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Part 1.—Initial Aerodynamic Forces Following a Sudden Change of
Incidence* :

Summary. s

The forces and moments on wings of finite aspect ratio undergoing a sudden change of incidence are
considered at the start of the unsteady motion. Linearized theory is used and the flow is assumed to be
incompressible. The method adopted is only a slight extension of that suggested by R. T. Jones. Applica-
tions are made to rectangular and delta wings, but the method is suitable for many planforms. Spanwise
and chordwise load distributions are given, and the position of the centre of lift is determined exactly
in the case of a square wing. A comparison of the initial and final aerodynamic forces is made.
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1. Introduction.

The determination of the aerodynamic forces on a two-dimensional wing undergoing a sudden change
of incidence has been considered by several writers. Von KA4rméan and Sears', S6hngen?, Sears®, Lechey*
have made positive contributions to the original theory of Wagner?, so that accurate assessments of the
forces can be made. ' )

However, for wings of finite span, the linearized theory for incompressible flow has been formulated
but numerical applications are few. An approximate method was given by R. T. Jones®, who calculated
the growth of lift on elliptic wings of high aspect ratio. More recently, Vogel” has used an extension of
lifting-line theory to calculate the spanwise distribution of lift as a function of time t. His method has so
far been developed for wings with straight quarter-chord lines, but it appears to be somewhat inaccurate
for small time. W. P. Jones® and Drischler® have used oscillatory lift coefficients to obtain the growth
of lift function from the reciprocal relations of Garrick'®. The method given by W. P. Jones is valid only
for certain wings of high aspect ratio. That given by Drischler, who also calculates some spanwise
distributions of lift, is unsuitable for a finite interval of time following the sudden charige of incidence.

In Part I of this report, attention is concentrated on the forces and moments at the start of the unsteady
motion. It is necessary to distinguish between those acting at ¢ = 0 which are of an impulsive nature,
and those acting at t = 0+ which are finite (see Sections 3,7 and 8). The former will be qualified by
“impulsive’ and the latter by ‘initial’ throughout the text. The method adopted to study the initial forces
and moments is but a slight extension of that given by R. T. Jones. It has been applied to rectangular and
delta wings for a fairly wide range of aspect ratio. The total initial lift on rectangular and delta wings
has been calculated approximately by Lehrian'! and Duquenne'?, the latter using directly the method
suggested by R. T. Jones. Their results are compared with those of the present method in Sections 9 and 10.

The main objectives of Part I have been twofold. Firstly, to give initial spanwise and chordwise distri-
butions of lift, since there appears to be no information on these quantities in the literature. Secondly,
to investigate effects of aspect ratio and planform on the total initial lift. In Part II, it is shown how the
calculated results of Part I may be applied to yield comparatively accurate assessments of the unsteady
forces on finite wings in sudden plunging motion or entering a sharp-edged gust.

2. Analogy with Steady Flow.
Consider the translational motion of a flat wing moving with uniform velocity U in an incompressible,
inviscid fluid and suppose that the angle of incidence is given as a function of time by

a(t) = al(t), ' (1
where the unit step-function

1t)=0 (t<0) } )

=1 (=0



Thus, at t = 0, the incidence is suddenly changed from zero to a constant a. It is assumed that a is small
and that the equations of linearized theory hold. Then, in the notation of Fig. 1a, the perturbation velocity
potential ¢(x,y,z,t) satisfies Laplace’s equation

62(}5 (32(]5 62¢
o ot =0 ¢
together with the following conditions:
(a) for points (x,y,0) inside S,
0
% - —Ua10; @
0z :
{b) for points (x,y,0) inside W,
o9 0P
E—f— U— 3 = 05 %)
(c) for points (x,y,0) inside R,
N ¢=0; (6)
(d) ifr<Q,
$=0; ™)

(¢) the pressure difference across the wing is*

'

Ap—p_—p+ =2p(£ af) L (8)

(f) the Kutta-Joukowsky condition of finite fluid velocity at the traﬂing—edge.

Here, S and W are the projections of the wing and wake onto the plane z = o, and R is the remaining
part of this plane. It is assumed that vorticity is shed continually from the trailing edge with effect from
t = 0 in such a way that the Kutta-Joukowsky condition is satisfied for ¢ >0.

The continuity of the downwash at the trailing edge has been considered by Leehey* for two-dimen-
sional wings in arbitrary unsteady motion. He showed that continuity is a direct consequence of the
Kutta-Joukowsky condition. R T. Jones® applied this continuity property to determine, approximately,
the initial forces on elliptic wings of high aspect ratio. In the present paper, we shall also make use of this
property in order to analyse the initial forces and moments on wings of arbitrary planform and aspect
ratio.

If the instantaneous downwash distribution over the wing and wake were known, the corresponding
distribution of ¢ could be determined using Green’s formula,

$x.y.z:) ——hm j f $(X. Yo, t)—( )dXdY o

S+w

*The boundary value problem may be regarded as one for the half-space z>0 or z<o. From here
onwards we consider the problem for z>o.
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where 12 = (x— X)? + (y — Y)* +(z— Z)?, (X, Y,0) is any point inside S+ W and W is of length Ut. At each
instant, the distribution of ¢ would be identical to that for steady flow without circulation over a wing of
area S+ W and of given local incidence. Unfortunately, the downwash in the wake is not generally known
in advance. An exception occurs just after the change of incidence when, by continuity, the downwash
in the infinitesimal wake is Ua. Thus, at the initial instant, the distribution of ¢ over S+ W in the unsteady
problem may be identified with that over a flat wing S+ W in a steady flow without circulation. This -
analogy with steady flow holds since the velocity potentials in both problems satisfy equations (3) and (6)
together with the boundary condition

= = —Uyg, | (10)

for points (x,y,0) inside S+ W.

3. Exact Applications of Analogy.
On the basis of the previous section we now derive general formulae for the initial aerodynamic forces
and moments on wings, following a sudden change of incidence. Some particular results are then obtained.

3.1. Initial Forces and Moments.
The total lift is given by

L) = 2';{” (%(?‘i‘ U%) dxdy = 2p ” (%Q;Jr U%g) dxdy
s S+wW L, (11)
— ZpEJ‘ quxdy
ot
j

since ¢ = 0 at the edges of S+ W, Similarly, the pitching moment about oy (Fig. 1a) is

M) = —2pjjx(%?+ U%i—’)dxdy = —ZpJ‘J‘x (%q?_‘_ U%)dxdy
s _ S+w
- —2p-§5” x¢dxdy‘+2pUJ~ f ddxdy. W
S+W S+w .

We now consider an instantaneous translation of the axes at time ¢ to new origin o’ where 0o’ = $Ut and
x' = x—3Ut, y =1y, z =z ‘ (13)

Thus, o’ is the mid-root chord point of the wing S+ W (Fig. 1b). The initial values of L(z) and M(t) at
t = 04 can then be written ,

A r !
L.=2 [E”wx dy] o (14)

S+wW



M;=-2p [%jj x’d)dx’dy’] =0++pU|:j (/)dx’dy’]FoJr. (15)

S+W S+w

The integrals here are to be found from the solution for steady flow without circulation past the wing
S+ W. The operator A/At denotes that the derivatives are taken with origin of co-ordinates o' at the
instantaneous mid-root chord position. Introduction of this form of differentiation is not strictly necessary
in equation (14), but equation (15) is convenient for certain wings in Section 3.2 and for subsequent
numerical applications.

There are corresponding formulae for the initial spanwise distribution of lift and pitching moment
about oy;

x;+4Ut
A
li(y)=2p[— f dx} , ‘ 6
At 'd) =0+ (16)
x0— 32Ut -
x1t+4Ut V +4Ui
A ?
m,-(y)=—2p[-A—t j x¢dx} +pU[ j ] (17)
xp—4Ut —3U

where x = x,(y), x = x,(y) are the equations of the leading and trailing edges. The initial chordwise
distribution of lift is considered later in Section 8.

3.2. Particular Results.
We now give five simple results based on Section 3.1.
(i) In steady flow without circulation past a flat plate at small incidence «, we may replace the free
stream U by a stream U parallel to the plate and a stream Ua perpendicular to it. The quantity

N = 2pUjj¢dxdy = —2prjx%dxdy (18)

'is the couple acting on the plate and tending to increase a. Clearly N is independent of the orientation of
S with respect to the flow direction. Thus, for rectangular plates symmetrically placed with respect to
the uniform flow and at incidence ¢,

Cyl4
YD oy a =, (19
. N N
where CN = %—pU—zSE:
Similarly, for elliptic plates,
1 CN(A) AA = ) . (20)



(ii) Consider the forces which act on a wing in forward and reverse flight after a sudden change of
incidence from zero to a. According to Heaslet and Spreiter'3, the total lift forces at corresponding times
are equal. That this is true for the initial lifts can be seen as follows. At corresponding times, the shapes
and areas of S+ W are identical in forward and reverse flight. Just after the change of incidence the flow
can be regarded as that past a flat plate S + W and so the above invariant property of N can be used. It then
follows immediately from equation (14) that the initial lift is the same in forward and reverse flight.

