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It is shown that the solutions of similar differential 
equations which arc oouplod together can be expressed in terms of the 
solutions of a single differential equation, possibly containing complex 
parameters, but of the ssmc order as each separate equation. Some 
implications of this result are discussed, and Nyquist’s criterio6 18 
generalised to study tho stability of constant parameter systems of this 
type. 
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APPE3mIX. Stability of Complex Coefficient Differential Equations 

1. introduction 

It is frequently possible to represent a pair of linear coupled 
equations by a single equation containing complex quantities, the 
conditions on the real and imaginary parts separately giving the original 
relations. This gives a compact wsy of handling the equations and oen bc 
a convenient method of obtaining analytical solutions. 

This Mcmorsndum shows that it is possible to use complex numbers 
to simplify the analysis of any number of linear systems which are coupled 
togethsr provided that the separate systems are alike, and the couplings of 
similar form, The behaviour of-tho coupled systems can be written as a 
superposition of the response of ‘a number of uncoupled systems oath of the 
same order s+s one of the~original separate systems, though pussibly 
containing complex pdsmeters. The method is a goneralization of the 
transformation tb?no$i&:cbo&dinatos used in tha dynamical theory of small 
oscillations. i 

The theoretical study of systems containing such complex 
parameters 1.3 no more difficult than if the parameters were purely real. 
Any analytical solution has only to be extended to the complex plane, 
and the knowledge that it will be an analytic function of the complex 
parameter satisfying the Cauchy-Ricmsnn relations msy assist in an 
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understendrng of its properties. Constsnt parameter systems whose 
exponential solutions 81‘8 well known for complex arguments sre 
particularly easy to treat, and Nyquist’s oritorion readily extended 
to discuss their stability. 

While this paper was being written, the author’s attention 
was directed to work by Merson (19%) and Jeffrey (1955) (the latter 
unpublished) which is related; but the present treatment is different 
and may be said in some ways to unify the two earlier approaches. 

2. The Complex Variable Concept 

It ~11 be useful to study first some examples of the way in 
which complex variable notation oan simplify the mathematical formulation 
of a problem. 

Consider the pair of differential equations 

d( x cos $ + y sin 6 = T - r - x) 
dt 

. ..(I) 

d 
-x sm 4 + y cos # = T - (S - y) 

dt 

The orthodox method of solving theso equations is to eliminate y 
between them solving tha resulting second order equation for x, and 
then repeating the process for y. But by defining 

& = x+iy 8 q = r+is 

the equations may be identified with the equations for the real end 
imaginary parts of 

5e-i+ = T -“_ (q - 5) 
dt 

or, writing TelQ = S 

(I+s;$ = s; . ..(2) 

If a sinusoidal input is applied to one plane only so that s vanishes 
= r = sinwt, 

Z$atSon (2) 
it is e&ily verified that the solution of 

with e = 0 at t = 0 1s 

(1 + w?s1) z = OS [wS sin ot t co8 ut - exp (-t/S)] . ..(3) 
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and this 1s true whether S 1s real or complex. In thrs exemplc, the 
output sqnals x and y will be the real ud unaglnary pats, 
respectively, of z. These are seen to be @"en by 

(1 + 2tiTa COB 2$4 + dT4) x 

= UT [UT (cos 2# + c?Ta) sin wt + (1 + c?Ta) cos $ cos wt 

- exp (- t oos $/T) [cos (a + t s11-1 6/T) + 6?Tn co8 (# - t sm #/T)]j.e.(4) 

(1 + 2tiTa co8 24 + dT') y = WT [cdl? sm 26 sm wt + (1 - c.?Ta) sm # cos ut 

- oxp (- t cos #/T) [EXI (6 + t sin $/?I) - WaP sin (6 - t s1.n &I?)]] 

Tho couplmg oporat;tlon xn . . this exe~~ple, a transformation between 
error alla xorque axes, 1s parzlcu~arly sunply rcpresonted by ualng complex 
variables. In general, If sqnals r and s corresponding to motion in 
one set of rccten~lar axes are resolved Into signals r' and sl In 
another set of axes meklng an angle $8 (possibly txne varyug) vnth the 
first 

r* + 1s' = q' = e -d q = e -1tJ (r + is) 

The resolved signals might each bo passed through a linear filter 
represented by A(D), a polynomlnal function of tho differcntlal 
operator D = d/dt rind then resolved back to the orlgmal axes as 
outputs x end jr. Working back tnrough the system those oporatlons may 
be represented by 

x+1y = $3 = e 1tizt _ c16 A(D)qf = ei# A(D)o+ q = A'(D)q , 

whore A'(D) 1s roadlly found when tho tune variation of 4 1s lu~own. 
For oxemple, If A(D) = 3 and 6 = fit where SI is constant 

+lhnt z = e P (e-IRt q) = [D" - 3inna - 3PD + 1P-j 9 = [D - l# q 

Equating real end magmary parts 

x = D"r + 3imas - 3Cl?1r - ri)a 

y = n3s - 3flD”r - 3@Ds + @r 

3. Transformation of Coupled Systolns 

A set of llnoar systems may be coupled in many ways, Some of 
these, such as comblnatlon of the m?uts before any element lntroducug 
a tune dependence <end addltlon of the outputs In groups9 are trivial In 
that they can bo dealt vnth by the superposrtlon prlnclple. Feed-back 

coupling/ 
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coupling, on the other hand, where quantities related to each output me+y 
be added to all the inputs prosonts more difficulty. Typical equations 
governing such coupling between linear systems which are otherwise 
identical may be written. 

