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Some methods of evaluating imperfect gas 
effects in aerodynamic problems 

G. A. Bird 

Simple numerical and graphmal procedures are described for the 
calculation of the imperfect gas effects on the properties of steady and 
unsteady one-32.msnsions.l isentropic flows, the Prandtl-Meyer expansion 
round a corner and normal end oblique shock waves. The fun&mental 
equatmns of each type of flow have been put into a form in which they 
may be solve2 usmi: the published tables of the equilibrium properties 
of gases. Both thermal Land caloric imperfections have been t&en into 
account but relaxation time effects have been neglected. 

Numerical examples are given for each type of flow although the 
main emphasis has been plaaed on the methods rather than on the results. 
These basic methods have been used to calculate the magnitude of the 
imperfect gas effects on a number of specific aerd.ynsn3.c problems 
which have been ccnsidered in detail. 
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1 Introduction 

In the last few years, the high temperatures that have been 
encountered Zen aerodynamic problems have been such that it has become 
necessary to consider the effects produced by the difference in behaviour 
of a real gas compared with that of s 'perfect' gas. 

A perfect gas is here deflned as one whxoh has constant specific 
heats (caloric perfection) ad which obeys the equation of state 
P R - =- 
P 

m T (thermal perfection). At low temperatures or high pressures, 

a real gas departs from the perfect gas equation of state as a result of 
molecular force and molecular size effects becoming apparent. At 
considerably higher temperatures, appreciable energy is imparted to 
additional degrees of freedom and then speczfx heats then cease to be 
constant. At still higher temperatures, the composition of the gas may 
change as a result of molecular dissociation ad cause variation in the 
speolfic heats and in the molecular weight. Molecular ionisation does 
not commenoe to produce appreciable effects until even higher terriperatul-es 
have been reached, 

A large number of attempts have been made to modify the conventional 
gas dynamic equations so that they apply to real as well as perfect gases. 
Some aspects of the problem have been treated by the use of one of the 
more nearly exact equations of state such as van der Waai's in reference 1, 
Bertheld's in reference 2 and the Benttxa-Brdgeman equation in refer- 
ence 3, and allowance was made in several of these reports for changes in 
the specific heat ratlo also. Some other n.ethcds have been suggested which 
allow for changes in the specjfic heat ratlo only. However, thus type of 
treatment does not take into account all types of tiz&?erfectlon ad, in 
general, it is restrxted to flows in which dissociation does not occur. 
The expresslcns which are cbtalned by these methds are invariably 
extremely involved and it is not easy to apply them to the spenific 
problems which are encountered in practice. 

A number of sets of tables have recently been issued which list the 
equilibrium thermal properties of gases (such aa entropy, enthalpy, 
density etc.) as functions of temperature ad pressure. For Instance, 
reference 4 lists them for air up to temperatures of 50004( and pressures 
of 100 atmospheres and, in reference 5, data is tabulated for a number 
of gases. Both these sets of tables are based on the now obsolete value 
of 7.373 e.v. per molecule for the dissociation energy of nitrogen, but 
reference 6 gives a preliminary form of revised tables based on the 
currently accepted value of 9.758 e.v. per molecule*. These tables take 
into account (as far as is possible) all types of imperfection. 

In references 7, 8 and 9, the normal shock wave equations are 
solved for a variety of initial osrditions, by iterative methods which 
make direot use of these tables. However, 1.t 1s assumed In all these 
methods that the gas is thermally perfect, i.e. the perfect gas equation 
of state still applies, This assumption is valid for ccmhinations of 
high temperatures and low pressures even if the gas is dissociating, but 
it is not justified at low temperatures or high pressures. In section 
2.21 of this report, a simple graphical method 1s presented for the 
solution of the shock wave equations for any initial ooditions; the 

* Unfortunately these tables were not available to the author at the time 
of preparation of this report and the older sets of tables have 
necessarily been used in the examples. 
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method uses the tabulated real gas properties which take into account thermal 
as well as caloric imperfections. 
shock waves also. (Secticn 2.22). 

