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Summary. 

A solution is presented for the flow in the throat region of a two-dimensional nozzle with an arbitrary 
smooth profile. The velocity components are determined as series expansions in ascending powers of 
R -~ where R is the mean radius of curvature of the profile at the throat measured in throat half-heights. 
The first three terms of the series solution are given, and some properties of the flow are determined for 
two special cases, namely the configurations in which the nozzle is asymmetric about the longitudinal 
axis and in which the nozzle profile is described by a cubic equation. 

The solution of the indirect problem is also discussed. An axial velocity distribution of arbitrary form 
is assumed and the velocity components are obtained as series expansions in terms of the non-dimensional 
velocity gradient b 1 along the axis at the throat. The coefficients of each power of this parameter are 
determined as closed expressions. The parameters which describe the shape of the nozzle walls (stream- 
lines) are calculated. 
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1. I n t r o d u c t i o n .  

The transonic flow in the throat region of Laval nozzles has been of interest since the start of the 
19th century. One-dimensional analyses of the flow were developed and are summarized in a review by 
Prandtl ~°. A two-dimensional analysis of the flow can be obtained by either of two methods. In the 
indirect method, the axial velocity distribution is prescribed, and the corresponding family of nozzles 
(streamlines) is calculated. The direct problem in which the flow through a nozzle of given shape is deter- 
mined is more difficult. 

Using the indirect approach, the solution is straightforward in principle and was first investigated by 
Meyer 9. He assumed a linearly increasing velocity along the axis of symmetry and, by direct substitution 
of a double power series for the velocity potential into the basic equations, he obtained a series solution 
up to and including the sixth-order terms. He went on to show that the streamlines were convergent- 
divergent as in a Laval nozzle. It was apparent, however, that the solution was only satisfactory in a 
region close to the origin. Unfortunately, with this type of approach, the size of this region could not be 
determined. Since then, many papers considering either the indirect or direct problem have been written 
on this subject. These are discussed in a survey presented by Hall and Sutton s. 

Until recently, only. first approximations to the solution of the direct problem were available. A method 
of generating higher approximations was developed by Hall 4, but was only applied to doubly-symmetric 
parab0_lic-arc nozzles. In the present investigation, Hall's method of successive approximation is general- 
ized, and it is shown how it can be extended to apply to asymmetric nozzles. The only limitation to the 
approach is that neither of the nozzle walls may have a small radius of curvature. Within this limitation, 
the transonic flow through the throat of any nozzle of arbitrary smooth profile is determined in analytic 
form. 

The method of solution is to seek to determine the velocity components in the throat region as series 
expansions in terms of inverse powers of R ~, where R can be regarded as the radius of curvature of the 
equivalent symmetric nozzle referred to the throat half-height as the unit of length. The equivalent 
symmetric,nozzle is the one having the same second derivative of area increase at the throat as the 
asymmetric nozzle. R is thus defined by 

1 r 1 (1"1) 
= kS\T  J :o 

where A is the cross-sectional area near the throat. Fig. 1 shows the throat region of a typical asymmetric 
nozzle with finite throat curvature; the equivalent symmetric nozzle is indicated by the broken lines. 

The generality of the approach leads to lengthy expressions for the coefficients of the higher powers 
of R -~. For this reason, the series are only given as far as the third approximation (corresponding to 
Hall's 'second' approximation because alternate terms are zero in the symmetric case). In some cases, 
this may not describe the flow to a sufficient degree of accuracy. However, the algebraic complexity is 
such that if it is desired to extend the solution for practical use, it is recommended that numerical values 
are assigned at an early stage and the analysis carried out with numerical coefficients. 

Two special cases which allow considerable simplification of the expressions are considered in more 
detail. The first restricts the nozzle walls to be parabolic but with different radii of curvature (circular, 
hyperbolic and parabolic arcs are equivalent unless terms of O ( R  - 3) are included) and the other considers 
the flow through a symmetric nozzle with walls having a cubic profile. The positions of the sonic line and 
the  branch line are determined. It is noted that for some asymmetric nozzles, a branch line is present 
although there is not a singular point in the real flow. This is because there is always a singular point in 
the mathematical continuation of the flow outside the nozzle walls. The rate of mass flow is calculated 
for each case. A further special case in which one wall is straight is used to demonstrate the application 
of the theoretical analysis to the flow in a choked wind tunnel. 

A general solution of the inverse problem is determined. Arbitrary velocity distributions of the form 

u 1 - t - b l ( x - t d b 2 x 2 - t - b 3 x 3 - 4  - . .) (1.2) 
a # 
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V 
a--d = c l x  + c 2 x  2 + . . .  (1.3) 

where the ' b n s '  and ' cns '  are constants, are assumed along the x-axis. Since b 1 is O ( R - ~ )  to a first approxi- 
mation, a method of solution consistent with the direct approach is adopted in which the velocity 

componen t s  are sought as series expansions in increasing powers of bl. Using these expansions, the 
nozzle characteristics can also be expressed as series in increasing powers of bl, the coefficient of each 
power being obtained as a closed expression in each case. Hence, when the series is terminated at any 
power of bl, the order of magnitude of the neglected terms is known. The double power series expansion 
used by previous authors does not have this advantage. 