(iii) By combining the simple, basic ideas of (i) and (ii} and applying them to equation (16) it is seen
that the initial spanwise distributions of lift are identical in forward and reverse flight. In general, this
property will not remain true in the subsequent motion.

(iv) The initial pitching moment and its spanwise distribution for wings symmetrical with respect

to oy simplify to
M, = pU|: J‘qudx’dy’J =IN (21)
’ =04+
S+w
and
x1+4U0t
myy) = pU[ j d)dx'] = 3n(y), say, (22)
t=0+
xo—4Ut

since S+ W is symmetrical with respect to o'y’ and so ¢ is an even function of x'. Thus, for elliptic wings
on which

Uoca x2 y?\?
¢(X,y,0) ( __z—y_z) >

a N

we find ,
2y 1—y?/s?
M. = 200> (__) (1) — 2,2
; = npU’aa’s 3E) myy) = npU%aa 5 )

where E is the ratio of semi-perimeter to span.

(v} For two-dimensional wings, where the distribution of ¢ over the chord is Ua(a® — x?)?,
n = nplU%0a?

Application of equations (16) and (22) now gives for the initial lift and pitching moment
1{An A
Z g = — — - 2 — 2
; U(At )t=o+ nonc——{At a®) = npU’aa

n =inp Uzocaz,

=

mi=

whence the initial position of the centre of lift is at the quarter-chord point. These results are in agreement
with those derived in Refs. 1, 2 and 5.



4. Approximate Equations for Steady Flow without Circulation.

In order to be able to apply the formulae of Section 3.1 to the initial forces and moments on wings of
arbitrary planform and aspect ratio, it is necessary to derive the solution for steady flow without circula-
tion. The exact integral equation for this latter problem is first considered.

The perturbation velocity potential ¢(x,y,z) for steady flow without circulation past a ﬂat wing S is
given by Green’s formula as

Bxp2) = 5 ‘;iof $(X,Yo) ( )dXdY.

On differentiation with respect to z and letting z—o, it can be shown that the following two equivalent
forms of integral equation hold for (x,y,0) inside S ;

10 j 09 [(—XP+(y— Y)z]—dX 2y

Vo= a)lay —X)(y— 1) 23)
S
1 a|oe [x—-X) +(—Y) T, -
‘Zia_ygﬁ cxo-1 T @4

where the integrals are to be interpreted as Cauchy principal values. :

Unfortunately, the inversion formulae for these equations are not known for general planforms.
Approximate equations, suitable for wings of high and of low aspect ratio, will be derived in Sections
4.1and 4.2. Although more elaborate approximate methods are available we follow the lines of Lawrence'4
and reduce the double integral equations (23) and (24) to two single ones. It will be seen that there is a
precise duality between the high-aspect-ratio and low-aspect-ratio approximations. This duality is not
so apparent in Ref. 14 where steady flow with circulation is considered. :

4.1. Wings of High Aspect Ratio.
We first multiply equation (23) by 2[x;(y) —xJ?* [x — x4(y)]* and integrate over the local chord to obtain

1nUncX(y) =

(.00, Pla—XPro-YPT  Yrotx)—x
JdY aYde G-D0-Y) [0 - Dx—xg @)

—s.  xo(Y) xa(»)

where ¢(y) = x;(y)—x,(y). For wings of high aspect ratio [(x — X)*>+(y— ¥Y)*]* is approx1mately ly—7Y|
over most of the platform. If this approximation is made, the integration with aspect to x gives nl y—Y|/
(y—Y) and then equation (25) simplifies to

x1

1npUuc(y) = 20U | $dX = n(y). (26)

Xo

This is equivalent to the assumption that two-dimensional theory holds at each section y = constant
[cf Section 3.2, (v)]. We shall refer to this point in Section 10. If the approximation [icz(y )+ —Y)?]*
is made for [(x —X)>+(y— Y)%]%, equation (25) can be written in the form
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5

ampUac’(y) = 3n(y) +%j

—5

[°0)+ = V2T dn
y—Y ay

Y. (27)

The analysis involved is too lengthy to be given here but the derivation is similar to Lawrence’s deriva-
tion of equation (39) in Ref. 14. For rectangular wings, it can be shown that equation (27) holds exactly
as aspect ratio tends to zero.

4.2. Wings of Low Aspect Ratio. )

This time we start from equation (24) which we multiply by 2[$b*(x)— y*]* and integrate over the local
span. The procedure is then analogous to that of Section 4.1 and similar to that given by Lawrence**
for the flow with circulation past wings of low aspect ratio. On using the approximation |x—X]| for
[(x—X)*+(y— Y)*]*, we obtain

Mo

b
LnpU?ub’(x) = 2pU | ¢dY = h(x), say,

b

B

analogous to equation (26). Similarly, on making the approximation [(x— X)?+3b*(x)]* for [(x — X)*+
(y— Y)*]*, we find that : :

. a _ 2 132 %
rpUPob?() = o+ | VBT gy (28)

—a

which is analogous to equation (27). For rectangular wings, it can be shown that equation (28) holds
exactly as aspect ratio tends to infinity.

Equations (27) and (28) are identical in form. They are not, however, valid for every type of planform.
For example, equation (28) cannot be used for swallow-tailed wings. On the other hand, use of this
equation, unlike the corresponding equation in Lawrence’s theory, is not restricted to wings with unswept
trailing edges. -

5. Method of Solution for Wings of High Aépect Ratio.
Equation (27) is an integro-differential equation for a(y) which must satisfy

n(y)=n(—y) and n(xs)=0.
Let n(y) = n*{(0) and c(y) = c*(0), where y = scosB; and write
j «
n*(6) = npUzaaiBZr_IM, (29)

2r—1

r=1

where the coefficients B,,_; are non-dimensional. It follows that

8

N = j‘n(y)dy = in?pU?0a?sB,.

-



On substituting the series (29) into equation (27) we obtain

c0) ] ' {2sin(2r—1)9 }
[‘—] —ZB;,_I a1 i 0
_ 1

r=

where

4

B j [(c*(8)/25)* + (cos 8 —cos B)*]*

IL,_,= 030 —cosd cos(2r—1)6.46.
(4]
This integral is written as
_c*O)[cos2r—=1)8 - [[(c*(8)/25)> +(cos 8 —cosB)*]* —c*(6)/2s o
Lar1 =5 Icose—cosé a0+ cosf—cosf cos(ar—1)6.d5
0 0

The first integral can be integrated as a Cauchy principal value and the second can be written as a regular
integral. Hence, '

—nc*(0) sin(2r—1)0 N r (cos @ —cosO)cos(2r —1)0.d0
2s sind ) [(c*(6)/2s)* +(cos O~ cosB)? ] +c*(6)/2s
0]

'I2r—1 =

The integral here can be evaluated numerically to any desired degree of accuracy. In the computations
for equation (30), j was taken as 4 and the equation was satisfied at the 7 spanwise control points
0 = n/8, 2n/8, . . . Tn/8. Before solving the matrix equation for B,,_,, the accuracy is refined by intro-
ducing correction factors

Qr—I)xz
%

(= il—g&, where 0, =

(r=12 ...},

into those terms arising from dn*/df. This procedure is in accordance with Chapter 4 of Ref. 15. Values
of the coefficients B,,_, are given in Table 1 for rectangular and cropped delta wings.

6. Method of Solution for Wings of Low Aspect Ratio.
Equation (28) is an integro-differential equation for A(x) which must satisfy

h(+a) = 0.

Let h(x) = h*()) and b(x) = b*(y), where x = acosyy, and write

k

W) = npUzasZD,Sir;rw, (31)

r=1




where the coefficients D, are non-dimensional. It follows that

a

N = ~fh(x)dx = in?pUwas’D,.

