present calculations, has already been shown to give generally poor agreement with experiment, 
Figs. 14 to 24. The earlier versions (Spenc@ s, 6o) have however been used exclusively in all Spence's 

published calculations, and have also been used by Norbury a9 to obtain an equation applicable to 

the boundary layer in the plane of symmetry of a three-dimensional diffuser flow. 

(a) The earlier equation of Spence 6°. 
From the equation of motion at y = 0, where the universal logarithmic inner law is assumed 

to be valid, and the momentum integral equation (7), Spence obtains 

dy dy (U~] a_  1 dUx[I_(H+2)A U, 
& o \ e l /  G & r - P  Y 

where the shape-factor 

+L @ lu=0 

( . )  r B - 1  
G =o 1) 

(29) 

from the power-law profiles u/U~ = (y/S) (zz-t)/2. In addition, d = 2.5 from the assumed inner law 

and 

- G y  - - =  2"51og~ + 5 " 5 .  
G v 

Spence then assumes 

U~. 2k s ( H + 2 ) A  G = ' 

L Oy Ju=o %(1-2ksy-Yz)  U I dx ' 

where %, k s are free constants, found from the experiments of Gruschwitz, yon Doenhoff and 

Tetervin, and Schubauer and Klebanoff, to be % = - 0.18, k s = 0.2. 
Now, for y < 0.82 (i.e. H > 1.1 approx.), these values give e < 0, 

L @ J y=o L @ Jv=o e - - = %(1 - 2ks,/-y~).  (30) 
[ 1 dU1- ] [30@1q 

u1 ax J 
k ay J,a=0 

where 

The direct measurements of Newman 37, and Schubauer and Klebanoff a3, show however that 

e > 0 in moderate or strong adverse pressure gradients, and as Norbury has pointed out, in small 
pressure gradients e is large, becoming infinite in zero pressure gradient. Thus no choice of constant 

%, k 8 is justifiable if the equation is to be useful in practical conditions. 
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Two main criticisms may be made: 
(1) The assumptions for ks, % appear to have been dictated by mathematical convenience as then 

the auxiliary equation (29) could be reduced to a quadrature form. Thus the physical plausibility of 
the original approach was lost and the resulting equation can only be regarded as empiricalinnature, 

with the assumptions for overall profile shape introducing further errors. 

(2) This equation cannot be considered adequately substantiated on the basis of only two com- 
parisons with measured boundary-layer development as shown originally, where agreement with 

experiment was obtained by the use of special starting conditions. For Schubauer and Klebanoff, 
only the adverse pressure-gradient region was calculated, Fig. 21, thus avoiding the difficulties 

encountered in nearly zero pressure gradients. The starting value of H i = 1.43 used to obtain 
overall agreement with von Doenhoff and Tetervin's aerofoil boundary layer is not justified for the 
forced transition used, and other methods obtain comparable agreement without needing special 

Hi assumptions. 

(b) Norbury's modifications. 

Norbury put 2k7 = e + A(H+ 2 ) . ~  7 in equation (29) and found 

k = k(H?F, Ro), 

from the experiments used by Spence, and the data of McCullough and Gault a6, Altman and 

Hayter 1, and his own diffuser measurements. 
This allowed empirically for the variation of e over a wide range of H, Ro, and F1, but whilst non- 

lifting aerofoils and diffuser data correlated well, he could not relate lifting aerofoil results properly. 
Norbury compared his new equation with experiment on the basis of measured Ro, obtaining 

better results than Spence in at least one example, and in another his result is close to that of 

Maskell. 
He extended his method to three-dimensional flow, the calculation for the development along the 

plane of symmetry now making use of a correlation for the change in k (from its corresponding 
two-dimensional value) in terms of O/X, where X( = x + x 0 in Kehl's notation) is the distance from 
the source of the local effective radial flow, defined by the intersection of tangents to the external 

streamlines and the centreline. 
Norbury's correlations are difficult to explain in physical terms and his definition of H i is not 

altogether clear, but this work must be recognised as one of the few cases where an auxiliary 
equation has been developed to account explicitly for cross-flow effects. 

(c) The final form of Spence's auxiliary equation ( Spence61). 
The method of derivation of this equation can be shown to account for the excessive sensitivity 

of calculated H to changes in pressure distribution and in initial H value. 
Spence introduced the generalised auxiliary equation (18) via a shear-stress analysis and then 

derived a simple auxiliary equation by considering a convenient analytic approximation to the P 
curves of Maskell, Schuh 55 and his own earlier equation. This he justified for the special case of 

thick boundary layers where, 

0 dH = p rl  = ¢ (H). [ 0 dVl] (31) 
dx " g l  dx J '  
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i .e. 
dH 
(H~ - d(log~ U1). (32) 

He shows curves of H vs. log e U1 for H i = 1.4. 

