

THE LOW SPEED PERFORMANCE OF RELATED AEROFOILS IN CASCADES

By

A D S. Carter

Crown Copyright Reserved

LONDON • HIS MAJESTY'S STATIONERY OFFICE

NATIONAL GAS TURBDE ESTABLISFMGNT
The-Low Speed Performance of Related Aerofoils in Cascade
- by -
A. D. S. Carter

SUMMARY

This report contains a general analysis of same test results on campressor and turbine cascades. It is shown that both these types of cascades can bo treated in a similar manner, and data is given from which the porformance of any cascade of the related.series of acrofoils considered can casily be calculated. An attempt has been made to explain variations in behaviour of coscades, and, approciating the fantors involved, a fair idea of the performance of other aerofoil sections can be obtained.

LTST OF CONTENTS

Page.
1.0 Introduction 4
2.0 Estimation of Optimum Incidence and Doflection 6
2.1 Optimum Incidonce 6
2.2 Doviation and Deflection 7
3.0 Tho performance at Optimum Incidenco 8
3.1 Pitch/chord - Thickness Correction. 8
3.2 The Stagger Corroction 8
3.3 Ncale Effect 9
3.4 Performance Curves 10
4.0 The Poxformance at Other Incidences 10
5.0 Effect of Some Modifications in Profile Shape 11
5.1 Maximum Thicknoss 12
5.2 Maximum Cambor 12
6.0 Some Goneral Comments 13
7.0 ConcIusions 14
Reforencos 15

IIST OR APPMDDICES

Apperidix Page.
I Notation 77
II The Calculation of Cascade Characteristics 19

LIST OF ILIUSTRATIOIS

F1e
Tztle
1 (a) Bawe Ierofozl Cl
(b) Vortex Rcpresentation of Cascade

2 Normal velocity coefficient
3 Vilucs of $10 \mathrm{PT}_{\infty}$ for varmous Cambers
4 Value of $10 \mathrm{I}_{\infty}$ for various Cambers
5 Optimum Incidence at Infinite Pitching
6 Deviation RuIc
7 Effect of Stagger on Cascade Performance
8 Ixamples of Stagger Effect
9 Lift Drag Ratros ($a_{2}=-60^{\circ}$ and $a_{2}=-40^{\circ}$)
10 Lift Drag Ratios ($a_{2}=-20^{\circ}$ and $a_{2}=0^{\circ}$)

21 (a) Effect of Acrofoll Thic eness on Cascade Performance
(b) Optimum Position of vaxifum Camber

Combinations of Fluid Outlct Anglc and Position of 1’aximum Camber

Cancace Performance
24 Comparison of Test and Calculated Characterastas
Comparison of Test and Calcuatcd Charactcrist_cs
Col parison of Test and Calculated Characteristics

1.0 Introduction

Although the modern approach to axial compressor and turbine design has resulted in the foirly extensive testing of cascades of aerofoils, there is, as yet, no comprehensive theory connecting all the test results on the widely differing types of cascades encountered in general practisc. Several mules have been proposedl $, 2,3$ which onsure a satisfactory design of cascade to fulfil given functions, and these have been of considerable practical importance. Their groatest disadvantage, howevor, has been their inability to express quantitatively the result of small changes from the reconmended values. They have also tended to over simplify the problem to a certain extent. On the other hand they have shorm that most types of cascades can be put on to a cormon footing, while at tho same time avoiding complex and lengthy calculations. This report extends such work ond attempts to build up a rational explanation of the behaviour of ail types of cascades, and presents methods that will enable the performance of any cascade having practicol importance to be readily estimated.

It is important, however, that the limitations which have been arbitrarily imposed on the analysis should be noted from the outset. It seemod quite clear to the author that if exact results were desired some of the more refined mothods usod in conventional aerodynomics would have to be omployed. Methods of conformal transformation or extensions to the thin acrof oil theory, together with the solutions of the boundary layer equations, immediatcly suggest thomsclves in this connection. It is well know, however, that these methods involve lengthy colculations, often extenaing over several wecks before any useful results can be obtained. For a dosigner of multi-stage axial comprossors and turbines who may have to consider the performance of sevoral hundred cascades before the design is finalised, such a procedure is clearly out of the question, and there is a great need for a simplified theory thich can give results, evon if only to the first degree of approximation, over a very wido ronge with a minimum of computation.