An obvious application of the direct solution is the calculation of the flow through sliding block 
nozzles. It also givrs the solution for a small region of the choking flow past smooth bodies placed in a 
solid wall wind tunnel. Since no suitable experimental results are available in the two-dimensional case, 
this configuration is not discussed here. A discussion of this flow in the axially-symmetric case is given 
by Moore and Hall s . 

Although the nozzle is assumed to have an arbitrary smooth profile, the solution obtained is not 
completely general, because it cannot be used in two extreme cases, namely when R is very small or when 
R is infinite. 

The solution will break down for small values of R because of the slow convergence of the series 
expansions. The physical reasons for this are dear. When R is small, there is a large lateral variation of 
velocity across the flow, and conditions in the region of the narrowest cross-section of the nozzle cannot 
be said to be transonic. For  instance, the velocity will be significantly greater than sonic at stations close 
to the h~ghly curved wall and significantly less at the centre of the throat. The assumption that the axial 
component of velocity is almost equal to the critical speed of sound is therefore no longer true. Any 
satisfactory solution would necessarily include the solution of the 'elliptic' subsonic region. 

When R is infinite, the nozzle walls have zero curvature at the throat. This configuration would be 
produced if the nozzle profile had the form 

Y = l + a l x l n +  . . . , n > 2 .  (1.4) 

When n = 3, for example, equation (1.4) represents a double-cubic nozzle. This type of nozzle could be 
obtained by matching two cubic profiles at the throat such that if the nozzle was completely symmetric, 
the downstream profile would be a mirror image of the upstream profile. The nozzle Would have continu- 
ous curvature at the throat but discontinuous third derivative. The sonic line is apparently straight for 
this case. 

Frankl 1 and Grr t ler  a have given some attention to the flow through a nozzle with R = o~. They used 
the indirect method of solution to examine the conditions which would result in a straight sonic line, 
and obtained the leading terms of a series for the velocity potential when the axial velocity distributions 
are given by 

u = 1 + K x  2 

a n d  

u = 1 + K x  a 

respectively, where K is a constant. They showed that in these cases, the sonic line lay along the y-axis. 
Configurations with R = oe are unlikely to have practical use because the boundary-layer growth 
would be the dominant factor in determining the flow. 

Using the present method, the shape of the nozzle profile in the throat region provides sufficient 
boundary conditions for a solution to be obtained. This arouses some doubts regarding the uniqueness 
of the solution because in the region upstream of the throat, the flow is governed by an elliptic differential 
equation which requires boundary conditions to be given on the entire periphery. However, the present 



conditions are peculiar to some extent since the equations must change from elliptic to hyperbolic form 
across the sonic line. Near to this line, the equations are, in some sense, 'approximately' parabolic, in 
which case 'end' conditions only can be sufficient to obtain a solution. 

In physical terms, this means that the shape of the nozzle walls in the throat region will have little 
effect upstream, but will dominate the flow between them. This is similar to the flow in a wind tunnel in 
which the upstream region of influence of a model decreases to zero as the velocity of the flow is in- 
creased from subsonic to supersonic speeds. At high subsonic speeds, the model imparts little disturbance 
to upstream or downstream flow, but in the transverse direction, its influence is large. 

The solution for the flow in the throat region given by the present method has been used by McCabe 7 
in the design of a supersonic nozzle. Consistent results were obtained using different starting character- 
istics. This gives some indication that the solution is satisfactory. 

It has been shown by Freeman z that the present method of solution is not uniformly valid at infinity. 
It is also true that the solution will not be valid if there is a stagnation point near the throat region. 
This situation could occur if the upstream nozzle profile was discontinuous. For the same reason, the 
solution can only be applied to a small region of the flow past a body in a choking wind tunnel since 
there is a stagnation point at the leading edge of the body. The effect of a discontinuity in the nozzle 
profile well upstream of the throat is not clear. If it is sufficiently far upstream, it apparently has no effect. 

2. The Direct Solution 

For ~ nozzle with any arbitrary smooth profile, the shapes of the walls can be written in the form 

h= h(O)+x(dh'~ l zl'dZh'~ 1 3['d3h'~ 
+~x t~X2)o+~X t)-~-gX3)o+ .. (2.1) 

/ dj'~ , 1 2{ d2j ~ 1 3 ( d3j'~ 
J = J(°)+x t )o+g x t jo + " (2.2) 

where h, j are shown in Fig. 1. 
Some simplification of the early terms can be made by choosing the origin of co-ordinates to be in 

the plane of the throat, and by choosing the unit of length so that 

h(0) = j(0) = 1. 