Agreement between these three functions is quite good, as claimed by Spence, and they only 
differ by approximately _+ 4 per cent in terms of predicted pressure recovery, for a given H value, 
although percentage differences in H are very much greater than this for a given U1/Uli. 

For the coeffÉcient Q in this new equation, he used the similarity analysis of Coles 7 for wholly 

zero pressure-gradient conditions. This yields an analytic expression based upon the universal 

velocity profile that Coles assumed and the corresponding flat-plate skin-friction law. This expression 
was incorrectly assumed to hold for the range of H values (H > 1.5, approximately) for which, in 

practice, a fully turbulent zero pressure-gradient layer cannot be obtained on smooth walls. This 

results in Q being much smaller than the values used by other investigators (except for Rubert and 

Persh, and Schuh) for H > 1.5, thus providing little restraint on dH/dx, as described in Section 4.4. 
Even within the range of H values that can be obtained in a real flat-plate turbulent layer, the use of 
the equilibrium result regardless of upstream conditions ignores the real variation of Q with Ro, for 
a given H value, as the equilibrium analysis assumes that H and R o are uniquely related (that is 
H = Ho(Ro, only)). ~ 

Q should be found (in principle) by the extrapolation of experimentaUy determined curves of 
0 dH/dx vs. F1, to F 1 = 0, for suitable combinations of H and R o. If it is desired to simplify the 
auxiliary equation by ignoring the effects of Ro, then the average value of Q, over a sufficient range 
of R o for which fully turbulent flow is possible, should be taken. This has been done by Maskell aS, 
and others, and usually leads to better shape-factor predictions than are obtained from Spence's 
equation, as shown by the comparisons already discussed in Section 4.4. 

This later form of Spence's equation is slightly poorer than his earlier (published) equation, as 
shown in Fig. 21, where the two forms are compared on the basis of a full calculation using the 
two-dimensional momentum equation (7). 

(d) Conclusions. 

This approach is less satisfactory than some of the earlier attempts to calculate the shape-factor 

development in the same experimental boundary layers and it is unduly sensitive to the choice of 
initial H value. 

The physical realism of the basic assumptions has been lost in an effort to obtain,mathematical 
simplicity and the equation has not been adequately substantiated by direct comparison with a 
wide range of experimental data. 

In fairness, however, it should be pointed out that Spence's method was primarily intended for 
calculations in adverse pressure gradients leading to separation so that its shortcomings in zero or 
favourable pressure gradients may not be regarded too seriously. Nevertheless, it is important that 
the limitations of the method should be recognised, in view of its use as a basis for some newer 
calculation procedures and its prominent place .;n recent review articles (e.g. Thwaites GT, Duncan, 
Thorn and Youngl~). 

4.5.4. The use of the energy equation--the methods of Rotta, Truchenbrodt, Rubert and 
Persh, Schuh, Tani, Kazoasaki and Walz . - -The  second member of the infinite series of integral 
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relationships is important because of its physical interpretation as an equation for the energy balance 
in the turbulent boundary layer. 

It may be written 

2 ax ( o 7 -~Y dy + U ~x (-~-~ - ~r~) dY " (6) 

The normal-stress term is always (formally) neglected, although (wkh the exception of a semi- 
empirical check by Rubert and Persh using the data of Schubauer and Klebanoff) no direct test of 
this appears to have been made. The measurements of Newman aT, and Sandborn and Slogar 48 are 
now available and would provide further information for layers approaching separation, where 
this assumption might be unsatisfactory. 

(a) Basic equations.. 

A clearer physical understanding is obtained by considering the equations for mean-flow and 
turbulence kinetic energy separately, following RottM 5, 46, TownsendSS and others. 

The equation for mean flow kinetic energy is obtained by multiplying equation (1) by u, 

1 au = 1 Ou 2 1 dU, =_(u,2 _v,2) au ~:~Ou 
~ u-&-. + ~, v ~-y - ~ u - d 7  a ~ -  gy+ 

Loss of mean flow K.E. Turbulence K.E. production. 

+~ - + ~  u 2 0y~ - - - - + V \ ~ y y ]  = 0 (33) 

Turbulent  transfer Viscous Viscous 
of mean flow K.E. transfer dissipation. 

Manipulation of the Navier-Stokes equations, with the introduction of the continuity equation 
gives the turbulence kinetic energy balance, 

, , 7 )  
. ~ -  + ~ v ~ + (u'~- ~'~) ~ + + ~y u v ~y q'2v' + + 

Convective loss Production Turbulent  
diffusion 

+ d - v ~  q,2+v,2 --0. (34) 

Viscous 
dissipation of 
turbulence K.E. 