It can be argued that simple interpolation of existing test results could bo used. This is undoubtedly a very porerful method, but unfortunately, due to the large number of variables involvod it con only be used in very limited circumstances, and conszderable difficulty is often experienced in practice orring to the lock of a systemalised series of tests between which to interpolate.

Consistent with the overriding conditions there are a number of ways of approaching the gencral problem. The first and most obvious method is based on the assumption that the cascade consists of a serics of curved channels. By consideration of the performance of diffusing or accelerating bends the porformance of tho cascade can then be found. Apart from tho difficultics connectod vith the correct definition of the passage, this method does not soom to yicld any very satisfactory results consistently. It would appear that each channel cannot be considered as an isolated entity but only in relation to its position in the cascade as a whole. With this condition to be satisfied the analysis enters a rather detailed and lengthy stage, and it is not considerod worth folloring from a practical point of viers.

The second basic method of approach consists of relating the performance of the complete cascade to the performance of the individual aerofoils at infinite pitch, i.e. the isolated acrofoil. For very wide pitching it is found sufficient to assume the same charactoristics for the cascade as for the isolated aerofoil, using the incidence based on the vector mean velocity for the cascade as comesponding to the incidenco of the isolated aerofoil moasured in the normel way. For closer pitching however the mothod breaks dorm Attempts have been made to overcome this difficulty by the introduction of a number of cmpirical factors, but no satisfactory results could be obtained without losing all relation to the physical conditions.

A more refined method of approxhing the problem is to replace each of the aorofoils, apart from the central one, by vorticos concentrated at the contre
of pressure of the aerofoils. The performance in this modified field of flow can then be estimated more accurately than is possible vith simple vector mean velocity calculations. This method was doveloped by Betz ${ }^{4}$, who derived several charts to facilitate the computation. Here again, hovever, the method failed to covor a sufficiently large range with a suitable degree of accuracy. Obviously a greater degree of approximation can be obtained by using more vortices with which to replace the aerofoil, and so deveropod a scries of methods by Pistolesi ${ }^{5}$, Ackeret ${ }^{6}$, Katzoff F nn and Lamrence ${ }^{7}$, Dicsendruch ${ }^{8}$ etc., of varying degrees of accuracy, but all needing excessive computation before satisfactory results can be obtained. Nevertheless it was felt that this approach had a fairly sound theoretical background, and a further investigation along these lines was conducted.

The method of analysis finally evolved and presented in this report. is based fundamentally on the vortex replacement idea. One of the exact mathomatical expressions derived by Betz has, however been replaced by an cmpirical one derived by successive approximations from the test results. Furthermore, the exact mathematical significance of the solution has not been rigorously adoptod: for instance, although the method purports to relate the cascade acrofoil with the isolated aerofoil, the isolated aerofoil in this case is an hypothetical one, and can have no real existence from which measured results can be taken. It does, however, form a comon denominator which will enable us to move frecly from onc cascade to another. The lack of roal existence prohibits the direct use of isolated aerofoil characterıstics, and the pertormance of the hypothetical aerofoil can only be deduced indirectly from the coscado results. This is rather important, in as much as the ideal case is still far from being achieved, when aerofoils need only be tested at infinite pitch and the cascade characteristics deduced therefrom.

The main analysis presented in this report has been carried out on the related series of aerofoils obtained by superimposing the C.I base profile on circular arc camber lines. The co-ordinates of this profile are given in Fig. I(a), and the method of' constructing the acrofoil in Appendix I. The results would apply equally well, however, if tho $C .2$ or $C .4$ base profiles were used.