—-a
On substituting the trigonometrical quantities into equation (28) we find

s , ¥ 2a  siny

r=

T

B j (cosy —cosif)cosriy . A } .
[(b*(¥)/2a)* + (cosy —cos )*]* + b*()/2a

0

(32)

For rectangular wings, h(x) is an even function of x; so that D, = 0 if r is even. Further, comparison
of equation (30) with ¢*(6) = 2a and of equation (32) with b*(jy) = 25 shows that they are equivalent if
a and s are interchanged. Regarded as functions of aspect ratio,

By —1(4) = Dy, _4(4) (44" =1), (33)
if the number and positions of the respective control points are the same. This simplification has been
adopted and the results for B,,_ ,(4) used to give those for D,,_;(4"). Thus, computations to find h*)
for rectangular wings of low aspect ratio were effectively made with 7 chordwise control points, Y = /8,
2n/8, ... Tn/8.

Rather more care has been taken with the calculations for delta wings by the low-aspect-ratio method.

For such wings, h(x) is not an even function of x and equation (32) is satisfied at (k— 1) chordwise control
points ¢ = n/k, 2n/k, . .. (k— 1)r/k, together with the apex condition

k
Y (=1y*'D, =0.
r=1 -
Values of D, are given in Tables 2 and 3 for delta wings of taper ratios 4 = 0 and 1/7, with k = 6.

7. Impulsive Load Distribution. .

Theforcesatt = Qare of an impulsive nature due to the infinite acceleration of the wing and the assumed
incompressibility of the fluid. The impulsive load distribution,

0 g
(Ap)eo = 2050 = 20002 160))

is found from the velocity potential ¢(x,y,0) for steady flow without circulation. For all wings symmetrical '
with respect to ox and oy the centre of lift is at the origin o for t = 0, whilst the impulsive loading vanishes
at the edges of every wing,

10



The impulsive lift coefficient is

(CL)t=0 =

s, 69

where the coefficient Cy is defined in Section 3.2(i) and where &(t) is the Dirac delta function

,5(t)= 0 t+0
)= (t=0)

oo

'J‘ﬁ(t)dt =1

—

The spanwise distribution of impulsive loading is given by

x1(¥)
H

(Ap) ot = "),

xo(y)
and the chordwise distribution by
+h(x)
' h(x
(Ap)mody = 5.

- $h(x)

Thus, for wings of high aspect ratio the spanwise distributions are obtainable from the results computed
for equation (29); for wings of low aspect ratio the chordwise distributions are obtainable from the
results computed for equation (31). :

" 8. Initial Load Distribution. _
In this section we give formulae for the initial forces and moments on delta wings of arbitrary taper

ratio A. These formulae may be applied immediately to rectangular wings with 4 = 1. In Section 8.3
some special results are given for delta wings in reverse flight.

8.1. Spanwise and Chordwise Loadings.

In order to calculate the initial loading it is necessary to find solutions for steady flow without circulation
past the planforms § and S+ W, Since the semi-apex angle ¢ is the same for both, the chord of the wing
S (Fig. 1) is expressed as

c*(0) = 2a—(scote)|cos), : (35)

so that the planform S+ W satisfies equation (35) if a is replaced by
a+3Ust = a+da = a—géa, (36)

where ¢ = s/a. The coefficients B,,_ , and D, may be regarded either as functions of 4 and J or as functions
of o and &. ‘

11



On using equation (36) with formulae of Sections 3.1 and 5, we obtain results for delta wings of high
aspect ratio. Thus, combined use of equations (16), (29) and (36) gives

J

ao . sin(2r—1)0
Cuy) === ) 2By —1— O'Bzr—‘1)———( s (37)
c(y) 2r—1
r=1

whence
_ 7*(2B,—0BY})

Cu = 41+ 1) , (8)

Dashes denote partial differentiation with respect to ¢ (¢ constant). Equations (37) and (38) may be used
to give the initial position of the spanwise centre of lift; thus,

J
2 Jg— 1By —0B3,_4)
=1

— re=

= 2B, — 0B, :
where
/2
2
QRr—1OJgy = - j sin(2r — 1)8sin 20.4d0.
0

We note that the theoretical limit of B, as A—co is

imB,  4(1+4+4%). 12—6acote+a’cot’e

A2 3z 3n ’ (39)

and that use of this in equation (38) gives

llm CLi = T,
A—c0

in agreement with Wagner’s'result for two-dimensional wings.
Similarly, on using equation (36) with formulae of Sections 3.1 and 6, results are obtained for delta
wings of low aspect ratio. The initial chordwise loading distribution is

+b(x)

g{x) = - Ap;dy.

—3b9)

It is shown in the Appendix that the coefficient

k k
gi{x) "7‘0’50‘[ 1 fSinr‘p]
Cx) = = tansi D, cosrfyy+o . ’ (40)
ST T Z ’ z r
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where D.. = 8D,/dc. The total lift coefficient is then given by

_ n?a(Dy 40D'1)

;= ———y 41
Cle 4(1 + A.) t] ( )
whilst the distance of the centre of lift from the apex is given as a fraction of root chord by
v _ 1 Cui _ 2D, —a(4D;+D3) (42)
TP Cu 8(Dy—oD)
Use of the theoretical limits
limD, 4 4(3—ocots)
— = ——- 4
A-0 ﬁ(l +22) 3n (43)
and
limD, 38 20 cote(8 —3ocote)
= - = 44
40 3—7;(1 A(1+34) o 44)

in equations (41) and (42) gives

limC;;

A—0 —'fTEA(X
HmX,
A—>0l =31-4

in agreement with Garrick’s'® slender-wing theory for unsteady motion.

8.2. Special Results for Rectangular Wings.
Formulae (37) to (44) apply also to rectangular wings for which A = 1,06 = 4, ¢ = iz and D, = 0 if
r is even. The coefficients B,,_, and D,,_, are then functions of 4 only. For rectangular wings of high
aspect ratio we have the additional formulae from use of equations (21) and (22),

i
ool sin(2r—1)0
Cmi(y) = TZBZr — 'IW—_ ’ (45)
r=1
n?B,
;= 46
CMl T6_O€’ ( )
so that
- - B, —AB;

1 1 (47)

on using equation (38). The initial position of the local chordwise centre of pressure X, can be calculated
from equations (37) and (45).

There is an exact solution for the initial position of the centre of lift for the square wing. Equation (47)
becomes



- B,—AB, Cy—ACy
X. = =
{4) 2(2B; —AB{) 2Q2Cy—AC})

2

. T .
since Cy= —8—31 from Section 5. But, also,

Cy(d) = ACy(1/4)

by equation (19). Hence,

2CH(1) = Cx(1), ‘ (48)

and therefore
X -1 ~ (49
H=q. | 49)

8.3. Special Results for Delta Wings.
In Part II of this report we need to consider the flow past delta wings of low aspect ratio in reverse
flight. Since the form of the function A(x) is independent of flow direction, the chordwise loading distribu-
tion for a delta wing in reverse flight is

[cgi(x)J - ’(‘ )S [[an%xp i D(~1)*cosry+o f Di(— 1)'“@] (50)
R r=1 r=1 .

the lift coefficient is still given by equation (41) whilst the position of the centre of lift is

-1  —2D,—c4D,~Dy)
[X"]R“ 80,—oDy G

An important simplification can be introduced for complete delta wings (4 ='0) of low aspect ratio.
We substitute b*(if) = 2a(1+ cosy)tane in equation (32) and differentiate the resultmg equation partially
with respect to o to give the analytical result

oD, = —2D,, ' (52)
in place of simultaneous equations. We then find from equations (31), (40) and (52) that
2ag(x) = (a—x)'(x)+2h(x), (53)

thus expressing the unsteady chordwise loading directly in terms of the solution for steady flow without
circulation. The additional simple relationship for complete delta wings,

R

is derived from equations (42), (51) and (52). This result, together with those of equations (52) and (53), is
subject to the approximation of the low-aspect-ratio method, but can be shown to be exact when 4 = 0
and 4 = oo,

14



9. Numerical Results.

For the high-aspect-ratio method the coefficients B ,,_; were computed at each value ¢ and also at
o+ 0010, so that the derivatives Bj,_; could be evaluated numerically. In the case of a delta wing, ¢ was
kept constant for the three computations. Numerical results have been obtained for rectangular wings and
for delta wings of taper ratio 1/7. Table 1 gives values of B,,_, and ¢Bj,_, as found by the high-aspect-
ratio method of Section 5 with j = 4.

Calculations by the low-aspect-ratio method of Section 6 were made for complete and cropped delta
wings (1 = 0 and 1/7). For A'= 0 the derivatives D, were found directly from the computed values of
D, by equation (52). For A = 1/7 D, were obtained by differentiating equation (32) partially withrespect
to o. Tables 2 and 3 give values of D, and ¢D, for delta wings as found by the low-aspect-ratio method
of Section 6 with k = 6. Values of D,,_; and ¢D},_, for rectangular wings (¢ = A4) can be found from
equation (33) and Table 1. Numerical results for initial lift coefficients and the chordwise and spanwise

- centres of lift are given in Table 4.

