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Summary. 
A method is presented for calculating steady axially symmetric spiralling motions of an incompressible 

fluid at large Reynolds numbers. By making approximations of the boundary-layer type the Navier- 
Stokes equations are reduced essentially to a pair of non-linear parabolic equations. Initial conditions 
are specified on some upstream cross-section, and boundary conditions on the axis of symmetry and 
on some bounding surface of revolution. The method involves replacing the differential equations by 
sets of finite-difference equations, using first-order central differences in an implicit scheme. The calcula- 
tion is by a marching technique, which proceeds step-by-step in the axial direction. For each step an 
iterative plan is followed. The finite-difference equations themselves are solved by straightforward 
matrix methods. A programme is developed for a digital computer of moderate size and examples of 
the application of the method are given. 
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1. Introduction. 

Vortices are found in a variety of conditions ; they can be observed for example in wakes, over the 
leading edges of highly-swept wings, and in pipes, and also in nature as hurricanes, tornadoes and 
whirlpools. However, no general method for calculating their structure exists, partly because the con- 
ditions in which they occur are themselves not well understood and partly because the governing 
differential equations are both non-linear and elliptic. On the other hand, many vortices possess a roughly 
axially-symmetric core of spiralling fluid and the structure of such cores is frequently more amenable 
to treatment. If variations in the axial direction are small compared with those in the radial direction 
the equations can be reduced to parabolic equations of the boundary-layer type. Such flows, called 
quasi-cylindrical, are considered here. 

If the flow is inviscid as well as quasi-cylindrical the problem can be reduced (see for example Ref. 1) 
to that of solving an ordinary differential equation for the stream function. The solution is still far from 
trivial, because the equation is generally non-linear and the boundary conditions are of the two-point 
type. In any case it can have only a limited applicability to real flows, like other inviscid solutions. In 
fact there are phenomena in which viscous diffusion plays a decisive role, such as the decay of a trailing 
vortex, and phenomena where the role of viscosity is uncertain, such as vortex breakdown. A method 
of calculation is presented here for the steady spiralling motion of a viscous incompressible fluid, where 
the velocity field is axially symmetric and approximations of the boundary-layer type can be made. 
Although the physical significance of the basic differential equations and their boundary conditions 
receives some attention, the main concern here is with numerical technique and not physical interpreta- 
tion. The latter is discussed by Hall in a review 1 of recent work on the structure of concentrated vortex 
cores. In addition to direct numerical solution the method may be used for numerical "experiments" 
with vortex cores, by observing the effects of varying initial and boundary conditions. This may be 
useful for studying the physical properties of the vortex cores. 

The differential equations for which a general method of solution is given here have been considered 
before. In an attempt to treat trailing vortices with appreciable swirl Gartshore 2 has substituted poly- 
nomials for the profiles of the axial and circumferential components of velocity, and obtained approximate 
solutions of an integral form of the equations in the Pohlhausen manner. Stewartson and Hall 3 have 
obtained a solution for the core of a leading-edge vortex in the form of an asymptotic expansion con- 
taining inverse powers of the logarithm of a Reynolds number. These solutions are highly specialised 
and Gartshores'  in addition suffers from the usual limitations of integral methods. They are included 
in Hall's review 1. A related set of equations has been considered by Abbott 4 who developed a numerical 
method of solution with such success as to encourage the present author to begin the work described here. 



The implicit finite-difference technique used here is similar to that developed by Hartree 5, Leigh 6 and 
others7 '8 for calculating two-dimensional laminar boundary layers*. There, the problem reduces 
essentially to the numerical solution of a single non-linear parabolic equation. The solution is obtained 
by the step-by-step technique of marching along the surface : for each step the differential equation is 
replaced by a set of difference equations, one equation for each transverse pivotal point. The method 
is an implicit one, using first-order central differences defined so that the difference equations must be 
solved simultaneously• Such a procedure is stable for all step sizes when applied to the simple linear 
heat-diffusion equation, but for non-linear parabolic equations it has not yet been possible to prove 
stability, so solutions have to be checked individually. However, it has been found by experience that 
stability limitations are negligible. The non-linear difference equations are solved by iteration. Again, 
there is no proof that the iteration will converge. 

In the present problem there are two non-linear parabolic equations instead of one, and they require 
simultaneous solution. It is possible in the interative process here, however, to avoid having to solve 
the two corresponding sets of difference equations simultaneously; in each cycle two sets of linear 
difference equations are solved successively• The cycle is repeated until results from successive cycles 
agree, that is, differ by less than some prescribed small amount. This convergence of the iteration is one 
of the main conclusions of the present work. Also, the boundary conditions in the present problem 
differ from those applying to boundary layers, and this has led to further differences in the method of 
solution. 

The account which follows begins with a derivation of the basic differential equations. New variables 
are chosen, for convenience in computation, and initial and boundary conditions are discussed• Then 
the difference equations are set up and their solution is described• Finally, to illustrate its use in a variety 
of conditions, the method is applied to a trailing vortex, to a leading-edge Vortex and to a vortex in a 
pipe. Checks are made by varying the mesh size in the difference approximations. 

2. 7he Basic Differential Equations. 

When the velocity field is axia!ly symmetric, the non-dimensional form of the equations fo r the steady 
motion Of an incompressible fluid is, without approximation, 

O(rv). O(rv) v [ 20 ( rv ) l  
u ~ x  +w ~r - q l  V2(rv) r Or .] (la) 

3u 0u 0P v V2 (lb) u +wT = u 

(lc) 

3U OW W 
Ox I-~-r + ~  = 0 ; (ld) 

where 

a 2 1 0 3 2 
V 2 = Ur2+r ~ q  Ox 2 , 

* Explicit techniques have also been used for boundary-layer calculations. They are much simpler in 
principle but are subject to numerical instability and are not considered here. 



the cylindrical co-ordinates r,x are ratios of actual length to the reference length l; u,v and w are the 
ratios of the axial, circumferential and radial components of velocity, respectively, to the reference 
velocity q; P is the ratio of the pressure to (q2 x density); and v is the kinematic viscosity. 

As in boundary-layer theory we now introduce the Reynolds number Re = ql/v and the stretched 
variables R = Re~r, W = Re~w. The equations (1) become 

O(Rv) 6q2(Rv) 1 c~(Rv) 1 82(Rv) 

u + W  OR - 0R 2 R OR ~-Ree 3x 2 

Ou 3u OP 82u 1 Ou. 1 82u 
u~+WoR- Ox F~-RT+R ~-R-I-Re Ox 2 

u OW W OW v 2 OP 1 {OzW 1 0 W  W 1 321411 

Re O~ ÷ Re OR R - aR ~--ReekOR T-t R OR R 2 +Re Ox 2 ,] 

Ou a W  W 
~- _ - - + - -  = o .  