N 
x. = 3 A(%*) sJ + c B&t) bJk s 

k 1 . ..(6) 

The suffices take on as many values as there ere systems coupled, 
being the response of the Jth system to its stimulus 

xj 
a 

$' 
and the 

real numerical coefficients bjk giving the proportion o the output 
from the kth system which is fed-back to the input of tho jth system. 
The operators A(D,t) and D(D,t) may be any function of time, t, and 
the difforontial operator, D. It will be shown that the solution of 
these equations cell be written in terms of the solutions of single 
uncoupled equations. 

Define a now set of variables by adding the x 
3 

together in 
various proportions whose magnitudes will be determined atcr. 

. ..(7) 

The Cij determine the weights in the inverse transformation 

N 

x. = cd 
J k Jk "k 

through the N sots of N simultaneous equations 

N 

co.d 1J Jk = 6 lk = 1 1 = k 
J 

. ..(8) 

Substituting in oquatron (6) gives the N equations 

'N N N N 

z 1 = A@,%) , c clj sJ t B(D,t) .Z C 2 cij bJk G s4 . ..(v) 

LJ jke 

Now fix the values of the olJ so that 
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This impllos that the dke are the solutions of N sets of N 
homogeneous simultaneous equations (each value of 8 gives one set of 
equatlono) 

N 

' (bJk 
_ uc bJk) dke = 0 j = 1 to N 

k 
. ..(n) 

end can only be non-zero if the determinant of the ooefficients vanishes, 

Equation (12) dotoninos the N values of 1'4 as the roots of the 
Nth degree polynomial obtained by expanding the determinant. They are 
called the latent roots of the matrix of the b 
successively the sets of slmultsncous 
Values-Of the dka and the 

oauations J~;l,?%%3~":::gto the 
cl 

3 
which-satisfy equation (16). Such 

values can always be found if a 1 the se are different and using 
them equation (9) may be written. 

'- N 
-. 

z. = 1 A(D,t) c cLj sJ + B(D,t) si z1 

tj 4 

There are N equations like (13) corresponding to the N values of 
but they sre all independent, each one representing a system like one 
the original coupled systems wath feed back from its own output only. 
If F(r,w) is used to represent the output from suoh a system rnth 
foed back coefficient w when tho input is r, so that 

F(r,w) = A@,t) [r + B@,t) wFh,w)l 

it will bc seen from equation (13) that 

N 
e = C clj Fb3,ul) 

1 - 

by the suporpositron principle. Hence 

NN 

Xl = 2 2 d13 cJk F(sk,u3) 
3k 

As initial conditions for equations (14) at is convenient to choose 

. ..(13) 

19 
of 

. ..(14) 

. ..(15) 

[F(Sk,Uj)lt=t = [Xklt=t for d1 j 

0 0 

These/ 
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These last three equations, (14), (15) and (16), are completely equivalent 
to the orxg~nal set of equations (6) with their lnxtlal oondltlons. 
Physloally It may be said that the feed-back cross oouplmgs of the 
orlginal system which make it difficult to analyse have been replaced by 
cros3 couplings between the inputs only, and between the output3 only, so 
that the superposition prlnolple may be used. 

Trsnsformatlon of the type used here are familiar m the study 
of the equations of motion of dynamical systems and, follomng the 
nomenclature used there, equation (13) may be called the “normal equation” 
representing one of the “normal syatoms ” derived from the original coupled 
systeme. Since It 13 of the same order a3 each of the coupled equations, 
sdlutlon of the problem through the normal equations 13 considerably 
easier than solving the high order system obtalned by ellminatlng all but 
one variable. In the same wey propertles such as stability of the 
coupled systems can be discussed through the properties of the normal 
system. 

