LISRARY

ROYAL AIRCRAFT ESTABLISHMENT BEDFORD.

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

COMPLEX VARIABLE APPLICATIONS

 TO CERTAIN COUPLED SYSTEMSBy
D. P. Jenkins

Complex Variable Applications to
 Certan Couplod Systems

- By -
D. P. Jonkins

Fobruary, 1957

SUMMARY

It is show that the solutions of similar differential equations which arc coupled together can be expressed in torms of the solutions of a single differential equation, possibly containing complex parameters, but of the same order as each separate equation. Some implications of this result are discussed, and Nyquist's criterion is generalızed to study tho stability of constant parameter systems of this type.

Contents

1. Introduction
2. The Complex Variable Concept
3. Transformation of Coupled Syotoms
4. Stability of Constant Parameter Systems
5. Conclusion

APPERDIX. Stabzlıty of Complex Coofficient Difforential Equations

1. Introduction

It is froquently possible to represent a pair of lincar coupled equations by a single equation containing complex quantities, the conditions on the real and imaginary parts separately giving the original relations. This gives a compact way of handling the equations and can bo a convenient method of obtaining analytical solutions.

This Memorandum shows that it 18 possible to use complex numbers to samplafy the analysis of any number of linear systems which are coupled together provided that the separate systems are alike, and the couplings of similar form. The behaviour of tho coupled systems can be writton as a superposition of the response of a number of uncoupled systems each of the same order as one of the orlginal soparate systems, though possibly contaning complex parameters. The method is a generalization of the transformation tor normal coordinatos used in the dynamical theory of small oscillations.

The theoretical study of systems containing such complex parameters is no more difficult than if the parameters wero purely real. Any analytical solution has only to be extended to the complex plane, and the knowledge that it will bo an analytic function of the complex parameter satisfying the Cauchy-Ricmann relations may assist in an
understanding of its properties. Constant parameter systems whose exponential solutions are well known for complex arguments are particularly easy to treat, and Nyquist's critorion readily extended to discuss their stability.

While this paper was boing written, the author's attention was directed to work by Merson (1954) and Jeffrey (1955) (the latter unpublished) which is related; but the present treatment is different and may be said in some ways to unify the two earlier approaches.

2. The Complex Variable Concept

It will be useful to study first some examples of the way in whach complex variable notation can simplify the mathematical formulation of a problem.

Consider the pair of differential equations

$$
\begin{align*}
x \cos \phi+y \sin \phi & =T \frac{d}{d t}(r-x) \tag{1}\\
-x \sin \phi+y \cos \phi & =T \frac{d}{d t}(s-y)
\end{align*}
$$

The orthodox method of solving thesc equations is to eliminate y between them solving the resulting second order equation for x, and then repeating the process for y. But by defining

$$
z=x+i y ; q=r+i s
$$

the equations may be identified with the equations for the real and imaginary parts of

$$
z e^{-i \phi}=T \frac{d}{d t}(q-z)
$$

or, wrating $T_{e}^{1 \phi}=S$

$$
\begin{equation*}
\left(1+S \frac{d}{d t}\right) z=S \frac{d q}{d t} \tag{2}
\end{equation*}
$$

If a sinusoidal input is applied to one plane only so that s vanishes and $q=r=$ sin ωt, it is edsily vorified that the solution of equation (2) wath $z=0$ at $t=0$ 1s

$$
\left(1+\omega^{2} S^{2}\right) z=\omega S[\omega S \sin \omega t+\cos \omega t-\exp (-t / S)] \ldots(3)
$$