3x OR R 

(2) 

On making the usual boundary-layer approximation that at large Reynolds numbers all terms containing 
the factor i /Re may be omitted we obtain the equations 

u@+O(Rv] W O(Rv) _ )(O2.Rv, 1 O(Rv) (3a) 
OR OR 2 R OR G X  

3u 3u 3P a2u 1 0 u  
U3~x+ W OR - 3x - F ~ q  R OR (3b) 

v 2 Op 

R OR 
(3c) 

3u OW W 
Ox ~ - ~ - + R - =  0. (3d) 

These are the basic equations for which a method of solution is sought. The approximation, and the 
flow to which it applies, is called quasi-cylindrical. 

There are two assumptions made in deriving the above. The first is that the Reynolds number Re is 
large. Corresponding solutions of the exact and approximate equations, (1) and (3), will be identical 
only in the limit Re-+m, or in the limit v~0. It is expected, however, from experience with boundary 
layers, that for sufficiently large finite Reynolds numbers a solution of (3) will closely approximate the 
corresponding solution of (1). The second assumption is that for each equation of the set (2) all the terms 
are the same order of magnitude, except those containing the fac{or l/Re, and they are assumed to be 
smaller in order of magnitude by this factor. Since the radial co-ordinates have been stretched relative 
to the axial ones this is equivalent to the assumption that variations in the axial direction are small 
compared with variations in the radial direction. It may be observed that one of the implications of this 
assumption is that  the radialcomponent of velocity and its derivatives must in general be small. Whether 
the second assumption is justified in any given case can be decided at present only by examination of 
the actual solution. We may conjecture, from the experience with boundary layers, that the solutions 
obtained will be compatible with the assumption made except near stagnation or reversal of the axial flow. 

The qualities P and W can be eliminated from equations (3a) and (3b) by treating (3c) and (3d) as 
equations for P and W respectively. Equations (3a) and (3b) would then be a pair of equations to be 



solved simultaneously for u and v. Note that although an approximation of the boundary-layer type has 
been made the equations are not linked together in the same way as the equations of a three-dimensional 
boundary layer. In ordinary boundary-layer theory the pair of equations for the two velocity components 
tangential to the surface are linked only through the inertia terms: the pressure terms are completely 
independent, being specified by the external flow. For  the spiralling flow here the pressure term in 
equation (3b) depends on the magnitude of the circumferential velocity v: there is an additional link 
between the equation for u (3b) and that for v (3a), so that the interaction between the two velocity com- 
ponents will be more marked, and it is plausible that rapid changes can occur in the structure of a vortex 
as we proceed downstream. The equations are neyertheless parabolic and this suggests a numerical 
solution by marching, step-by-step, in the downstream direction. 

3. New Variables. Initial and Boundary Conditions. 

Let the surface of revolution bounding the vortex core, on which boundary conditions are given, be 
denoted by r = rb(X), and let x = 2~ denote the upstream cross-section on which the initial conditions 
are given. The surface r = rb(X) is not necessarily specified in advance of computation, and it need not 
be a solid surface or a stream surface. It is convenient to introduce the ratio 2 = rb(x)/rb(X~) whicff 
describes the shape of the bounding surface, and to substitute for R, v and W new variables ~, k and h 
defined by 

= R/2 = Re&r/2 

k - 2~v = Re-~rv (4) 

h -= W/2 = Re'w~2. 

Thus at r = rb(X), ~ = ~b = Re~ rb(Xi) = constant so that the domain of computation O>>.r>~rb(x), x >~x~, 
. is reduced to the simple open-ended rectangle O)~>>-~b, X>~X~. The quantity k is proportional to the 

circulation: k is constant on a stream tube if there is no diffusion across it. 
On making the substitutions, equations (3) are transformed to 

3k i c~2k (h ~ ~ )  Ok 
UOx )? O~ ~ ~- - ~u+ ~ = 0  (5a) 

h 2' _~)Ou 2' k 2 OP 3u 1 32u - - £ ~ u -  - (5b) 
UOX 22 O~ 2 ~ Off 23 ~2 ~X 

Op k 2 
0~ - ~2~3 (5c) 

~_~ Ou 2' 2 3u 
" ( ~ h ) = - ~ - ~ x + - ~  -~ (5d) 

where 2' - d2/dx, and (5c) has been used to eliminate OP/O~ in deriving (5b). 
The initial conditions at x = x~ are 

k = k~(0, u = u~(O, (6) 

where the functions may be arbitrarily specified provided they satisfy the boundary conditions below 
and are consistent with the assumptions made in the previous section in deriving the basic equations. 



The boundary conditions at the axis ( = 0 are 

~U 
k = ~- = h = 0. (7) 

The boundary conditions on the outer bounding surface ( = (b are 

k =kb(X) ,  u = Ub(X), P =Pb(X) ,  (8) 

and these, together with the shape 2(x), may be arbitrarily specified; but if it is specified that (b is a stream 
(or solid) surface a relation between the quantities is implied and they cannot be arbitrarily specified. 
If (b is a stream surface then, by definition, 

hb/ub = (b 2'/2, 

so, if the shape 2(x) of the boundary is given, the additional specification of u b would make the problem 
overdetermined, since the differential equations (5) contain only a first derivative of h with respect to ~. 
In general, here, only one of Ub and 2 can be arbitrarily specified in addition to kb and Pb. Still more is 
implied if the stream surface is inviscid with negligible diffusion across it, for equation (5a) then yields 

kb(x) = kb(x~) = const, 

and (5b) reduces to 

dUb 2' k 2 dPb, 
Ub dxx -- ,a. a ~2 dx ' 

) 

so that kb is fixed by the initial conditions, and the additional specification of Pb and either u- b or 2 auto- 
matically implies the specification of both u b and 2, which would again make the problem overdeter- 
mined. Here only one of Pb, Ub and 2 can be arbitrarily specified. 

If ~b is a stream surface it is necessary to incorporate an iterative cycle into the computation to obtain 
a solution in Which hb(X ) takes values appropriate for a stream surface, namely values which satisfy the 
condition hJub = (b 2'/2. Similarly if ~b is a solid surface then kb = Ub = 0 and only one of Pb and 2 can 
be arbitrarily specified, and a modification is required to ensure that h b = 0. 

4. The Difference Equations and the Method of  Solution. 

4.1. The Difference Approximations. 

The calculation proceeds by marching in the direction of increasing x in steps 6x. For each step the 
differential equations (5) are replaced by a set of difference equations covering the range 0 ~> ~ >i ~b, which 
is divided by pivotal points into N equal intervals 6(. To denote position a double-suffix notation is 
employed; thus kin,, denotes the value of k at the ruth step and the nth pivotal point from the axis. For 
the present implicit method the approximations adopted are 



1 , k , k.,+~,. = ~(k~+~ ~+ ,..) 

