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Part I. The Electrical Analogue to Steady and Oscillating Flow in 
Slotted-Wall Tunnels 

Summary, 
Part I of this report describes a study of the lift interference effect in slotted-wall wind tunnels performed 

by a pure resistance electrical analogue. Both steady and oscillatory flow are considered. Special tech- 
niques devised to represent the singular behaviour of a point wing and at the edges of each slot are dis- 
cussed in detail. Comparisons are made with an exact solution based on an equivalent homogeneous 
boundary condition for steady flow. For oscillatory flow experimental results are presented which show 
how the magnitude of the interference upwash changes with the frequency of the oscillation. 

1. Introduction, 
Many of the wind tunnels used for both subsonic and transonic investigations have partially open walls 

consisting either of longitudinal slots or circular perforations. The boundaries of the tunnel influence the 
flow around the model, and there are several distinct interference effects, such as blockage interference on 
the stream velocity, lift interference on the model incidence and shock wave reflections from the walls. 
In oscillatory compressible flow tunnel wall resonance may occur. A recent review of unsteady inter- 
ference effects in slotted-wall tunnels by Wight 1 describes the exceedingly large changes in pitching damp- 
ing which may result from sealing off the slots. The present investigation concerns steady flow when 
linearised boundary conditions are applied at the slots. The study is carried out by means of a pure 
resistance electrical analogue with the object of obtaining detailed information about the lift interference 
in the wake of the wing and the flow near to the slots. 

The resistance network automatically solves the two dimensional differential equation which is assumed 
to describe the potential function in the distant wake of an oscillating wing. In effect the resistance network 
is an automatic means of solving the finite difference equation, and in using a finite difference approach 
two particular difficulties arise. The first concerns the representation of the discontinuities in the velocity 
at the edge of the slots, and is overcome by the introduction of special singularity formulae ~/t these points. 
The second problem arises from the necessity of obtaining accurate values of the interference potential, 

*Part I replaces. A.R.C. 26680. 
Part II replaces. A.R.C. 27140. 



which are of a smaller order than the velocity potential. This is achieved by carrying out separate experi- 
ments, first in terms of the velocity potential and then in terms of the interference potential. 

The reduction of the problem to two dimensions involves the assumption that the tunnel is cylindrical 
and of finite length, so that the velocity field becomes periodic in streamwise distance far downstream. 
For steady incompressible flow the velocity potential far downstream is known to equal twice the potential 
at the wing 2 and therefore the results for steady flow are directly relevant to the transverse plane containing 
the model, but for unsteady flow no such relationship exists and the results in the infinite wake can only 
be used as a rough indication of the amplitude, but not the phase, of the velocity field in the plane of the 
wing. Another assumption is the linearised condition at the slots, but any more accurate representation 
of the free boundary would involve a far more complicated network. 

The resistance network is used to compare the interference upwash in steady flow for tunnels having 
different types of roof, including open and closed roofs, different slot configurations and an equivalent 
homogeneous condition. A further object of the report is to investigate whether failure of the linearised 
condition is a possible explanation of the large interference effects reviewed in Ref. 1. 

2. Mathematical Formulation, 
The problem of the interference upwash effect in slotted wind tunnels in linearised compressible flow 

leads on formulation to a second order partial differential equation in terms of the perturbation velocity 
potential. The boundary conditions for the tunnel walls and roof including the effect of the slots can be 
written in terms of the velocity potential and its normal slope. Many forms of wing could be adopted 
but for computational convenience a 'point' wing is selected. The perturbation velocity potential ~,, for 
the point wing in an infinite field is known and this can be corrected to allow for the interference effects. 
If • is the actual perturbation velocity potential within the tunnel then the interference velocity potential, 
Oi can be determined from, 

= ~ , .  + ~ i .  (1) 

2.1. Governing Differential Equation. 
For a field as shown in Fig. 1 with an undisturbed stream velocity U, the component velocities of the 

flow in the x, y and z directions are U + u, v and w. 
These velocities can be. expressed in terms of the perturbation velocity potential in linearised com- 

pressible flow, ~, as 

u = Ocb/Ox, v = OO/Oy and w = a~/Oz, (2) 

and the governing equation for unsteady flow at Mach number M is 

2 02(I) O2(I ) 02(I) M2 [02(I ) 02(I) N~ 
= (3) 

If the tunnel geometry is independent of x and the wing is oscillating with angular frequency, co, then 
it may be assumed that in the distant wake 

= Real part of [~(y,z)d~('-x/v)]. (4) 

Equations (3) and (4) lead to the differential equation for q~ (y,z) 

a 2 ~  a2~ 
ay 2 ~Zz  2 = (oVU)20, (5) 

which is seen to be independent of Mach number. 



2.2. Condition on the Tunnel Boundary. 
The tunnel is taken to have a rectangular cross section with solid side walls and ventilated roof and floor 

with four slots in each. The geometry of the quarter tunnel is explained in Fig. 2. On the boundaries of 
the tunnel two conditions hold. 

(i) For  a closed boundary the normal gradient of the velocity potential must vanish, hence on the 
walls, 

Ocb/Oy = 0 when y = _+½b, 

and  on the closed portion of the roof and floor 

~94)10z = 0 when z = -t-½h. 

(ii) On the flee boundary of the open portion of the tunnel, that is across the slots, there is a further 
condition for constant pressure, that  

The usual assumption in wall interference problems is that the free boundaries are not distorted by the 
presence of the wing, that the streamline condition is relaxed and that equation (6) can be linearised with 
respect to the perturbation velocity potential so that across the slots, 

= constant = 0, i.e. 4b = 0. 

