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Summary. 
Exact inviscid theory is applied to a simple lifting configuration consisting of a wedge beneath a plane 

wing, both the wedge and the wing being terminated by a trailing edge which lies along a Mach cone. 
The efficiency of such an arrangement is compared with the efficiency of a wedge producing lift directly 
through incidence, as in the Nonweiler wing. The comparison is favourable to the interference arrange- 
ment provided the parameter M~CzJfl 2 is less than 0.65. 

In an Appendix it is shown that optimising the shape of the trailing edge makes the indirectly lifting 
wedge superior to the directly lifting wedge for values 4 2 of Moo CzJfloo between zero and unity. 

LIST OF CONTENTS 

1. Introduction 

2. Derivation of Results for Wedge-Interference Wing 

3. Analysis for Low CL 

4. An Interference Similarity Parameter 

5. A Note on the 'Momentum Principle' 

6. Conclusions 

List of Symbols 

References 

Appendix 

Illustrations--Figs. 1 to 10 

Detachable Abstract Cards 

* Replaces R.A.E. Technical Note/No. 2981--A.R.C. 26437. 



Figure 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

LIST OF ILLUSTRATIONS 

The wedge interference wing 

Configuration considered in Section 2 

Notation for wedge flow 

Derivation of equation (10) 
T 

Comparison of single-shock Nonweiler and wedge-interference wings 

Ratios of base areas for single-shock Nonweiler and wedge-interference wings 

Comparison of single-shock Nonweiler and wedge-interference wings (collapsed plot) 

Regions of superiority of wedge-interference and Nonweiler wings 

Optimum wedge-interference wing 

Comparison of single-shock Nonweiler and optimum wedge-interference wings 

'1 

1. Introduction 

One of the simplest examples of favourable aerodynamic interference at supersonic speeds is a vertical 
wedge set beneath a wing (Fig. 1). The wing catches all or part of the positive pressure field generated by 
the wedge, and thus sustains an additional lift force. This configuration has been studied by many authors 
using approximate theories, for example Ferri, Clarke, and Cassaccio 1 using linear theory, and Grod- 
zovskii 2 using hypersonic small perturbation theory. However, the extreme simplicity of the problem 
makes it easy to solve by exact inviscid theory, and the results so obtained have some interesting features. 

For example, the efficiency of the interference lift produced in this way may be compared with the lift 
produced directly by setting a wedge at incidence. It transpires that the comparison is favourable to the 
interference configuration at low lift coefficients and low Mach numbers, whereas the directly lifting 
wedge is superior at high lift coefficients and high Mach numbers. The two effects may be combined into 
a single similarity parameter MooCL/flo o . 4  2 

It should perhaps be emphasized that there is no intention to treat this interference configuration as 
though it were a possible realistic aircraft shape. The aim is rather to present a family of shapes whose 
exact behaviour can be appreciated with the minimum of mathematics, thereby drawing attention to 
some features of interference effects which are not revealed by linear theory. 

2. Derivation o f  Results  for  Wedge-interference g4ng 

The problem of a wing at zero incidence deriving lift from interference with a wedge centrebody may 
be treated as follows. Consider, as in Fig. 2, a tetrahedron OAEE'  mounted on the infinite plane xy, and 
symmetrically disposed with respect to a uniform free stream flowing parallel to that plane. OA is perpen- 
dicular to the x y  plane, in the direction of the z-axis, and has unit length. The angle EOE'  is 26, and the 
angle O E A  is chosen to be co t -  1 fl, that is, the Mach angle corresponding to flow over the surface of a 
wedge of half-angle 6, starting from a free stream Mach number Moo. 

An initially plane shock will spring from OA; let the angle which this makes with the Surface O A E  be 
co t -  ~ B. 
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From each point on the line AE will stem a Math  cone of  semi-angle cot- 1 11. The region of flow 
between the shock and the envelope of these cones will be two-dimensional and hence calculable. 

