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1. Introduction 

The following brief remarks are ocncerned with the general 
problems of computing the unsteady aerodynamic loading on finite wings 
in a supersonic stream, when the planform, Mach number, mode and frequency 
of oscillation are given. In the corresponding subsonic problem the 
absence of exact solutions made imperative the early development of 
general collocation methods and much attention is new being given to the 
establishment of an optimum routine and its limits of accuracy. By 
contrast, the hyperbolic nature of the differential equations of motion 
in supersonic flow has led to analytical linearised solutions for 
planforms without subsonic edges and exact solutions in other special 
cases, which usually involve rather difficult numerical evaluation. 
Algebraic solutions in powers of the frequency parameter exist for 
particular classes of planform over restricted ranges of Mach number, 
but these introduce heavy direct computation unless the frequency is 
fairly small. Neither approach is ideally suited to mechanized 
computation. It is comparatively recently that collocation methods have 
been proposed to deal with wings of arbitrary planform in a supersonic 
stream; steps are being taken to programme such methods for eleotronic 
machines. There has also arisen the prospect of a unified numerical 
procedure for oscillating wings in subsonic or supersonic flow. It is 
important to decide how this broad field of computational research should 
be explored. 

2. Method of Approach 

A brief formal discussion of the supersonic problem is included 
in Ref.1 (Garner and Acum, 19.56). In its simplest form the differential 
equation for periodic linearized supersonic flow is 

aa* a% aa9 a a 
(Ma - 1) ;;; - w.; _ m.,; + ;;;;;-;j = 0, . ..(I) 

the perturbation velocity potential being 

@ = *(x, Y, 2) exp exp (iut). . ..(2) 

Many workers in this field have obtained exact solutions with restrictions 
on planform, Mach number and frequency. For example, Stewartson (1950) 
has found analytical expressions for the pressure distribution on a 
semi-infinite wing, slender bcdy of revolution and a swept-back wing with 
a supersonic leading edge; Miles3 (1751) has considered rectangular wings 
of aspect ratio greater than (I?-1)T. In eaoh case fairly simple 
foinmlae for the lift and pitching moment are derived. Stewartsork (1952) 
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has also given a general treatment of the differential equation and has 
formulated a practical method for wings with supersonic leading and 
trailing edges. His analysis for wings with a subsonic leading edge is 
very complioated and would probably defy computation. 

In current work it is more usual to consider instead the 
equivalent integral equation, whereby a(& n), the speoified 
flow-direction at the wing, may be expressed in the following three ways:- 

~6, q) = If 4(x, Y) K,(x - F;, Y - n, w/'J, M) dx aY, .*.(3) 

4% 11) = If Q(x, Y) 5(x - &, Y - n)t "A Ml dx qY# .*.(4) 

@(x, Y) = If $2, 11) I&(x - &, y - VI, o/u, M) dE 0, . ..(5) 

where the area of integration is the part of the plane 5: = 0 
intercepted by the forward Mach cone. Equation (3) gives the required 
non-dimensional wing loading, 4, instead of the velocit 
and has been fully discussed by Watkins and Berman5 3 

potential 
(1955 ; the kernel 

function q is an integral which needs careful numerical evaluation. 
On the other hand, the kernels K, and K, contain no integrals and 
can be evaluated easily, but the solution gives Q, which has to be 
differentiated to give the wing loading. 

Equations (3) and (4) suffer from the disadvantage that a 
matrix inversion is ahvays required to obtain a solution in terms of the 
known a. When all the edges of the planform are supersonic, equation (5) 
is clearly superior to (3) or (J+), since the answer is given directly and 
is equivalent to that of Stowartsork. ?hen subsonic edges exist, the 
best choice of integral equation is uncertain. The solution of (5) is 
complicated, since CL@, n) is non-zero in a region forward of the 
leading edge and is no longer defined 

8 
ver the whole area of integration. 

The analytical treatment due to Eward (1950) by use of steady source 
distributions leads to integral expressions valid for low frequencies. 
In general, a matrix solution has to be obtained in the form 

. ..(6) 

where suffix 1 denotes values on the wing surface and suffix 2 those 
ahead of the wing and behind the Mach cone trailing from the leading 
apex. Then Ga = 0 and 4 is known. BY elimination of the unknown 
%a the required solution is 

% = [A, - Ai, ASS-~ Aa:] a, . ..(7) 

and involves the inversion of the matrix A,,. 

Thus, for wings with subsonic leading edges, equation (5) has 
little advantage over (4), while the relative merit of obtaining C 
instead of Q in (3) is largely offset by the difficult numerical 
integration to evaluate the kernel K,. As will be seen, equation (5) 
has special applications, but for the general problem equation (3) is 
preferred. 

3. Numerioal Solutions 

Among the met&da of approach towards a numerical solution of 
the integral equation are the following:- 

(a) restrictions on planform, Mach numbol- trr f~--0qurncy to permit 
an exact solution or an annl.vtjml one by iteration or 
successive approxjm?tinn, 

(b)/ 
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(b) expansion of the kernel function in powers of frequency, 

(0) continuous lifting-surface theory in which the flow direction 
is satisfied by collocation at a limited number of points on 
the wing, 

(3) use of a sznplified model, such as a lattice of uniformly 
loaded elements to represent the wing. 