At the edge of the slot the boundary condit{on changes suddenly from (i) to (ii) with the result that a 
discontinuity in the slope of the function will occur. Also it should be noted that the boundary condition 
(ii) is very much idealised, and it would be desirable to simulate the  free boundary condition more 
accurately. 

Instead of separate conditions on the slots and slats of the tunnel, an equivalent homogeneous condition 
has been suggested (3). In this method the overall effect of the slotted roof or floor is given by 

4)+KO(a/Oz = 0 fo rz  = -t-½h 

7~g 
where K = _l loge cosec • ~ '  

(7) 

here 1 is the periodic slot spacing and all the open area ratio, Fig. 2. 

2.3. Flow Field of a Small Wing. 
It is now necessary to define the actual wing which is placed in the tunnel and then find its effect far 

downstream where q$ (y,z) is to be determined. From the analytical solution for a very small wing in an 
infinite field of fluid, 'boundary'  values for ~b = ~b,, + ~bi can be specified on z = 0. 
Let the velocity potential of the perturbed flow. 

= Real part of [~(x,y,z)e i'~t] (8) 



where ~ is antisymmetric in z, (Reference 4). On the plane z = 0 downstream of the wing of span 2s, 

~)(x,y,O+ ) = -~(x,y ,O-)  for [yl<s, l 
(9) 

J ~(x,y,O) 0 forlYl>S. 

In the wake (x>0, [y[ <~ s, z = O) 

U 3~/3x+ ic0q5 = 0, (10) 

since there is no discontinuity in pressure there. For a wing of very small chord with uniform spanwise 
loading the lift .is specified as 

Real part of [4sp U~(O,y,O + )e ~t] 

= Real part of [½pU2SCLei°~]; (11) 

with this condition at x = 0 equations (9) and (10) give 

USCLe_I~xlV (o(x,y,O+ ) - 8s = -UO(x,y,O-) for yes .  

In the limit as x--* oo equation (12) gives the boundary condition 

(12) 

USCL } 
~b(y,0+) - 8ss for ]yl~s 

qS(y,0+) = 0 for lyl'>s 
(13) 

to be satisfied by ~b (y,z) of equation (4). In the limit as s-*0 the solution of the governing differential 
equation (5) subject to (13) and the boundary conditions of an infinite field is 

dp(y,z) = ~)m(y,z) - 4 ~  Urr K1 ' (14) 

w h e r e  r 2 = y2+z2 and K I (or/U) is a Bessel function in the usual notation. Since K1 (cor/U) satisfies 
the ordinary differential equation 

K I + - ~  1 = 1+ K1, (15) 

it can be verified that equation (14) is a particular solution of equation (5). Moreover, for small r equation 
(14) becomes 

  cLozi  or, 1 ,(y,z)- Vr ÷O( ,v l°gv)  

4 



so that 

; _ f p ( y , z ) d y - U S C L  [ 2 t a n _  1 s + 0 ( _ _ ~ ) ]  

_ USCL as z~O, (16) 
4 

which is consistent with equation (13). 
The problem is to solve the two-dimensional differential equation (5) subject to the boundary conditions 

in Fig. 2 (Section 2.2). Since these are independent of Mach number, so are the solutions for q~ and 
' h  = '~-'~,.- 

2.4. Determination of the Scaling Factor. 
For a wing of small span q~m is given by equation (14). Let the electrical potential representing q~,~ on 

the network be V,, where 

V,, = ~4~F'h(°m (17) 
USCL 

in which F' is a scaling factor. 

For steady flow the expression for ~b,. is 

USCL z 
4 ) , . -  4~ r z 

and hence the electrical potential becomes 

V m = hF'z/r 2. (18) 

For convenience the scale factor, F', is chosen to be 10 000 x 6/88. Hence all measurements on the 
electrical network must be multiplied by a factor such that 

USC L 88 
qT"-  - -  V,,,. (19) 

4r& 60 000 

It should be noted that the same scaling factor is used both for steady and unsteady problems. 

3. The Electrical Analogue. 
The analogy between the finite difference form of partial differential equations and the electrical 

equations to resistance network has been used in the study of many field problems s'6. In this instance 
an analogous network to a second order partial differential equation is required and is devised in the follow- 
ing manner. 

The equation 

02q~. ~2~ 
Oy2 +'~-Z2 = (o9/U)2~ (5) 



must first be written in finite difference form, 

951 + 492 + 493 + 49,* -4490 = (og/U)ZdZ49o (20) 

where d is the mesh interval and the nodes are numbered as shown in Fig. M. Now for the electrical 
network of Fig. 3b the sum of currents entering the node 0 must be zero ; hence 

v l -  Vo ~_ v 2 -  Vo + V3-  Vo v ~ -  Vo_~ O -  Vo 
+ - - - 0  

p p p p R 

which may be rewritten as 

VI + V2 + V3+ V 4 - 4 V  = pVo/R. (21) 

Equations (20) and (21) are identical in 49 and V if the resistances are chose such that 

p/R = (oJ/U)2d 2. 

When this condition is satisfied the network of resistors can be used to represent exactly the finite difference 
form of the differential equations and once the correct boundary conditions are set on the network it 
becomes a model of the mathematical idealisation of the problem. 