The method is extended to cover oblique 

References 7 and 8 present methods of dealing with imperfect gas 
effects on the propagaticn of one-dcmensional unsteady isentropic waves. 
These are based on the replacement of the usual form of the Riemann variables 

2 
q's* 
form q-c 

i 

which is valid only for an ideal gas by the more fundamental 
fdp which is valued for real gases also. This integral is 

not easy to evaluate in the real gas case, and has been tabulated for a few 
oases only, The method presented in Section 2.13 of the Report makes direct 
use of the more fundamental eplation $p+" 

pa 
and a simple numerical 

procedure is given for the complete solution of the problem for any initial 
conditions. 

Reference 7 considers also steady isentropic expansions and presents 
a method which is again very complicated and which depends upon the gas 
being thermally perfect. In Section 2.11 a graphical method is suggested 
whioh is consistent vnththat outlined above for unsteady flow. Euler' s 
equation of motion for steady one-dimensional flow may be put into the form 

s?L%L$=-; and the real gas tables enable this to be integrated directly 
along any required isentrope. A simple extension of the method is given in 
section 2.12 to cover the Prandtl-Meyer expansion round a corner. 

It is not necessary to bring enthalpy into the isentropic flow cslcula- 
tions as has been done in references 7 md 8. No iteration procedures are 
involve3 m any of the methods presented in this Report and they are all 
far more straightforward than those which have previously been proposed, 
even though they allow for thermal as well as cslorio imperfectrons. 

The magnitude of the imperfeot gas effects is dependent on the initial 
temprature and pressure of the gas to such an extent that it is practically 
impossible to compile a comprehensive set of compressible airflow tables 
for a real gas. Emphasis has therefore been put, in this Report, on the 
development and presentation of simple numerical procedures by which tne 
imperfect gas effects maybe calculated III any specific example. A number 
of exsmples are given which illustrate the application of these procedures 
to typical problems. 

It has been assumed in all these methods that relaxation time effects 
may be neglected. These relaxation time effects arise because excitation 
of the various degrees of freedom of the molecul.es,the s.dJustment of energy 
in them, dissociation, reassociation, ionisation and reoombmation all 
occur as a result of collisions between molecules snd atoms. knumber of 
collisions is required to produce equilibrium and this number varies greatly 
with the type of process and the gas in which it is taking place. Equilibrium 
is reached very quickly between the translational and rotational degrees 
of free&m but a considerable number of collisions are required to reach 
equilibrium if the vibrational modes are excited and the fluid moves a 
certain distance v,hilst it is being established. Experiments have indicated 
that this "relaxation distance" rarely exceeds a few centimetres and is 
usually very nmoh less and that it decreases as the temperature and pressure 
increase. Very little is lolown about rates of dissociation, although 
eqilibriwn is probably reached far more slowly than in the case of the 
vibrational energy adjustment. Still less is known about rates of reassooia- 
tion and these will have a very pronounced effect on the flow cn the nozzle 
of a hypersonic impulse tunnel. The importance of these non-equilibrium 
effects till depend on the ratio of a typical dimension of the flow to these 
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"relaxation distenoes", and much work remains tobe done before the 
magnitude of these effects can be estimated in practioalcases. 

2 Methods of Analysis of Basic Flows 

2.1 Isentropic processes 

The oonventionsl gas dynamic eqations for one-dxmensionsl 
isentropic flows are obtained from the eqations of motion by use of the 
perfect gas isentropx relation between pressure and density (-$ E const.). 

In the following sections, the basic equations will be put into a form in 
which they maybe integrated directly using the tabulated then& 
properties of real gases. 

2.11 Steady one-dimsnsionsl z.entropic flow 

Consider the flow in a stream tube. The momentum equation is 

sit 29 at + q ax = ,li?E 
P a* 

For steady flaw at k3 = 0 and, as only one dimension is involved, the 
equation msy be written: 

or 

(For a perfect 
7 

as, this msy be integrated to give the eonventionsl 
energy equation . 

The tables list specific entropy of a real gas as a function of 
temperature and pressure. The isentrope for the real gas msy therefore 
be constructed by looking up the value of entropy for the znitisl 
conditions and then finding the values of temperature and. pressure in 
the required range for which the vslue of the entmp 

% 
is constant. As 

an exzunple, the isentmpe for air expanded from 5000 and 100 atm is 
plotted in Figure 1.1 and 1s compared with that given by the perfeat gas 
relation -E = constant. 