Since the cross-sectional area at the origin is a minimum, 

- -0  
d x ]  o o 

(2.3) 

Hence, if the axes are orientated so that 

d (  ~x ) o = (  dx dj) o (2.4) 

comparison with equation (2.3) shows that 

(dD 
o = o = 0 .  ( 2 . 5 )  

Thus, without any loss in generality, the constants in equations (2.1) and (2.2) have been made unity, and 
the terms in x have been eliminated. 



For the nozzle with a simple symmetric profile, the solutions for the velocity components have been 
obtained as expansions in inverse powers of the radius of curvature of the nozzle walls 4. In the present 
case, the walls will not, in general, have the same radius of curvature, and it is convenient to define a 
mean value, R, by 



The velocity components u and v in the axial and transverse directions respectively must satisfy the 
condition of irrotationality and the equation of continuity which, in terms of perturbation velocities u' 

t and v, are 

~3v' Off 
Ox- Oy (2.16) 

and 

__2U,__U,Z__Y 1 2) C~U' 4 ~_~' 
7 + l V '  Ox 7 + l ( l + u ' ) v '  

( 2 v, 2 2(7-1)u,_Y-luzz) 0v' 
+ \ 7 + 1  7 + ~  7+1  -~y = 0 (2.17) 

where 

u 
1 + u' (2.18) a *  

v 
= ~ = v' (2.19) 

and a* is the critical speed of sound. Order of magnitude arguments indicate that u' is O(e 2) and v' is 
O(e 3) in the throat region where x is restricted to be O(e). A convenient substitution, which introduces a 
stretched co-ordinate z, is 

x = (? + 1)~z (2.20) 

which means that the independent variables z and y are both of order unity. The solution of equations 
(2.16) and (2.17) is now sought in terms of y and z instead of y and x. 

The equations for the profiles of the nozzle walls indicate that the series expansion for the velocity 
components used by Hall 4 will not be adequate for the more general case considered here. The expansions 
must be in ascending powers of e, i.e., 

U' = ~;2Ui(y , Z)+ gaU2(y, Z)+ g4U3(y, Z)+ . . . .  (2.21) 

Equations (2.16) and (2.20) then show that the corresponding expansion for v' is 

v' = (y+ 1)~[eavl(y, z)+d~v2(Y, z)+ eSva(y, z)+ . . . ] .  (2.22) 

Substituting for u' and v' in equations (2.16) and (2.17), and considering the coefficients of each power of 
e separately yields two sets of equations, which are 

and 

~Vn cqu,, 
(n/> 1) (2.23) az coy 

- u i - ~ z  + ~ = 0 (2.24) 

au. Oul &. 
-Ul a--z - u " z o y a  - + ~ -  = ~ , - 1  (2.25) 



where O,_ ,  is a function of u l ,  . . . .  u,_ 1, v l , . . .  ; v,_ 1, only. The functions O1 and 0 2 a r e  

O1 = 0 (2.26) 

02 = 2vl ~ z * + ( y -  1) Or1 - -  1 2 0/~1 0112 (2.27) 

Two sets of boundary conditions are obtained by substituting for u' and v' in the equations 

v' dh 
- -  - a t y  = h 
1 +u'  dx 

(2.28) 

v' aj 
- -  - at y = - j  (2.29) 
1 + u' dx 

and again considering coefficients of each power of e separately. Limiting the discussion to the third 
approximation, t he  boundary conditions are (i) at y = 1, 

vl = (1 + K ) z  ] 
V2 = ½(/3 + ma)z2 l (2.30) 
v3 = (1 +K)ZUl +½(14+m4) 

and (ii) at y = - 1, 

vl = - ( 1 - K ) z  
v2 -½(13-ma)z 2 ~ (2.31) 
v 3 - (1 -- K)zul  --~(14 - m4)J 

At this stage, it might be noted that in the special case of the simple symmetric nozzle, alternate terms in 
the present series for u' and v' (namely those given by even values of n) are zero. 