Now consider the point on AE whose co-ordinates are (xo, O, 1 -xo/fl). 
The equation of the Mach cone from this point is : 

y2 + ( z -  1 + xo/11) 2 = ( x -  XoY/112 . (1) 

It is easily shown that where these cones intersect the plane z = 0, the cone from A lies ahead of all 
the other cones, except at the point E, where they all meet. Thus the rearward boundary of two dimensional 
flow on the plane is obtained by setting Xo = 0, z = 0, in equation (1), 

i.e. 

112(y2+ 1) = x z (2) 

which is a hyperbola. 
Let this hyperbola cut OS in T, and choose OEHTto be the 'wing' surface. If suffiX0s refers to the 

shock, suffix()c to the trace EHTof the Mach conoid, and if the co-ordinates of Ta re  x = x r  = Byr, 
Y = Yr, then the area of this single wing panel is S, where 

YT 

S = f (xc- xs) dy 
0 

(3) 
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t 

YT Y"Z" 

~ 11f(1 "t-y2) ~ d y - f B y d y  
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[Y 2~ 1 ] ,r By2 
= fl ( l + y ) ~ + ~ I n ( y + ( l + y Z )  ~} 2 

0 

Xryr ~ 7 Bye. -- -~ F I n ( y r +  ) 

= B_2 In (v~+5~). 
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Substituting x = By in equation (2) yields 

y~. = m 
12 

8 2 __ t 2  

and putting this into (4) gives 

S = ~/71n [-Y~'~ B)2 ] ----~,n kff-~_fl_ ]r11+B1 

(4) 

(5) 



If we choose a free stream Mach number and a wedge angle, both B and fl may be obtained from the 
standard charts of flow over wedges. Since we also know the planform area of the body OEE' = flz sin 6 
cos 6, and the base area (which is the forward projection of AEE') = fl sin 6, we can exactly evaluate the 
performance of the configuration in inviscid flow. The results of such analysis are shown in Figs. 5a, b 
and c, for free-stream Mach numbers of 2.0, 4.0 and 8'0. 

Also shown on these graphs are the performances of Nonweiter wings 4, which are equivalent to those 
of plane wedges; it will be noted that these are superior to the interference arrangement at high values 
of Moo or CL, and inferior at low values• 

In both cases the coefficients are based on total projected planform area, and pressures on the base 
and on the upper surface have been taken equal to free stream. 

It may be noted here that, for given Moo and CL, the ratio of wetted area to planform area is fixed for the 
particular interference configuration studied here. For the Nonweiler wing this ratio may take on any 
value between unify and infinity, depending on the anhedral angle, but for 'realistic' Nonweiler shapes 
it normally has a value which is slightly less than that for the interference wing. Hence the skin friction- 
drag will tend to be slightly larger on the interference wing. 

The ratio of base area to planform area is shown in Fig. 6 for both types of wing. 

3. Analysis for Low Lift Coefficients. 

The parameter C~/CD is a!ways finite for a Nonweiler wing, but for the il~terference wing it has a logl 
arithmic singularity at CL = 0. The purpose of the present section is to determine the asymptotic form 
of the curve near this singularity, which will be made the basis of a similarity rule. 

If 6 is small, both B and fl will be close to fl;~, so that we may approximate to equation (5) by 

\ •  

Now 

Since 

S =--~-In . (6) 

B - f l  = (B-floo)-(fl-floo) = (B- f loo ) -d f l .  

Moo dM = fl~o d~ 

and since for small 6 we can use the isentropic relationship 

From Fig. 3 we have 

dM - [3oo + M ~ (8) 

fl~ + M 6 ~(9) 

we have 

B = c o t ( # = - 6 + s ) .  
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Therefore (see Fig. 4) 

= ((5-~) M ~ .  (10) 

But from Ref. 3, p. 93, for small (5 

y + l  M2~ 
e - - -  (5. (11) 

4 ~L 

Combining (10) and (11) 

Combining (7), (9) and (12) 

B--r ico= [1 ~ + 1  M~] M ~ 6 .  (12) 
4 ~ L J  

B - f l  - M ~  y +  l (5 ( 1 3 )  

fi~ 4 " "  

Substituting this into (6), the area of one wing panel influenced by a narrow wedge is 

# 
I 

s =~;n M~(~+1)(5 

Now for sufficiently small 6 we may neglect the body planform area with respect to the wing area, 
and take CL = Cp = 26/fl~o, In this way we obtain 

CZL 1 

CD floo 
16~ ] 

• ln  ( 7 + I ) M ~ C  L " 
(15) 

This, then, is the asymptotic form of the curves of Fig. 5 near CL = 0. Due to a fortunate cancelling of 
errors it is found that equation (15) represents the exact curve over quite a large range of Cr, (see Figs, 
5 a and b especially). 