PY 
Density and speed of sound are slso listed4J5r6 

as functions of temperature and pressure and ourves of p and a (see 
Figs.Z.3 and 1.2) may be plotted against p for these isentropea. 

The reciprocal of the density which by equation 2.2 is equal to 

ai 
-9 

( 

ap 
1s then plotted sgainst p in Flg.1.4 and these curves are inte- 

grated graphically to give curves of &q' against p (Fig.i.5). In this 
exsmple the gas was assumea to be expanded from rest, but the initial value 
of +q2 111 the integration 

47 
be adjusted for any initial velocity. 

Once the relation between ~q 
(F1 .1.6) 

and p has been found, that between q and p 
follows 

7 
and this is used in conJunction with the curve of a 

against p Fig.l.2) to find the relation between Mach number and pressure 
(Fig.l.7). 

The aocuracy of the numericsl wd. graphical procedures maybe checked 
if the curves appropriate to the perfect gas are plotted alongside those 
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of the real gas in each figure. The two sets of curves were operatea upon 
in exactly the same msnner and an indication of the accuracy of the calcula- 
tions was givenby comparing the calculated values of p against M for 

the perfect gas with those given by the relation > = 

The continuity equation gives 

The pressure at which M = I is found fromFig.1.7 and p* and q* are then 
A 

found from Figs.i.3 snd 1.6 respectively. The area ratio 2 may then be 
found as a function of Each number and the results for the perfeot gas 
again provided a oheck on the accuracy of the calculations. 

In the example shown in Fig.?, there is considerable dissociation of 
the gas under stagnation conditions and the very large departures from 
perfect gas behaviour are a result of the subseqent reassociation. The 
energy whhlch is released in the reassociation process causes the temperature, 
at a given pressure, to be much higher than in the case of a perfect gas 
expsnded to the same pressure. The speed of sound 1s therefore much higher 
and the density is lower. The reciprocal of the density is higher and so 
the velocity pmduoea by a given pressure drop 1s higher for the red. gas. 
However, the effect on speed of sound. is greater than that on velocity and 
the Mach number for a given pressure dmp is less for the real gas than for 
the perfect gas. Thercis also a very pronounced real gas effect on srea ratio, 
the real gds requiring a far greater area ratio to reach a given Mach number. 

Figure 2 shows the corresponding results when the gas is Ylitially 
at a temperature such that no dissociation or reassociation effeots are 
encountered. There are differenoes of sever&l percent between real and 
perfect gas cases in the pressure versus temperature, speed of sound, 
density end velocity curves but these are in directions such that they 
ten6 to cancel out when the Mach number versus pressure snd area ratio 
ourves am calculated from them, 

2.12 F'rsndtl-Meyer expansion round corner 

The equations of momentum for 
the steady flow of an inviscid oompress- 
able fluid may be written in polar 
coordinates as, 

and 

(2.4) 

(2.5) 

The equation of continuity is: 

(2.6) 
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In the case of supersmic flow, It maybe assumed that p, p, u and v 
are functions of 6 only and the equations then reduce to, 

O?.- 

and 

From (2.91, 

But fmm (2.8), 

vau v2 
r=--F = 

0 

au 
v=z5 

av vz+u = ( > ,192 
P ae 

av & pu +px+vao = 0 

,122 
v ae 

Comparing (2.10) with (2.11), 

v = a 

HEGlC.3 UdgT=@X 

and fmm (2.7) and (2.12), 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Equation (2.2) applies along a stream tube and the methods of 
section 2.11 are used to construct curves of a against p, q against p 
and M against p. Corresponding values of u ardimny then be found for 
any value of Mach number and these are plotted against one another as shown 

mFlgure3.1. As :=g (equation 2.14), these curves msy be integrated 

graphically to give ourves of 8 against u (Fig.3.2) and the curves of 6 
agamst M (Fig.3.3) follow. 