The solutions for the velocity components can now be determined following HalP by solving the sets 
of equations (2.23) to (2.25) subject to boundary conditions (2.30) and (2.31). The expressions obtained 
have been separated into components which indicate the effec~ of individual terms which describe the 
nozzle profile; the results are 

1st approximation 

ul = Uls+UlK (2.32) 

Vl =Vl ,+VlK (2.33) 

where 

1 2  1 
uls = -~y - - d +  z 

UlK = K y  

1 3 1 
v l~ = -6y ---~y + yz 

ViK = K( iy2- -½+ z) 

2nd approximation 

u2 = u2c + U2cK (2.34) 

v2 = v2c + V2cK (2.35) 
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where 

u2 ~= 13[ 1 k ~ y  _ 7 y / ' 7  4 " 2+~)5'~q_g(3yl 2_l)z+~_]+ma[~z2 -y+yz] 

1 3 1 u2c~ = 13K~(8 y - 3y)-~m3K 

v2~ = 1312~(15yS-26y3+lly)+7(y3-y)z+~-l+ma[l(sy4-14ya+9)+(y2-1)z+@] 

v2~ ~ = 13KI#5y¢-6yZ+l)+~(y2-1)z ] +~ymaK a _ y) 

3rd approximation 
IA 3 = U3s "71- g3K + ~/3c -}- U3Q "q- R3Kc "t- 1.~3Q K 

I) 3 : V3s -I- V3K-}- V3c-~- V3Q-q- I)3Kc -}- V3Q K 

where 

= 7+6 ¢ 2~J+9 2 , 7+30 . 2 

ua* --]-ff-Y - 18 y +~ff~-+z~y - ½ ) - ~ z  z 

227+75 5 57+21 3@+195 . {27+12 3 27+9y) 
v3s- ~ y  54 y3_~ 10--~ Y + z L ~ Y  - 9 +YZ2 

--{27+12 3 2?+8y+2yz) (Y2 3 uaK = h k ~  y - 3 +K2 T 2 )  

/)3K 
K/227+75 37+14y2 147+93 [27+12 z 

L 72 y4 - - t - - - 4 - z  6 72 ¢[ ~ Y  

KZl'4y 11 3' 4~)~-11 . "~_Ka(y 2 1~ 
L ~  y 12 y+zy) , \~--~] 

I 7 ~  6 Z • 4. Z_~] uac = I~ (93y -249y4+219yZ+17)+~(lly --22y2+3) - -17 

1 s _y)] ry4  y2 11 z-] +13m3 [ ~ 1 3 y  -50ya +85y)+Z2-(y 3 +,m~ 

v3c l~[f5~(177yV-591yS +467y3-53y)+~93y5 z2 = o : --166y3+73y)+14-~4.11ya-11y) 1 + 

+13m312@60151y6 705y4+805y2 251)+~6(13y4 30yZ + zZ 17)+~-{y2-- 1)] + 

+m~I-~2YS-5y3q-4y)-t-z3-(y3-y)] 

(2.36) 



K213m3 r 2 K 2. 2 
+---~--LY - 1] _ ~ _ ~ [ y 2  _ i] 

• Z 4 2 Z2 2 Z3 uaQ 14[~49y6-175y4+203y2-X5)+2-~o5Y-lOy +2)+--(8 3y -1)+~-] + 

" +m4[~o27yS-190y'+.35y)-k(3y3-'gy)z+3yz2 ] 

a K z 3 + 7 9 ) - z ]  UaQr --" 14K[~83YS-14y +27y)+-~-+~y -3y) ]  + m 4 K [ # 1 5 y 4 - 3 0 y  2 

va 0 = I415@4-6(!ll y7-- 399yS +417y3--129y)+~20 (21yS - 50y3 + 29y)+ 

1 6 4 +~(ya--y)z2+~-3~ +m4[ -~(39y  --245y +525y2--319)+ 

+ 4(9Y4-38y2q - 2 9 ) +  9(y  2 -- 1)z2 q- 23] 

= 14K ~-~1.(35y6 vaQr [ ~ u  --145y4+ 189y2-79)+K(ys-5ya+4Y)+ 

z 4 3z2 z -1)] [- 1 5 3 + ]--~(5y -- 14y2 --~ 9) -~ y ( y  +maKL-i-6(7y -35y +28y) 

K 2 ,-1 (Y - 1)+2z(y a -y ) j  

The subscript s gives the solution which would be obtained for a symmetric nozzle which has walls of a 
circular profile, K gives the additional terms for the flow through a nozzle with walls of similar profile 
but which is asymmetric about the x-axis, c refers to the solution for a 'cubic' nozzle and Q gives the 
terms added when the nozzle profile is described by a quartic equation. Cross terms such as Kc are 
obtained when the profile is a combination of the various configurations. 

3. The Flow Field. , 
The solutions for the flow in the throat region can equally well be expressed in terms of the velocity 

magnitude, ~, and the flow direction, 0, i.e. 

= l+e2 ql+ ea q2+ ".. (3.1) 



0 = [7 + 1] ~: [e 3 01 + e 4 02 + . . . ]  (3.2) 

where ql, q2, -- . ,  01, 02, -. • are known functions of y and z. For instance, the first three terms in the 
expansions for ~ and 0 are given by 

01 ~ /)I 

02 ~ /)2 

03 = t~a--Ul /)i 

and 

q.  = u . , n  = 1,2,3. 