Viscous 
diffusion 
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Combining (33) and (34) 

l [  ~ (u~+~) + v ~y (u~+~) - 

Loss of total K.E. 

where 

1 1  
a u ( u ~ )  + v'q'~ +Ty 

dU1 ~] 
u ~ - j  + ~ ~ (~'~- v'~) + 

Longitudinal transfer 
by turbulent normal 
stresses. 

Lateral diffusion terms 

+ 

+ D = O, (35) 

Total viscous dissipation 

D = v ( %  \Oy] + d. (36) 

Integrating (35) gives the following alternative version of (6): 

f f o~ _ ~o a u (u  ' ~ -  v '2) d y  (37) 1 dU1% 1 d uq'~dy = D dy + ~x 
2 dx . 2 dx o o o 

Integrating (34) and using (36), or combining (37) and (6), we obtain 

d x  d y  2 dx o 
D dy = P ~y dy - (u,~ _ v,~) 0u 1 d u q'2dy. (38) 

0 0 0 

This relates the dissipation integral to the shear work integral, and as recognised by Rotta, the 
mean-flow energy which has been converted to turbulence energy need not be dissipated b'y 
viscosity at the same location. In a rapidly developing layer the rate of change of flux of turbulence 
kinetic energy cannot be neglected. In the literature (Kawasaki, Rubert and Persh, etc.) confusionls 
caused by using the name 'dissipation integral' for the shear work integral without any qualification. 

In practice, although the term 'dissipation integral' is used, equation (6) is taken-as the basis of 
the auxiliary equation, the main problem being that of determining a suitable relationship for the 
shear work integral. However, Rotta 45 has endeavoured to separate out the dissipation integral and 
his expressions have been used by Truckenbrodt n. 

In view of the widespread use of Truckenbrodt's method, especially in Germany (e.g. Schlich- 
ting a°, Pechau 41) it has been used in the present series of calculations. 

(b) The derivation of the basic auxiliary equation. 

Equation (6) is expanded and dO/dx is eliminated by using equation (5). Thus 

dHe (H+I)He 0 dU1 cj 
0 ~ = U 1 dx 2 He + e '  (39) 

where 

f f 
- - - -  co 

U~ dy +__2 0o U10xu 0 (u,2_ v,2) dy U1 z e d o (u 'Z-  v'~) dy (40) e =  
o P U1 ~ ay U1 ~ o 
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0 dH 
dx 

From (41) and experimental values of OdH/dxl H, Ro, and - - -  

expression for e. In functional terms this could be written as, 

e = [fl(H) + f~(H). Pl] gILT" 

Their final correlations were limited to the range 

1.286 ~< H ~< 2.0 ; 0 ~< Pl ~< 0.004, 

This equation is then normally used, with the assumption of two-dimensional flow, to determine 

e from experiment. The normal-stress terms are assumed to be negligible and this provides an 

empirical correlation for the work integral. A velocity-profile family may be used to relate H and H e 

but it is generally preferable to find dHJdx directly from experiment rather than convert equation 

(39) to a form involving dH/dx explicitly, as errors in calculated dHJdH may be quite large. For the 

same reason it is better to use (39) as an auxiliary equation for H~(x), finding H(x) afterwards, if 

required. 

The provision of the above correlations and a suitable skin-friction law completes the develop- 

ment of the auxiliary equation, different forms arising according to the different assumptions made. 

(c) Different forms of the auxiliary equation. 
Rubert and Persh 47 used the shape-factor relationship H~ = 4H/(3H-1), corresponding to the 

u (Y)(fz-1),'2, together with the Ludwieg and Tillmann skin-friction power-law profile family ~ = 

law, to bring (39) into the form 

- H(3H-1) (H-1)  ~ +  H(3H-1) - - ~ e .  

o 
they found an analytic 

(42) 

and required linear extrapolation with respect to Pl for use in the present calculations, this procedure 

being suggested by the original authors. Scatter of + 10 per cent is recorded in Fig. 7 of the original 

paper, due in part to graphical differentiation. 

The poor results given by this equation are due to the very small value of Q, which may result 
from the absence of the direct use of zero-pressure gradient data, or more probably from the over- 

simplified analytic form chosen for the correlations at low values of F 1 . The predominantly conver- 

gent flow data of Mangler 3~, Weighardt, yon Doenhoff and Tetervin, Schubauer and Klebanoff 
(x > 17 ft) were employed and the unusual behaviour of the P curve at low Reynolds numbers 

(R o ~ 103), as seen in Fig. 27, results from the matching of such experiments, as the fall of H in 
adverse pressure gradients could not otherwise be predicted with such very small values of Q. 

Following the semi-empirical analysis of the measurements of Weighardt, Tillmann, Ludwieg and 
Tillmann, and Schultz-Grunow by Rotta ~5, Truckenbrodt 71 found a suitable expression for the 
work integral, which enabled him to reduce (39) to a directly integrable form. 