~x (km+ ~,n-km,n) 

Ok) 1 
, .+~, .  = 45~ (k , .+ l.,,+ l - k i n + l , , , - 1  + k , . . . +  1 - k , . , . - 1 )  

(02k~ _ _  1 (k,.+l .+l-2km+ 1 .+k~+l  n--1 "4-kmn+I-2km.+km n - l ) .  
~ . ~ - , ]  ,,, + 4-,. 2(5~) 2 . . . . . .  

(9) 

Substitution of these, and of similar approximation for u, h and P, in the differential equations (5) yields 
for the (m + 1)th step and the nth pivotal point the difference equations for k, u, P and h, where the equations 
are evaluated at (m + ½,n), (m + ½,n), (m + 1,n + ½) and (m + ½,n-½), respectively. The resulting equations are 
written in a form suitable for dealing with their non-linearity. In particular, the non-linear terms uOu/Ox 
and uOu/O~ in equation (5b) are replaced by Newtonian approximations: the equation for the former, 
for example, being 

/~-~/ 2 2 
OU Urn + 1 ,n z ~ Um + 1,n Um,n 

= ~X (U,.+l,.) 
u,.+~,, rn+~,,, 25x 26x 

where the only term on the right-hand side that is treated as unknown is the one in brackets, the 
remainder being treated as given by the preceding cycle of an iteration. 

4.2. 7"he Basic Difference Equations. 
For the case where the boundary surface of revolution is neither a stream nor a solid surface the 

resulting equations are 

where 

a .  k , .  + 1..  + 1 + b .  k,,, + 1,.  + c,, k , .  + 1 . . -  i = d , , ,  (lOa) 

hm+~,, n(~"n+l--~'m) U 1--2n 
a.= 45~ 4~--~-+~,.)('+l"n+Um'n)+n(5()z(2,.+l+2rn)2 

1 4 
b. = 2Tx (urn + 1,. + urn,.) + (~)2(.~m + ~ +,L,)z 

4 
c , , = - a .  (St32(~,, , ,+~+X,, ,)2 

' k ,n .  2 (km,n + 1 - 2 k , , , .  + k,,, , ,_ 1) - 
d. = ~ ( u . , + ~ , . + u , . , . ) - +  (,~¢.)2(,trn+~ + ~ , . )  z , . 

Fo 2 +,~,.)i ] (k,..,,+~-k,,,,._~) 
L . - I  (5()2(2,,, + 

a* u,.+ l,.+ l +b* gm+ l,n-l-C~n U m + l , n -  1 = d*, (lOb) 
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w h e r e  1 1> n ~> N -  1 a n d  

h~ + ~,,, n(2m+ i --  2,.) 1 + 2n 

46~ 4 6 X ( 2 m + ~ 7 , . )  (u"+ l'" + n(60Z(2m+ ~ + 2,.) 2 

b* - u,.+ l . .  q 4 

g/(2m + 1 - -  ~rn) ( U m + l , n +  "~Um,n+l--Um,n--1) 
46x(2. ,  + i + 2.,) 1 - u,,, + i , , , -  1 

4 
c* = - a *  (~0~(,~m+l +,~m)~ 

1 2 4(Urn,n--Urn.n--i) 
d~n = ~X( l ,  lm+l,nq-lA2m,n) ( 6 ~ ) 2 ( , ~ m + l q _ ~ m ) 2  a * ( u " , " + i - u m ,  . - 1 ) -  

n(2,,,  + i - '~,,,) 
46x(2,.  + i + 2,.) (u,. + i,. + i - Urn + i,.- i + u,.,. + i - u,.,. _ i)  u,. + i,. + 

2(2,. + 1 - '~m) 
nZ~x((~) 2(2~ + i q- 2,n) 3 (kin + i,n q- kra,n) 2 -~-~  (Pro + i,n -- Pro,n)" 

(k,,, + 1, .  + 1 + k,, ,+ 1,,,) 2 
P " + ~ ' "  = P ' + ~ ' " + ~  4(n+½)  a (6022~+~ (10c) 

/i\ (i-½.)~¢ 
h , . + ~ .  = [ 1 - ~ 1  h , . + ~ . _ l  ( U m + I . - - U m . + U , . + I , . - 1 - - U m , . - O +  

' \ n /  ' 26X ' ' 

+ (n-½) 2 ~ (.~m+~-'~,.) +u, . . -u . , ._ , )  
- - 1 2  OX "~m+ l ~ m  "(um+ l"n-Nm+ l'n-1 ' ' " ( lOd) 

Since  e q u a t i o n  (10b) b e c o m e s  mean ing le s s ,  as  i t  s tands ,  a t  ~ = 0, n = 0, a spec ia l  f o r m  is u sed  there ,  
de r ived  b y  use of  the  b o u n d a r y  c o n d i t i o n s  a t  ~ = 0, whe re  the  exp res s ions  for  a*, b*, c* a n d  d* a re  
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a~ = (,~0 2 Otto+, +.~,.)2 

b* = Um+l'0 
~X a* 

c* = 0 

Um,O 2 2 , 1 
d* = 2--~-x (urn+ i,o + u,n,o) - ao(u,,,,i - u,.,o) -~xx  (P"+  1,o - P,,,,o) 

(10e) 



4.3. The Basic Cycle o f  Computations.  

If we put n = 0, 1, 2,. . . . .  N -  1 where N = (¢d6¢) in equations (10) we obtain a set of difference 
equations whic.h are to be solved in advancing from m to m + 1. As the equations stand, however, they 
are non-linear and moreover cannot be solved separately. The interative procedure adopted here to 
deal with the non-linearity also enables the equations (10a) and (10b) to be solved successively for k and 
u, if use is made of equations (10c) and (10d) for P and h. The procedure may be followed in the diagram 
of Fig. 1, which represents the computer programme schematically, both for the present simpler cases 
in which the surface of revolution on which the outer boundary conditions are given is neither a stream 
nor a solid surface, and for the cases to be considered later in which this surface is either a stream or 
a solid surface. 

The set of equations (10a) for k is solved first. The quantities hm+~, . and u,.+l,,, that occur in the 
coefficients a., b., c. arid d. are assigned values obtained in the previous cycle in the iteration. For the 
first cycle the assigned values are obtained by extrapolation from the previous step. The set of equations 
(10a) is thus rendered linear and can be solved simultaneously independently of equations (10b), (10c) 
and (10d) to yield kin+ 1,. for n = 1, 2 , . . . ,  N -  1. The method of solution will be outlined below after 
the complete cycle has been described. The set of equations (10b) is solved next. The quantities k,.+ 1,. 
are known from the solution of (10a). The equations (10c) give Pro+ 1,." The quantities h,.+_~,, and Urn+ 1.. 

that occur in the coefficients a*, b*, c* and d* are assigned values obtained in the previous cycle. The 
set (10b) can then be solved simultaneously to yield urn+l,, for n = 0, 1, 2 , . . . ,  N - 1 .  The cycle is then 
completed by substituting the values of u,.+ 1,. in the equations (10d) to evaluate hm+~,.. The cycles are 
repeated until successive values agree, that is, differ by less than some prescribed small amount, and 
the calculation then proceeds to the next step. 