Expressions for the local Math  number, M, the Prandtl-Meyer angle v and the Mach angle/z can now 
be obtained from 

M = 1+ 2 ql..l_e3 q 2 + e 4  q3_k q +0(e 5) (3.3) 

~ r 2  3 v = [ (7+l )qd  Lg~ q~+~4q~+ 

/ lq2 z 9 7 - 5  z'~ +O(e6)] (if4) 
V 

n 1 [- lq'2 2 
~b = ~ - #  = [ (7+ l )q l ]  ~ Le+~q-~le 

flqa l ~ q z ~  2 +77~411qx)+O(e4) ]. (3.5) 
e ~q-~  8 [ q l J  

Equations (3.4) and (3.5) are only valid if ql is greater than the rest of the 'q ,s '  because they are initially 
determined in terms of the small parameter fl, where 

f12 = M 2 _  1 

and the expression for fl is obtained from a binomial expansion of 

fl = e [ q l  +O(e)] ~ (7 + 1)*. 

This condition will be satisfied in general, but it will not necessarily hold near the sonic line where ql is 
small. New functions are therefore defined by 

= 42. 

(3.6) 

(3.7-) 

1 0  



The series for t /and ~ are 

4 a 6 4 2 ~7 
r / = ( 7 + l )  -~q18 +~ql q2 + 

s / 4  2 4 q~+~q~)+O(e9) ] q3+ q  

• 

and v and ~b are given by 

(3.8) 

(3.9) 

~b= +X/~.  

Negative square roots exist in both cases, and if v and ~b are represented graphically as functions of y 
and z, the negative square roots give a mirror image of each function with respect to the two axes. These 
could be regarded as forms of analytic continuation of v and # beyond the sonic line. 

4. Special Cases. 
The expressions for the velocity components are considerably simplified for certain given nozzle 

profiles, two of which are discussed here, In the first, the profile is asymmetric about the x-axis only, 
and the walls are circular, hyperbolic or parabolic arcs. The Second nozzle has a cubic profile and is 
symmetric about the x-axis. An application of the analysis to a study of the flow in a choked wind tunnel 

"is briefly mentioned, with particular reference to the case when a simple symmetric aerofoil is placed in 
a tunnel of constant cross-section. 

4.1. Asymmetry about the x-axis. 
Since there are no cubic terms present, u z and v2 are zero. The expressions for the velocity magnitude 

and flow direction can therefore be writ ten 

C/= l + q l a a + q 3 a 4 +  . . .  (4.1) 

0 = (7 + 1)~ [01 ~3 + 0 3 :  + . . . ] .  (4.2) 

Defining 

~2Q _ ~ _  1 

and substituting for the 'q,s', the equations of the isobars and of the branchline are determined as 

1 2 1 - 2['27 +3  4 . 7 + 3  2 . 2 7 - 1 5  
z = -~y +g-Ky+~+~ 1-55-y .q-ff-y + 3--5-g6-+ 

{ 27+3 2 7 + 3 ' ~ + 2 y - 3 Q Z  
+e t , - - -g-y  + 

. . /2~,+3 3 5r+18 2 7 + 3 _ ' ~  + - - V - y - - - 5 - - u y )  + 

11 



and 

T,2/4Y +9  2 47+1 Q'~ 
+r,_ ~ , T y  + ~ + - ~ ) - ~ Y - ] + O ( e * )  

z = l y 2 + ~ + K y + K 2 +  

(4.4) 

2rlo7-9 4- 7 +3 2 .2y--15 
L--hs-y --wy 

. . ( 1 0 7 - 9 y  3 5y+12y) _ 1 / 1 6 y - 3  2 87+35'~ 
+ ~ , - - - i - 8 -  9 +/~ ~ - - ~ - - Y  - 12 ) +  

+ * - 3  47-1  , 47 + 9 , : 4 - ]  

J 
(4.5) 

Equation (4.4) with Q = 0 is the equation of the sonic line, and its position for various values of K is 
shown in Fig. 2. The position of the branchline is similarly shown in Fig. 3. For any nozzle, the sonic 
line and the branchline touch at the singular point where they are perpendicular to the direction of the 
flow. To a first approximation, equations (4.4) and (4.5) indicate that this point is now at 

y =  - - g  

1 1  2 

Hence, it would seem that for large K, e.g., ]K[ > 1, there is no singular point in the real flow. There is, 
however, a singular point in the continuation of the flow outside the nozzle walls. Consideration of the 
mapping of the hodograph plane into the physical plane shows that there must be a branchline because 
the mapping is not single valued. The branchline divides the physical plane into regions such that the 
mapping from the hodograph plane into each region is single-valued. 