Thus, by choosing the mean line, Fig. 30, to Rotta's curves, he obtained 

2fi(H) 1 
e - - -  where p - • /3 = 0.0056 (43) 

Ro~ ' 6 '  " 

Rotta used a two-parameter profile family based upon a linear deviation in the outer region from 

an assumed universal inner law; a single-parameter approximation was however used by Trucken- 
brodt and may lead to errors in the region of _+ 20 per cent in dUJdH for R o > l0 s. 
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The skin-friction law was approximated by 

~(H) Where C/ --= 
Roq 

Combining (39), (43) and (44) gives 

--r--- d g e  = ( g - l ) g ~  0 d g  1 

O ctx U1 dx 
Hence 

Introducing 

and 

ORoP dH~ _ F(H~) [ OR°v dU1-] 
dx L U~ dx J 

[,  dH~ 
L(H3 = l - L(H), 

F(H~) 3 

G 
K(L, Ro) = F' 

this becomes, 

dL K(L, Ro) 1 dU 1 
dx + ORo ~ - U1 dx 

1 
q = g,  ~ = 0"0065. (44) 

F . H q  . 
_ _ _  + Ro-  L2/3 

+ G(Ho, Ro). (45) 

(46) 

Approximating for K, as in Fig. 31 if Ro(x ) is known from a separate quadrature or from 
experiment (46) becomes 

f I ~  ~U1] d~:, (47) ~i U 1 1 ¢ b ( R o ) _ l o g ~  L = Li-~ + l o g ~  + ~ 

where K = a [L - b(Ro)]; a = 0.034, b(Ro) = 0.07 lOglo R o - 0.23, and the integrating factor is 

fl = exp ~ dx. 

K(L, Ro) depends upon the difference of the expressions for the work integral and the skin friction 
and could be considerably in error at larger H values due to the approximations (43) and (44) used 

by Truckenbrodt. 
It seems clear, however, that even if the above manipulation is permissible for most practical 

purposes, and if Rotta's original analysis is an accurate summary of a sufficient selection of data, 
then the further drastic linear approximation adopted for K will lead to a systematic over-estimation 
of dH/dx in adverse pressure gradients (except for the conditions represented in Fig. 31 by the 
shaded areas; for example H > 1.8 at R o = 10 ~) as has already been seen in the present calculations, 
Figs. 16 and 17, although quite good results may be expected for lower R o values as shown in the 

single example given by Truckenbrodt. 
Walz TM did not seek a simple mathematical form, and used the original K curves shown by 

Truckenbrodt, without any approximation. He used an extrapolated version of Ludwieg and 
Tillmann's law giving better values of skin friction for H > 2.0, and retained a single curve for the 
shape-factor relationship, using the form adopted by Rubert and Persh, which is rather different 
from Rotta's curves. The P, Q curves (not shown here) for this equation indicate that improved 

results are likely for 
Ro >>- 10 ~ and H < 1.7. 
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The evaluation of experimental data, carried out by Rotta to determine the expression for e used 
as a basis for the above equations, contains two interesting features: 

(i) He used hot-wire measurements of u'2/U, 2 obtained by Tillmann to suggest the possibility of 
a single-parameter family of distributions of turbulence energy q'2/U~. From this he tentatively 
proposed that the variation of the flux of turbulence energy made little contribution to (38) and hence 
the usual neglect of the normal stress terms leads to the determination of the true dissipation integral 
in two-dimensional flow as 

e - D d y .  (48) 
0 

(ii) He determined the dissipation integral from imperfectly two-dimensional boundary layers 

using a first order allowance for cross-flow based on Kehl's momentum equation, 

dO 0 cl ( H + 2 )  0 dU1 (24) 
dx + (x +~xo) - 2 U 1 dx " 

Local values of (x + x0) were calculated from the difference between two-dimensional and experi- 

mental dO/dx values, and were inserted in the corresponding form of the energy equation, 

ldV?  1 D d y +  u dy " . (49) 

In spite of the care taken in this derivation there is considerable scatter, Fig. 32, about the mean 
curve proposed originally by Rotta (and believed to be the basis of the curves shown ill Fig. 30), 
especially for lower H, R o conditions. 

This makes the accuracy of the expression (43) for e used by Truckenbrodt, and Walz, subject 
to several uncertainties especially as an allowance for three-dimensional effects is made in its 
derivation but not included when it is used in a calculation and compared to imperfectly two- 
dimensional experiments. However, it represents the first proper attempt to separate out the 
influence of cross-flow and to obtain correlations which should lead to improved results in closely 
two-dimensional circumstances. 