For  the particular case when <nh/U = 1 and the tunnel height, is divided into eighty-eight mesh 
intervals (hid = 88), 

R = p(U/o~d) 2 = 0(88) 2, 

where p is the standard mesh resistance of 100 ohms. 
Since 49 was required in greater detail in some regions, a system of graded meshes was used. By this 

means the mesh interval near to the wing and around the slots was made to equal h/88 whereas in regions 
where the change in 49 was less rapid the interval was increased to h/22. 

Of the boundary conditions which arise in the problem under consideration, that of the function, 49, 
taking known values can be satisfied directly by setting the equivalent voltage V to the nodes of the 
network. By doubling the value of the resistance on the boundaries, the condition of normal zero slope is 
automatically satisfied. 

By using additional boundary-feeding resistors the condition (7) on a homogeneous boundary, 

49 + Ka49/On = O, 

can also be achieved automatically in the following manner. The slope at node 0 (Fig. 3a) can be written 
a s  

(049/aZ)o = (492- 494)/2d, 

but the homogeneous condition for the edge z = ½h is 

490 + K(O49/Oz) o = O. 
Elimination of (049/&)o gives 

~ :  = 494- (2a/K)49o. 

When this is substituted in the finite difference form of the governing equation (20), 

491 + 493 + 249¢ - 449 0 = (2d/K)(o o + ((D/U)2d2~)o. (22) 
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If the circuit is modified with an extra resistor connected to each boundary node (Fig. 3c) the electrical 
equation becomes 

V~ + V3 + 2V4- 4Vo = (2p/X)Vo + (p/R)Vo. (23) 

For the equations (22) and (23) to be analogous 

2d/K = 2p/X or X = (p/d)K. 

As an example, the homogeneous condition where all = 1/8, d/I = 1/16 then 

K = _l loge cosec(rca/21) = / log~ cosec(~r/16), 
7C 

hence the resistance X = 16p loge cosec(re/16) (24) 
rc 

where the resistance p is 100 ohms. 
The advantages of the resistance network method of solution are as follows : - -  

(1) In areas of particular interest the mesh interval can be decreased to permit a closer study of any 
critical effects. 

(2) Only the values of the function in regions of particular interest need to be recorded. 
(3) Boundary conditions can generally be applied automatically. 
(4) Successive problems with the same geometry can be set on the network rapidly. 

4. Steady Flow in Slotted Wall Tunnels. 
The equation which has to be solved for the steady flow in slotted wall tunnels is the Laplace equation, 

VZq5 = 0. This equation is a standard problem for solution using a resistance network but techniques 
additional to the standard procedure are required to simulate the effect of discontinuities at the slots, to 
simulate the wing and also permit an accurate evaluation of the interference potential. Reference should 
also be made to the Appendix for a detailed treatment of the singularities. 

4.1. Discontinuities. 
Discontinuities in the slope of the velocity potential occur at the edges of the slats and so as to test the 

ability of the resistance network to simulate the flow around the edge of a slat, the first problem selected 
was one for which an analytical solution is available. This problem, the non-viscous flow through a grating, 
is discussed by Lamb 7. The dimensions for the particular example studied here were chosen to approxi- 
mate to the shape of the wind tunnel to be considered in the following section. The length was infinite, 
and breadth between the parallel walls 44 mesh intervals and the width of the slot 4 mesh intervals (so 
that the open area ratio was 1/ l l th) ;  the total inflow set to be zc units (Fig. 4a) and the boundary conditions 
are satisfied as described in Section 2.3. Appreciable errors were found to occur around the nodes represent- 
ing the slot; the flow at the centre of the slot was found to be 15 per cent low and the flow at the quarter 
points of the slot was 18.5 per cent low. 

These errors arose because the standard finite difference approximation is unable to represent the 
discontinuity in the slope of the velocity potential at the edge of the slot. To overcome this difficulty 
use can be made of additional information which is available about the form of the function around the 
singularity. The form of the velocity potential around the edge of an obstacle consisting of a thin wall in an 
infinite field is known, and since the shape of the function sufficiently close to the edge of the wall does not 
depend on the remainder of the field, this information can be used in the finite difference analysis of any 



problem in which the flow is restricted by a thin wall, whatever the other boundary conditions. 
However, the magnitude of the function is dependent on the remainder of the field and therefore a 

mathematical solution is used close to the singularity, the standard finite difference solution is used in the 
remainder of the field and these two solutions are made to join smoothly. 

The flows close to the edge of the wall takes the form, 

q~ = A 1 r~ sin 0/2  + A 2 r 3/2 sin 30/2 + . . .  (25) 

where A 1 and A 2 are unknown constants, 

r is the radius from the edge of the wall, 

0 is the angle of the radius measured from the line across the open portion 
of the slots (Fig. 4b). 

At the four points C, D, E, F, surrounding the edge of the wall as shown in Fig. 4b, the expressions for the 
functions ~b are: 

q~c = A lh~ sin re~2 + A2h 3/2 sin 3zc/2 

~b D = Al(2h) -~ sinrc/2 + A2(2h) 3/2 sin 3rc/2 

~b E = A lh~ sin ~z/4 + A2 h3/2 sin 3rc/4 

~be = A 1 (2h) -I sin ~/4 + A2(2h) 3/2 sin 3~/4. 