The flow deflection angle is given by, 

= e - tan -’ &5 (2.15) 

-7- 



The curves of Y against N are then plotted as shown in Fig.3.4 
snd the accuracy of the calculations maybe checked by ccanparing the 
perfect gas values with those given by the conventional gas dyntics 
equation, 

The exsmple shown in Figs.3.1 to 3.4 is for air expanded from a 
temperature of 500Q°K and a pressure of 100 atmospheres, and reassociation 
again prcduces large imperfeot gas effects. Figure 3.5 shows the corres- 
ponding effect on Prendtl-Meyer angle when the stagnation temperature is 
much lower end, in the absence of initial dissociation, the departures 
from the perfect gas values are of the order of one or two peroent only. 

2.13 Fropanation of one-dimensional isentropic wave 

The ccd5nuity equation may be wrxtten, 

end the momentum equation may again be written, 

2s &L+121.1E, at + q ax P ax 
Treating p as a function of p and S, 

ap = ($j)p as + ($)s a~ 

i.e. 

end, as the flow is isentropio, 

as as 
z+qz = 0 

Multiplying (2.16) by % and (2.18) by 1 2 
0 ap as p 

and adding, 

+ a ax = O 

Now, from (2.1 s.113 (2.191, 

(2.16) 

(2.1) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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Therefore, if a wave satisfies the direction conditions, 

then 

r4r. at = q-ta (2.21) 

(2.22) 

(For a perfect gas this maybe integrated to give the well known relation 
q&a = constant). 

Equation (2.22) may be integrated for a real gas by a sivnlar 
process described for the integration of equation (2.2) in Section 2.11. 
An example is shown in Fig.4 for the unsteady expansion of air from 300% 
end 100 atmospheres. It aen be seen from Figure 4.5 that for a given 
pressure ratio, the real. gas attains a higher flow velocity thsn the 
perfect gas. 

In Figure 4.6, the flow velocity (s) is plotted against speed of 
sound (a). A check on the eocuracy of the calculations is provided by 
these curves as the perfect gas should obey the condition of invariance 
of the Riemann variable (5 a + q) . It may be seen fromFigure 4.6 that 

the real gas departs widely fmm this condition and, as most practioal 
probleme are solved by using Xiemann's variables, large errors would be 
introduced by the assumption of a perfect gas in this exsmple, in which 
relatively moderate temperature and pressures are considered. 

2.2 Shock waves 

The flow through a normal shock wave is desoribed by the equations 
of oontinuity, momentum and energy. The conventional normal shock wave 
relations for a perfect gas are obtained by replacing the enthelpy term 

y 2 in the energy equation by G p which enables the pressure, temperature, 
density and velocity ratios across the shock front to be found as functions 
of M, end y. In the ease of a real gas, however, enthslpy must be left in 
the energy equations, as such, and the equations are then solved by making 
use of the real gas values of specific enthelpy which ere tabulated as 
functions of temperature and pressure in references 4 and 5. 

It can easily be seen from momentumoonsiderations that the tangential 
component of the flow velooity is the same on both sides of en oblique 
shock wave. The equations of continuity, momentum end energy, when written 
in terms of the normal velocity components, are then identical with those 
for a normal shock wave. Therefore, for any flow geometry, the oblique 
shock wave problem reduces to that of finding the strength of the "equivelent 
normal shook wave" and this may be done by trigonometrioal considerations. 

2.21 Nod shook waves 

The continuity, momentum and energy eptations msy be written, 

and 

PI 91 = P2% 

PI + PI 91 2 = p2+p2q22 

(2.23) 

(2.24) 

$+?I 
1 

= 2L.E 
2 2 (2.25) 

-9- 



From, (2.23) end (2.24)~ 

2 2 L-1 
p2 - PI = PI s, p, p2 ( > 

also 

From (2.25) end (2.27), 

Hz-H, = 

(2.26) 

(2.27) 

(2.28) 

The following procedure is adopted to solvethlsequation when the 
gas in front of the shock wave is at a known temperature and pressure. 

(i) Find H,, a, and p, from the thermdynemic tables of resl gases. 

(ii) Choose a value of T2, 

(iii) Use the real gas tables to find the value of H2 at this 
temperature for a number of values of p2 and plot H2 - H, against p2 as 
shorn? in Fig.5.2. 