and this is truc whether S lis real or complex. In this example, the output signals x and y will be the real and imaginary parts, respectuvely, of z. These are seen to be grven by
$\left(1+2 \omega^{2} T^{2} \cos 2 \phi+\omega^{4} T^{4}\right) x$
$=\omega T\left\{\omega T\left(\cos 2 \phi+\omega^{3} \mathrm{~T}^{2}\right) \sin \omega t+\left(1+\omega^{2} \mathrm{~T}^{2}\right) \cos \phi \cos \omega t\right.$
$\left.-\exp (-t \cos \phi / T)\left[\cos (\phi+t \sin \phi / T)+\omega^{2} T^{2} \cos (\phi-t \sin \phi / T)\right]\right\} \ldots(4)$
$\left(1+2 \omega^{2} T^{2} \cos 2 \phi+\omega^{4} T^{2}\right) y=\omega T\left\{\omega \mathbb{S} \sin 2 \phi \sin \omega t+\left(1-\omega^{2} T^{2}\right) \sin \phi \cos \omega t\right.$
$\left.-\exp (-t \cos \phi / \mathbb{T})\left[\sin (\phi+t \sin \phi / \mathbb{T})-\omega^{2} \mathbb{T} \sin (\phi-t \sin \phi / T)\right]\right\}$

The coupling operation in this example, a transformation between error and torque axos, is particularly simply represonted by using complox varlables. In general, if signals r and s corresponding to motion in one set of rectangular axes are resolved into signals r^{\prime} and s^{\prime} in another set of axes making an angle ϕ (possibly time varying) with tho first

$$
\begin{equation*}
r^{\prime}+2 s^{\prime}=q^{\prime}=e^{-1 \phi} q=e^{-1 \phi}(r+i s) \tag{5}
\end{equation*}
$$

The resolved signals might each bo passed through a linear filter ropresented by $A(D)$, a polynominal function of tho differential operator $D=d / d t$ and then resolved back to the orıginal axes as outputs x and y. Working back through the systom these oporations may be represented by
$x+2 y=z=e^{I \phi} z^{\prime}=e^{I \phi} A(D) q^{\prime}=e^{i \phi} A(D) e^{-I \phi} q=A^{\prime}(D) q$,
where $A^{\prime}(D)$ is readily found whon the time variation of ϕ is known. For example, if $A(D)=D^{3}$ and $\phi=\Omega t$ whero Ω is constant

$$
z=e^{+1 \Omega t} D^{3}\left(e^{-1 \Omega t} q\right)=\left[D^{3}-3 i \Omega D^{2}-3 \Omega^{2} D+1 \Omega^{3}\right] q=[D-1 \Omega]^{3} q
$$

Equating roal and amagnnary parts

$$
\begin{aligned}
& x=D^{3} r+3 D^{2} s-3 \Omega^{2} D r-\Omega^{3} s \\
& y=D^{3} s-3 D^{3} r-3 \Omega^{2} D s+\Omega^{3} r
\end{aligned}
$$

3. Transformation of Coupled Systons

A set of linear systems may bo coupled in many ways. Some of these, such as combination of the inputs before any element introducing a time dependence and addition of the outputs in groups, are trivial in that they can be dealt wath by the superposition principle. Feed-back.
coupling/
coupling, on the other hand, where quantities related to each output may be added to all the inputs presents more difficulty. Typical equations governing such coupling between linear systems which are otherwise identical may be written.

$$
\begin{equation*}
x_{j}=A(D, t)\left[s_{j}+\sum_{k}^{N} B(D, t) b_{j k} x_{k}\right] \tag{6}
\end{equation*}
$$

The suffices take on as many values as there are systems coupled, $\mathbf{x}_{\mathbf{y}}$ being the response of the J th system to ats stimulus s_{j}, and the real numerical coefficients $b_{j k}$ giving the proportion of the output from the kith system which is fed -back to the input of the jth system. The operators $A(D, t)$ and $B(D, t)$ may be any function of time, t, and the differential operator, D. It wall be shown that the solution of these equations can be written in terms of the solutions of single uncoupled equations.