By eliminating A 1 and A2 the functions ~b c and q5 E can be written in terms of q5 F and ~bD, 

q5 c = 0.25q~v+0.5303q5 D "[ 

; ~b e = 0.5303~b F+0.125~b D 
(26) 

In order to ensure that this particular function joins smoothly with the normal resistance solution, 
an iterative procedure has to be adopted. From an initial solution in which the normal resistance network 
is used over the entire field, values of q~D and ~bv are measured and from substitution in equations (26) 
values of ~b c and 4)~ are calculated. These are set as potentials on the network, and new values of ~bD and 
~p are measured. This process is repeated until the calculated values of q~c and ~E equal those set in the 
previous iteration. When this occurs both the special formula and the standard finite difference equations 
are satisfied in the region between BEC and AFD. 

When the solution ofthe flow through the gating was repeated by use of the special singularity function, 
the values of the flow across the slot agreed more closely with the analytical values of Lamb, the greatest 

err°rbe ing3percent 'asa t i s fac t°ryresu l t f ° rsuchac°arsene t 'The t° ta l f l °w[~dYl  z=const is de- 

fined as ~ and the localised flow d (adp/Oz) for points A and B (Fig. 4) tabulated below. 

Exact solution 
Standard resistance network solution 
Solution with singularity formula 

Point A 

0.524 
0.445 
0.540 

Point B 

0.598 
0.487 
0'611 



4.2. Simulation of the Wing. 
In this study the wing could be assumed to be either elliptically loaded or uniformly loaded. However, 

when the span of the wing tends to zero, these two loading cases become the same, and the unconstrained 
velocity potential for o )~0  is 

USCL z 
q~m- 4 ~  r z" (27) 

In view of the singularity at the origin it is clear that q~ cannot be set at this point of the resistance network. 
However, if it is permissible to represent the wing by setting values on an arc enclosing the point wing, the 
difficulty would be overcome. For example, with an arc of radius approximately hi12, the values of ~bm 
on the Z axis is about ten times the largest value of ~b on the roof of the tunnel. Such a range of values can 
easily be set on the resistance network. 

To verify that there is no finite difference error when simulating the wing of small span by setting the 
function on a small arc around the origin, the following experiment was performed. A large field was 
divided into a square mesh and values of ~b,~, calculated according to equation (27) were set both on an arc 
a short distance from the origin and on the external boundary of the field. Potentials throughout the field 
were measured and were found to agree everywhere with calculated values of ~,,. If the setting of the func- 
tion on the arc had been inadequate, discrepancies between the values would have occurred within the 
field, from the close agreement it was assumed that the simulation is satisfactory. 

4.3. Determination of Interference Potential. 
When carrying out the analysis the quantities which have to be determined accurately are, 

(a) the total flow towards each slot; 

(b) the interference potential at the wing. 

These two quantities were determined in the following manner. The total flow, Q, through a slot in 
the plane of the model (which equals half the value at infinity) was calculated from 

2Q= Ndy, 

o r  I 

8~zhQ _ l ~ OV 

USCL F' J ~z dy. 

In practice integration was taken across a rectangular boundary approximately six mesh intervals from the 
slot. 

The lift interference parameter for a small model, 60 is determined from the expression, 

26o = USCL \ OzJ o' 

again the parameter is evaluated in the plane of the model. The term (O(oJOZ)o is calculated by numerical 
differentiation using a three point formula. 

Two methods of determining the interference potentials were studied, in the first a single solution in 
terms of the interference potential only was obtained, whereas in the second method successive solutions 
in the velocity potential and then the interference potential were tried until convergence occurred. 



4.3.1. First method. 
For the first attempt the analysis of the flow in the tunnel was only in terms of the interference potential 

where q~i = ~b- q~£. Since an analytical expression is available for ~b= and the boundary conditions were 
stated in terms of q~, the problem can be stated entirely in terms of ~b~. The governing equation to be solved 

is 

a24,i a24~ 
0y a + - ~ - z 2  = 0 for IYl <½b, IZl <½h, (29) 

with &/)JOy = -O(om/Oy on y = _+½b 

O~ai/Oz = -Odp,~/Oz on z = __½h 

4~i= -q5 m o n z =  +½h 

(because the flow across the vertical walls of the tunnel c~(o/ay is 
zero), 
for the closed portions of the roof and floor (because the flow 
across the closed portion of the roof O(o/az is zero), 
for the open portions of the roof and floor (because the value 
of ~b across the slots is zero), 

~bi = 0 on z = 0 o n  the horizontal centre line. 
The advantage of working directly in terms of q~ is that the interference upwash c~(o~/az at the wing 

is a small quantity which can be evaluated directly, whereas if it was calculated from an experiment in ~b, 
being a small quantity compared with c%D/& and O¢,,/c~z it would be liable to error. 

However considerable practical difficulty was encountered in setting the boundary slopes c~d~JOy and 
O(oi/c~z. Further, a very severe variation of the function ¢i occurs in the neighbourhood of the slots with 
the result that it was virtually impossible to satisfy the boundary conditions in that region. Thus, through 
reliable values of the interference potential remote from the slots were obtained, the solution could not 
be used to determine accurately values of the flow at the slots. 

4.3.2. Second method. 
As an alternative to only working in terms of qSi, a step by step procedure was carried out whereby 

successive experiments in q5 and ~b~ quickly led to solutions giving all necessary results. 
In carrying out the first analysis in terms of ~b the boundary conditions can be stated as, 

c~4/an = 0 on closed portions of the tunnel wall and roof and y = 0 

q~ = 0 on open portions of the tunnel roof and z = 0 

with the wing simulated as in the manner of Section 4.2. For  the initial experiment it is necessary to set 
values of q~,, (the velocity potential in an unrestricted field) on the arc around the wing. But, because the 
velocity potential will be modified due to the interference effects of the tunnel boundary, in a later experi- 
ment the velocity potential on the arc is set from 4~ = q~= + qS~. 

