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Summary

The Pohlhausen method for approximate calculation of the
laminar boundary layer uses a quartic one-parameter family of velooity
profiles, In this paper the general theory is developed for a quintic
profile, satisfying an additional boundary condition at the wall. A
detailed analysis 1s given for the case of a linearly retarded main-
stream; good agreement is obtained upon comparison with the exact
solution.

1., Introduction

Since the concept of the boundary layer was first developed by
Prandtl mors than half a century ago, many exact and approximate
solutions of the steady incompressible laminar-boundary-layer equaticns
have been obtained. One of the earliest of the approximate methods of
solution was due to Pohlhausen! (1921). In this method the boundary-
layer equations are not solved everywhere, but only at the wall, at the
edge of the boundary layer, and on an average by expresSsing the momentum
equation in the integral form due to von Karman.

For a two-dimensional boundary layer, x 1is measured along
the wall and y perpendicular te it, The velocities in the x and y
directions are u and v respectively, p is the prossure p the
density, H tho viscosity and v = p/p the kinematis viscosity of
the fluid. At the edge of the boundary layer u —» ug (x). Then it is
well known (Goldstein y 1938) that the momentum integral equation may
be written as

T asd 1 du
.. (6, +25) . veo(1.1)
pu3 dx u, dx

We express the wvelocity u in the form

131
- = f(n), n = ces{1:2)

o 2 B

Yy

vhere & 1is the boundary layer thickness, assumed.finite. Then in (1.1)
the skin-friction Ty, the dasplacement thickness 51, and the momentum
thickness 8, are given by

o /

pui
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T v
2~ = —£'(0)
puf  ud
5, 1
— = ]' (1~ 1) dn eee (1.3)
6 a]
5, 1
— = / (1 - £) dn
5 o]

The boundery conditions ars

£(0) = 0, £(0) = -4, £1(0) = 0, vieu oo (108)
where
8% du,
A = — -, ...(1.5)
v dx
and,
£(1) = 1, £7(1) = (1) = £M'(4) = .oe = 0. ees (1.6)

The idea used by Polhausen is to approximate to £ as a
relynowial in n, and to satisfy as many of the boundary conditions,
(1.4) and (1.6), as possible. In particular, Pohlhausen considered the
case of a quartic satisfying the first two conditions (1.4) and the first
three conditions (1.6), In this paper we shall consider the case of a
quintic, which satisfies in addition the third comdition of (1.4). Upon
satisfying all these conditions we find that

£(n) = gn(5-5° + 3 ) +FAn(1t+m) (1 -1 . eee (1.7)

Upon substitution anto {1.1) and (1.3) a first-order differential egquation

& A
results for Z = == w ~=, tagking the form
v u;
ga)
2t = ——— 4+ Z%u " k(a) , voe(1.8)
us

which may also be written as an equation for A,

1 u"

AV = gln) E£~ + A+ A2 r{a)} -2 cen (1.9)
Uy u, '
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In thig paper the general theory is worked out, and the
universal functions, g{A) and h(A), tabulated for the case of a
gquintic velocity profile. A detailed solution is then obtained for the
case of a linearly retarded main-stream velocity. It is found that the
predicted displacement and momentum thicknesses, the skin-friction and
the separation position, are nowhere in error by more than 6% when
compared with the exact solution of Howarth3 (1938).

2. Genergl Theory Ffor a Quintic Velocity Distribution

The assumed velocaty profile in the boundary layer is

— = £(n) = Fn(5-57 +3f)+san (1 + ) (1 =m)F,  ...(21)

satisfying the boundary conditions

£{1) = 1, £t(1) = (1) = 0 2

l.i(2l2)
£(0) = 0, £(0) = =A, £'{0) = O
Then upon substitution from (2.1) into (1.3), the skin friction, the
displacement thickness and the momentum thickness are given, after
integration by
T v {5 1 Q
-'—9-; it Bl Sl [ "‘(2'3)
Py u b3 & J
61 1 1
— = - em— A $ -'-(2.1{.)
8 3 60
8 715 3 L23
LR e e {1 Y A"Z . ... (2.5)
8 6237 L a8 124,000 J
It follows from (2.3) that separation takes place when
Sn 20
1 A = As = =TT e '00(206)
3

Upon substitution for 7., 8y, 8; from (2.3) to (2,5) into the momentum
integral squation (1.1), a first-order linear differential equation for
A results, This is

At/
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A = gla) -+ fa+ 4% n(a)] b ’ e (2.7)

|
uy Uy

where primes note differentiation waith respect to x, and the unaiversal
functions g{4), b(dA) are given by

4 831600 — 165580 A + 9816 A% + 423 A%
g(A) BT y 000(218)
5 (20 ~ 34) ( 1240 + 141 A)
12 250 + 141 A
h(A) L= —— L] 001(2-9)
5 (20 - 24) (1240 + 141 4)
The equation may alternatively be expressed as an equation in
&2 A
Z = —— = - 00-3(2-10)
v ul
namely
g(4)
2t = ——— 4zl L(a) . eee(2411)

uy

The functions g(A), h{a) and A+ A% h{A) are tabulated in Table I.