(iv) Find p2 from 
and evaluate & (p, - p,) 

s for the seme range of values of p2 

in each case. The curve of 

against p2 may be plotted on the SW axes as 

that of H2 - H, against p2 and the intersection of the two curves gives 
the value of p2 which corresponds to the chosenvelue of T2. (See Fig.5.2). 

the $L, The corresponding values of ~2 and a2 may then be found from 
. 

The procedure is repeated for other values of T2 and consistent 
T2 sets of values of the ratlos- p2 2 2 and "2 are thus found. The 
'JJ, ' 5' p, ' q, al 

next step is to find the vslue of shock Mach number to which each of these 
sets corresponds. This is easily done as, by (2,26), 

i.e. (2.29) 
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It is often required to find the flow velocity behind a normsl 
shock wave moving into a gas at rest. This is given by, 

and using (2.23) 

i.e. 

3 %(I-3 

PI 

u2 = al% '"P ( J (2.30) 

The method of solution is shown in Fig.5.2 for three values of T2 
for air initially at 3OO'K and 0.1 atm. The calculations were also 
carried out for a number of other values of T2 and also for air initially 
at 0.01 atm snd 3009(. The shook Mach number to which each of these 
solutions corresponds was found from equation 2.29 snd Fig-es 5.3 to 5.6 
show the departures fmmthe perfect gas values of pressure, temperature, 
density and velocity ratios across the shock and of the flow Mach number 
behind a shock moving into a gas at rest. 

The pressure ratio (Figure 5.3) across the shock is greater for the 
real gas than for the perfect gas end there is no signifioant dependence 
on pressure in the exemple which has been considered. The temperature 
ratio (Figure 5.4) for the real ges is far lower then that for the perfect 
gas and at high shock Mach numbers, when dissociation is the dominant 
factor, the effect is greater for the gas initially at the lower pressure. 
However, there is still an appreciable effect at shock Mach numbers around 
five and, at these speeds, thermal imperfections cause the effect to be 
slightly greater for the gas initially at the higher pressure. Fw-= 5.5 
shows that the density is higher behind a shock in the real gas end the 
steady flow velocity is less. According to the perfect gas theory, the 
nwxinium flow Maoh number behind an unsteady normal shock wave in a gas of 
y = 1.4 is 1.89 but Figure 5.6 shows that the flow Maoh number in a real 
gas maybe very much higher. 

The above results are merely given to illustrate the method and the 
variation of these and other quantities for different initial conditions 
may be easily calculated. 

2.22 Oblique shock waves 

The equation of continuity 
gives 

P, u, = P2 u2 

The equation of momentum msy 
be applied to flow normally end 
tsngentislly to the wave front 
to give 

2 2 
P, - P2 = P2 u2 " PI u, (2.32) 
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0 = p2 “2 v2 - pi Y vl 

comp~ing (2.31) with (2.33) it is seen t&t 

vi 
5 v 2 = v 

The energy eqxd,ion my therefore be m-itten 

2 2 
Y -U2 

2 =%2-%2 =H-H 2 2 I 

(2.33) 

(2.34) 

(2.35) 

Hence the equations in u and u for the oblique shock wave are identical 
to those in q, end 42 fo& the &rmal shook wsve. 

Let s = ;;- be the "equivalent nod shock" Mach nuniber. 
I 

Now 

But 

:. 

u2 tanP=y ui end te3a =';- 

5 
u2 v- ten6 -= 
V 

I + 5 ~tanb 

Therefore, 
1 

"2 = 
u1 I+ 

tan6 
(2.36) 

Equation (2.36) enables the "equivalent normal shook" Mach number to 
be plotted as a function of "2 for any given flow Mach number and deflection 

u1 u 
angle. (Note that the value of < depends only on the ratio of M, to MH 

and not on their individual values so that, after one cme has been 
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. 

calculated, the others for the same value of 6 are simply scaled from it). 
These curves are based solely on geonletricsl considerations and hold for 
red or perfect gases. 

u2 The shock wave equations must also be satisfied and curves of - 
Y 

against MS which do this maybe obtained using the methods of section 

2.21. (As q for the oblique shock is e-al to Q2 

nonml shock). 
Q1 

for the equlvslent 

Exsmples of the two sets of curves sre plotted in Figure 6.1 
and their points of intersection give the appropriate values of the equiva- 
lent normsl shock Mach number for the given flow Mach number deflection 
angle and lnitisl gas conditions. There are, 111 general., two solutions 
for each case, the first corresponds to the "weak" shock which is the 
one normally obsenrea and the seoond corresponds to the "strong* shock. 
When the curves do not intersect the shock wave becomes detaohed. 