Define a now set of variables by adding the x_{y} together in various proportions whose magnitudes will bo determined later.

$$
z_{z}=\sum_{j}^{N} c_{i j} x_{j}
$$

The $c_{i j}$ determine the weights in the inverse transformation

$$
x_{j}=\sum_{k}^{N} d_{j k} z_{k}
$$

through the N sots of N simultaneous equations

$$
\begin{align*}
\sum_{J}^{N} c_{I j} d_{j k}=\delta_{I k} & =11=k \\
& =0 \quad 1 \neq k \tag{8}
\end{align*}
$$

Substituting in equation (6) gives the N equations

$$
z_{1}=A(D, t)\left[\begin{array}{l}
N \tag{9}\\
\sum c_{I j} s_{j}+B(D, t) \\
\sum \sum \sum c_{1 j} b_{j k} d_{k \ell} z_{\ell} \\
j k \ell
\end{array}\right]
$$

Now fax the values of the $c_{1 j}$ so that

$$
\begin{align*}
\sum_{J N}^{N N} c_{1 J} b_{\jmath k} d_{K \ell}=\mu_{\ell} \delta_{I \ell} & =\mu_{\ell, 1}=\ell \\
& =0,1 \neq \ell
\end{align*}
$$

This implies that the $d_{k \ell}$ are the solutions of N sets of N homogeneous samultaneous equations (each value of ℓ gives one set of equations)

$$
\begin{equation*}
\sum_{k}^{N}\left(b_{j k}-\mu_{\ell} \delta_{j k}\right) d_{k \ell}=0 \quad j=1 \text { to } N \tag{11}
\end{equation*}
$$

and can only be non-zero if the determinant of the coefficients vanishes,

$$
\begin{equation*}
\left|b_{j k}-\mu_{\ell} \delta_{j k}\right|=0 \tag{12}
\end{equation*}
$$

Equation (12) detormines the N values of μ_{ℓ} as the roots of the Nth degree polynomal obtained by expanding the doterminant. They are called the latent roots of the matrix of the $b_{j k}$, and by solving successively the sets of simultancous oquations (11) and (8) lead to the valuos of the $d_{k e}$ and the $c_{2 j}$ which satisfy equation (10). Such values can always be found if all the μ_{ℓ} are different and using them equation (9) may be written.

$$
\left.z_{i}=A(D, t)\left[\begin{array}{l}
N \tag{13}\\
\sum c_{i, j} s \\
j
\end{array}\right] B(D, t) \mu_{1} z_{1}\right]
$$

There are N equations like (13) corresponding to the N values of 1 , but they are all independent, each one representing a system like one of the original coupled systems with feed back from its own output only. If $F(r, w)$ is used to represent the output from such a system with foed back coefficient w when the input is r, so that

$$
\begin{equation*}
F(r, w)=A(D, t)[r+B(D, t) W F(r, w)] \tag{14}
\end{equation*}
$$

It will be seen from equation (13) that

$$
z_{1}=\sum_{j}^{N} c_{1 j} F\left(s_{j}, \mu_{1}\right)
$$

by the suporposition principle. Honce

$$
x_{2}=\sum_{J k}^{N} \sum_{2 J} c_{j k} F\left(s_{k}, \mu_{j}\right)
$$

As initial conditions for equations (14) It is conveniont to choose

$$
\begin{equation*}
\left[F\left(s_{k}, \mu_{j}\right)\right]_{t=t_{o}}=\left[x_{k}\right]_{t=t_{o}} \text { for all } j \tag{16}
\end{equation*}
$$

These last three equations, (14), (15) and (16), are completely equivalent to the original set of equations (6) with their initial conditions. Physically it may be said that the feed-back cross couplings of the original system which make it difficult to analyse have been replaced by cross couplings between the inputs only, and between the outputs only, so that the superposition principle may be used.

Transformation of the type used here are familiar in the study of the equations of motion of dynamical systems and, following the nomenclature used there, equation (13) may be called the "normal equation" representing one of the "normal systems" derived from the original coupled systems. Since it is of the same order as each of the coupled equations, solution of the problem through the normal equations is considerably easier than solving the high order system obtained by eliminating all but one variable. In the same way properties such as stability of the coupled systems can be discussed through the properties of the normal system.