9.1. Accuracy of Results.

As implied in Section 1, supreme accuracy has not been the objective of this paper. However, certain
checks on the accuracy of the respective numerical methods have been made.

Two different checks were carried out on the high-aspect-ratio method. Firstly, the number of control
points across the semi-span was increased from j = 4 toj = 8 for rectangular wings of aspect ratio 6 and 1.

The differences in the leading coefficient B, were about 1 per cent at A = 6 and 01 per centat A = 1, and
similar differences were found in the initial lift coefficient. A similar check for the delta wing of aspect
ratio.3 produced a difference of about 3 per cent in B,, but the difference in the initial lift coefficient was
only 1 per cent. The second check was performed by increasing the number of computations for a given
wing to five in some cases (at ¢ ,0 + 0-016, 6 £ 0-02¢). However, use of the extra two computations showed
insignificant changes in the derivatives B;,_;.

The effect of varying k in the low-aspect-ratio method is illustrated for delta wings in Table 5. It is
seen that the values of initial lift and centre of lift are monotonic for the complete delta of aspect ratio
A = 1 with a difference of about 24 per cent between the k = 6 and k = 20 solutions. These features hold,
in fact, for all the complete deltas for which values have been computed. For 1 = 1/7, the values fluctuate
for k< 20, but are possibly monotonic for k 220. This behaviour reflects that of the derivatives D; and D,
since D, and D, remain monotonic in k for the cropped delta wings. The initial chordwise distributions

- of loading for the cropped delta wing 4 = 07 with k = 10 are compared in Table 6 with corresponding
quantities for k = 20, 40 and 60. In this respect the fluctuating behaviour of the solution shows no
diminution with increasing k. For general planforms the differentiation of D, must be carried out numeric-

" ally. Therefore, some calculations were made in this way for cropped delta wings, but the results for both
lift and chordwise loading distribution differed only very slightly from those found by differentiating
equation (32) with respect to a.

For rectangular wings of high aspect ratio the impulsive lift coefficient is

(Coemo =m0 S50 .

where the quantity in curly brackets is the two-dimensional result. Values of 17B,(4) as calculated by the
present method for A = 4 and 6 agree to three decimal places with some results of W. P. Jones'”.
The coefficients B, and D, are both related to N (Sections 5 and 6) and should satisfy
Bl - G’Dl. (55)

For rectangular wings it follows from equation (33) that

B,(A) = AB,(1/A). (56)
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The results in Table 1 give a good approximation to equation (56) when 4 = 2 and 4. For cropped delta
wings, Tables 1 and 3 show that equation (55) is well approximated when 4 = 3 but not when 4 = 2.
This discrepancy can probably be attributed to the fact that, for non-rectangular wings, equations (27)
and (28) remain approximate when A—0 and when A— oo respectively.

9.2. Initial Forces and Moments.

Values of the initial lift coefficient C;; for rectangular and delta wings from Table 4 are plotted against
aspect ratio in Fig. 2. It is seen that all the values are less than in A4, the value given by Garrick’s slender-
wing theory; this is inconsistent with Lehrian’s*! result for the delta wing of taper ratio A = 1/7 with
A = 12, For higher aspect ratios, the calculated initial lift coefficients of delta wings appear to be unreliable
(see end of last section).

Fig. 3 shows curves of initial chordwise load distributions for rectangular wings, plotted against

¢ = 4 x/c,. It is seen that the loading is slightly negative on a small strip near the trailing edge for
A = 0-57. Initial chordwise load distributions for complete delta wings are shown in Fig. 4. The curves
necessarily pass through the origin because the apex condition of Section 6 has been satisfied. In Fig. 5
the convergence of the initial chordwise loading on the complete delta A = 1isshown and can beregarded .
as quite satisfactory. ‘

It is of interest to compare the values of C;;, as calculated for a given wing by the methods for high
and low aspect ratios. For rectangular wings it is clear from the approximations in equations (27) and
(28) that the dividing line should be A4 = 1; this is illustrated in the remarks preceding equation (33).
It can be seen from Table 4 that the results from both methods agree well between A = 0-5 and 4 = 4.
The results predicted by both methods for the initial chordwise centre of lift X, for the square wing are
in excellent agreement with equation (49), but such agreement is perhaps a little fortuitous. For delta
wings, the low -aspect-ratio method is thought to be satisfactory for A<2.

10. Comparisons between Initial and Final Values.

We now compare the calculated initial values with the final, steady-state values attained at time ¢t = co
Of course, several methods exist for steady flow but we have chosen the lifting-surface theory of
Multhopp!®, since it is known to be reasonably accurate and is valid for a wide range of planform. It
might be argued that, for high aspect ratios, we should compare with Weissinger’s'® theory since the
method of Section 5 and Ref. 19 both use the approximation of equation (27). There is, however, the vital
difference that, unlikethat of Weissinger, the present method doesnot fix the local centre of pressure along
the quarter-chord line. Again, it might be argued that, for low aspect ratios we should compare with
Lawrence’s'# theory, since the method of Section 6 and Ref. 14 both use the approximation of equation (28).
However, comparison of Goodman’s?? calculations by Lawrence’s method (k = 6) and those in Table 7
by Multhopp’s theory show satisfactory agreement.

Values of the final lift coefficient C, ; from Table 7 are used to plot the ratio of initial lift to final lift
against aspect ratio in Fig. 6. Good agreement is reached with the results of W. P. Jones? for the rectangular
wings 4 = 4 and A = 6, and with the analogue calculations of Duquenne'? for the rectangular wings
A = 1and 4 = 3. There are, however, significant discrepancies with Duquenne’s results for A< 0-5 and
with Lehrian’s? results for 2 <A< 4. For very low-aspect-ratios the sign of C;, +— Cy; depends critically
on the particular value chosen for C,,. For moderate aspect ratios it seems likely that Lehrian’s results
are somewhat inaccurate. The present results show that the ratio C.;/Cy is usually greater for delta than
for rectangular wings, at a fixed aspect ratio. The values given by Lehrian are much higher than those
given here, especially for the cropped delta of aspect ratio A = 1'2. For complete delta wings, the
present values of Cp; suggest that the ratio C.,/C; » does not exceed unity as aspect ratio tends to zero.

Initial and final spanwise loadings for the rectangular wing A = 4 are shown in Fig. 7, and the limiting
distributions from two-dimensional strip theory and slender-wing theory indicate the extremes of aspect

7The same is true in the case 4 = 0-25.
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ratio. Drischler® has already shown that the spanwise distribution is, for all practical purposes, independ-
ent of time for rectangular wings when Ut/c, > 1. The present results extend this feature to very small time ;
furthermore, the small difference between initial and final loadings for A = 4 in Fig. 7 becomes insignific-
ant at 4 = 1. For general aspect ratio there is a weak discontinuity at ¢t = 0 from the impulsive to the
initial load distribution ; there is then a gradual movement from the initial to the final distribution. This
type of behaviour has also been shown by Vogel”, although his results appear to be somewhat inaccurate
when Ut/c, is small., The initial chordwise loading by the method of Section 6 and the final chordwise
loading from Ref. 20for the rectangular wing A = 4 are shown in Fig. 8. The differences are very small and
become insignificant as A decreases to 1. However, for general aspect ratio there is a strong discontinuity
from the impulsive' to the initial load distribution. Although the chordwise centre of lift X changes
rapidly as aspect ratio decreases, Fig. 9 shows that the difference between the initial and final values,
XX > remains small. In Fig. 10 the differences between the spanwise centres of lift,77 ; and 7, are com-
parable with the yariations due to change of aspect ratio, but they remain small. The initial and final
distributions of ldcal centre of pressure are shown in Fig. 11 for two rectangular wings; the differences
are fairly small for A = 4 and negligibly so for A = 1.

Initial and final spanwise loadings for the cropped delta wing A = 3 are given in Fig. 12, together with
the limiting loadings from two-dimensional strip theory and slender-wing theory. At ¢t = 0, there is a
strong discontinuity in the spanwise loading distribution. The author knows of no results for intermediate
time but it seems likely that the same features will apply as for rectangular wings, namely that the distri-
bution will change gradually from its initial position to its final position. The present results for the lower
aspect ratio A = 2 confirm that the initial and final loadings converge as 4 decreases. Initial and final
chordwise loading distributions for the cropped delta wing 4 = 3 are shown in Fig. 13, the latter being
obtained from a special integration of the wing loading calculated by Multhopp’s lifting-surface theory.
The difference here is not insignificant, but whether or not this is due to the inaccuracies in the present
method requires further investigation. There is again a strong discontinuity in chordwise loading att = 0.
The initial chordwise centres of lift X, for complete and cropped delta wings and the spanwise centre of
lift 7, for cropped delta wings are given in Table 4; X; and X, are compared against aspect ratio in Fig.
14.