For Nonweiler wings, linear theory predicts simply 

c~ 2 
- -  = cotSCL = - - .  
C .  /~oo 

The non-linear effects can be represented to first order by the following expression, which is obtained 
from the oblique-shock relationships by suitable simplification 

C c° ,16, 



4. An Interference Similarity Parameter 
In Ref. 2 Grodzovskii quotes results which, when put into the notation of this report, give Moo large 

and 6 small, 

2 
B - -  - -  

(~-1)6 

Cp ---- (y q- 1)~ 2 . 

Using these it is easily shown that, with y = 7/5 

cA = 0.258 
Co 

Multiplying the left-hand side by floo, and the right-hand side by M2/floo, for when Moo is large these 
will be nearly equal, and rearranging 

+ 

o~--DD = 0"258 ~--- - -~  ,] . (18) 

Comparing this with equation (15), we see that within the range of applicability of either equation, 
flooC~CD is a function only of the combined variable M~oCz/floo.4 2 
This leads us to expect that the exact results of Figs. 5a, b and c may collapse onto a single curve if plotted 
in this form, and this is seen to be the case in Fig. 7. 

Moreover, we may rewrite equation (16), which gives the performance of Nonweiler wings at small CL, 
in the form 

, CL2 .[I+ (y+I) 
2 - 5 -  \ M : ]  _1 (19) 

Thus; if we plot Nonweiler wings in the same way, we shall obtain a family of lines which intersect the 
vertical axis in the same point, but ,depart from it with slopes which are all small, and differ only in the 
factor z 2 [3~o/M+. This is also done in Fig. 7. 

Fig. 7 now shows that the relative merits of directly and  indirectly lifting wedges depend only on the 
Moo Ch/flo~. The interference arrangement is superior if this is less than about 0.65, and vice parameter 4 2 

versa. 
Fig. 8 shows how, using this result, the Moo, CL plane may be divided into two regions by the line 

CL = 0"65 fl2/M~. Above this line the Nonweiler wing is the better of the two. The greatest range of lift 
coefficients over which the wedge-interference wing is better occurs at Moo = ~/2. This is also the Mach 
number at which, for given CL, the ratio (UD)w.I.w./(HD)N.W. is maximum• Physically this corresponds to 
the fact that, for given wedge angle, this is the Mach number for which the characteristics behind the 
shock are most nearly parallel t0 the shock wave itself, so that the maximum area is available for the 
interference lift to act on. This result may be proved by differentiating equation (13). 

k- 



5. A No te  on the 'Momentum Principle' 5 

It is interesting to consider the changes of momentum produced by the two types of wing. Nonweiler 
wings produce locally only downward momentum and the wedge-interference wing only sideways 
momentum. (This must, of course, be converted to downward momentum in the wake.) At first sight it 
would seem that the Nonweiler wing operates in the more efficient manner. It has just been shown, 
however, that under certain circumstances the interference arrangement is the more efficient lifting 
device. This example serves to show that the attempt to derive efficient lifting shapes by simple arguments 
based on 'near field' momentum considerations, as was done for example by Eggers and Syvertson in 
Ref. 5, can be misleading. 