Now, as 1s true in the quartio case, sincc uy vanishes at
the forward stagnation point of the flow past a cylindriecal obstacle, 1t
follows that g(A) must be zero there if 2' is to remain finite.

But the only zero of g(A)} occurs at A = =~ 35.7, which is not a
permissible value, since by (2.3) it corresponds to a negative skin
friction. It follows that the flow near a stagation point cannot be
dealt with by this method, in much the same way as the ordinary
Pohlbhausen method cammot be used in certain problems for which A Thecomes
too large. In problems in which the velocity increases away from s
stagnation point, and decreases afier the point of minimum pressure, the
classical Pohlhausen quartic must be used at least in the region of
accelerated flow.

3. The Boundary Layer with a Linsarly Retarded Mainsiream

In certain simple cases equation (2.7) simplifies sufficiently
to be solved by direct integration. For example, if the main-stream
velocity may be expressed as

o (x) = uo( -’f)n , v (301)

then/



then
u," 1\ u !
1 1
o (1__)... , cer(302)
u, ! n u,
and so (2,7) becomes simply
u1' ¢ 1 .
AT = === | g(A) + (1—~)[A+A3h(A)_! . eee{3.3)
u, n
This equation may be antegrated directly to give
: )
ui(x) = u_ exp f ’ coe(3e4)

o)

g(A) + (1 - i) (A + A*n(a) ]

and the complete solution for the boundary layer 1s easily obtained.

The simplest example 1s that of the linearly retarded mainsiream,
for which n = 1. This will be considered in some detail, as the exact
golution is well nown, With n = 1, and therefore

X
u o= ug ( - —-), equation (3.4 ) becomes
c

)

- = 1 -~ gxp / — . ---(3-5)
o L ) g(A)J

The relevant integrations have been carried out, and the results for Ts

are shown in Tablé 2. We note that T, 1s 3% lowat x/c = 0, and
the error increases with x/c until it reaches a maximum of 6% at about

x/e = 0.076. The _error then decreases, until at about x/c = 0.11 the
skin friction is predlcted torrectly., When x/c > 0.11 +the predicted skin
friction 18 too giheat, and the distance to separation zg = O. 127 ¢ is

too great by 6%. - It could: equally be shown that the predictod 6, 1s
fairly uniformly about 1% bhigh and &, about 3% low. The accuracy is
therefore most satisflactory.
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The Functions

-7 =

TABLE 1

g(n), n(a), & + A%n(a)

3A g(a) h(a) A+ A%n(a)
-20 149,76 -0, 1380 -12.800
-19 128,07 -0, 1140 ~10.907
-18 114.52 ~-0,0955 ~9.1.39
-17 98.4.6 -0,0808 -8.260
-16 87.88 -0,0686 -7.284
-15 79.13 -0.0583 -6,4,58
-1 T1.76 ~0.04.95 =5 Thh
-13 65.48 ~0. 04 17 -5.117
-12 60.06 -0.0%,8 —4.557
-11 55. 32 ~0.0286 -4 051
-10 51.15 -0,0228 ~3.587
-9 L7045 ~0.0175 -3.158
-8 Lha s -0,0125 -2.756
-7 41.18 ~0,0077 -2.375
-6 38.50 ~-0.0031 ~2,012
-5 36.07 0.0014 -1.663
-4 33.87 0.0059 -1.323
-3 31.86 0.0103 -0, 990
~2 30.03 0.0149 -0.660
-1 28.35 0.019y, -0.331
0 26.83 0.02,2 0
1 2544 0.0292 0.337
2 24,18 0. 034, 0.682
3 23,04 0. 0,00 1, Q40
N 22.03% 0.0460 1.415
5 21.15 0.0526 1.813
6 20,39 0.0599 2.240
7 19.77 0.0681 2,704
8 19.30 0.0775 3. 190
9 18.93 0.0883 3.795
10 18.92 0, 1011 4156
11 19.09 0. 1164 5,232
12 19.59 0. 1354 6.166
13 20.55 0. 1595 7.328
/B 22.17 0.1914 8.83,
15 248, 0.2357 10.892
16 29.31 0.3018 13.918
17 3734 0.4116 18,883
18 5l o 2l 0.6305 28.698
19 106,56 1.2861 57.919
20 o oo oo

TAELE 2
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TABLE 2

Comparisong with Howarth's Results

d
A (..)
Oy o

xX/c e Sy
u, (~u,")%
Curle Howarth
0,0232 1.837 1.88,
0.0, 35 1.155 1.203
0.0761 0.642 0.648

0.0890 0.456 0.8

0.0999 0,333 0.346
0, 1090 0.231 0.231
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