One feature of the present results obtained by the high-aspect-ratio method is that the initial values
of all aerodynamic quantities are closer to the values predicted by two-dimensional strip theory than
are the final values. This may be seen from Tables 4 and 7 and from each of the Figs. 6 to 13. This conclusion
might have been anticipated in Section 4.1, since the result of replacing [(x — X)*+(y— Y)*]* by |[y— Y|
led to the strip-theory equation (26) and would have shown no effects of finite span on the initial forces
and moments. However, the result of making the identical approximation in the corresponding theory
for steady flow with circulation leads to Prandtl’s lifting-line equation and consequent prediction of finite-
span effects.
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LIST OF SYMBOLS

a Half root chord
A Aspect ratio (= 45%/S)
b Mean span (= S/2a)
b(x) Local span
B, Fourier coefficients in equation (29)
1 0B,,_ /00 (e constant)
¢ Mean chord (= §/2s)
¢, Root chord
c(y) Local chord
C, Lift coefficient (= L/3pU?2S)
Cu Pitching moment coefficient (= M/3pU?Sc,)
Cy N/3pUSc,
C,  gApUbX)
G (y)/3pUc(y)
Cn m(y)/zpU?c(y)
D, Fourier coefficients in equation (31)
D, 0D, /0o (¢ constant)
gix) Lift per unit chord
h(x) Defined in Section 4.2
I(y) Lift per unit span
L Lift force on wing
m(y) Pitching moment per unit span (about x = o)
M Pitching moment (about x = o)
n(y) Pitching moment N per unit span
N Pitching moment relating to flow without circulation
P Pressure
s Mazximum semi-span of wing
h Projection uf planform onto z = ¢
t Time
U Velocity of free stream
w Projection of wake ontoz = o
Xo(¥) Ordinate of leading edge
x,(v) Ordinate of trailing edge
X, 0,2 Right-handed co-ordinate system fixed in wing (Fig. 1a)
lep %_ Cm/ Cl '
X Centre of lift in equation (42)
o Incidence
o(t) Dirac delta function

[}

Semi-apex angle of delta wing
Non-dimensional spanwise co-ordinate (= y/s)
Spanwise centre of lift for a half-wing

Taper ratio (Fig. 1a)

Non-dimensional chordwise co-ordinate (4 x/c,)
Density

s/a

Perturbation velocity potential

Subscript denoting final value

Subscript denoting initial value

Unit step-function in equation (2)
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APPENDIX

Calculation of the Initial Chordwise Loading

The spanwise integral of loading at a section x = constant is

1b(x)

0 ] .
gix) = 2p J (a—‘f+U£>=o+dy.

—$b(x)

The method for wings of low aspect ratio gives

where, by equation (31),

and

+b(x)
F
69 =29 j (3),, s, (A1)
t=0+
—%b(x)
B
h(x) = npUzaszz:D,smr”/’, (A2)
r=1

—1 dh*  —npU’as’

W(x) = m El; ~ asiny

D, cosry. (A3)
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There are two contributions to g,(x) from the integral in equation (A1). One is

—mpU?as? sinr
p2a ED; - v (Ad)

The other arises from the terms sinry in equation (A2) and is found by using the operator A/At (Section 3),
bearing in mind that the operation takes place at a fixed point x on the wing root chord. However, it is

first convenient to write
sinry — = . .4
D, = D,sin"y + D, sin" " 'ircosy
r odd

reven

where the D, are linear combinations of the D,. Recalling that x = acosy and applying the operator to
sin"y and sin”~ 1y cosy, we obtain

A L, rU sin"ycosy
Kt{_sm V= 2a 1—cosy ’
A . U sin"~ 'y(rcos?y—1)
E(sm Ycosy) = % 1—cosy .
o . . sinry
Thus, the total contribution from the terms sinry in ZD; s

% %{Zﬁr“iﬂ_ Ly cosy+ Z D,sin" 2 y([r—1] —rsinztll)}

r odd r even

which equals

U siny
'2—a mEDrCOS rlﬁ. ) (AS)

Hence, from (A3), (A4) and (AS5),

_ 9 ix)
) = LUt

— oS sinr
= R [tan%t/JZD,cos i+ aZDr—le] ,

on combining (A3) and (AS).

In the case of two-dimensional wings, the distribution of ¢ over the chord for flow without circulation
is Ua[a®—x?]%, so that
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o6 8¢
Api = ZP(E"‘ Uax)r=o+
_ 2 (1| atx ’}_ x
‘ZPU“(Z[a—x] [az—xﬂ%)

a—x|*
= pU? ,
v o7 |

which is one-half of the steady-state value. This is in agreement with Sohngen’s? result.

TABLE 1

B,,_1 and 6B;,_ | for Rectangular and Delta Wings

(a) Valuesof B,,_,

Planform A B, B, B B,
6 1-140 0-495 0-050 —0-033
4 1-095 0-391 0-034 —0-017
Rectangle 3 1-049 0-310 0-026 —0-008
A=1 2 0957 0-203 0019 —0-001
1 0733 0-078 0-010 0-002
0-5 0-480 0-025 0-004 0-001
0-25 0277 0-007 0-001 0-000
Delta 3 0-428 —0-433 0-253 —0-118
A=1/7 2 0-382 | —0336 0-165 —0-073
(b) Values of ¢Bj,_;
Planform A oB1 oB; agB; aB;
6 0-085 0076 0-009 —0-006
4 0-139 0092 0-006 —0-005
Rectangle 3 0-187 0094 0-004 —0:004
A=1 2 0-265 0-080 0-003 —0-002
1 0-366 0-040 0-002 0-000
05 0-344 0044 0-007 0-001
025 0237 0-013 0-002 0-000
Delta 3 —0313 —0-237 0-099 —0-033
=1/ 2 —0243 —0215 0-069 —0:019
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TABLE 2

D; and oD, for Complete Delta Wings (A = 0)

(a) Values of D,

A D, D, D, ‘D, D D
05 0-366 0663 0424 0-204 0-110 0-033
1 0-318 0-520 0236 0-062 0-030 0-001
2 0-254 0-356 0-089 0-005 0013 | —0:005
4 0-182 0209 0015 0-003 0-005 | —0010
(b) Values of oD,
A oD} aD; aD; gD, aD; aDg
05 —2924 | —-5302 | —3392| -—1634| —0881 —0262
1 —1272 | —-2081 —0945 —0249 | -—-0119 | —0-005
2 —0508 | —0711 —-0177 | —0009 | —0-026 0-010
4 —0-182 | —0209 | —-0015| —0003 —0005 0-010
TABLE 3
D, and oD, for Cropped Delta Wings (A = 1/7)
(a) Values of D,
A D, D, D, D, D D
05 0458 0-774 - 0-377 0075 0-004 | —0010
07 0427 0-687 0-275 0016 | —0019 | —0021
12 0-367 0-529 0-132 —0030 | -0019 | —0019
2 0-299 0-378 0-042 —0-028 | —0009 | —0019
3 0-243 0-273 0-004 —0014 | —0009 | —0020
(b) Values of oD,
A aD] oD, oD; gD, aDj aDg
05 —-0736 | —0941 0-291 1-101 0-990 0385
07 —0-708 —0892 | . 0252 0-907 0-782 0-310
12 —0632 | —0744 0224 0-617 0-483 0-203
2 —0529 | —-0-559 0205 0-382 0-288 0-141
3 —0437 | —0413 0-178 0-242 0-197 0-109
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TABLE 4

Initial Values* of Lift and Centres of Lift

1

&CLI' X;’ ﬁi
Planform A -
High A Low A High A Low A High A
6 2:708 0240 — 0453
4 2532 (2-536) 0233 (0-231) 0-445
3 2357 — 0226 — 0-439
Rectangle 2 2035 (2-032) 0210 (0-209) 0433
A=1 1 1-358 1-357 0-167 0167 0-427

05 ©759) | 0754 | (0110) | 0108 0425
025 | (©390) | 0381 | (0063) | 0056 0425

4 — (2:696) — 0-525 —
Delta 2 — 1-880 — 0-567 —
(A = 0) 1 — 1177 — 10-606 —

05 —_ 0676 — 0636 —

.3 2:525 2-496 — 0492 | 0413

Delta 2 @174) | 2034 — 0-513 0422
(= 1/7) 12 — 1-481 — 0539 —
07 — 0992 — 0-561 —
05 — 0751 — 0571 —

*Caiculated values from the methods of Sections 5 and 6 are denoted by ‘High A’
and ‘Low A’ respectively. In plotting the results, those in brackets have been discarded
as being the less accurate.