The following investigators have obtained alternative expressions for e: 
Schuh 55 made similar assumptions to Rubert and Persh, but put e = a ( H ) +  b(H). F~, and 

obtained, 

0 dH = c(H) + d(H) Pl,  (50) 
dx 

where c(H), d (g )  were found from experiment. 

d H  
Tani ~6 used similarity solutions to derive e from (39), ~ being approximately zero in this case, 

so that 
e = h~(H, Ro) + h2(H , Ro) .  P~. (51) 

Kawasaki 29 repeated the similarity analysis using the two-parameter velocity-profile family 
of Cole# and the associated skin-friction law. He realised that the pressure gradient is matched 
to the profile properties in an equilibrium layer, and that the relationship (51) should be written 

e = h~(g, Re) + h~(H, Ro) [F1]E, (52) 

33 
(94656) C 



where [F1]~(= f (H,  Ro) ) is a form parameter, and the use of (52) in non-equilibrium conditions 
requires that 

e -= e(H, Ro) only. (53) 

(d) Discussion. 

The most general relationship proposed for the work integral is of the form, 

e = f~(H, Ro) + f2(H, Ro). F,.  (54) 

Now, even if the local Reynolds stress distribution can be specified adequately by the parameters 
H, R o and F1, this linear function of I" 1 may be unduly restrictive. It is more likely, however, that 
the stresses depend also upon the upstream development of the layer although no means of relating 
e to other than purely local quantities is known at the present time. 

The main advantage of considering the dissipation integral separately could be claimed to be that 
nearly all the dissipation occurs in the region of local similarity close to the wall. However, this is 
unlikely to be a good assumption in conditions of strongly rising pressure although direct measure- 
ments of the energy balance, including any three-dimensional effects, are difficult and consequently 
no direct information is available concerning the dissipation or work integral under these conditions. 

4.5.5. The entrainment equation.-:Head 25 considered the rate of growth of the quantity 
flow in the boundary layer. On the basis of a simple dimensional argument he derived a physically 
plausible auxiliary equation which, in principle, may be extended to more complex situations and is 
therefore worth careful consideration. The present series of calculations show this to be the best 
equation so far encountered in the literature. 

The quantity flow in the boundary layer (Q) is given by 

9 = u dy = (55) 
0 

where Head arbitrarily chose 3 = (Y)u/vl=0.995. 

Assuming that only the larger scales of the turbulent motion affect the entrainment process, these 
are specified by scales of velocity (U1) and of length ( S -  3*) {chosen to be consistent with (55)}, 
and some measure of the distribution of boundary-layer properties. To specify the latter the shape 

factor Hl = Hs_~. ( 3 - 3 " )  = ? was chosen. 

aQ d [ u 1 ( 3 -  a-,)]. 
Thus v~ = f ( H 1 ,  3 - 3  ~, U1), where the entrainment velocity V e -  d x - d x  

Dimensional analysis then gives the result 

v_L~ - 1 d [Ut (3 -  8*)] '= F(H~). (56) 
U1 U1 dx 

In addition, to relate H and H1, Head writes 

H 1 = g(H).  (57) 

Curves representing the functions F and g were obtained from an analysis of the experimental 
data of Newman a7 and Schubauer and Klebanoff 5z. The curve for F was somewhat arbitrarily 
chosen since the two sets of data did not agree closely. Difficulties over graphical integration and 
the definition of 3 may mean however that for this very simple approach no more sophistication was 
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justified. It must be pointed out however that the curve for g appears to take no account of the 
experimental points for H < 1.4 and (depending upon Ro) this may account for the large values of 
P in the generalised auxiliary equation which lead to the excessive variation of H with pressure 
gradient already noticed in Figs. 18 and 20. 

It should be noticed at this stage that the entrainment process seems unlikely to be seriously 
influenced by surface conditions (except in so far as they may affect the overall velocity profile) so 
that the basic correlations for entrainment rate should be suitable for calculations of shape factor 

development in layers with distributed suction or blowing, equation (56) then taking the form 

u &l a [o,(a-a*) = F(H,) + 01 

where v 0 is the transpiration velocity at the surface, with v o > 0 for injection, and v 0 < 0 for suction 
In such cases the use of the energy equation would appear to be less satisfactory, as conditions at 

the wall are likely to influence strongly the overall dissipation and the distribution of shear stress 
through the layer. 

4.6. Stability of Shape-Factor Calculations. 

It has already been noted that methods vary considerably in their sensitivity to assumed starting 
values, and this question is now examined in more detail. 

There is certainly a sense in which the development of the physical boundary layer itself may be 
unstable in that small changes in initial conditions may lead to large changes in the subsequent 
history of the layer. This type of instability was observed experimentally by Clauser 6, and 
Townsend 7°, in his theoretical analysis of equilibrium layers, obtained solutions with small skin 
friction and large adverse pressure gradients which revealed the existence of two possible boundary 
layer developments for a given external pressure distribution. It might be expected that any com- 
plete calculation method in which the growth of momentum thickness and the development of H 
were jointly calculated would show the same possibility of divergent behaviour. Here, however, we 
confine our attention to the stability of the shape-factor calculation when the pressure distribution 
and the development of momentum thickness are specified. 