The angle of inclination 01 of the shock wave is given by, 

sina = zlEMs 

41 5 
(2.37) 

Ml As this relation 1s a function only of the ratio K , the farmly of curves 

which It gives are easily constructed (Figure 6.2): 

Figure 6.3 has been constructed fromFigures 6.1 and 6.2 end gives 
the shock wave angle as a function of M, for various values of deflection 
angle for the resl and perfect gas cases. It is seen that the sngle of 
the "weak" shock is less for the red. gas than for the perfect gas. Also, 
at any given Mach number, the shock wave remains attached until higher 
values of defleotion angle have been attained in the real gas than in the 
perfeot gas. For mstsnce, there is no solution at al.1 at a deflection 
angle of SO0 for the perfect gas but the shock 1s attached above M, = 8 
for the real gas. 

Once the value of the "equivalent non& shook" Mach number has 
been found fromFigure 6.1, the normal shock wave cdadations (Seotion 2.21) 
give the ratios of pressure, density etc. across the oblique shock wave. 
The pressure ratio across the shock is plotted zn Figure 7.1 and, for a 
given initial Mach number and flow deflection angle, the pressure rise is 
less for the real gas than for the perfect gas. 

The flow Mach number behind the shock 1s often required and is given 
by, 

i.e. (2.38) 
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u2 For a givenvalue of M, and &,Mg end-arefoundfmmFigure 6.1 
a, Y 

end the corresponding velue of 1 
a2 

is given by the normel shock wave oelcula- 

tions. The Mach number behind the shock is greater for the reel gas than for 
the perfect gas. (Figure 7.2). 

3 kpplication of Methods to Typical Problems 

3.1 Shock tube perfo-ce . 

The general principles of operation of shock tubes are well known, A 
tube is divided by a diaphragm into two sections, one containing gas at high 
pressure and the other at low oressure. The diaphragm is mptured and the 
gas in the high pressure section expands isentropicelly into the low press- 
section. The gas in the law pressure section is compressed by a shockwave 
which travels into it. The gas which was originally in the high pressure 
section is divided fmm that which was originally in the low pressure section 
by a contact surface which also travels into the low pressure section. 

The values of pressure and velocity are the same on eech side of the 
contact surface end this provides the basis of a simple graphical method 
(see Figure 8) for calculating the performsnce of a shock tube for both the 
perfect and reel gas oases. The methods of seotion 2.13 enable curves to be 
constructed of flow velocity (q) against pressure (p) in the expended high 
pressure gas. These ere shorn in Fig.8 for both air and hydrogen expanded 
from 100 atmospheres ma 3CQ"iL The methods of se&ion 2.21 may then be used 
to oonstruot -es of flow velocity behind an unsteady normel. shock wave 
(U,) against pressure behind the shock (p,). These are shown in Figure 8 for 
air compressed fmm 0.1 atmospheres and. 3CPK. All these curves are drawn 
for both the reel and perfect gas cases. 

As flow velocity and pressure are continuous aoross the oontact surface, 
the intersections of these two families of curves give solutions of the shock 
tube problem. For instance, points (A) end (B) in Figure 8 give respectively 
the perfect end real gas solution for the flow velocity and pressure at 
the contaot surface of a shock tube having hydrogen at 100 atmospheres snd 
300°K in the high pressure end end sir at 0.1 atmospheres and 300 %-C in 
the low pressure end. In order to find the strength of the shock wave which is 
produced, the methods of section 2.21 ere again used to find the relation 
between shock Mach number (Mg) and the flow velocity (U,) behind it. This 
is different for the real end perfeat gas oases and a scale of M8, for the 
two cases, hasbeen added to Figure 8. It mey be seen fmm this that point (A) 
corresponds to a shock Mach nunher of 7.39 and point (B) corresponds to one 
of 7.06. 