Although the stimulus r and the initial values of $F(r, w)$ arc real, equation (14) will in general be complex. This is because the latent roots of an arbitrary matrix are complex, though since here the matrix is real such latent roots must occur in complex conjugate parrs. Thus for generally coupled systems, some of the normal equations may have real values of w and hence have real solutions, while in others the parameter may be complex so that their solutions and the coefficients c and d will also be complex. Such complex numbers do not hinder an analytical solution unless it is required to evaluate it numerically for functions which arc not well tabulated for complex arguments. Physically, however, although equation (14) can be represented by a single system with a feed-back path when w is real, this is impossible for complex w. But from Section 2 it wall be realized that it can be represented by coupling two systems in the appropriate way and identifying one system with the real part of the solution and the other with the imaginary part. This is show in FIg. 1 with $B(D, t)=1$ and

$$
F=G+i H ; w=u+i v
$$

so that

$$
\begin{aligned}
& G(r ; w)=A(D, t)[r+u G(r ; w)-v H(r ; w)] \\
& H(r ; w)=A(D, t)[v G(r ; w)+u H(r ; w)]
\end{aligned}
$$

To illustrate the application of the method, consider the pair of coupled systems shown in Fig. 2. The feed-back operator $B(D, t)$ is taken as unity, and for convenience tho parameters are defined:

$$
b_{11}=a+\delta ; b_{12}=\left(\beta^{2}-\delta^{2}\right) / y ; b_{21}=\gamma ; b_{22}=a-\delta
$$

Hence the two sets of equations corresponding to 11 are obtained by putting

$$
\begin{gather*}
-7- \\
\ell=1 \text { or } 2 \text { in } \\
\left(\alpha+\delta-\mu_{\ell}\right) d_{1 \ell}+\left(\beta^{a}-\delta^{2}\right) y d_{2 \ell}=0 \\
\gamma d_{1 \ell}+\left(a-\delta-\mu_{\ell}\right) d_{2 \ell}=0 \tag{18}
\end{gather*}
$$

The condition that the determinant of the coefficients of the $d_{k e}$ shall vanish glves

$$
\mu_{1}=\alpha+\beta, \mu_{2}=\alpha-\beta
$$

By substituting those values in (18) and solving, the $\mathrm{d}_{\mathrm{k} \ell}$ may be taken as:

$$
a_{11}=\beta+\delta ; d_{21}=y ; d_{12}=-(\beta-\delta) ; d_{22}=\gamma
$$

The c coefficients can now bo obtained by solving equation (8) and substituting in equation (15)

$$
\begin{align*}
2 \beta \gamma x=\gamma[(\beta+\delta) F(r ; \alpha+\beta) & +(\beta-\delta) F(r ; \alpha-\beta)] \\
& +\left(\beta^{2}-\delta^{2}\right)[F(s ; \alpha+\beta)-F(s ; \alpha-\beta)] \tag{19}
\end{align*}
$$

$2 \beta y \mathrm{y}=\mathrm{y}[\mathrm{F}(\mathrm{r} ; \alpha+\beta)-F(\mathrm{r} ; \alpha-\beta)]+(\beta-\delta) F(\mathrm{~s} ; \alpha+\beta)$

$$
+(\beta+\delta) F(s ; \alpha-\beta)
$$

The transformations can be used to draw Fig. 3 which 1 s equivalent to Fig. 2. The c and d coefficients respectively determine the summing sections which precede and follow the two "normal systoms".