There is first a somewhat trivial sense in which the shape-factor calculation might be unstable, 
in that for given initial conditions the course of the step-by-step calculation might be decided by 

the inkial extrapolation from the starting value of 0 dH/dx, so that the solution does not converge 

to a unique result• In this sense all the equations examined were stable. In another sense, however, 
namely in their ability to converge towards a common result for small differences in the starting 
value of H, all equations showed some measure of instability at sufficiently large values of the 
pressure gradient parameter 171 akhough the value of I" 1 for which divergent behaviour first occurred 
(Inleril~) varied greatly for different methods. 

From the generalised auxiliary equation (21), the rate of divergence of calculated H for given 
values of R o and U1/v is 

at d Sl 
aH I 0, U-A~ 

P 
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and the condition for change-over from stable to unstable behaviour is 

Thus, 

[0 (0dH~ ~- dx,,_/ oP, 0Q 
an J0, vl = ° = rl°rit ( ~ )  + ( ~ )  

- -  / ~ 0  R 0  
P 

(59) 

The approximate range of variation of Plcrit for the equations most frequently considered is 
shown for R o = 104 in Fig. 33. The practical significance of the values of Plc~.it may be better 
appreciated from the following table' giving the range of F 1 values encountered in some typical 
experiments. 

Newman II 

Schubauer and Klebanoff 

Clauser I 

Clauser II  

Schubauer and Spangenberg 'C' 

Schubauer and Spangenberg 'D'  

Schubauer and Spangenberg 'E' 

0.001 to 0. 0038 

0 to 0.0039 (in the adverse pressure gradient region) 

0.0011 approx. 

0. 002 approx. 

0. 0002 to 0. 004 

0.001 to0 .004  

0. 0005 to 0. 00345 

Fig. 34 shows the approximate rates of divergence of different equations as given by 

a ~_d_~/| ae aO 
o .  , 

where n is given by 

Thus only one value of 

aQ 
= ( l - n )  ( ~ ) R  ° , 

I71 = n P l c r i t  i . e .  

N0 

o, Ul 
72 

need be found for a suitable value of n, and the reason for the straight line relationships shown in 
the figure is apparent. 
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It was not certain, a priori, that equations having lower values of Plorit would necessarily show less 
sensitivity to changes in Hi ,  as regards their overall predictions of H(x), than some equations having 
higher values. The possibility might exist that a later, more severe, divergence would give an earlier 
prediction of separation than an earlier, more gradual divergence. However, as Fig. 34 shows for 
H = 1.8, R o = 104 (and this appears to be true for all conditions except for the smallest H values, 

and for H = 1 .5 in  the case of Rubert and Persh) the equations having the lowest values of Plcrit 
also exhibit in general the most divergent behaviour. 

From Fig. 33 it will be seen that (for 1.4 < H < 2.2; R o = 104) the auxiliary equations in order 
of increasing Plcrit are Rubert and Persh; Spence; Truckenbrodt and probably Maskell; Head. 

The relative rates of divergence shown in Fig. 34 for H = 1.8 suggest that the spread of predicted 
H developments will also be smaller in the order given above. As a check on these conclusions direct 
calculations were performed for the case of Schubauer and Spangenberg 'D'  where 0. 001 < I~1 < 

0.004. The starting values of H assumed (H i = 1.40, 1.36, 1.32) more than covers the range of 
experimental uncertainty and may in fact go beyond the condition of small disturbances. 

The results of the calculations are shown in Fig. 35 from which it will be seen that the spread of 

predicted H values is very different for the different methods. 

Spence's equation shows a typically rapid divergence as Pleri t is very small and the rate of 
divergence large. 

Floe.it ~ 0.0001 for H > 1.4. 

Truckenbrodt's equation shows only a slow divergence at the large H values. 

I710rit g 0"0015 for H > 1.4. 

Head's equation shows convergent or neutral stability over the complete range of Pl and H 
involved, and provides a surprisingly good prediction for the whole of this H development for any 
of the starting values. 

Pleri t  ~ 0" 003 for H > 1" 4. 

Whilst this investigation has been restricted to a somewhat artificial situation, in that in practice 
both H and R o would vary downstream of a disturbance, the comparative predictions of different 
auxiliary equations would be expected to depend only slightly upon the R o distribution and it seems 
reasonable to suppose that the equation yielding the best overall agreement with experiment for 
plausible values of Hi,  Ro(x), will contain the greatest measure of physical truth and hence will 
provide the most reliable estimate of the stability of the real flow. For example, the predictions of 
Spence, Fig. 35, appear unreasonable and, in many cases, no satisfactory agreement with experiment 
for any plausible H i is obtained (due to incompatible P, Q functions) whilst the predictions of 
Head agree well with experiment and show a convergent behaviour that seems intuitively likely. 