The rate of mass flow through the nozzle is only slightly affected by asymmetry about the x-axis. If 
W* is the rate of mass flow through the nozzle assuming that the sonic line is a straight line across the 
throat, and Wis the actual rate of mass flow, then 

W S 1-1 (pu)~ = ody 
W* ~L i (p* a*)~ = ody 

= s J-t [,~L 2 ~=o dy" 

Substituting for fi and Y/, 

_ _  21 ? + 1 2 4 -  IU 12 27--3 3 q y-l.g/ ~ = l---~---ule - ( 7 + i ) s  6 tu3+:vi+---~-ul] +0(~81" 
2 

Thus, 

(4.6) 

.12 



Fig. 4 shows the variation of the reduction in rate of mass flow with K for a fixed value of the mean 
radius of curvature R. The large reduction indicated for values of K > 1 should be disregarded. When 
K is greater than unity, the nozzle profile has the shape shown in Fig. 5. The rate of divergence of its 
cross-section is small for moderate values of the radii of curvature of the walls. However, by fixing a 
value for R, the rate of divergence is fixed. This value can only be achieved when K > 1 by the wall radii 
of curvature becoming small, and the theory can not be expected to apply. 

4.2. Asymmetry about the y-axis. 
The nozzle will be assumed to be symmetric about the x-axis and to be described by a cubic profile. 

Under these conditions, the expansions for the velocity components for a given value of R contain the 
single parameter 13. The equations for the isobars and branchline are found to be 

_~y2  1 [-1 4 1 2 1 2 1 1 2-] 
z = +g+Q+ /3Lgy +i-~y -sQy +~Q--~Q j + 

+ 2 [ - 2 7  + 3  4 . .  7 + 3  2 2 7 - 1 5  
e [ ~ y  + ~ - ~ - y  + 36---0-- 

Q/27+3 2 Y+3'  
- - 7 )  + 

+~--~Q2-12 {1~-~(41y6+22y4+6y2+5)-Q(2Oy'~=-lOy2+1)- 
2 5 3 

Q ( 6 3 y 2 - 5 3 ) - ~ Q  } 1  +0(~3) (4.7) 

and 

1 2 1 el 3 4 2 . z[-107 - 9  4 y + 3  2 . 2 7 - 1 5  
z +g+- /g[y  - y  ----i--~Y -t 360 

12 (2y6 + 31y4 + 72yZ_ 5)]~+O(e;). + -Ng (4.8) 

The positions of the sonic line and branchline for various values of 13 a re  shown in Fig. 6. With 
increasing la, the sonic line tends to become flatter. This is consistent with a reduction in the rate of 
area change upstream of the throat;  in the limit of infinitesimally slow reduction of area, the sonic line 
would be a straight line across the throat. The reduction in the relative rate of mass flow through the 
nozzle should therefore decrease with increasing 13. It is given by 

W ,, 4V1 2l 3 2 / 2 ~ + 9  /23 ~ +O(e3) 1 (4.9) 

which has the expected variation with 13 ; this is shown in Fig. 6. 
The velocity distribution along the axis, and the velocity profiles across the flow at z = 0 and z = 0.2 

are shown in Figs. 8, 9 a n d  10. The velocity gradient along the axis decreases as 13 is increased, and the 
velocity profiles across the throat become flatter as did the sonic line. It is apparent from the velocity 
distributions across the flow at the station downstream of the throat and the velocity gradients along 
the axis that a positive value of 13 has less effect upon the downstream flow than the corresponding 
negative value. This is because the flow downstream of the throat is critically dependent upon the rate 
of increase of cross-sectional area. When 13 is changed from zero to - 2 for instance, the relative change 
in cross-sectional area at any station downstream of the throat is greater than that obtained when 13 
is changed from zero to + 2. 
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4.3. F i o w  in a choking wind tunnel. 

The analysis of Section 2 can be applied directly to the study of a region of the flow in a choked wind 
tunnel. If a symmetric biconvex aerofoil of chord c and maximum thickness zc is placed on the centreline 
of a solid wall wind tunnel of height ho, the flow on either side of the body is that through an asymmetric 
nozzle given by 

K = 1, 13 = m3 = 14 = m4 = . . .  = 0. 

In a co-ordinate system with the origin at the centre of the body and the x-axis in the downstream 
direction as in Fig. 11, the surface of the aerofoil is given by 

y 2z (x  +½c {x +½c}2"~ 
c = c c = ] .  (4.10) 

The radius of curvature of the surface at mid-chord is given by 

1 ( d 2 y )  4z  (4.11) 
R-~ = \~x2 ]o - c 

the  non-dimensional radius of curvature corresponding to that' used in the previous sections is thus 

R = ~ ( h o - z C )  - z--ho h o ]  (4.12) 

Some experimental results are given by Spreiter et a111 for both two-dimensional and axially-symmetric 
choking flows. Since the radii of curvature of the two-dimensional aerofoils were small, the corresponding 
theoretical solution for the flow will not converge quickly. In the axially-symmetric case the bodies of 
revolution have larger radii of curvature and are more suitable for comparison with the present theory 8. 