Both equations (10a) and equations (10b) are solved by triangular resolution of the matrix and back- 
substitution. It suffices to describe a solution of (10a) for k. In this equation a., b., c. and d. are known 
expressions. Note that, for n = N - 1 ,  kin+ 1,.+ 1 is a specified boundary condition so that in this case 
the first term a. k,.+ 1,.+ 1 is transferred to the right-hand side of the equation. In matrix form equations 
(10a) can be written 

A K  = D ,  (11) 

where A is an ( N -  1) x (N - 1) square matrix and K and D are column vectors. The procedure is to resolve 
A into lower and upper triangular matrices, A -- L U ,  where both L and U have non-zero elements in 
only the main and an adjoining diagonal; then put L Y  = D and evaluate Y; and finally put U K  = Y 
and evaluate K. Thus it is found that, if the terms in the main diagonal of U are denoted by U., and those 
in Y by y., 

n = N - 1 ,  U. = b.,  ~ (12) 

n = N - 2 ,  N - 3 , .  . . . .  1, U.  = b . - a . c . + l / U . + l  ; 3 

n = N - l ,  y .  = d . ,  "~ 

; 
n = N - 2 ,  N - 3 , .  . . . .  1, y .  = d . - a . y . + l / U . + l  ; 

(13) 

n = 1,2, .  . . . . .  N - 1, k .  = ( y . -  c .  k . _  O / U . .  (14) 

t t  can be seen that the calculation proceeds from the outside (n = N -  1) inwards to evaluate U. and y., 
and from the inside (n = 1, k._ 1 = 0) outward s to evaluate k. (that is, k,.+ 1,.)- 

When the surface of revolution on which the boundary conditions are given is a stream or solid 
surface the above procedure needs modification. The above numerical technique requires that 2..++, 
kin,N, u,..N and P,.,N, that is 2, kb, ub and Pb respectively, be specified but, as pointed out earlier, such a 
specification here would make the problem overdetermined: the calculated value of hm+~,N (that is, hb) 



would in general be incorrect. A procedure that may be adopted is to calculate, by the basic iteration 
described in section 4.3, hm+4,N f9 r two trial sets of boundary conditions and then to iterate by linear 
interpolation until the desired value of h~+4, N is obtained. However, when the shape of the surface is 
specified, this outer iteration can be readily avoided by solving a more complicated set of equations. 
These two procedures will be considered in turn. 

4.4. An Outer Iteration. 

When the bounding surface of revolution is a stream surface across which there is no diffusion, we 
have seen that only one of the boundary values Ub(X), Pb(X) and 2(x) can be arbitrarily specified (kb(x) is 
given by the initial conditions). But the conditions that must be satisfied on such a boundary are 

h b ~' 
ub G ,t. 

du b 2' k~ dP b 
UbTx - ,~3 Q dx  " 

If one of the two unknown boundary values is somehow estimated, the latter equation yields the second, 
and the basic computation described above can be made to determine h b. Successive estimates are made 
until the computed value of hb satisfies the first equation hb/Ub = ~b 2'/2. When the specified quantity 
is Pb or Ub it is the value of 2 that is estimated and we write, for the (m+ 1)th step, 

& . ,  = ~ o [ . ~ + ( x . , - x . _ , ) ] ,  

so that it is the factor ~o that is sought. The subscripts 0,-1,-2, are used to denote current and successive 
preceding values of a quantity in the succession of estimates. For  the first estimate we put 

for the second, 

% = 1 ;  

,lm + ~o ,lm &/G 
% = 2,,+(2, _2, ,_1) ,  

where flo is the current value of hdub; 
and for the following estimates we interpolate linearly by putting 

( ] ~ - ~ - Y - 1 ) ( ~ - l - a - ~ )  
C~o = ~ - ~ a  ( f l _ , _ ~ _ , ) _ ( G _ ~ o )  , 

where 70 is the current value of ~b 2'/2, etc. A similar scheme may be foll9wed when the specified quantity 
is 2, but here an alternative direct method, described in the next Section, is available. 

When the bounding surface of revolution is a solid surface, we have seen that only one of the boundary 
values Pb(X) and 2(x) can be arbitrarily specified (Ub = kb ---- 0). But the condition that must be satisfied 
on such a boundary is 

hb = O. 

If the unknown value o fP  b or 2 is estimated, the basic computation can be made to determine h b. Successive 
estimates are made until the computed value of h b is zero. When the specified quantity is Pb(X) we write 

& + ,  = ~ o [ ~ . + ( 4 . - . ~ . - 1 ) ]  

10 



as before, and for the successive estimates put 

(i) a o = 1 ; 

( i i )  "o = 

2 r / a 2 u  1 
/~Zx j -xm k 

/~,tn "{- (,~ta - -  ,~m _ 1)  

which is suggested by the boundary condition 

dPb 1 f O2u 1 ~u "~ 
d x  - b; 

f i - 1  ( O ~ - l - - g - 2 )  
( i i i )  % = a -  2 4 f l -  t - -  flO ' 

where/3_ 1, fl0 are now successive values of h b. Again, a similar scheme may be followed when the specified 
quantity is 2(x), but the direct method given below is preferred. 

4.5. A Procedure for Cases of Specified Boundary Shape. 
It has been noted that when the surface of revolution on which the boundary conditions are given is 

a stream or solid surface of specified shape no outer iteration is needed. Although the basic cycle of 
computations outlined in section 4.3 suffices, the details are more complicated. 

Consider first the case of a specified bounding stream surface ~b with negligible diffusion across it. 
On this surface the velocity components and the pressure are related (see Section 3) by the equations 

hdub = ~b 2'/2 ] 

du b 2' k 2 dPb I (15) Ubdx --2 3 ~2 dx 

k b = const. 

Since X(x) is specified and k b is given by the initial conditions the values of hb, ub and Pb must be left 
unspecified; they should emerge in the course of the solution. 

In the procedure adopted here ~Jb is regarded as an unknown, and the equation required to make ub 
determinate is derived by integrating the continuity equation (5d) for hb and substituting in the first 
of the equations (15) above. The required equation is, 

~b 

ub;  -~+~-~ ~ d~ (16) 

The pressure P is eliminated from the differential equations to be solved by making use of the second 
of equations (15), and also the equation (5c), to obtain 

dub  [Ik2 ] 
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Thus, if we substitute this expression for OP/Ox into equation (5b), we have three differential equations, 
(5a), (5b) and (5d), and the equation (16), to be solved simultaneously. 