Figures 9.1 and 9.2 have been constructed solely from the information 
given directly by curves of the type shown in Figure 8 and show the reduction 
in shock Mach number which is produced by the reel gas effects. The magnitude 
of the effects varies with the pressure of the high pressure gas as a result 
of thermal imperfeotions beooming apparent at the higher pressures. One 
of the advantages of this graphical method is that it mey be seen, in eny 
particular ease, to what extent the reduction in shock Mach number is due 
to effeots in the expansion of the high pressure gas (mainly thermal imperfeo- 
tions) and what is due to effects in the campresaion of the low pressure gas 
(meinly caloric imperfeations). In particular, it is seen that considerable 
effects are produced with eir as the high pressure gas at 103 atmospheres 
even when the shock Mach number is only two or three (see Figure 9.2). 
Also, if the high presare gas is such that the imperfections in its expensicm 
are negligible, it mey be seen fmm Figure 8 that the velocity of the contact 
surface may be increased even though the shock Mach number is reduced. In 
eny case, when the shock velocity is high, the velocity of the contact surface 
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is not reduced as much as the shock front and so, at any point down the 
tube, the interval between the arrival of the shock wave and contact 
surface is reduced. As the gas between the shook wave and contact surface 
is used for testing purposes in impulse tunnels, the real gas effects 
cause a reduction in the running tiao. The time interval between the 
shook wave end contact surface per unit length of tube is given by: 

: = (+&)I (3.1) 

and Figure 9.3 ohows the reduction Ln running time due to imperfect gas 
effeots in a typical case. 

3.2 Lift of flat plate 

An exact solution for the lift of a two-dimensional flat plate at 
incidence in a supersonic streemmaybe found by ce&ulating the drop in 
pressure over the upper surface through the Prandtl-Meyer expansion and 
the increase in pressure over the lower surface through the oblique shook 
WEiVB. The lift coefficient of a flat plate is shown in Figure IO for 
incidences of up to 400 and at Mach numbers of 5, IO and 15 in air at 
300°K snd. 0.01 atmospheres. 

The Prandtl-Meyer expansion is treated in Se&ion 2.12 but, for the 
initiel oonditions of this example, the imperfect gas effects on the 
expansion will be negligible. The main factor will be the pressure rise 
through the oblique shock wave and this is shown in Figure 7.1 for the 
real end perfect gas cases. The pressure rise 1s less for the real gas 
so that the lift coeffioient will be reduoed from that given by perfect 
gas theory. 

3.3 Nozzle of hypersonic impulse tunnel 

The Maoh number of the steedyflowbehind en unsteady normal shock 
wave is limited to quite low values snd, in order to produce higher Hach 
numbers, the flow 1s often expanded 3n a supersonic nozzle. Figure 11 
shows the nozzl.e profile which would be required to produce a steady flow 
af Mach 6 at the end of a shock tube in tiich a shock of alaoh nuder 12 
is produced. in air initially at 300% and 0.5 atmospheres. The inlet 
Mach number is higher for the resl gas than for the perfect gas (see Fwe 
5.6). 

The Prandtl-Meyer angle was found for the real gas by the ssme 
methods as those used to produce Figure 5.4. B sinusoidal distribution 
of Mach number we.8 chosen along the centre line and the methods of 
characteristics was use& to construct the flow field. The nozzle profile 
was found as a streamline of this flow. It would be expeoted fromFi* 
1.8 that the overall erea ratlo would be mob higher for the real gas 
than for the perfect gas end this has been borne out in this exsmple. As 
this example inmlves reassociation of the initially dissociated gas, the 
neglect of non-equilibrium effeots may be serious. 

3.4 Reflection of norm&l shock wave from rinid wall 

Consider an unsteady normal shock wave moving in a one-dimensional 
channel which has a closed end. When the shock wave meets the end it is 
reflected and the strength of the reflected wave is deternuned by the 
oondition of zero flow adjaoent to the well. The 
across each wave must therefore be the ssme (i.e. 