5. The Inverse  Problem.  

The inverse problem is that of calculating the shape of nozzle which will produce a given distribution 
of velocity along some line in the flow. This line will be taken to be the x-axis. Taking the origin to be 
the sonic point on "the axis and assuming that the flow direction is along the x-axis at this point, the 
velocity distribution may be assumed to have the form 

u(O,x) 
a* = 1 + b'l (x  + b'2x 2 + b'ax 3 + . . . )  (5.1) 

v(O,x) 
a* - c'1 x + e'2x 2 + c'3x a + . . .  (5.2) 

where the 'b',s" and "c',s" are constants. In most of the solutions previously obtained 6 9 the given velocity 
distribution has been restricted to the case where b', = 0 for n > 1, c', = 0. The velocity components 
were then sought as double power series in x and y. With such a restriction on the shape of the velocity 
distribution, it would seem inconsistent to evaluate the series for the nozzle shape to include terms of 
high order, i.e. terms containing xmy ~ with (m+ n) large. A more logical approach would be to seek a 
solution for a general velocity distribution of the form shown in equations (5.1) and (5.2). 

A further criticism of these previous solutions is that the order of the neglected terms is not known. 
Consequently, although the solutions must be applicable in some region close to the Origin, it is not 
clear  how large this region is. In the solution derived below, the terms are collected together in groups, 
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each term in a group being of the same order of magnitude. It is therefore much more satisfactory for 
practical calculation. 

If the unit o f  length is taken to be the throat half-height, it follows from Section 2 that a first approxi- 
mation to b] is given by 

b] ~ [-(y+ 1)R] -~ (5.3) 

The appropriate method of solution of the indirect problem would seem to be to seek the velocity 
components as series expansions in increasing powers of b~, corresponding closely to the direct approach 
in which expansions were obtained in increasing powers of R -~. 

The order of magnitude of each of the velocity components is known from earlier considerations. It 
is apparent therefore that c', is 0(b~2). It affords some simplification if b~ is replaced by 6 Where 

b~ = 6(?+ 1) -/~ '5.4) 

Defining new constants by 
n-1 

b~, = (y+ l )  2 b. 
n--1 

Cn 62 0~-{- 1) 2 Cn 

and introducing a stretched co-ordinate z where 

x = ( r + i ) ~ &  (5.5) 

equations (5.1) and (5.2) may be written 

u(O,z) 
- 1 + 52[z+ b 25z 2 + b 362z 3 + . . .  ] (5.6) a* 

v(0,z) 
a* - (~ + 1)~ 63 [c l z  + c25z 2 + c362z a + . . . ] .  (5.7) 

Assuming that the velocity components can be written in the same form as in the direct problem, i.e. 

u(y,z) = 1 + 62 u l (y,z) + 5a u2 (y,z) + (5.8) a* " '"  

v(y,z) 
a* - (? + 1)~ 63 Iv1 (y,z) + 6 v 2 (y,z) +. . . ]  (5.9) 

the infinite set of pairs of differential equations represented by equations (2.23) to (2.25) can be obtained~ 
Corresponding sets of boundary conditions are determined from equations (5.6) and (5.7). They are 

ul(O,z ) z (5.10) 

u,(O,z) = b,z" n > l  (5.11) 

v,(O,z) = c,z". (5.12) 
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Solving each pair of differential equations subject to the boundary conditions using a method similar to 
that employed in the previous sections gives the solutions to the velocity components as: 
1st approximation 

ul = ½y2 +clY+ Z 

~ = ~y~ +½q y~ +(y+ ci)~. 

7 (~ 1 )ya+z(3b2y2+2c2y)+bzzZ u2 = ~bzY'*+ c2+-~b2cl 

V 2 = b2y5+ c2+~b2c y "-k~CtCzY 3 

['7 b 3 + ~ 5  ~ y + {2~+b~ ~dy~)+z ~ (3b2 Y+C2) 

3rd approximatior~ 

U 3 ~--- 
(~2 1 23 z\ 1 3 2  

(5 1 ) 4 @ + 1 4 2  z 327+3 y3+c~y2+ + -gb2c2+~qc3 y +--N-y +~c2y +--T-c1 

F(I  .) 3 2  (b3cl+3Ca+~b2c2) y a + ~ _ y  

l +2b2 c2 y2 +z 2 [(6ba+3b~)y2+3c3 y]+b3 z 3 

/ ' 7 1 7 5  0 (1~0 1 3 9 1 9  .L-~ba+~4-dc3+~b f +  b3q+~cac~+]~-dc3+i-~b2c2+ 

35 1) (1 2 7 4 3 2) s 18y-1 s +~b~c y6_[_ gb.3cl+~clc3+~b2clc2._b~b2 c y q _ ~ y  ..]_ 