When

$$
\left(b_{11}-b_{22}\right)^{2}+4 b_{12} b_{21}<0
$$

In this example, β^{2} must be negative and the μ_{ℓ} : become complex. A system equivalent to Fig. 2 may then be built round. Fig. 1 (with $u=a, v=|\beta|$) the two suming soctions being as in Fig. 3 oxcept that β must be replaced by $1 t$ s modulus. In this case $^{\prime}$ equation (19) may be written in terms of real quantaties

$$
\begin{align*}
&|\beta| y x=\gamma[|\beta| G(r ; \alpha+1|\beta|)+\delta H(r ; \alpha+i|\beta|)] \\
& \quad\left(|\beta|^{2}+\delta^{2}\right) H(s ; \alpha+1|\beta|) \quad \ldots(20) \tag{20}\\
&|\beta| y= y H(r ; \alpha+1|\beta|)+|\beta| G(s ; a+1|\beta|)-\delta H(s ; \alpha+i|\beta|)
\end{align*}
$$

by using the relations

$$
F(r ; w)=G(r ; w)+2 H(r ; w)=F *\left(r ; w^{*}\right)=G\left(r ; w^{*}\right)-i H\left(r ; w^{*}\right)
$$

which are ampled by equation (17); here * is used to denote the complex conjugate.

$$
\text { It may be verified by differentiating equation (17) that } \frac{\partial G}{\partial u}
$$ $\partial H \quad \partial G \quad \partial H$ and -- satisfy a common differential equation, and so do - $\overline{\partial v}$ and - $\frac{-u}{\partial u}$, each of those equations being of order $2 N$, whero N is the order of equation (13). Hence provided that the initial values of G and H and thear tame derivatives to order $2 \mathrm{~N}-1$ satisfy the Cauchy-Riemann relations as a function of w they will continue to do so for all time. This means that both G and H satisfy Laplace's equation with respect to the variable u and v so that knowledge of the variation of G with u enables an estimate of the effect of v on both G and H to be made. Expressed analytically:

$$
\begin{align*}
& G(\alpha+i \beta)=G(\alpha)+\sum_{r=1}^{\infty}(-)^{r} \frac{\beta^{2 r}}{2 r!}\left[\frac{\partial^{2 r} G}{\partial u^{2 r}}\right]_{u=\alpha} \tag{21}\\
& H(\alpha+i \beta)=\sum_{r=0}^{\infty}(-)^{r} \frac{\beta^{2 r+1}}{(2 r+1)!}\left[\frac{\partial^{2 r+1} G}{\partial u^{2 r+1}}\right]_{u=\alpha}
\end{align*}
$$

which may be compared with the Taylor expansion for roal values:

$$
\begin{align*}
& G(\alpha+\beta)=G(\alpha)+\sum_{r=1}^{\infty} \frac{\beta^{r}}{r!}\left[\begin{array}{l}
\partial^{r} G \\
\partial u^{r}
\end{array}\right]_{u=\alpha} \\
& H(\alpha+\beta)=0 \tag{22}
\end{align*}
$$

4. Stability of Constant Parameter Systems

If coupled systems of the type considered here are to be stable, all the normal systems derived from them must also be stable since the relationship of equation (15) can only affect the coefficient and not the exponent of any exponentially increasing torm.

The methods of investigating the stability of systems with constant coefficients are based on the application of complex variable theory (Nyquist's criterion, for oxample), so it is not surprising that they are readrly extended to treat constant complex parametor equations which may arise from the normal systems.

A constant parameter differential equation has stable solutions if each term of its complementary function contains an exponential with a negative real part in its exponont. When the
constant coefficient operators corresponding to A and B in equation (14) are the ratios of polynomials, the equation may be re-written as a true dıfferential equation,

$$
\begin{equation*}
[K(D)-w L(D)] F=J(D)_{r} \tag{23}
\end{equation*}
$$

J, K and L boing polynomials in D. The complementary function of this equation will contain terms like $F=E_{1} \exp \lambda_{1} t$ where E_{1} and λ_{1} are complex constants, the λ_{1} being the roots of the auxillary polynomial

$$
\begin{equation*}
P(\lambda)=[K(\lambda)-w L(\lambda)]=0 \tag{24}
\end{equation*}
$$