The corresponding difference equations are derived by substituting difference approximations as 
before and by replacing the integrals by sums. The equations for k are unchanged ; they are 

a. k m + 1,n + 1 q- b. k,. + 1.. + c. k"  + 1,n- 1 = d. , (17a) 

where 1 ~ n  ~<N-1 and the a., b., c. and d. are the same as given below equation (10a) in Section 4.2. 
For u, however, 

a* u"+l. .+ 1 +b* Um+l,nq-CSn bLm+l,n_l q-O~n,_ 1 U"+I.N = d*,* (17b) 

where 1~ n ~ N -  1 and the a. ,  b. and c* are the same as given below equation (10b) in Section 4.2, but 

6X , . + l ' n - - P " ' n  - - ~ x  ( u " + l ' N + u " ' 1 v ) -  

2(2" + 1 - ~") 
N z 6x (602 (;tin + ~+ 2,.) 3 (k,.+ ~.N + k,.,N)2 + 

N 

1 1 F ~  (kin+ 1,n+ 1q_kin+ 1 n)2 - 
4 4 6 x ( 6 0  (n+½) 3 k.~,.+l 

n 

1 ] 
~2 m (kin,n+ 1 "]"km,n) 2 

and 

Um+ I,N 
~n, - 1 - -  (~X 

for l < ~ n < ~ N - 1 .  

As before, a special form of (17b) is needed at n = 0. The coefficients a*, b* and  c* are the same as those 
given in (10e), c%,_ 1 = c¢.,_1, and d~* is given by the general expression for d** above, with d* given 
by (10e). To be solved simultaneously with (17b) is the difference form of equation (16), namely 

N 

~ f l - l , .  u"+l , .  = ? (17c) 
0 

where 

1 
f l - l , O  ~ - - ½ ~ ' m + l ,  

B- 1,. = - n(32"+ 1-2,.) 

for 1 <~n<~N-1 ,  
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and 
N - 1  

~' = --½2mUm,o+ ~ n(2,.+~-32.,)u,.,.+ 
n = l  

+½[N2m+ 1 - (3N - 1) 2m] u,, m 

The set of difference equations is completed by the continuity equation, identical to (10d), which yields 
/ 

h from u. 
The cycle of computations is basically the same as that described in Section 4.3 and illustrated in 

Fig. 1. The equations (17a), and the combination of (17b) and (17c), are solved by triangular resolution 
of the matrix and back-substitution. 

The case of a solid specified bounding surface ~b may be treated similarly. On this surface 

kb = Ub = hb = 0 

1 02u 1 O u _ d P b  
22 O~ ~ + 2 2 ~  O~ d~ 

(18) 

Since 2(x) is specified the value of Pb must be left unspecified. In the procedure adopted for this case Pb 
is regarded as an unknown in the difference approximations to the equation (5b) for u. The additional 
equation required to make the system determinate is derived by integrating the continuity equation 
(5d) for h b and setting hb = 0. It is 

~b 

• a¢ = o. 

The difference equations are the same as above, except that instead of (17b) there is 

1 
a *  U m + l , n +  1 -[-b~n Urn+ 1,n-[-C~n Um+ l ,n-  1 +~x Pm+ ,.N = d*** (19) 

with 
fix 

5. Examples. 

5.1. General Features of the Computations. 

To illustrate the application of the method under a variety of conditions three different examples'are 
given below. The computations were carried out on a Mercury digital computer using a programme in 
Autocode. A corresponding programme could be written for any digital computer of moderate capacity. 
The limited capacity of Mercury makes care necessary in the detailed layout of the programme when 
the minimum interval in the radial direction is sought. A maximum of about 90 intervals (or pivotal 
points) can be handled here without venturing beyond the high-speed store; for 80 intervals the basic 
cycle of computations occupied the Mercury computer for 15 sec. The total time for a computation 
depends also on the number of iterations required at each step and on the number of steps ; for the present 
examples it was found to be roughly in direct proportion to the number of intervals 6~ and the number 
of steps fix. 

The procedure in beginning a computation differs slightly from that used to advance from one step 
to the next. In the latter case values are extrapolated from the previous step for the first cycle of an iterative 
sequence. For the first cycle of the first step this is not possible and specified initial values are substituted. 
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The choice of the step size 6 x  is a compromise. The step chosen should be small enough for the trunca- 
tion errors involved to be acceptable, and yet it should not be so small that the time for the computation, 
which is roughly proport ional  to the number  of steps, becomes excessive, since the truncation errors 
depend on the x-wise variations of k, u, etc., the choice of step size 6x may be guided by the x-wise varia- 
tions in the boundary conditions and by information obtained in the earlier, upstream, stages of the 
computation. Another consideration is the requirement that the iterations converge ; reduction of step 
size usually promotes convergence. 

The accuracy of the computed results can be improved by repeating the computat ion with different 
intervals 5~ and using standard methods for extrapolating to the limit 6(--*0. For  example, in the method 
used here it is assumed, since first-order central differences are employed, that a more accurate value of 
u is given by the expansion 

u = Ucom~ + B ( ~ ¢ )  2 + C(a~) 4 + . . . ,  

where Ucomp is the computed value for the interval 6~, and B, C . . . .  , are constants. Thus if the computa-  
tion is carried out for three different intervals, substitution in the above expansion yields three equations 
from which, u, B and C can be determined, and the error in u associated with 6~ would be of the order (b~) 6. 

The examples that follow relate to fluid motions of types that actually occur; at the same time the 
examples illustrate the three main variants in the application of the method : where the bounding surface 
of revolution is neither a stream nor a solid surface, where it is a stream surface, and where it is a solid 
surface. For  each example a description is given of the initial and boundary conditions, the mesh sizes, 
the results and the time taken. Distinctive features of each example are commented upon. 

5.2. A Trai l in  9 V o r t e x  

This is the simplest of the three examples to be described, and for this case no study of the effects of 
different step sizes is made. The initial conditions here are taken to be 

x = 0.25 , u = 1 -0 .25e  -~2 , k = 0 .5-0 .5e  -~2 ( -  ~v) . 

The simple forms for the profiles (shown in Figs. 2 and 3) were taken from the approximate theory of 
Newman 9. Batchelor 1° has recently shown that while the form for k, or v - k/~.  is correct in an asymptotic 
sense the correct asymptotic form for u includes extra terms involving the circulation around the vortex. 
Nei ther  theory is strictly applicable here, because neither the circumferential velocity v, nor  the defect 
of axial velocity (1 - u ) ,  is small compared with the axial velocity u. It is of interest, nevertheless, to check 
whether either theory gives results approaching those obtained numerically. 

The outer bounding surface of the core is taken to be a circular cylinder (so that the shape factor 2 = 1) 
with 

~b =- R e a r / 2  = 6 , 

and the computat ion is carried downstream as far as x = 1"0. The boundary conditions at ~ = 6, for 
0"25>~x>~1.0 are taken to be 

u = 1 , k = 0"5 , P = cons t  . 