6. Conclusions 

It would, of course, be quite unsound to draw firm general conclusions from a limited analysis of two 
rather artificial configurations, but it is both tempting and plausible to regard these two designs as typical 
of two extreme classes of lifting shapes. In the Nonweiler wing, every element of the surface develops 
the same lift and drag as would a simple wedge having the same inclination to the free stream. In the 
wedge-i'nterference wing, by contrast, neither component in isolation would develop any lift at all. Thus 
the two designs may be regarded as typical of lifting surfaces which derive either very little or most of 

M~oCL/fl~o then may be regarded their lift.from the interference between different parts. The function 4 2 
as a similarity parameter related to the extent to which interference may be incorporated as a useful 
feature of a design. 
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APPENDIX. 

The Optimum Wedge-Interference H4ng 

In the main body of this report the trailing edge of the wedge-interference wing is taken to be simply 
the trace of a Mach cone. However, by suitably modifying the trailing edge it is possible to improve the 
performance. 

In this Appendix the results of optimizing the trailing edge are briefly described. 
Since all the lift is produced by a constant pressure acting on the wing, and all the drag by the same 

constant pressure acting on the body, best performance for given wedge angle is achieved by maximizing 
the ratio (wing area): (body area). The restriction must be observed, however, that uniform flow is possible 
over the whole of the chosen areas. This may be interpreted geometrically as follows : 

Lemma 1 
It must not be possible to find any two points on the trailing edge such that the straight line joining 

them in space makes an angle less than cot -1/? with the direction of the flow behind the shock. This 
is a necessary and sufficient condition. 

Lemma 2 
Any line drawn in a plane which is tangent to a Mach cone makes an angle with the flow direction 

which is greater than or equal to cot -1/3 

Refer now to Fig. 9a. This shows the original wing shape AEHTOA.  We wish to modify the trailing 
edge A E H T s o  as to increase the ratio of  wing area to body area. Let the new trailing edge be A B N W M .  
Consider the projection of Fig. 9 a onto a plane normal to the Mach line A T (Fig. 9 b. In this projection 
M W N  must lie entirely on the same side of A B N  as does the point 0, since otherwise Lemma i is not 
satisfied. Therefore we have the inequality, 

area M N O  << sin 7 

area ANO sin 72 

where 71, 72, are the angles made by ATwith the planes ANO and M N O  respectively. 
Now consider the plane which is tangent along A T t o  the Mach cone from A. This appears as the line 

AP in Fig. 9 b. Choose the intersections AP, P T o f  this plane with the body and wing surfaces to be 
the trailing edge as in Fig. 9c. Lemma 2 shows that such a trailing edge meets the requirements of Lemma 1. 
Since Fig. 9b shows 

area TPO sin 71 
- - -  ( A . 1 )  

area APO sin 72 

it follows that A P T O A  is an optimum wing. It may also be shown without difficulty that it is a unique 
optimum. 

Its performance can be found in an exactly similar manner to that used for the non-optimum wing in 
Sections 2 to 4. Here we shall quote results without proof. 

@ )  /~cosec6 
opt -- ( B2 -- f12)~ exactly (A.2) 

For small wedge angles and moderate Mach numbers, we have, analogously to equation (15), 

C ) 1 t ( - 1 6 f l ~  ~ (A.3) 
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For small wedgeangles and hypersonic Mach numbers 

\Co.o., = k -¢-+1 J cL 
(A.4) 

= 0.275 C~ if y = 7/5. 

From equations (A.3) and (A.4) we deduce that the same similarity parameters (flooC~/Co) and 
(M~ CL/fl~) will serve to unify the results for optimum wings, which are plotted in Fig. 10. The improve- 
ment is seen to be quite substantial, and the criterion which determines whether the directly or indirectly 
lifting wedge is superior is now whether ¢ 2 (Moo CL/floo) is greater or less than unity. 

Wedge-interference wings and single-shock Nonweiler wings are both special cases of wings supporting 
plane shock waves. A full theoretical study of the general case has been provided by Pike 6, who studies, 
amongst other things, the optimum orientation of the shock waves in space. The similarity parameter 

4- 2 Mo~ CL/flo~ is also found to be of significance in the optimization of these more general shapes. 

11 
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FIG. 1. The wedge-interference wing. 
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FIG. 2. Configuration considered in Section 2. 

FIG. 3. Notation for wedge flow. 
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FIG. 4. Derivation of equation (10). 
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