Therefore the procedure is that an experiment in q~ is carried out with the correct conditions on the tunnel 
boundaries but with calculated values of q~,, set around the wing. This is followed by an experiment in 
q5 i on the same resistance network with the potentials at the boundary of the tunnel calculated from 
q~ = q5- q~,, and with the condition that ~bl = 0 on the line y = 0. 

The third experiment involves a repeat of the analysis in ~b but with corrected values on the arc around 
the wing. In the final experiment new calculated values of.~b~ are applied on the boundary. Provided that 
the values of~b~ in this last experiment have changed little from the second experiment it can be assumed that 
convergence has occurred. The four steps are summarised in Fig. 5. 

In the experiments in q~ the singularity formula was used, and since q~ was set from ~b~ = ~b-q~,, the 
singularity formula was implicit in the experiments in q~. However, it was necessary to calculate the set 
values of q~, not only on the tunnel boundaries but also on the nodes within the tunnel where singularity 
potentials in q~ had already been applied. 

1 0  



5. Experiments in Steady Flow. 
The particular tunnel represented on the electrical analogue has a height/breadth ratio of one half 

with the wing in the centre of the tunnel. To represent the conditions in the N.P.L. slotted wall tunnels 
the open area ratio a/lis taken to be 1/11 (Table 1 of Ref. 1). Four  slots were taken in both the roof  and floor, 
and in the first experiment a slot is positioned directly above the model and a half slot is adjacent to each 
side wall. Due to symmetry only one quarter of the tunnel need be studied. 

5.1. Exploratory Work. 
Exploratory tests were conducted with a uniform square mesh the full breadth of the tunnel being 

represented by 88 mesh intervals, and each slot by 2 mesh intervals. Potentials on the arc around the wing 
were set by using ten turn helical potentiometers, the maximum potential being 2 volts. Values equivalent 
to ~b~ were set on the tunnel boundaries by means of potential dividers, which consist of a length of resist- 
ance wire with numerous tappings. Measurement of the potentials was achieved either through a digital 
voltmeter or by a null method using a voltage dividing resistance. 

With this tunnel singularities occurred on the edges of each slot, but by following the procedure 
described in Section 4.1 adjustments were carried out simultaneously at all the singularities and rapid 
convergence occurred. 

5.2. Solutions with Finer Net. 
Though the results of the exploratory tests appeared to be satisfactory, it was thought to be advisable 

to halve the mesh size in the regions around the slots and  the wing. Therefore a graded network was 
introduced and the form of the grading can be seen from the mesh numbering on the results sheet, Fig. 7. 
A photograph of the apparatus and ancillary equipment is included in Fig. 6. In the first experiment when 
q~,, was set around the wing, the magnitude for the point where the arc crosses the z axis was 10000 but 
it had to be corrected due to the tunnel interference to 9943 for the third experiment. However, little 
change was noted in the values of qS~ between the second and fourt h experiments. 

It is not possible to assess directly the accuracy of either the coarse net or the graded net, since there is 
no exact theory with which the results can be compared. However the close agreement between the potent- 
ials in the two experiments suggests that there is no serious net effect. In particular the comparison of the 
flow through the individual slots, to be found in the following table, indicates that the finite net is a 
satisfactory representation of the flow within the tunnel. 

Position of slot 

y = O, z =½h 
y=½h, z = ½ h  
y = h, z =½h 

Flow USCL 
4rch 

176 x 88 graded net 

+2.30 
+0.72 
+0"08 

88 x 44 uniform net 

+2.36 
+0.73 
+ 0"085 

5.3. Slot and Slat Centres Interchanged. 

In a second experiment the slot and slat centres were interchanged such that there was a slat directly 
above the wing. The experiment was carried out on the 88 x 44 network and the flows calculated as before. 

The flows through the individual slots were + 1.60 and +0.225 x 4nh/USCL. A comparison showing 
the effect on the interference upwash of interchanging the slots and slats is to be found in the table included 
in the following section. The total flow through the slots is reduced from ~,8nhQ/USCL = 3.90 to 3.79 for 
the case where a slat is directly above the model. 
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5.4. Homogeneous Boundary Condition. 
Little modification is required to the experimental technique to permit the setting of the homogeneous 

condition, 

~+KO¢/~z = 0 

on the tunnel roof and floor. Resistors, calculated according to Section 3 are connected from the boundary 
nodes on the tunnel roof to zero potential, whilst the tunnel sides are left free thus satisfying the condition 
~c~/On = 0. The first analysis in q5 is carried out as before With the values of 4),, applied on the arc around 
the wi/lg. From this solution values of q~ are calculated for the tunnel wall and roof, and an analysis in 
~b~ is performed. This is followed by a further experiment in q5 with improved values set around the wing 
and a final experiment in 4h leads to the required information about the interference upwash. 

In the following table the exact solution for the interference upwash (Reference 3) is compared with the 
results for the homogeneous condition and the slotted tunnels. 