The effect of variations in Ro on calculated H development can be examined, using the generalised 
auxiliary equation, in a similar way to that which has already been used in discussing the effects of 
changes in H. 

The rate of divergence (sensitivity of H to Ro) becomes in this case: 

ORe -J H , -  

~P OQ 
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and consideration of the expressions for P and Q shows that the equations whose values of Q are 
small or which vary only slightly with Ro, such as Spence, Rubert and Persh, and yon Doenhoff and 
Tetervin, will yield predictions for H that are very insensitive to changes in R o of the order of the 
discrepancy between experimental and calculated (two-dimensional) results shown in Figs. 1 to 10. 
The newer equations such as Head, Truckenbrodt and Maskell appear to be rather more affected 
by changes in R o of this magnitude although, as stated earlier, the relative levels of accuracy of 
the predictions of these equations are unlikely to be significantly affected. In the two important 
cases of Clauser I and II (see Figs. 36 and 37), this has been confirmed by comparing, for the 
equations of Spence and Head, the shape-factor predictions obtained on the basis of the momentum 
growth calculated using two-dimensional theory, in addition to the earlier comparisons using 

experimental Ro(x ). 
It is suggested that a series of full calculations could be performed solving simultaneously for 

H and R o with a range of values of Hi,  Rot to investigate the stability of turbulent boundary layers 
with given external velocity distributions. Clauser I and II are of particular interest in this con- 
nection. Furthermore, the effects of large disturbances can easily be considered whereas the 
mathematical criteria only apply to small disturbances. 

Finally, the question also arises as to the stability or otherwise of the strictly two-dimensional 
state of the time-mean turbulent boundary layer in view of the discovery of quite large quasi- 
periodic spanwise variations of time-mean quantities in such layers (Head and Rechenberg "6, 
Fernholzl"). If (over limited x-distances) there is little interaction between the parts of the layer 
developing in parallel planes separated by a small z-distance (of the order of the boundary-layer 
thickness), then calculations using the ordinary approximate methods as suggested above may be 
carried out for the development in such planes if the spanwise variation of the initial conditions 
{Hi(z); Roe(z)} are known or assumed. It may be inferred from the two-dimensional results discussed 
earlier that these three-dimensional effects will decay except in moderate to large adverse pressure 
gradients, although the condition of independence at different spanwise position in unlikely to be 
satisfied for other than small spanwise perturbations. 

5. Conclusions. 

From the examination of experimental data for boundary layers developing in nominally two- 
dimensional conditions it is concluded that: 

(i) the presentation of published data in many cases makes it extremely difficult to abstract 
accurate experimental values and, in addition, the recalculation of H and R 0 from given profile 
data which are accurately presented frequently gives values differing significantly from those 

published, 

(ii) the use of a two-parameter profile family and the Clauser plot for the inner law provides a 
satisfactory criterion for assessing whether the boundary layer is in a fully turbulent condition at 
the start of a calculation. 

Calculations of momentum thickness development, using various forms of the momentum integral 

equation show that 

(iii) the lack of agreement with the two-dimensional momentum integral equation found in 
nearly all cases is almost certainly due to the presence of three-dimensional effects rather than the 
inadequacy of assumed skin-friction laws, or the neglect of turbulence terms in the equation, 
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(iv) empirically modified forms of the momentum integral equation are in no way superior to the 
unmodified form of the equation in raising the general level of agreement with experiment, 

(v) at present, experimental values of R o provide the best available basis for comparing measured 
and calculated H development. 

From the comparison of various proposed forms of the auxiliary equation with experiment it is 
concluded that: 

(vi) before any method is accepted for general application it should be checked against the widest 
possible range of experimental data, 

(vii) there is a great need for a limited number of really precise measurements of boundary-layer 
development either in accurately two-dimensional conditions or in conditions where three- 
dimensional effects can be accurately assessed, 

(viii) the existing equations give widely differing results in many cases, and these results are often 
inaccurate. Particularly poor results are found for the equilibrium layers of Clauser 6, Where H is 
almost constant. Head's entrainment equation appears to give the best general level of agreement 
with experiment. The method developed by the present author, but not yet published, is superior in 
certain cases. 

(ix) A generalised auxiliary equation, similar in form to that derived by Spence, summarises 
concisely the distinctive features of the various equations and gives some insight into the anomalous 
results given by certain methods. 