This is quite independent of whether w is a real number or another complex constant. To find if any roots of this equation have positive real parts, a standard process is to examine the path traced in the complex plane by some function in (24) as λ is taken round the contour of Fig. 4(a), 1.e., from -1∞ up the imaginary axis to $+1 \infty$ and then clockwise round a large semicirclo in the right half plane. The path traced by the whole loft-hand side of equation (24) must not encircle the origin if all the roots of (24) aro to have negativo real parts. Since that part of the locus corresponding to the large semicarcle in the λ plane whll turn clockwnso through $2 n$ quadrants (n is the highest powor of λ in (24)), the path correspondang to the maginary axis of the λ plane must turn anti-clockwiso through $2 n$ quadrants. Loci for stablo equations of second, third and fourth order are shown in Figs 4(b), (c) and (d) and from their shape tho Appondix derives inequalitios whack must be satisfied by the complex coefficients in the differential equations. Because the coofficients are complex the locus corresponding to negative froquencios as not the mirror image in the roal axis of that for positive froquencies.

A moro useful technique when it is required to find the range of valuos of w for which the system is stable is to rewrite equation (24) as

$$
w K(\lambda)\left[\begin{array}{lr}
\frac{L(\lambda)}{K(\lambda)} & -\frac{1}{w} \tag{25}
\end{array}\right]=0
$$

and consider the locus of

$$
\frac{L(\lambda)}{K(\lambda)}=A(\lambda) B(\lambda)
$$

as λ tracos the samo closed contour. Provided that $K(\lambda)$ has no zeros in the raght half plane this case is the same as the previous one but with the origin shifted to the point $1 / \mathrm{w}$ which must not be enclosed by the locus. Remembering that usually $K(\lambda)$ is of highor order than $L(\lambda)$ so that the locus corresponding to λ on the large somi-circlo collapsos to the origin, the locus considered is that of the "open loop transfer function" and the stability criterion the same as Nyquist's, substituting the point $1 / w$ for tho point $(1,0)$. It should be noted that when the feed-back loop has a variable roal gain it is customary to consider the open loop locus as expanding when the gain is incroased, the critical point remaining at $(1,0)$. When the gain is complex it is moro convenient to/

$$
r(s)=s^{n}+1 a_{n-1} s^{n-1}+a_{n-2} s^{n-2}+\ldots
$$

to keep the locus fixed and move the critical point, otherwse the locus is rotated about the origin by the phase angle of w as woll as being multiplied by 1 ts modulus.
and expand $r(s) / q(s)$ as a continued fraction by dividing to a remainder, thon inverting tho division and repeating:

The solutions of the equation will be stable if all the b are real and positive, and all β purely imaginary.

References

No.
Author(s)
1 H. W. Bode

2

3 R. H. Merson

4
A. Jeffroy
J. G. Truxall

Title, etc.
Network analysis and feedback amplifier design. van Nostrand Co. Ltd. 1945.
G.E.C. (Stanmore) Report SL. 152. 1955.

A generalisation of the Nyquist stability criterion with particular reference to phasing error. Current Paper No. 330. May, 1954.

Automatic feedback control system symthesis, p. 526. McGraw-Hill. 1955.

FIGURE 1.

FIGURE 2

FIGURE 3

FIGURE 4.

$$
0.6
$$

C.P. No. 393 $(18,748)$

A.R.C. Technical Report

© Crown copyright 1958
Printed and published by Her Majesty's Stationery Opfice
To be purchased from
York House, Kingsway, London w.c. 2 423 Oxford Street, London w.I 13 A Castle Street, Edinburgh 2 109 St Mary Street, Cardiff 39 King Street, Manchester 2 Tower Lane, Brstol I 2 Edmund Street, Burmingham 3 80 Chichester Street, Belfast or through any bookseller
Printed in Great Britain