I*41 a perfeot gas, - is a function of %I only snd 

~A~=i~AJ$Vt~or 
Aq R -is afunction of 

a2 62 
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% 
only and they may be plotted as shown in Figure12.2. In the aase of a 

l*s& real gas, - 
a2 

depends on MS, as well as MSS snd has been plotted in 

Figure 12.2. For several v$LLy of hf.+. To find the vslue of MsR for my 

value of Ms,, the value 

Ms is that which gives 

of I"qII - is found for Y 
&2 

SI and the required value of 

I*& I*41 - = - * The process is illustrated in 
a7 a3 

Figure 12.2 for Ms1 z 8.0 for the real and perfect gas cases, giving 

MQ = 2.89 and 2.55 respectively. The real gas ourves have all been 

calculated by the methods described in Section 2.21. 

The Mach number of the reflected shock is plotted as a function of 
the ;Y;ach nwiber of the incident shock in Figure 12.3 aud it is seen that, 
whereas the Mach number of the refleoted shock is asymptotic to a value of 
2.63 for a perfect gas, it may be much higher for a real gas. Figure 12.4 
shows that the temperature ratio across the refleoted shock is muoh less 
for the real gas than for the perfect gas. The ratio of the temperature 
adjacent to the wall before and after the arrival of the shock is shown in 
Fig.12.5 snd is again considerably less for the real gas. However, it is 
seen fmmFigure 12.6 that the pressure ratio is greater for the real gas 
and, for incident shock Mach numbers above about 8, the difference is very 
sigzifY.csnt. 

3.5 Two-dimensional supersonic intake 

A two-dimensional intake maybe designed in which a uniform super- 
sonic stream is compressed by two oblique shock waves to form another 
uniform stream in the same direction at a much lower l&oh number. The 
general configuration is shown in Figure '13.1 for a perfect gas of Y = 1.4 
and for air initially at jW?K and 0.01 atmospheres at intake Mach numbers 
of 6, IO and I&. An oblique shock wave is formed when the stream is 
turned through an angle of 30° end the stream is returned to its original 
direction by the reflected oblique shock wave. At an intake Mach number 
of 6, a solution is possible with regular reflection for the real gas but 
Mach reflection occurs in the perfeat gss ease. 

The properties of the incident oblique shock may be found for the 
perfect snd real gas cases fmm the graphs in Figures 6 end 7. These also 
enable the reflected oblique ehwk properties toba found for the perfect 
gas but, to obtain the solution for the real gas, similar curves must be 
constructed for initial temperatures and pressures corresponding to those 
behind the incident shock. 

Figures 13.2 to 13.5 show the variation with intake Mach number of 
the temperature and area ratios and the exit Maoh number and total pressure. 
It is seen that the real gas intake provides a narrower stream of air at 
a lower temperature but at a higher Maoh nuuioer and totel pressure than 
that for the perfeot gas. 
List of Symbols 

P pressure 

P density 

T temperature 

R universal gas constant 
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m 

C 
P 

cv 

5 Y=c 
v 

9 

x 

r 
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v 

a 

M = : 

% 

u2 
A 

Y 
(I 

P 
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entropy 

enthalpy 

moleoular weight 

specific heat at constent pressure 

specific heat at oonstant volume 

speoific heat ratio 

flow velocity 

linear coordinate 

radial coodnate 

angular coorainate 

time 

radial flow velocity component 3.n Prandtl-Meyer expansion 
or normal flow velocity component through oblique shock wave 

tangential velooity component 

local velocity of sound 

flow Mach number 

normal shock Mach number 

absolute flow velocity behind unsteady nod shook wave 

cross-sectional area 

flow defleotion engle (Prandtl-Meyer angle) 
angle between cblique shook wave and original flow direction 
angle between oblique shock wave and-final flow direction 
flow deflection angle through oblique shook vrave 

Superscript 

$ sonic contitions 

Subscripts 

0 stagnation conditions 

1 conditions in front of shock wave 

2 conditions behind shock wave 

3 conditions behind reflected shoolc wave 
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