TABLE 5

Convergence of the Low-Aspect-Ratio Method for Delta Wings

A=1,2=0 A=071=1/7 A=3,2=1/T
k
1 - 1 - 1 _
ECU X; acu X; &Cm X;
6 1-177 0-606 0981 0-561 2:519 0-497
7 1-170 0-602 1026 0-573 2-576 0-503
10 1-159 0-596 0-968 0-554 2-471 0-490
20 1-150 0-591 0-992 0-561 2:496 0492
40 — — 0975 0-554 — —
60 — — 0969 0552 T —
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TABLE 6

Initial Chordwise Loading on a Delta Wing (A = 07, A = 1/7) for
Various Numbers of Control Points

© Values of bCy: for
Li
NS
‘ k=10 k=20 k=40 k =60
0-024 0-055 0-072 —0045 —0070
0095 0-292 0-341 0-217 0379
0-206 0659 - 0688 0-615 0-708
0-345 1-080 1-082 1-040 ~ 1102
0-500 1-476 1443 1-423 1-467
0-655 1-653 1-631 1-617 1-640
0-794 1-613 1-465 1468 1-435
. 0905 0-326 0-450 0-579 0-484
0976 0-236 0-180 0213 . 0185
TABLE 7
Final Values by Lifting Surface Theory (Ref. 18)
. ) B ]
Planform 4 &C Lr X, s
6* 421 0-236 0-444
4 3601 0-228 0-436
Rectangle 3* 316 0-221 0432
“=1 2 - 2:478 0-208 - 0428
1 1-461 0-167 0-426
05 0-774 0112 0-425
0-25 0-392 0069 0424
3 3-099 0-527 0-422
2 2:394 - 0-539 0-424
Delta 12 1626 0555 0-425
A=1/7 07 1-024 0-569 0425
05 0-754 0574 0424

*Results for these wings have been estimated.
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Part II.—Transient Lift and Moment Functions for Rectangular and
Delta Wings

Summary.
Transient lift and moment functions are considered for the cases of
(i) a sudden plunging motion,
(i) entry into a sharp-edged gust;

Linearized theory is used and incompressibility of the fluid is assumed. '

For sudden plunging motion, the functions are calculated from the lift and pitching moment coefficients
associated with wings in oscillatory plunging motion. Results are presented for rectangular and complete
delta wings of aspect ratios 1, 2 and 4.
~ Growth of lift functions due to gust entry are also calculated for these wings from knowledge of the
corresponding functions due to sudden plunging motion. The method of analysis involves an application
of a reverse flow theorem and an approximate relationship for the transient chordwise load distribution
due to sudden plunging motion. It is uncertain whether the growth of pitching moment due to gust entry
could be obtained accurately enough by a similar method. An alternative method is used to confirm the
accuracy of the growth of lift function due to gust entry for a square wing. Calculations of this function
by a simpler method for rectangular wings of high aspect ratio show reasonable agreement with those for
aspect ratio 4;in addition, the exact solution for delta wings is derived for the limiting case of infinite aspect
ratio.
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1. Introduction.

The lift functions due to sudden plunging motion and to entry into a sharp-edged gust are of fundamental
importance for the calculation of lift forces due to more general transient motions. For two-dimensional
wings, the original derivation of these respective functions is universally attributed to Wagner' and
Kiissner?. '

Several writers have given approximate solutions for the growth of lift function, k(s), for finite wings
in sudden plunging motion. However, there appears to be very little information in the literature as regards
the corresponding moment function, m,(s). In the present report both functions are calculated for rect-
angularandcomplete delta wings of aspect ratios 1, 2 and 4. The functions are expressed in terms of the
lift and moment coefficients associated with oscillatory plunging motion by means of the reciprocal
relations given by Garrick®. Values of the oscillatory coefficients for finite frequencies are taken from the
theoretical work of Lawrence and Gerber?, whilst the values corresponding to infinite frequency are
deduced from Part 1 of this report.

Assuming a knowledge of k,(s), we suggest a simple method for calculating the growth of lift function,
k,(s), for finite wings on entry into a stationary, sharp-edged gust. As a consequence, the lift force may be
calculated on finite wings entering sharp-edged gusts which travel in the streamwise direction. Such calcu-
lations have been made for two-dimensional wings by Drischler and Diederich?,

On the basis of these methods, formulae for k,(s) can be derived for wings of high aspect ratio and of
not too extreme planform. Such formulae are given here for rectangular and delta wings; the result for
a rectangular wing entering a stationary gust is identical with that of W. P. Jones®.

Mention should be made of the neglect of compressibility in the present work. The subsonic, com-
pressible solution for sudden plunging motion is non-uniform at ¢ = 0 in the limit as Mach number
tends to zero. However, the practical problem is concerned, not with sudden plunging motion, but with
latter motions can be evaluated from k,(s) by the principle of superposition and are not expected to
depend critically on Mach number below the transonic range. For sharp-edged gusts the function k,(s)
is independent uf Mach number for slender wings.

2. Wings in Sudden Plunging Motion.
We consider the motion of a thin, flat wing moving with constant velocity U and at zero incidence

for time ¢ < 0. At ¢t = 0 the wing starts to plunge with uniform velocity U«. The non-dimensional distance
travelled is defined as

§=2—,
¢

where c is the streamwise extent of the planform. Under the assumption of linearized theory, the growth
of lift function for this sudden plunging motion can be calculated from either the real or the imaginary
part of the complex lift coefficient for oscillatory plunging motion (see, for example, Garrick3).

Thus, for s>0,

Ly(s) 2o |* F(v)sinvs
LU?s 7 Jo v v ()

or Cis)=a [1 +‘7%z j‘w @%O—S—vfdv} , 2)

0

Cils) =

where the oscillatory lift coefficient is the real part of

[F(v)+iG(v)]e™
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for a reduced frequency of oscillation

wce

V=ﬁ.

Unfortunately, the analytical forms of F(v) and G(v) are not known. In the remainder of this section
we shall only make use of equation (1), since it is more convenient for numerical work than equation (2).

2.1. Approximate Method of Solution.
We first write

n

2
F() = F(O) 42% | )

r=1

where the constants a, and b, would be found from known numerical values of F(v). On substituting
equation (3) into equation (1) we obtain

Cs) = o [F(O) +Za,e‘”’”'s}. @

r=1

It is found that C;(s) can be represented with sufficient accuracy by taking n =1 for wings of aspect ratio
A = 1,2 and 4 (see also Ref. 6). The constant a, is then given by

a; = F(co)—F(0), ©)

and b, chosen to give the best approximation to F(v). The effect of this procedure is illustrated in Fig. 1.

Then

Cyfs) F(0)—F(o0) _

ki(s) = =2 = 1 -~ o lbuls, 6
9= o) FO) ©

The pitching moment due to sudden plunging motion can be calculated in the same way. For 5>0,

Cols) = = (7)

" 1pU%Sc

or | . C,(s) = [1+% J ’ Mdv] , @®)

0 v

M) 2ax J‘ © M(v)sinvs
— | ———dv
T ) v

where the oscillatory pitching moment coefficient is the real part of
iv[M(v)+iN(v)]e™.

On writing

ME) = M) +Zq§’ e ©

r=1
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and substituting into equation (7), we find

n

C.5) =a [M({)) +Zp,e“|‘1"’:| . : (10)

r=1

In particular, with n = 1,

Culs) _ 4 _M(O)—M(x0)

= e~lails, (1)
Cuf0) - M(0)

my(s) =

It can be shown from equations (1) and (7) that in the limits as s—o0 and 5—0+

Cy(0) = aF(0), C,(0) = aM(0), (12)

and C0+4) = aF(0), C,(0+) = aM(c0). ' (13)

The result in equation (13) has been shown, for example, by Mazelsky”.

2.2. Results for Rectangular and Delta Wings.
Growth of lift and moment functions, k,(s) and m,(s), have been calculated by the method of Section 2.1
for rectangular and complete delta wings of aspect ratios 1, 2 and 4. The numerical information concerning
F(v) and M(v) was obtained as follows:

(a) In accordance with equation (12) the steady-state values corresponding to v = 0 were taken from
Ref. 8. '

(b) Values for finite, non-zero v were taken from Ref. 4.