For the most part the general analysis was carrind out on results published in referencos 3, 9, 10, 11,12 and 13 , though tae results contained in references 14,15 , 16 and 17 together with some unpublished results wero also referred to. In any general analysis of cascade tests one ammediately runs into difficulties arising from unknom tunel interference effects, due either to different secondary flows or different degrees of turbulence, and also into difficulties arising from the different manufacturing standards applied to the blades thenselves. The first series of results quoted above were considered to be the most consistent, and consequently the analysis was concontrated on thesc. Gonerally speaking they are what may be called "good" rosults, and it is unlikely that a better performance could be obtainod without cxccptional care in manufacture of the blades etc. In applying this analysis to practical probloms allowance should be made for these conatitions. The results used in the anolysis all refor to an effective Reynold's number of about 4×10^{5}, based on outlet velocity and chord.

Although the analysis of test results from these related acrofoils forms the main theme of the roport, some results and comments are presented in the concluding paragraphs on the effect of changes in the profile contour.

Except for one modification standard notation has boon used. through this roport. It has been repeated in Appendix I for reference. The exceotion is the usc of the term "loading factor", donoted by ψ, in place of the more lengthy expression "lift coefficient bascd on outlet velocity", denoted, in ref. 3 , by $\mathrm{C}_{\mathrm{L}}\left(\mathrm{V}_{2}\right)$.

2.0 Estimation of Optimum Incidenoe and Deflection

2.1 Optimum Incidence

Before dealing with the actual analysus it is necessary to define exactly what we mean by optimum incidence Generally speaking, in their practical application, cascades are operated at the highest possible deflection compatible with a reasonably low value of the energy loss through the cascade, i.e. writhout stalling. Stalling of a cascade is assumed to occur whon the blade loss is trice its minimum value. This is a purely arbitrary figure but allows an exact means of definition. Obviously it is inadvisable to operate right on the stalling point, and so a nominal def? ction (ε^{3}), defined as 0.8 of the stalling deflection (ε_{S}) is often used for design purposes (see reference 18 for instance). While eminently satisfactory from a compressor or turbine design outlook; this definition is again wathout much fundamental significance. Te shall therofore define "optimum incidence" as that incidence at which the maximum value of the lift/drag ratio occurs. This avoids all reference to stalling and has some fundamental significance, ropresenting the point at which the opposing prossure gradients on the upper surface of the aerofoil are bocoming too large for efficiont operation

Now it is well knom that for infinitcly thin aerofoils the incidence for maximum lift/drag ratio is that at which the front stagnation point is situated at the leading cage, since undor these circumstances steep opposing prossure gradionts are avoided. While there is no definito corresponding criterion for thicker aerofoils with well roundod leading edges, it would appear that the flow round the leading edge is criterion of the relative quality of the overall flow conditions. Furthermoro the flow conditions round the leading edge are determined once the position of the stagnation point is knom. It can be concluded, therefore, that as with thin aerofoils so with thick aerofoils, the position of the front stagnation point is a criterion for optamum incidence, though in this latter case the stagnation point will probably not be exactly at tho leading edge. (Examination of a number of casos has shom it is near the loading edge, just on the lorer surface).

Suppose, then, we have a cascado operating at the incidence giving maximum lift/drog conditions, and we whsh to change, say, the pitching of the cascade. If, as the pitch was changed, we could also change the direction of the incident air stream such that the front stagnation point remained fixed on the acrofoil contour, we should in all probability find that the new incidence would be the correct one for maximum lift/drag conditions at the new pitching. We have at our disposal, therefore, a method of making small changes to cascade geametry, and still being able to determine the optimum incidence; and what is more, the method is dependent only on the potential flow round the aerofoil. Thile this can be determined theorctically, the standard methods of solving the problem are, as stated in Section 1.0 , too lengthy for practical application, and so the folloring modification to the vortex replacement method was devised to facilitate calculation.