This is justified provided viscous effects do not extend outside ~ = 6, and the computat ion confirms the 
point. 

The computation follows the simpler procedure outlined in Section 4.3. The step sizes are 

6 x  = 0'05 , fig = 0.075 , 
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so that there are 15 x-wise steps taken and 80 intervals in the radial direction. The number  of cycles 
required (for successive values of u on the axis to differ by less than 10-s) range from 6 for the first step to 
3 for the middle steps and 2 for the last few steps. The time taken by the computer  (Mercury) for the 
whole computat ion is 12 minutes. 

Computed profiles of the axial velocity u and the circumferential velocity v are shown in Figs. 2 and 
3 respectively. The values are plotted against the non-dimensional variable R - Rear so that different 
values of the scaling quantities q, I and v are automatically allowed for. Also plotted in Fig. 2 is the profile 
that Newman 's  solution gives at x = 1-0 ; it shows a much more marked increase in axial velocity with 
increasing distance downstream than is given by the numerical solution. This discrepancy is the net result 
of an augmentation of velocity (in Newman 's  case), due to Newman 's  neglect of the pressure-gradient 
term in the equation of motion (3b), and a reduction of velocity due to Newman 's  linearization of the 
equations of motion. It  can be checked that Batchelor's solution provides no better fit to the numerical 
results; in his case the increase in axial velocity with distance downstream is less marked than the 
numerical increase because the only contribution to the discrepancy comes from the linearization of 
the equations of motion. On the other hand the linear theories are found to give results for the circum- 
ferential velocity which are almost identical to those obtained numerically. The profiles of Newman and 
Batchelor are identical here and two of them are shown in Fig. 3. 

It may be noted that the numerical solution is valid for any values of the scaling quantities q, I and v 
provided the quasi-cylindrical approximation is nowhere invalidated, in particular, provided ql/v >> 1. 
For  example, if we choose v = 0-3 ft2/sec and rlvq-*240 ft2/sec for increasingly large rl (typical values 
for a turbulent trailing vortex far behind an actual aircraft), then, since ~v--*0-5 here, qI = 768 000; 
so ql/v = 2.56 x 106, and if we choose q = 320ft/sec (so that u q also takes a typical value) we find l = 
2400ft. The range 0.25 ~ x ~< 1.0 then covers a distance of 1800 ft. A single numerical solution thus covers 
a whole range of actual flows. 

5.3. The Core of a Leading-edge Vortex. 

The vortex core considered in this example is of the type that might actually occur in the separated 
flow over a delta wing. Upstream, the outer inviscid part  of the core is taken to be conical. Further down- 
stream the outer flow field gradually departs from the conical state, accompanied by a rise in pressure 
of a magnitude that might be appropriate for the effect of the trailing edge of the wing. As might be 
expected there is a substantial decrease in the velocity along the axis, but in this example no stagnation 
occurs. 

The computat ion fails naturally into two parts, corresponding to the upstream and downstream 
parts of the flow. For  the first part  the outer bounding surface of the core is taken to be conical, and 
the simple computat ion procedure outlined in Section 4.3 and used for the numerical solution for the 
trailing vortex in the previous Sub-section is used. For the second part  the outer bounding surface of 
the core is taken to be a stream surface of unspecified shape but with a specified pressure distribution 
along it. The computat ion then includes the outer iteration described in Section 4.4. The first part  of the 
computat ion provides initial conditions for the second part. 

The initial conditions, for the upstream part  of the flow, are assumed to be given, at x = 50, by the 
solution of Stewartson and Hall 3 for the core of a leading-edge vortex. The initial profiles of u and v, 
derived from the authors '  tables, are shown in Figs. 4 and 5 respectively. The radius of the bounding 
cone, at x = 50, was R b = 9.6295 (so that ~b = 9.6295) and the cone was supposed to extend to x = 100 
where Rb = 19.259 ; on this cone the velocity and pressure were assumed to be constant. 

The computed profiles of axial and circumferential velocity at X -- 100 are shown in Figs. 4 and 5. 
For  this part  of the computat ion the step sizes are 6x = 5 and 6~ = 0.120369, so that 10 steps are required 
in the' x-direction and there are 80 intervals in the radial direction. No checks with different step sizes 
are made, because the main object is to obtain a set of initial conditions for the second part  of the com- 
putation. However, the results may be compared with those given by the theory  of Stewartson and 
Hall, even though the boundary conditions assumed here are not precisely the same as those appropriate  
to the theory, which requires a slight increase in both axial and circumferential velocity with increasing 
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distance x along the cone. The discrepancy (0-5 per cent) between the theory and the computed results 
is no more than the discrepancies in the boundary conditions. This part of the computation is com- 
pleted in about 10 minutes by the Mercury computer when iteration is continued till successive values 
of u on the axis differ by less than 10- 2 

The second part of the computation is concerned with the structure of the flow within the stream 
tube passing through R b = 19.259 at x = 100, from x = 100 to x = 140. It is assumed that there is no 
diffusion across the stream tube. The prescribed pressure distribution along this bounding stream-tube 
is shown in Fig. 6, which also shows the radius of the tube determined in the course of the computation. 
The computation may be regarded as a numerical experiment to study the effect of an arbitrarily imposed 
pressure gradient on a given vortex core. Formally, the initial conditions, for this part of the computation 
are 

x = 100 , u = u ( ¢ )  

k = k(O 

given by the preliminary computation; and the boundary conditions at ~o = 9.6295 are 

h b ~ 2' 
_ _  = ~ - -  

2 Ub 

du b 2' k 2 d P  b 

u~-d7 x - 2 3 ~2 d x  ' 

k b = 40-4064 , 

Pb = Pb(X) , 

where Pb is specified as the function shown in Fig. 6 and is a smooth but otherwise arbitrary continuation 
of conditions at x = 100. This is an example in which successive estimates of the value of 2 are made 
in the manner described in Section 4.4. The computation is carried out for a range of step sizes : 

c~x = 2(20) ; 6~ = 0.120369(80) , 0.240738(40) , 0.481475(20); 

and 

6 x  = 1(40) ; 6~ = 0.240738(40) . 

For  the case 6x = 2, 6~ = 0.120369(80), the time taken by the Mercury computer to compute the solu- 
tion from x = 100 to x = 140 is about 75 minutes. 