Homogeneous boundary (exact solution) 
Homogeneous boundary (Analogue solution) 
Slotted tunnel, slot above wing 
Slotted tunnel, slat above wing 

6o 

-0.0871 
-0.0869 
-0.0976 
-0.0642 

6.0. Unsteady Flow. 
The resistance network technique can readily be extended to include the effect of unsteady flow. The 

governing equation, .~ 

02¢ ~24, 
Oy ~ ~--~z ~ = (m/uy¢, (5) 

can be analysed on a resistance network constructed according to Section 3. 
The range of frequency parameters analysed was such that 

O<~ ~oh/U < l 

and the actual values studied were o)h/U = 0, 0.1988, 0.5101 and 1.000. There is no special significance 
in the magnitude of the values chosen; they were selected to coincide with standard resistance values. 
For  a mesh resistance of 100 ohms, the resistances used to simulate the frequency parameter corresponding 
to a unit mesh were 20M ohms, 3M ohms and 774K ohms. In the photograph of the apparatus, Fig. 6, 
the mesh resistors are mounted in the horizontal board, and the resistors corresponding to the frequency 
are set in the vertical board. 

In order to satisfy the singularity condition on the edge of the slots, a technique similar to that used in 
steady flow is adopted. The general form of the singularity equations is derived in the Appendix and for 
the particular frequency parameter coh/U = 1.0 they become, 

~b c = 0.24997 ¢p+0.53030 ~bD 

~bE = 0.53030 ¢F+0.12499 4)D 

These coefficients are so close to those used for steady flow in equation (26), that it is sufficiently accurate 
to use the steady state equations for all the frequency values considered in this report. 
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A similar system of iteration was adopted working first in q~ and then in q~ also the scale factor remained 
unchanged from that given in Section 2.4. From the resultant values of ~ and q~i the total flow towards the 
slots and the interference upwash at the origin were determined. The manner in which these depend on 
the frequency is illustrated by the graphs of Fig. 8. 

7. Concluding Remarks. 
In this report a pure resistance electrical network has been described which represents a two dimen- 

sional perturbation velocity potential over the cross section of a slotted rectangular wind tunnel. Though 
the use of a network implies that the field is divided into a finite mesh, by the introduction of graded nets 
sufficient detail is obtained in regions where the change in potential is rapid. Additional techniques have 
been devised to cope with the singular behaviour at the small wing and also on the edges of the slots. 

Using the resistance network, information has been obtained about the interference upwash parameter 
at the origin of the wing in steady flow. The experimental value with the homogeneous condition on the 
boundary is found to agree well with the analytical value from Ref. 3. The values for actual slots, with 
the slot or the slat above the wing, are found to lie on either side of the homogeneous condition. It is 
physically reasonable that the case where the slot is positioned above the origin should deviate towards 
that of an open tunnel, while the case with a central slat should tend towards the closed boundary condition. 

A second important conclusion which can be deduced from the results of this report is that the magni- 
tude of the inflow near the roof slots tends to be reduced as the frequency of the oscillation increases. 
A more accurate simulation of the conditions with a free stream surface bridging each slot would be 
advantageous, but it would require a much finer grid in the neighbourhood of the slots with an iterative 
process on the boundary even in steady flow. Under such conditions the tunnel boundaries, would no 
longer be cylindrical, so that the present approach would not apply. The time dependent free boundaries 
of an oscillatory flow in a slotted tunnel could still provide a clue to the large interference effects observed 
in slotted tunnels (Ref. 1). 

Further work which is being carried out with the two dimensional resistance network includes the 
effect of increasing the number of slots in the roof of the tunnel and determining how the interference 
parameter converges to the analytical results of the homogeneous condition. Another problem being 
studied is that of all four walls slotted. 

The success of the two dimensional network suggests that a three dimensional network would be useful, 
for it would permit the evaluation of the streamline curvature correction for slotted tunnels. It might 
also be applied to the more difficult problem of interference upwash near an oscillating model. 
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This report describes the initial investigations for the study of wind tunnel interference effects by means 

of an analogue computer. 
The study of these wind tunnel interference problems was suggested by Mr. H. C. Garner of the National 

Physical Laboratory, and the mathematical derivations in Section 2 are based on his notes. The author 
wishes to thank him and his colleagues for all their help. 

Also the author wishes to acknowledge the help given by Miss G. Vaisey on the theoretical aspects of 
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NOTATION 

Arbitrary constants 

Width of slot 

Tunnel breadth 

Lift coefficient 

Mesh interval 

Scaling factor 

Height of tunnel 

Bessel functions (n = ½, 1 . . . .  ) 

Geometric slot parameter equation (7) 

Periodic slot spacing 

Mach number 

Resistances 

Radial co-ordinate 

Planform area 

Semi-span of wing 

Time 

Undisturbed stream velocity 

Velocity components 

Voltage 

Resistance 

Co-ordinates 

Angle 

Stream density 

Lift interference parameter for small model 

Perturbation velocity potential 

q~ = Real part of (~(x,y,z)e i'~t) 

Two-dimensional velocity potential in equation (4) 

q~,~b for model in unconstrained flow 

Interference velocity potential 

Angular frequency of the oscillation 
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APPENDIX 

Singularity Equations. 
The need to introduce singularity equations arises from the inability of the standard finite difference 

network to represent the infinite slope of the function which occurs at the edge of the slot. If the normal 
finite difference expansion is replaced by an alternative expression in the neighbourhood of the slot, 
such that this alternative expression satisfies the condition of infinite slope, then an improved solution 
can be anticipated. 