(x) Examination of the sensitivity of various methods to small changes in starting values shows 
large differences of behaviour. Head's entrainment equation is shown to be relatively insensitive to 
starting values while Spence's method gives highly divergent results even in relatively small adverse 
gradieiats. Truckenbrodt's method is intermediate in behaviour. 

The difficulties inherent in any attempt to predict shape-factor development arise not only because 
of the absence of a satisfactory knowledge of the relationship between the turbulent (Reynolds) 
stresses and the mean velocity distribution, but also to the necessity, at the present time, of basing 
correlations on data obtained in boundary layers which appear to have a three-dimensional flow 
component but where the measured boundary values are appropriate only to strictly two-dimensional 
conditions. In a later report it is hoped to publish a method of calculating H development which 
achieves consistently better results than any of the methods considered in the present paper. This 
new method is essentially a development of Head's entrainment equation but incorporates fresh 
physical reasoning and attempts to account explicitly for the effects of any secondary flows that 
may be present in measured layers. 
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N O T A T I O N  

A, B 

c I 

C/LT 

d, D 

e 

H, HI, H~, H, H~_~* 

H o = Ho(Ro) 

P , Q  

Q 

q 

m 
q'2 

R 

R~,  Re ,  R~, 

U1 

t rot  

U 1 

V 0 

Constants in the semi-logarithmic inner law ( B  = -1 log e 10] 
\ K / 

Aerofoil chord length 

Local value of skin-friction coefficient - ½ 

Value of c I as given b y  the Ludwieg-Tillmann relationship 

Viscous dissipation terms in the energy equations (34 and 35~ 

Shear work integral, in the energy equation 

3* 
Profile shape-factors: H = -~-, 

3 -  3" -- e 
81 = Ha-e* - 0 ' H c = H 0" 

Denotes the variation of H in a constant pressure boundary layer 

Functions appearing in the generalised auxiliary equation (21) 

Volume flux in the boundary layer 

Local dynamic pressure in the boundary layer at 

(x ,y) ;  (=  P 0 - P  = ½P u2) 

Turbulence intensity ( = u '2 + v '2 + w '~) 

Local radius of curvature of surface (in the x, y plane) 

Reynolds numbers: R x - Ulx"  R o = UIO" R~ = Ulc" 
12 I~ 1J 

Component of free-stream velocity vector along the x direction 

Component of the velocity vector in the boundary layer, in the x, y 

directions respectively 

Velocity scales used in the order-of-magnitude arguments in the 
boundary-layer approximation 

Turbulence velocity scale, ditto 

Instantaneous turbulence velocity components 

Value of U1, at the reference station x = x 0, (not necessarily the 

same as the initial value Uli , at x = xi) 

Local free-stream Reynolds number per unit length 

Transpiration velocity at the wall (positive for injection) 
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x, y ,  z 

x + x  o = X 

F, Pl, Pt 

N o t e  

rlcrit 

AH 

P 

T 

Vo 

(p, tF 

N O T A T I O N - - c o n t i n u e d  

Localised rectangular Cartesian co-ordinates: x is measured along 
the surface in the longitudinal direction; y is the distance from 

• the surface measured along the local normal direction; z is the 
spanwise distance 

The distance measured from the origin of the local effective radial 
flow 

Pressure gradient parameters, 

P - OR°ll~ d U l "  P l  = 0 d U  1 

g l d x '  gldx 

Stability criterion (defined in Section 4.6) 

Displacement thickness = 1 - dy 
o 

Fall in the value of H at transition (see Section 4) 

Density of fluid 

( ~u - - )  
Shear stress = ~ -~y - p u'  v '  

Wall shear stress 

Functions appearing in the generalised auxiliary equation (18) 

Many of the above symbols are used in the review with a different meaning, as attributed to them 
by the original authors, but no confusion arises as definitions are given in the text. 

i 
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APPENDI X 

The Method of Integration of Velocity Profiles to find 0 and 3* 
\ 

w ' u e s  " - ~ '  U~ were plotted against y on millimetre graph pape r to  

occupy as much of a foolscap page as possible. 

The most consistent results were obtained by arranging that the same operator always drew in 
the mean curve through these measured values and made the extrapolation to the origin. Convenient 

intervals of y were marked off and the areas of the curves standing on these intervals were found 
by sliding a piece of celluloid (inscribed with a fine straight line) over the curve until a trapezium 

of the same area (as under that segment of the curve) was marked off. As the eye is very accurate 

at comparing small areas between the curve and the inscribed line, this method is quite rapid and 

accurate and it was preferred to counting squares, to planimetry or to the use of Simpson's rule 

(even with twice the number  of intervals this last method was not always accurate due to the long 

'tails' of some Of the profiles). 
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FIC. 25. Comparison of auxiliary equations in terms of the generalised form. 
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Comparison of auxiliary equations in terms of the generalised form. 
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