Some results for the case 6x = 2, 6~ = 0-120369, are shown in Figs. 4, 5 and 6. In Figs. 4 and 5 are 
shown profiles of the axial and circumferential velocity, respectively, at x = 124 and x -- 140. Fig. 6 
shows the computed variation of radius R b = ~b2 from x ---- 100 to x = 140. The effect of mesh size on 
the computed values of u, v and R b is shown in Table 1. There are four columns of computed results, 
and one column obtained by extrapolation from columns 1, 3 and 4 by the method described in Section 
5.1. In column 2 are results computed with the step size 6x equal to half that used for column 3, but 
with the same value of 6~ as for column 3. As expected for such an implicit method of calculation, there 
is no sign of numerical instability. The effect on u of halving the step-size in the x-direction is less than the 
error (0"01) due to terminating the iteration after a finite number of cycles. The truncation errors due 
to the finite size of the interval 6~ may be estimated by comparing the computed results With the extra- 
polated values. The truncation errors are seen to be appreciable (~  1 per cent) for the largest interval, 
but they are much smaller (~0.1 per cent) with the smallest interval. 
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As with the previous example, the numerical solution is valid for a whole range of the scaling quantities, 
q, I and v. For  example, if we choose q = 1 ft/sec, l = 1 ft and v = 0.0008 ft2/sec, we have ql/v = 1.25 x 105 
which satisfies the condition ql/v >> 1 ; then, over a distance of 40 ft, the axial velocity o n t h e  axis de- 
creases from about  680 ft/sec to about  430 ft/sec, the maximum value of the circumferential velocity 
decreases from about  240 ft/sec to 200 ft/sec and the core itself expands from a diameter of about  1.1 ft 
to about  1.5 ft. 

5.4. A Vortex in a Pipe 
The pipe-flow considered here has the same initial conditions as the one chosen by Abbott  4 for study. 

The pipe itself is prescribed to be a circular cylinder, and the initial conditions, at x = 0, are 

u = 20 + 4~ 2 - 1"6~ 4 

k -- 4~2(x/5 - ~) , 

with ~ = x/5 at the cylinder wall, that is, ~b = 2.23607. On the cylinder wall u = 0, k = 0 and 2 = 1. 
This is an example in which successive estimates of the value of pressure at the wall, Po, are made in 
the manner described in Section 4.5. No fair comparison with Abbot ts '  results can be made because his 
basic differential equations differ from the equations used here. 

The initial profiles of axial velocityu and circumferential velocity v, and computed profiles for different 
stations in the range 0 < x ~< 75, are shown in Figs. 7 and 8. The corresponding computed pressure dis- 
tribution along the wall is shown in Fig. 9. For  this computat ion the intervals fi~ in the radial direction 

are constant, that is 

6~ = 0.0559017(40), 

but the step-sizes fix are increased with increasing distance downstream, with successive magnitudes 

fix = 0-3125(4), 0.625(2), 1.25(2), 2-5(4), 5(4), 10(4). 

The time taken by the Mercury computer  is about  120 minutes. It can be seen from Figs. 7 and 8 that 
the computed flow tends to the known Hagen-Poiseuille state, with no swirl and a parabolic velocity 
profile, with increasing distance downstream. Moreover,  Fig: 9 shows that the computed pressure 
gradient on the wall also tends to the Hagen-Poiseuille value. This is a check on the computation. A 
further check can be made by repeating the computat ion with larger intervals 6~. Typical results for u, / 

v and P are shown in Table 2. Again there are four columns of computed results and one column obtained 
by extrapolation from columns 1, 3 and 4. The computation of the results in column 2 differed from 
that for the results in 3 only in that larger steps fix were used. Also included are a few values of u and 
dP/dx, appropriate  for the Hagen-Poiseuille flow with the same value of mass-flow as the computed 
pipe-flow. The results clearly tend to some limit with decreasing interval. We may estimate the limiting 
values by assuming, as in the previous Section, that the errors depend on the squares and fourth powers 
of the interval ; and the table shows that the extrapolated values downstream approach the Hagen- 
Poiseuille values closely. 

At the larger x-wise steps the computations show a feature worth noting. If the computed values 
near the pipe-wall of either the axial or the circumferential velocity component  are plotted as the compu- 
tation proceeds downstream, the points are found to lie not on a smooth curve but rather on a wavy one. 
This is most marked in the upstream part  where the axial gradients are larger. Such a, plot (among others) 
is shown in Fig. 10 ; the points denoted by a small square are obtained in the case of the largest s t eps - -  
where the first step is 6x~ = 2.5. All the plots in the Figure are for the computed values of the axial velocity 
u at a distance of one-tenth of the pipe-radius from the wall. The figure shows the virtual elimination of 
the oscillatory behaviour when the x-wise steps are reduced in size, whether the radial intervals ~ are 
large or small, and this means that it is the truncation errors in the finite-difference approximations to 
the x-derivatives, or the errors introduced by replacing each ~-derivative at the mid-point of an interval 
fix by the mean of its values at the end points of the interval, that are responsible for the oscillations. 
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Again we may assign a range of physical magnitudes to the computed flow. If, for example, the radius 
of the pipe is 10 cm, q = 10 cm/sec, and v = 0-2 cm2/sec, then, since 

~b = rb(ql/v)~ = . , / 5 ,  

l = 1000 cm 

and 

ql 5 x 104 

and we can say that in a distance of about 10 metres the velocity along the axis has increased from 
200 cm/sec to about 95 per cent of its ultimate value of 333½ cm/sec for downstream, and the maximum 
value of the circumferential velocity in a section has decreased to about 16-5 cm/sec, or one-third of its 
initial value of 50 cm/sec. 

6. Discussion. 
A numerical method for solving the equations for quasi-cylindrical vortex cores has been described, 

and the use of the method has been illustrated with three distinct examples. The examples show that 
the method is straightforward to apply and is numerically stable, and that only moderate times are 
required by a digital computer of relatively small capacity. The examples also illustrate practical pur- 
poses for which the method may be useful : each example relates to a fluid motion of a type that actually 
occurs and in circumstances of practical interest ; and it seems that in no case can a solution be obtained 
analytically. Finally, it is found that the iterations converge when there are two velocity components 
just as when there is only one (as in a two-dimensional boundary layer). 

The method is now being applied to a fluid motion in which "vortex breakdown" (see for example 
Ref. 1) occurs. Now a characteristic of this phenomenon is the presence of a free stagnation point and, 
of course, the method becomes invalid as stagnation is approached, because the axial gradients then 
become large enough to invalidate the quasi-cylindrical approximation, just as the boundary-layer 
approximation becomes invalid as separation is approached. But it seems fair to expect, as is done in 
boundary-layer calculations, that the behaviour of the solution will betray the imminence of stagnation 
even if a zero value of the axial velocity is not actually obtained. If this is so, the method may provide 
a means of predicting whether breakdown will occur in a given vortex core subject to given constraints, 
and also a means, by numerical experiment, of identifying and studying the conditions which favour or 
inhibit. In the case now being considered the bounding surface of revolution is a stream surface and the 
pressure along it (but not its shape) is prescribed ; both this boundary condition and the upstream initial 
conditions are taken from experimental observations by Kirkpatrick 11 of a flow in which breakdown 
actually occurs. 