The following derivation was suggested by Mr. W. E. A. Acum of the National Physical Laboratory, 
but the originator of this method is not known. 

Within the region R bounded by the closed curve C, Fig. A1, the governing equation is equation (5), 
and the boundary conditions are that q~ vanishes on 0P and its normal derivative vanishes on 0Q. It is 
convenient to write equation (5) in polar form, 

cOr 2 r 6302 ~ ~b = 0; (A1) 

the corresponding boundary conditions are, 

¢ = 0 o n 0 = 0 ,  

O~b/a0 = 0 on 0 = n. (A2) 

The general solution of equation (A1) and the boundary conditions are given by the infinite series 

c~ = ~ [AmI,.__~_(oor/U)+ B,.K,._ ~(oor/U)]sin(m-½)O, (A3) 
m = l  

where Im and K,, are Bessel Functions and Am and B,, are constants. But K~ has an infinity at r = 0 
and must be rejected to keep ~b finite. Hence 

d~ = ~ AmIm_~_(oor/U)sin(m-½)O. (A4) 
m = l  

If q~ = g(O) is known on any small circle r = ro, the constants Am can be evaluated. 

However, ~b may be expanded in the form of (A4) and close to 0 it is sufficient to take only the first two 
terms of the expansion. Then the expressions for the points C, D, E, and F, Fig. 4b, can be written in terms of 
the two constants A1 and A2. For example, 

(~c = A 1I 1/2(o.)d/U) sinn/2 + A213/2(cod/U ) sin 37z/2 

and there are similar expressions for qSo,q5 E and q~v.- Elimination of Aland A z gives, 

1 
zx/z 

(A5) 
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where 

c~ - I~/2(co d/U) 4- 13/2(0") d/U) 
11/2(2oo d/U) 13/2(20) d/U) 

I1/2(09 d/U) I3/2(60 d/U) 
= 11/2(2ogd/U) 13/2(20) d/U).  

(A6) 

Equation (A5) reduces to equation (26) when co~0. 
The manner in which these equations are used 'in a resistance network solution is described in 

Section 4.1. 
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Part II.--Particular Examples of Slotted-Wall Tunnel Interference in 
Steady Flow 

Summary. 
In Part II the electrical analogue computer is used to obtain results for two particular steady flow 

problems. The first involves a comparison between actual slotted walls and an equivalent homogeneous 
condition. In the second the lift interference for tunnels with all four walls slotted is examined. 

1. Introduction. 
Part I describes an electrical analogue computer which can be used to investigate the interference 

velocity potential in slotted wind tunnels. The computer consists of a rectangular array of resistors which 
form, in effect, a model of the tunnel. The equations of the electrical network are made identical to the 
finite difference form of the two-dimensional differential equation which governs the linearized flow in 
the wake of an oscillating wing. 

The resistance network is now used to estimate the interference upwash in steady flow for two types of 
tunnel boundary. The first study is concerned with small lifting wings in rectangular tunnels with both 
the roof and the floor slotted. As the number of slots is increased from two, the interference upwash for 
discrete slots converges towards that for an equivalent homogeneous condition, and conclusions can be 
made concerning the adequacy of the homogeneous condition. 

Secondly rectangular tunnels with slots on each wall were investigated. Three typical shapes of tunnel 
were examined with homogeneous conditions ranging from open to closed boundaries. 

2. Re'sume of the Analogue Method. 
A detailed derivation of the governing equations and the analogy between the physical and electrical 

system has been given by the author in Part I, but in this Section a brief r6sum6 will be given of the 
information relevant to the present studies. 

For  steady subsonic flow in a cylindrical tunnel of infinite length the perturbation velocity potential, 
~b, in the transverse plane of a small model is governed by the Laplace equation. 

a~4~/ay ~ + a % / a z  ~ = o. (1) 

If a lifting wing of small span is positioned on the axis of the tunnel, the velocity potential in the plane 
of the wing is 

U S C  L z 

~ m - -  87C r 2 (2) 

where U is the undisturbed stream velocity, S is the planform area, CL is the lift coefficient, z and r are 
the vertical and radial distances from the wing. 

Various linearized conditions can occur on the walls of the tunnel. On an open boundary, or a slot, 
~b = 0, and on a closed boundary or a slat 8~o/3n = 0. Instead of treating a slotted boundary as separate 
slots and slats an edluivalent homogeneous condition can be used 

q5 + K 84)/8n = O, (3) 

where 

K = Fh = logecosec~- (4) 
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is a constant dependent on the open area ratio, all, and the slot spacing 1. The object to determine the 
interference effects, is most conveniently achieved by an analysis in ~b followed by a further analysis in 
the interference potential qS~, 

= 4- m. 

This satisfies the Laplace equation subject to the boundary values equal to the difference between an 
initial value of 4,, and the calculated values ~b m for an unconstrained field. 

The resistance network automatically solves the finite difference form of the Laplace equation (1), 
and the boundary conditions are applied as voltages or currents. Then electrical potentials are measured 
on the network and these are equivalent to the velocity potentials. For  further details of the analogue 
techniques reference should be made to Section 3 of Part I. Finally the interference upwash at the wing 
is expressed as a lift interference parameter 

hb ~(~ 
r o -  " (6) 

3. Validity of the Equivalent Homogeneous Condition. 
The validity of the equivalent homogeneous boundary condition (3) was investigated by considering 

a duplex tunnel (h/b = 0.5) having solid side walls, but slotted roof and floor of open area ratio all = 
0"125. Two symmetrical arrangements of the slots are possible; either a slot or a slat is positioned centrally 
above and below the wing. Four  cases of each arrangement were considered, with two, three, four and six 
complete slots, as illustrated in Fig. 1. At the edges of the slots discontinuities in the slope of the potential 
occur, and care must be taken to ensure that these critical regions are represented adequately by the 
resistance network. The singularities were treated using the method of Section 4.1 of Part 1, and the mesh 
interval was chosen so that each complete slot was represented by two mesh intervals. Hence for the 
tunnel with two slots the width of the tunnel was represented by 32 mesh intervals, but for the tunnel 
with six slots, 96 intervals were required. 