() Inaccordance with equation (13) values for v = o0 were taken from the low-aspect-ratio method
given in Part L

All three methods are based on the same approximation so that, in this respect, the calculations for the
functions F(v) and M(v) are consistent. The functions corresponding to equations (6) and (11) are given
in Table 1. Curves of k,(s) are shown in Fig. 2 for rectangular wings of aspect ratios 4 = 0, 1, 2,4 and oo™,
Corresponding curves for delta wings are shown in Fig. 3 with some incomplete results of Drischler® for
comparison. The position of the centre of lift referred to the leading edge or apex,

X(s) = - g':g; (rectangular wings) |
19 (14)
X)) = — g:((z; (delta wings) '

is shown in Figs. 4 and 5 for A = 1, 2, 4 and co, while for 4 = 0, X(s) = X(co). Of particular note is the
insignificant variation in X with s for all the rectangular wings.

*The curve corresponding to A = oo has been taken from equation (53) of Ref. 6.
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3. Wings Entering Sharp-Edged Gusts.
By using the principle of superposition and following Drischler and Diederich®, we can write the lift
function for wings entering stationary, sharp-edged gusts as

min(s,2) a
L,(s) = — j‘ [—Ll(s—a,sf)jl do. (15)

0 0s;

Sf=0'
In this equation, L,(s,s,) is the lift function for a rigid, hinged plate suddenly starting from rest with
uniform forward velocity U and with local incidence

a(x) = 0 for o< x<fes;
(16)
a(x) = o for c=x>3cs;

It should be noted that L, must be defined so as to include the effects of apparent mass.

One way of using equation (15) would be to find L,(s,s) from knowledge of the lift due to harmonically
plunging flaps, by an analysis similar to that in Section 2. Although possible in principle, this method would
be rather tedious and would demand knowledge of the oscillatory lift coefficients for a wide range of both
v and flap-chord ratio. Fortunately, we can adopt another approach and find L(s,s,) by using a reverse
flow theorem for indicial motion given by Heaslet and Spreiter'. In fact, on applying equation (45) of
Ref. 10, /

o1 = 4s) S(s) [e—4sp)
! gl(i,s)di+~1(?  ndz, (17)
2 0

Li(s,5p) = I

0

where % denotes the streamwise co-ordinate for the flat wing in reverse flight and d(s) is the Dirac delta
function defined by

o(s)= 0 fors+0

ds)=oofors=0%. (18)

Jm o(s)ds = 1

The quantity g,(%,s) is the spanwise integral of loading following the sudden plunging motion of the flat
wing in reverse flight. The function #'(X) = dh/d% represents the same integral for the flat wing in steady,
reverse flight in the absence of circulation. Little is known about the function g, for finite wings, but h(X)
can be determined and has beén calculated in Part I for rectangular and delta wings of many aspect ratios.

" 3.1. Method of Solution for Rectangular Wings.
For rectangular wings x and % are interchangeable and we shall assume that

91(%,5) = g4(x,5) = ky(s)g1(x,00), ‘ (19)
for the particular aspect ratios 1, 2 and 4. This amounts to neglecting effects of any variation in chordwise
load distribution, cg,(x,s)/L,(s), for s>0. The available evidence strongly suggests that introduction of

equation (19) should not lead to any serious error:

(a) During the sudden plunging motion (s> 0), the variation in position of centre of lift is insignificant
(Fig. 4).

37



(b) As discussed in Part L, the differences in the initial (s = 0+) and final (s = co0) chordwise load
distributions are insignificant (Fig. 6).

(c) The differences in initial and final spanwise load distributions are significant at 4 = 1,2 and small

at A = 4 (Part I); moreover, the spanwise distribution moves gradually from its initial to its final
distribution (Refs. 9 and 11).

In addition, we point out that equation (19) holds exactly for A = 0O and 4 = oo.

Combined use of equations (15) to (19) gives

3

ky(s)Ly(00) = L,(s) = 1c jkl(s—a)gl(c—%ca,w)da+h(c—%cs), : (20)

o]

when s<2. For s>2, the upper limit of the integral is placed by 2 and the second term vanishes. The
approximation of equation (19) has been used only in the integral.

The steady-state chordwise loading, g,(x,00) has been calculated by Goodman® whilst A(x) can be found
from Part I. In fact,

5
2

g1(x,00) = 2pU% (b~> (Aotan%¢+ZZArsinm//) , (21)

4

r=1

4
1 in(2r — Dy
heo) = 3 UzabZZDZ,_ IS‘H(TI_I—M
r=1

b (22)

4
1 — .
= anUzocb2 E D ,,_sin¥ "1y
r=1

where 2x = ¢(1+cosy). We write the definite series of equation (21) in terms of sin"y (r odd) and cosy
sin”~ " (r even). With these substitutions equation (20) may be written as.

<

)

3
Cr(o0)ky(s) = 2A4a rkl(s—a) {zo[zfa] 2+Z[er—1+(1—0')zzr] [6(2_0)]2_,2__1} do +
: r=1

4

+%nAocZ D oo i[s2—9]25", 0<s<2), (23)

r=1

where Ay, = Ay and A4 = 0. For s>2, the upper limit of the integral is replaced by 2 and the second term
vanishes. The lift coefficient for steady flow is given by

Ch(00) = 2nA(Ay+ A, ). (24)

38



The constants A4,, 4, are given in Table 2 whilst the quantities D,,_, can be found in Part I. Values of
k,(s) as calculated from equation (23) are given in Table 3(a) for rectangular wings A = 1, 2 and 4. Corres-
ponding curves are shown in Fig. 7 together with a curve for 4 = co plotted from Table 1 of Ref. 6.

3.2. Alternative Solution for Rectangular Wings.

It is pointed out that there is a very slight discrepancy in equation (23) leading to a singularity at s = 2.
Although k,(s) in equation (23) is continuous at s = 2, its derivatives are not. In fact, when 0< s <2, kj(s)
contains two terms in (2—s)~ 2. These terms cancel identically at s = 2 when 4 = oo, but this is only
approximately true in the method given in Section 3.1. However, the resulting discrepancy is very small

and cannot be detected in Fig. 7.
It follows from the exact form of equation (20) that the derivative L,(s) is continuous at s = 2 provided

g1(0,0+)—H(0) = 0;

this in fact holds as can easily be deduced from equation (Al) of Part I. Thus, we adopt an alternative
approach to avoid the spurious discontinuity at s = 2. For, instead of equation (19), we may write

ky(s)

0169 = om0l @9)

In Part I, the initial chordwise loading is given for rectangular wings as

4 4
1 ' in(2r—1
g1(x0+) = —anUzAacb [tan%nﬁ AD2,_1cos(2r—1)¢+AZD§,_1§m(2%lﬂ:| , (26)

r=1 r=

where D3,y = dD,,_/dA. When this expression is substituted into equation (20), we obtain

4 4
1 Skis—o) 1 . sin2r—1p
C(c0)k,(s) = 47erc JO 01 [tanzw D,, cos(2r—1W+A ) D,,_ PRSI eyt _dda+

4

1 [ in(2r— 1y’
+5mda E Dz,_lsm(zr—)'/’] . @)
| r—1 cos W'=1-s

r=1

where 0= s<2. It naturally follows from equation (27) that k;(s) is now continuous at s = 2, the contri-
bution from the two terms in (2—5)~ ¥ vanishing at s = 2.
- Use of the method of Section 3.1 for the rectangular wings 4 = 1, 2 and 4 shows that

lim (2—s)tk)(s)
52
is greatest when 4 = 1. Hence, for this aépect ratio, k,(s) was also calculated by the alternative method as

given in equation (27). The difference in the two calculations of k,(s) was less than 0-0002 near s = 2 and
nowhere exceeded 0-0014.
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3.3. Solution for Delta Wings. :

The methods of calculation described for rectangular wings in Sections 3.1 and 2.2 are both applicable
to delta wings. However, whilst the method of calculating g,(%,00) described in Ref. 8 is not valid for
delta wings in reverse flight, there is no restriction in the method of Part I for g,(%,0+). Thus, for the

complete delta wings considered here, we use the alternative method of Section 3.2. The supporting
evidence is as follows: '

(a) During the sudden plunging motion, the variation in position of centre of lift is insignificant for
a complete delta wing (4 = 2) in reverse flight; in fact 0-0990 < X(s) <0-0999 for all s.

(b) The differences in the initial (s = 0+) and final (s = c0) chordwise load distributions are insignifi-
cant for a cropped delta wing} (4 = 1-8) of taper ratio 1/7.