The success of the present method suggests that similar methods might prove successful for related 
problems where the governing partial differential equations are of the parabolic type. An obvious example 
is provided by the compressible vortex core. Very recently Brown 12 obtained an analytic solution for 
an inviscid conical vortex core of the type associated with the separated flow over slender delta wings. 
The only viscous solutions available are certain similarity solutions (see for example Ref. 1) in which the 
freedom to prescribe initial and boundary conditions is lost. No other solutions are known to the present 
author. The current practical interest in such vortex cores makes it worth while to attempt to solve the 
governing equations numerically. The equations themselves are written down in Ref. 1 ; in addition to 
the continuity equation and three momentum equations, which are very similar to the equations (3), 
there is an energy equation and the equation of state, which enable the temperature and density to be 
determined in addition to the pressure and the velocity components. It seems that no large departure 
from the present method is needed : a straightforward extension should suffice. 
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LIST OF SYMBOLS 

A 

a, b 

an, bn, cn 

b,,, c,,, d*, d. , ..,, a*, * * ** d*** 

B , C  

D 

d. 

A,A 

h 

i 

K 

k 

k .  

L 

l 

m 

N 

t~ 

P 

q, q,~o 

R 

R e  

r 

U 

( N -  1) x ( N -  1) square matrix 

Units of step size; subscript b denotes conditions on outer bounding 
surface 

Elements of the matrix A, coefficients in difference equations 

Coefficients in difference equation (10b) 

Constants 

Column vector 

Element of the column vector D, coefficient in difference 
equation 

Values of the step fix 

Subscript denoting initial conditions on the upstream cross-section x = x~ 

Column vector 

2(v 

Element of the column vector K 

Lower triangular matrix 

Reference length 

Denotes ruth step in axial direction 

Total number of intervals fi( in radial direction 

Denotes nth pivotal point in radial direction 

Non-dimensional pressure, actual pressure + (q2 x density) 

Reference velocities 

Radial ordinate, Rear  

Reference Reynolds number, ql/v 

Non-dimensional radial ordinate, radial distance + l 

Upper triangular matrix 
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U~ V~ W 

W 

X 

Y 

Y,, 

0~-2~ 0~-1~ O~ o " )  

. f l - l ,  f lo ) 
7-1, Yo 

fl-- l,n 
7 

2 

V 

LIST OF SYMBOLS--continued 

Non-dimensional axial, circumferential and radial velocity components 
(actual velocity + q) 

Re~w 

Non-dimensional axial ordinate, axial distance + l 

Column vector 

Element of the column vector Y 

Successive values used in iterative procedures of Section 4 

Terms in difference equations of Section 4.5. 

Radial ordinate, R/2 

rb(x)/rb(xi) 

Kinematic viscosity 
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TABLE 1 

Effect of  Mesh Size on Computed Values for a Leading-edge Vortex 

6xoca, a = 2; 

6~ocb, b = 0.120369. 

X 

108 

140 

X 

108 

140 

e u 

R b •X = a, ~ = 4b 0-5a, 2b a, 2b a, b Extrapolated 

0.00 
0-15 
1.00 

0.00 
0.15 
1.00 

R 

665.744 
566.143 
378.195 

436.982 
373.270 
188-256 

664.669 
566.175 
378-195 

432.805 
373.833 
188.259 

664.671 
566.175 
378.196 

432.809 
373.829 
188-253 

664.122 
566.183 
378.196 

431.395 
373-966 
188-252 

663.914 
566.186 
378.196 

430.891 
374-011 
188.252 

I) 

6x = a, ~{ = 4b 0.5a, 2b a, 2b a, b Extrapolated 

X 

108 
124 
140 

0"05 
0"15 
1"00 

0"05 
0"15 
1"00 

199.200 
239'986 
207"745 

162.233 
196.914 
154-816 

6x = a, 6~ = 4b 

19'5463 
22'2490 
26"2288 

197'915 
239'966 
207.745 

159.922 
196-704 
154.820 

0.5a, 2b 

19.5463 
22.2490 
26.2281 

197.915 
239.966 
207.745 

159.924 
196.703 
154-820 

a, 2b 

19'5463 
22'2491 
26.2282 

197"493 
239"960 
207.745 

159'078 
196.647 
154-820 

a,b 

19.5463 
22"2491 
26'2281 

197.343 
239'958 
207.745 

158.772 
196.628 
154.820 

Extrapolated 

19.5463 
22'2491 
26'2281 
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TABLE 2 

Effect of Mesh Size on Computed Values for a Vortex in a Pipe 

6x = f l ;  

6x = f 2 ;  

6x = 0.3125(4), 0-625(2), 1-25(2), 2.5(4), 5(4), 10(4). 

6x = 0.625(4), 1-25(2), 2-5(2), 5(1), 10(2), 20(2). 

6(ocb, b = 0.0559017. 

75 

X 

5 
10 

35 
45 
55 
65 
75 

R u 

Hagen 
6x =f l ,  f2, 2b fl ,2b f l ,  b Extrapolated Poiseuille 6( = 4b 

0 
0"44721 
1"11803 
1-78885 

0 
0"44721 
1"11803 
1"78885 

29"167 
28"861 
25.284 
13"323 

34"232 
32'863 
25"674 
12-324 

28.912 
28.603 
25.002 
13.144 

33-686 
32"339 
25.265 
12.129 

28-914 
28.604 
25.005 
13-148 

33.683 
32.335 
25-262 
12-126 

/) 
R 

6X ~f l~  
6( = 4b f2, 2b 

2.091 
2"948 
1-299 

2-153 
2-988 
1"303 

0'44721 
1'11803 
1"78885 

A,2b 

2.091 
2.948 
1.300 

28.768 
28.457 
24.861 
13.065 

33.438 
32.100 
25.078 
12.037 

A,b 

2.071 
2-932 
1"298 

28.712 
28'401 
24"806 
13'034 

33"347 
32"013 
25"010 
12'004 

Extrapolated 

2.064 
2.926 
1.297 

33.333 
32.000 
25.000 
12-000 

Pwan (AP/AX)wal 1 

6x = f l ,  Hagen 
6( = 4b f2, 2b f l ,  2b f l ,  b Extrapolated Extrapolated Poiseuille 

8110.81 
7949.04 

8119.99 
7962-83 

7274.66 

6735.90 

6196-78 

8119.90 
7962.76 

7274-89 
7005.29 
6735.85 
6466.36 
6196.92 

8124-59 
7969.20 

7286.97 
7019.24 
6751-84 
6484.20 
6216.80 

8126.37 
7971-61 

7291.47 
7024.43 
6757.79 
6490.84 
6224-20 

26.703 
26-664 
26-695 
26.664 

26-667 
26.667 
26.667 
26.667 

7247-74 
6973-74 
6699.88 
6426.01 
6152.15 
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FIG. i. Simplified diagram of computer programme. 
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