The homogeneous boundary condition varies according to the number of slots through the parameter 
I/h. In one instance, when there were four complete slots, the analysis was performed with a central slot, 
with a central slat and also with the equivalent homogeneous condition set on the tunnel roof. The lift 
interference parameters were respectively 6 o -- -0.122, -0.091 and -0.1032. An analytical expression 
(6) for r o with the homogeneous condition leads to a value of r o = -0-1044 which confirms the estimated 
accuracy of _+ 2 per cent or better. Values of 60 from the electrical analogue together with the analytical 
values based on the equivalent homogeneous condition, are recorded in Table I and are plotted in Fig. 2 
against (1 + F) - i from equation (4). The closed and open tunnels, (1 + F) - 1 = 0 and 1.0 respectively, are 
the two extreme conditions. 

Fig. 2 suggests tha t  for more than four slots the lift interference effects at the wing are satisfactorily 
represented by the equivalent homogeneous condition. However, if there are three or fewer slots there 
are large differences between the three values of rio- It will be .noted that the boundary immediately above 
and below the wing is significant; the correct result with a central slat deviates towards that for a closed 
tunnel, while the central slot gives more open (i.e. more negative) lift interference than that predicted by 
the homogeneous condition. For  six slots, however, with central slot or central slat, 60, instead of stradling 
the homogeneous value, slightly less in both cases, but the difference is within the estimated order of 
accuracy of the analogue technique. 

Thus for more than four slots the equivalent homogeneous boundary condition can be expected to 
apply to practical slot arrangements, provided that viscous effects can be ignored. 

4. Rectangular Tunnel with Four Walls Slotted. 
Davies and Moore  1 derive the interference parameter 6 o for small wings in rectangular tunnels with 

four walls slotted by transforming the velocity potential for a .uniformly slotted circular tunnel. Unfortun- 
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ately the rectangular tunnels do not remain uniformly slotted, and no analytical solutions are available 
for four uniformly slotted walls. Therefore analogue solutions have been obtained for the lift interference 
parameter over the practical range of rectangular tunnels with the equivalent homogeneous condition 
set on each wall. Table 2 gives 6o for small wings in three shapes of tunnel (h/b = 0.5, 1.0 and 1.6) with five 
slot conditions (1 + F ) - 1  = 0, 0.35, 0-65, 0.85 and 1. 

The analytical values in the right-hand column of Table 2 are calculated from the appropriate formula 
in Ref. 2 for open and closed tunnels. These are seen to be in good agreement with the end values from the 
electrical analogue. The three curves of 6 o against (1 + F) - 1 are shown in Fig. 3. These are very roughly 
linear in (1 + F)-1, as is exactly true for small wings in multi-slotted circular tunnels (Ref. 2), and in 
rectangular tunnels having very small or very large ratios h/b. Nevertheless, Fig. 3 shows that small errors 
would result if a strictly linear variation were assumed between the exact limits of open and closed tunnels. 

5. Concludinq Remark. 
In this report a pure resistance analogue computer has been used to calculate detailed results for the 

lift interference in slotted wall wind tunnels with small models.in linearized potential flow. The results 
are estimated to be within + 2 per cent, an accuracy which is adequate since the mathematical idealisation 
used in this analysis differs from the actual working of a tunnel; viscous and other non-linear effects at 
the slotted boundaries must contribute major uncertainties. Treatment of these effects requires on the 
one hand empirical data concerning slot flow, and on the other a three dimensional network. 

N O T A T I O N  
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TABLE I 

Duplex Tunnel l,Hth Slotted Roof and Floor 

Number  
of slots 

(x3 

F 

OO 

1.040 

0.694 

0-520 

0-347 

0 

( I + F )  -1 

0 

0-490 

0.591 

0.658 

0.743 

1.0 

6o 

Electrical Analogue 

Slot above 
wing 

0"303 

--0"106 

-0 .122  

-0"151 

Slat above 
wing 

+ 0.098 

- 0.041 

- 0-091 

-0-145 

homogeneous 
condition 

+0"138 

-0 .103  

-0 .262  

Analytical 

aomogeneous 
condition 

+0"137 

-0 .038  

- 0.077 

-0-104  

-0-141 

-0-262 
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T A B L E  2 

Rectangular Tunnels with Homogeneous Conditions on all Four Walls 

h/b = 0.5 

( I + F )  -~ 
~o 

Ana logue  Ana ly t i ca l  

0 +0 .130  +0 .137  

0.35 +0.008 

0"65 - 0 . 1 0 8  

0.85 - 0 . 1 9 3  

1.0 - 0-263 - 0.262 

h/d = 1"0 

~o (1 + F ) -  1 

Analogue  Analy t ica l  

0 +0.137 +0.137 

0.35 +0 .027  

O-65 - 0 - 0 5 1  
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