(2 1 ~) 4.143'+5 4.23'+32 a. + ~b2clc2+~c y + ~ c l y  + ~ - - c l y  + 

7 +~b2 z C l ) y 4  q - [(5ba+3ca+2@bZ) y _i_ (~ b 3 9 5 "q-Z (71 - t -~  C 3 - t -~  b 2 c 2 

• 63'+ 1' 3 . 23,+3 Yl -t-(3b2c2+2ClC3) ya-t----~ y -t--~-~-cl yZ-l-2cZ y2.-t-2c~ + 

[ ( ~  2z ) (3 9 2) +z 2 b3+3c3+6 b y3+ ~b3cl+~ca+2b2c yZ+ 

+~-y+2b2c2y  ] +z 3 [4b3y+2bZzy+c3] • 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 
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In the most general case this leads to an asymmetric nozzle, non-zero "c,s" corresponding to non-zero 
K and "m,s' in the direct solution. The remainder of this section will be devoted to the general symmetric 
case, general in the sense that all the "b,s' are non-zero. 

In a symmetric nozzle, all the 'e,s, are zero and the position of the throat can be determined by calculat- 
ing the value ofz which gives zero transverse velocity at the throat half-height. In this instance, the throat 
half-height is unity. Hence 

a,--~ - =  -~+6 - ~ b 2 + s b 2 z + 3 b 2 z  + 

5_ 2 18y-1 5 b3 +-~bz z + - ~  

+z2 {l--~32b3+6b!+~-} +z3 {4b3+2b~}) ] (5.19) 

Writing 

Zthroa t = Z0 .~ 6Z 1 ..]_ ~2 Z2 _jr . . . .  (5.20) 

substituting in equation (5.19) and equating coefficients of equal powers of 6 determines the constants z,. 
The first three are 

1 
z0 = - g  (5.21) 

1 
zl = - ~ b2 (5.22) 

2 y - 9  
2 b3 (5.23) z2 = ~ 18 

The streamlines are given by 

dy v 
d-~ = u '  (5.24) 

i.e. 

1 dy = 6,, Iv1 (y,z) + 6v2 (y,z) + 62 {v3 (Y,Z)- va (y,z) u~ (y,z)} + . . .  ] .  (5.25) 
(~+ 1) ~ dz 

This equation is a relation between y and z only. The radius of curvature of the streamlines may therefore 
be determined by differentiation, not ingthat  

= :  ty)  = 0(a,). (5.26) 

The radius of curvature of the nozzle, wall (streamline) at the throat is then obtained by substituting the 
value of throat half-height for y and the corresponding value of Zthroat into the differentiated equation. 
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The radius of curvature, Rt is given by 

Writing 

(d2y'~ 1 (d2y_'~ 
Rt  1 = ~ ~X2) throat (]7-{--1) 62 k ~Z2 ) throat 

~2 
R?* - (7+l,-X(1 +6R1 + 6 2 ) =  R2+  .. .) 

the values of R 1 and R 2 a r e  found to be 

(5.27) 

(5.28) 

4 
R1 = g b2 (5.29) 

4 . 2  2 .  27+1 
R= = 

~d3 y~ 
Expressions may be obtained in a similar way for the 'cubic' term ~ x 3 ]  

For instance, 

(5.30) 

and higher order terms. 

6 2 
13 - (7 + 1~ [6b2 + 6(9ba + 10b2 z + 27 - 1) + 0(62)]. (5.31) 

It is evident that setting bo = 0 for n > 1 imposes a considerable restriction on the solution. The present 
solution is more satisfactory than earlier ones in which the nozzle shape is sought as a double power 
series in x and y because thecoefficients of each power of 6 are given as relatively simple closed expressions. 
It follows that when the series is terminated at any power of bl, the order of the neglected terms is known. 
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LIST OF PRINCIPAL SYMBOLS 

Critical speed of sound 

Cross-sectional area of the nozzle 

Coefficient of x in the expansion for u(0,x); c.f.'equation (5.1) 

Parameters describing the nozzle profile 

I)efined by equations (2.10) and (2.11) 

Parameter indicating asymmetry about the x-axis 

Defined by equations (2.14) and (2.15) 

Velocity magnitude 

Mean radius of curvature 9f the nozzle walls at the throat; c.f. equation (2.6) 

Non-dimensional velocity components defined by equations (2.18) and (2.19) 

Coefficient of ~n+ 1 (~n+ 1) in the assumed series expansion for u' 

Coemcient of ~n + 2 (~ + 2) in the assumed series expansion for v' 

Rate of mass flow through the nozzle 

One=dimensional prediction of the rate of mass flow through the nozzle 

Two-dimensional Cartesian co-ordinates 

Stretched co-ordinate in the x-direction 

Ratio of specific heats 

Defined by equation (5.4) 

R-~ 

Flow direction relative to the x-axis 

Fluid density 
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The throat region of an asymmetric nozzle. 
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