Although the stimulus r and the initial values of F(r,w) 
arc real, equation (14) will m general be complex. This is because the 
latent roots of en arbitrary matrix ars complex, though since here the 
matrix 1s real such latent roots must occur in complex conjugate pars. 
Thus for generally coupled systems, some of the normal equations may have 
real values of w and hence have real solutions, while m others the 
parameter may be complex 30 that their solutions and the coefficients c 
and d ~1.11 also be complex. Such complex numbers do not hinder an 
analytical solution unless it 1s required to evaluate It numerically for 
fun&Ions which are not well tabulated for complex arguments. Physloally, 
however, although equation (14) can be represented by a slnglo system mth 
a feed-back path when w is real, this 1.8 lmposslble for complex W. But 
from Seotlon 2 lt will be reallaed that it can be represented by coupling 
two systems m the appropriate way and identifying one system with the 
real part of the solution and the other Pnth the imaginary part. This is 
shown in Fig. 1 vnth B(D,t) = 1 and 

F = G+lHiw = u+iv 

so that 

G(r;w) = A(D,t) [r + uG(r;w) - vH(r;w)] 

. ..(17) 

H(rgw) = A(D,t) [vG(r;w) t uH(r#w)] 

To illustrate the application of the method, consider the pair 
of coupled systems shown in Fig. 2. The feed-back operator B(D,t) 1s 
taken a8 unity, and for oonvemenco tho paremotors are defined: 

bll 
5 a + 6 ; ky2 = (8” - @I/Y ; b2, = Y t b22 = a - ii 

Hence the two sets of cquatlons corresponding to 11 are obtained by 
putt=% 

4 
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e = 1 or 2 1n 

y d,& + (s - 6 - Q) d2& = G . ..(I81 

The condltlon that the detcrmrnant of the cocfficrents of tho dk& shall 
vanish gives 

@I 
= a+p,u2 = a-B 

By substltutlng those values in (18) and solving, the du may be taken 
as: 

dll = p + 6 8 d2, = y ; d,2 = -(P-fhd,, = Y 

The c coefflcrents can now be obtalned by solvrng equation (8) and 
substituting rn squatron (15) 

28~ x = Y [(a + 6) F(rja + B) + (P -8) F(rja - 0)1 

+ (6’ - P) [F(sra + 8) - F(s;a - ~11 
. ..(I91 

2@y y = y [F(r;a + fi) - F(r$a - @)I + (B - 6) F(sta + B) 

+ (p + 6) F(s#a - B) 

Tho transformatrons can be used to draw Fig. 3 whrch 18 equivalent to 
Fig. 2. The c and d coeffxcrents respectrvely determIne tho summing 
sectrons which precede and follow the two "normal systems". 

When 

(bll - b22T + 4b12b21 .z 

ue :become complex. 
round.Frg. 1 

m thus exempl~, es., must be negative and tha 
~v;i$.e~ e~;;$nt=$o,;;~, 2 msy then be built 

the two nummlng scctrons being as III 
Frg. 3 oxoept that !3‘ must be rbplncod by lts'modulus. In this case 
equation (19) may be kitten WI terms of'rcal quentrtios 

) ply k = :y [iBiG (ria ; 1 Igl) + 6fj (Gia:+ i IpI)] 
I . 

- (lfli' + 6') H (s;a +'I 1131) . ..(20) 

0 

ipi y = yH (rja + 1 ipi) + 1131G (sja + 1 IpI) - 6H (sla + ilgt) 

by/ 
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by using the relations 

F(r;w) = G(r;w) + iH(rjw) = F*(r#vP) = G(rjw*) - iH(rjw*) 

which are lmplcd by equation (17)g here * is used to denote the complex 
conjugate. 

It may be verified by differentiating equation (17) that - 
au 

BH aG aH 
and - satisfy a common differential equation, and so do - and - - , 

av av au 
each of those equation6 being of order 2N, whero N is the order of 
equation (13). Hence provided that the initial values of G and H and 
their time derivatives to order 2N - 1 satisfy the Cauohy-Riemsnn 
relations as a function of w they will continue to do so for all time. 
This means that both G and H satisfy Laplace's equation with respect 
to the variable u end v so that bowledge of the variation of G with 
u enables an estimate of the effect of v on both G end H to be made. 
Expressed analytically: 

2r 

G(a + if3) = G(a) + F (-)' B- 
r=l 2r! 

2r+l 

H(a t ip) = y (-)' a- 
r=O (2r t l)! 

which may be compared with the Taylor expansion for real values: 

a2r+‘G 

I 1 
-- 
au2rt 1 

-Ll=a 

. ..(21) 

G(a + p) = G(a) t 

. ..(22) 

H(atB) = 0 

4. Stability of Constant Parameter Systems 

If coupled systems of the type considered here are to be stable, 
all the normal systems derived from them must also be stable since the 
relationship of equation (15) can only affect the coefficient and not the 
exponent of any exponentrally increasing term. 

The methods of investigating tho stability of systems with 
constant coefficients are based on the application of complex variable 
theory (Nyqulst's criterion, for oxample), so it is not surprrsing that 
they are readily extended to treat constant complex parsmotor equations 
which may arise from the normal systems. 

A constant parameter differential equation has stable 
solutions if each term of its complementary function contains sn 
exponential with a negative real part in its exponent. When the 

constant/ 
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