In addition, equation (25) for delta wings in reverse flight holds exactly when 4 = 0 and A = oo.
Values of k,(s) are given in Table 3(b) for aspect ratios A = 1, 2 and 4 together with values for 4 = 0
from slender-wing theory. The corresponding curves are reproduced in Fig, 8.

3.4. Limitations on Applicability of Method.

No mention has so far been made of the pitching moment function, m,(s), due to gust entry. There
exists a relationship, identical in form to equation (15), connecting the corresponding pitching moment
M ,(s) and that due to the indicial motion from rest of the rigid, hinged plate of equation (16). The pitching
moment of the hinged plate about an arbitrary axis x = ¢£ can be related, by means of the reverse flow
theorems of Ref. 10, to the streamwise integral of lift due to indicial motion of a cambered wing with
downwash distribution proportional to ¢(1—¢&)—%. For simplicity we should, if possible, choose ¢ so
that the chordwise load distribution is unchanged throughout the indicial motion s> 0. In the case of
two-dimensional wings the procedure is clear. According to Lomax'?, the only downwash distribution
depending linearly on X% and producing a lift distribution which never varies for s> 0 is found by taking
¢ = ; this implies that the total indicial lift on the cambered wing is identically zero. By making use of
the lift distribution in the case ¢ = 4, it can be shown without difficulty that

[MZ(S)]%—chord = 0> R

as first predicted by Kiissner?. In the case of finite rectangular wings we might suppose that the correspond-
ing procedure would be to consider a pitching axis x = cX(A4,5) ~ cX(A) as given in Fig. 4. Unfortunately,
it is not known whether the chordwise load distribution for a downwash proportional to c[1— X(4)]—%
is unchanged throughout the indicial motion s>0; even the distribution at s =.0+ is not, at present,
known. Hence, we cannot justify a general approximation similar to equation (19), and so no calculations
of m,(s) have been attempted. Nevertheless, for fairly slender wings, such an approximation might well
be made with success, since the limiting chordwise distribution on the cambered wing (4-+0) is unchanged
throughout the indicial motion s> 0: then evaluation of the expression corresponding to equation (20)
should give a distinct improvement on slender-wing theory.

4. Gust Entry for Wings of High Aspect Ratio.
We shall again use equations (15) to (18) together with the assumption of equation (19),

gl(xas) = kl(S)gl(i,OO).

For wings of high' aspect ratio and of not too extreme planform g,(%,c0) and A(%) may be found by two-
dimensional strip theory for the wing in reverse flight. Thus,

TThe final, steady-state loading g, (X,00) was not available for the complete delta wing (4 = 2) in reverse
flight.
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gu(E.00) = 2pU% [Eﬁo—)] J - Pl(y)"z Tdy, 28)

2mo -1 L X—%o(y)

where X = X,(y), ¥ = X,(y) are the equations of the leading and trailing edges for the wing in reverse
flight, and b(X) is the local span. Similarly,

h) = 22U [ g ) 5 [ %oy, | 29)
[Crlinew J-300

where Cy is the pitching moment coefficient for the wing in steady flow without circulation (Part I).

The method suggested above would apply, for example, to elliptic, rectangular and cropped delta
wings, but not to wings of high sweep. If we now use the above formulae for g,(%,00) and h(%) in equation
(20), the following results are obtained :

(a) for rectangular wings of high aspect ratio,

ky(s) = %jskl(s—a). [%:I %da+ 4Cw [3(2—5)]%, (0=<s<2)

0 2 wCr(00)
(30)
12 %
_ _j ky(s—0) [L] do, (s>2)
) o 2—0¢
Another derivation of these equations has been given by W. P. Jones®. -
(b) for complete delta wings of high aspect ratio,
2.0 e 4Cy \
=_— — — —35)]% (0<s<2
) = - Sokl(s 0)6[ . } ot o ssls2— 9, 0<s<2)
(1)

2 [? ¥
_ 3_7J0k1(s-a)a[ 2{—0] do, (s>2) | J

It is seen from equations (30) and (31) that k,(s) behaves near s = 0 like s'/? and s*? for rectangular and
delta wings respectively. A comparison is made in Fig. 9 between curves for the rectangular wing A = 4
plotted from W. P. Jones’ calculations based on equation (30) and from the more accurate method of
Section 3. The agreement is satisfactory. A curve from equation (31) for A = oo is included in Fig. 8. The
asymptotic forms of k,(s) for large s are identical when A— o0, and it is seen from Figs. 7 and 8 that
the differences are very small for s<2; larger differences are found for the rectangular and delta wings of
aspect ratio 4.
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F(v)
g1(%.s)
h(z)
ks(s)
ks(s)
Ly(s)
L,(s)

m,(s)

M(v)

LIST OF SYMBOLS
Aspect ratio, b%/S

Coefficients in equation (21)

Wing span

Local span

Streamwise extent of planform : ,

Lift coefficient, lift/(3pU2S) ,

Pitching moment coefficient, M, (s)/(3pU?Sc)

Pitching moment coefficient for steady flow without circulation
Coefficients in equation (22)

Defined below equ-ation (2)

Chordwise loading function for sudden plunging motion
Streamwise lift integral for steady reverse flow without circulation (Part I)
Ratio of transient lift to final lift during sudden plunging motion
Ratio of transient lift to final lift during gust entry

Total lift on wing in sudden plunging motion

Total lift on wing due to gust entry

Ratio of transient pitching moment to final pitching moment during sudden plunging
Imotion
Defined below equation (8)

Nose-up pitching moment in sudden plunging motion (about axis through mid-chord of
rectangular wing or apex of delta wing)

Non-dimensional distance travelled, 2Ut/c
Value of 2x/c at hinge position in equation (16)
Area of planform

Time, measured from sudden plunge or from entry into a gust
Flight velocity .
Streamwise distance from the leading edge
Streamwise distance in reverse flow, (c—x)
Centre of lift in equation (14)

Incidence

Dirac delta function in equation (18)

Reduced frequency of oscillation, we/2U

Density

Cos'l(z—)f— )
¢

Frequency of oscillation
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TABLE L

(@) Functions for Rectangular Wings in Sudden Plunging Motion

A ki(s)

1 1—0069¢~ 07508
2 1—-0-177¢= 05645
4 1—0-299¢ 040558

(b)  Functions for complete Delta Wings in Sudden Plunging Motion

A my(s)

1 1—0-068¢~ 7205
2 1-0-176¢~ 05628
4 1—0-298¢~ 04045

A k(s) A my(s)
1 1—0-071e~ 13698 1 1—0-066¢ 19175
2 1—0-129¢~ 09878 2 1—0-125¢ 13295
4 1—0-203¢~ 09038 4 1—0-186¢~ 090358
TABLE 2
Values of A, andzr Jor Rectangular Wings
(a) Values of A,
A Ao A, A, A, A, As
1 0-3458 —01136 0-0369 —-0-0111 0-0036 —0-0007
2 02418 —0-0454 00131 —0-0036 0-0012 —0-0003
4 0-1593 —0-0154 0-0044 —0-0011 0-0005 —0-0000
(b) Values of Z
A — — - — - -
Ay % A Az Ay As
1 0-3458 —0-3008 01764 0-1168 —0-0576 —0-0224
2 0-2418 —0-1154 0-0620 0-0408 —0-0192 —0-0096
4 0-1593 —0-0374 0-0216 0-0088 —0-0080 —0-0000
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TABLE 3

(a) Lift Function for Rectangular Wings Entering a Gust

Values of k,(s) for s =

A

025 05 1-0 20 30 50 10-0
0 1-000 1-000 1-000 1-000 1-000 1-000 1-000
1 0-552 0706 0-850 0944 0973 0-994 1-000
2 0423 0-562 0717 0-856 0918 0973 0-998
4 0-333 0452 0596 0-748 0832 0-925 0990
0 0-223 0-306 0417 - (551 0635 0739 0-856

(b) Lift Function for Complete Delta Wings Entering a Gust
Values of k,(s) for s =

4 ,

025 05 10 15 20 30 50 10-0
0 0-016 0063 0-250 0-563 1-000 1-000 1-000 1-000
1 0014 0-073 0-306 0-644 0946 0-989 0-999 1-000
2 0-020 0-094 0-345 0652 0-894 0-960 0994 1-000
4 0035 0126 0372 0-631 0-823 0-898 0966 0-998
loe) 0-036 0-098 0-252 0412 0-534 0-624 0740 0-859
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Fic. 2. Growth of lift for plunging rectangular wings of various aspect ratios
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