Recent examples of (a), based on equation (5), ~0 Evvard~s6 
concepts for a oubsonlc loading edge. Watson'l?g (1955, 1956) has given 
approximate expressions for the derlvativos of a slowly osclllatlng 
combination of cropped delta wing and constant-chord control surface, 
There 1s also an unpublished lteratlve method due to the late 
I. T. MiIlnhinnlck. It seems that such approximate solutions load to 
lengthy algebraic expressions , which are not sultable for mechanlzcd 
computation. The same is true of solutions based on nuperposed conical 
flolds and of (b) generally; thlo is illustrated by some results for a 
triangular vm.ng with subsonic leading edge and quadratic harmonic 
deformation. Watkins and Berman9 (1953) give lengthy formulae up to 
the third power in frequency; some unpublished work of D. E. Davies of 
R.A.E., shows that higher-order terms in either the deformation or the 
frequency become progressively harder to oalculato. Similar results 
for the theoretical lift and pitching moment on rigid pointed arrowhead 
mngs with suporsonlc trailing edges have been evaluated10 
(Cunningham, 1955). Furthor devclopnents In this field are not likely 
to bs fruitful from the numerical standpoint. 

The outstanding example of (c) is Richardson's " (1955) theory, 
in which he formulates a collocation method for arbitrary planform 
incorporating principles and techniques analogous to those of Multhopp's 
subsonic theory (Ref.12). Distinct basic loadings and collocation 
positions in the chordwise direction are derived in the four cases of 
subsonic or supersonic, leading and trailing edges. This two-dimens~o~l 
ooncept introduces spanwise discontinuities in loading wherever the 
leading or trailing edge becomes sonic. The treatment of the spanwise 
integrations is precisely that of Ref.12. Richardson'3 (I 956) has 
applied his method to the steady flow of Mach number 1.25 past a slender 
triangular wing. With only eight collocation points, good accuracy is 
obtained over most of the span; however, comparison with exact theory 
shows that the treatment of the kink at the centre section is a source 
of error. As suggested by Richardson, it would seem sensible to try an 
even number of spanwise stations in order to avoid a station at the 
central kink, though some modification to Multhopp's spanwise integration 
formula would then be necessary. Difficulties involving discontinuities 
of this kind oan only be resolved by means of lengthy oalculations with 
systematically increasing numbers of chordwise loadings and collocation 
stations. It may not always be best to use the same number of terms in 
the chordwise loading at all collocation stations. The maximum number 
would be needed near the centre section and the tip where the load 
distributions are muoh distorted from that of an infinite sheared wing; 
however, it might be practicable to avoid superfluous collocation points 
at some intermediate stations. 

The approach (d) is regarded as being without restriction on 
planform, Mach nmber or frequency. A simplified representation of the 
wing may lead to a rapid but crude method of uncertain accuracy or 
alternatively to an element theory which reduces to a very large number 
of simple operations. The former, however imperfect, may have a place 
in semi-empirical work in which the yard-stzck is experimental. The 
latter may require so many small elements that it is impracticable on 
a desk machine but becomes powerful and accurate with the aid of an 
automatic computer. In the box-grid method'4 (Ta Li, 1956), the wing 
area is subdivided into a number of rectangles with their diagonals 
parallel to the Mach lines. Ta Li has' obtained highly satisfactory 

results/ 
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results for two-dimensional flutter coefficients at &oh numbers down 
to 1 .I. He has also formulated a general treatment of subsonic leading 
edges. The numerical work involves the evaluation of coefficients 
representing the influence of one rectangular box on another, and these 
seem suitable for programming on a high-speed computer and oan be used 
directly in flutter calculations for arbitrary planforms. Stewartson'.& 
theory for wings m'th supersonic leading and trailing edges has been 
developed by Hunt 4 (1955) into a method of calculation, in which the 
double integrals are replaced by double summations at lattice points 
identical to those used in Ref.14. 

ho.wamminR of General Methods 

Although methods (a) and (b) lead to precise formulae which 
can feasibly be calculated on a desk machine, the results are limited 
and require extremely careful calculation; it seems that the formulae 
would be just as laborious to pro&r-e for an electronic computer. In 
this respect it is best to avoid any method which involves integration 
of the downwash over a subsonic ad e. Gn the other hand, desk 
calculations of methods (c) and (d k would become prohibitive in many 
problems, since the kernel function K, would need to be evaluated an 
excessive number of times. It is therefore essential to programme the 
calculation of K1, given in equation (25) of Ref.1. If the awkward 
singularities in the integrand at the limits of integration can be SO 
handled, then it should be possible to obtain results in all cases by 
Richardson's11 theory. 

In the practical problem of calculating flutter characteristics 
of a thin wing, the frequency and modes of oscillation are unknown. The 
modes of structural deformation are roughly determined by the elastic 
properties of the wing, but the frequency is usually obtained by trial 
and error, separate calcula 

Hunn' l 
ions being made for selected values of the 

frequency parameter. (1955) has formulated such a treatment for 
wings with straight supersonic leading edges, but computation, if 
attempted, would be very heavy. He also gives a method valid for small 
frequencies, by which a complete flutter calculation has been performed. 
A similar method without restriction on planform would be worth-while 
and should be sought as a limited objective. It would, however, seem 
inexpedient to attempt to extend the range of frequency by expansion in 
power series. The necessary automatic programming is rarely easier when 
the method is valid for a limited range of frequency. 

The mechanisation of Hunt's'5 method for wings with supersonic 
edges has been taken up by Sadler'7 (1956) and Wicks'8 (1956), so that a 
standard computational form is now available for modal deflections of 
arbitrary frequency. It would seem useful to attempt to modify the 
programme of Ref.18 to deal with wings of arbitrary planform oscillating 
in elastic modes. The lattice points should be extended forward of a 
subsonic leading edge, as suggested in Ref.14; additional linear 
equations would be introduced to satisfy the conditions of zero pressure 
difference ahead of the wing. 
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