Consider a cascade of aerofoils operating at optimum incidence, concentrating in porticular on any one aerofoil of the serics, which we wall place at the origin. We can replace cach of the other aerofoils by vortices of oqual circulation, situated at the centre of prossure of the actual acrofoils, as shom in Fig.l(b), The central aerofoil will be acting in the flow field of thesc vortices, the potential function of the field being given by

$$
\begin{equation*}
\omega=\frac{j K}{2 \pi} \log \left\{\operatorname{Sin}\left(\frac{\pi z}{a}\right) / z\right\} \tag{1}
\end{equation*}
$$

The change in aif direction at any point brought about by this field is given approximately by ${ }^{+}$

$$
\begin{equation*}
\Delta a=\mathrm{v} / V_{m} \tag{2}
\end{equation*}
$$

Where V_{n} is the velocity perpondicular to the radius voctor at that point. In particular, for the leading cage

$$
\begin{equation*}
\Delta i=v_{n} / V_{m}=\frac{v^{3 F} \times C_{\mathrm{L}}}{2 \mathrm{~s} / \mathrm{c}} \mathrm{rad} \tag{3}
\end{equation*}
$$

Values of v_{n} (equal to value of v_{n} for unit circulation and pitching) as derived from equation (1) have been charted by Betz ${ }^{4}$.

Now suppose that the pitching of the blades is ohanged slighily; Δi will be changed accordingly, and in order to keep the stagnation point fixed as this change is being macie, we must give an equal and opposite change to the incident air strean i.e.

$$
\begin{equation*}
i_{\text {opt }}-i_{\text {opt }}^{\prime}=\Delta i-\Delta i \tag{4}
\end{equation*}
$$

where the dashed symbols rerer to the new conditions. Δi and Δi^{\prime} can be calculatod from equation (3) abovo. Alternatively, referring to infinite pitch, $\Delta i^{\prime}=0$ and so

$$
\begin{equation*}
i_{o p t}=i_{o p t_{\infty}}+\Delta i \tag{5}
\end{equation*}
$$

Since stagger can have no effect on the flow at infinite pitch, the optimum valuc of lopto is a constant for any given blade. Hence the optimum incidence can in theory, be calculated for any cascade so long as iop ${ }^{+}$om is known for the particulor blade.

Using the theoretical values of Δi, iopt ${ }_{\infty}$ was calculated for carh typo of acrofoil of the test rosults quoted in section 1.0. The aerofoils for which the test results covered a wide range of pitching and stagger showed a considerable scatter in the values of iopt ∞_{∞}. It was noticed, however, that it ras always stagger which produced the most marked variation, and that smalar tondencies vero apparent for all typos of aerofoils. A moan value was thorefore ausumed for cach acrofoil, and a fow function of Vn^{3} calculated. A mean value of this function was ossumed, and by repeating the process several times an empirical function for $v_{n}{ }^{\#}$ was found which was independent of the type of blado, and which when uscd in colculations gave values of jopt ${ }_{\infty}$ lying within permissiblo limits. In Fig. 2 the ompirical values of $\mathrm{v}_{\mathrm{n}}{ }^{3}$ so derivad are plotted against stagger for various volues of the pitch/chord ratio. The values of iopt corresponding to this cmpirical function are plotted in Figs. 3 and 4 for cambers of 25° and 55°, and 85° and 115° respectively. It rill be noticed that the scatter is within reasonable limils and quite randem, there boang no tondency for stagger or pitching to produce any systomaric varaation of iopt ${ }_{\infty}$. The constant value assumed for each of these cambors has also been marked on those curves and in Fig. 5 Ioptco has been plotted agannst the camber angle (θ). It is thus possible to deduco from FIgs. 2 and 5 tho optimum incidence for any cascade built up of the C.I base profile on a circular arc camber line.

2.2 Doviation and Deflection

Knoring the optimum incidence (iopt) it is only necessory to determine the doviataon (δ) in order to completely relato the flow angles to the blade angles. Fortunatcly the derviation is only conditioned by Joukorski's hypothesis of stagnation at the trailing edge, a factor again dependent on? y on the potential flom round the acrofoil, and scveral well knorm rules $9,19,20$ have boon formulated which readily givo its value. The rule at present in use in IV.G.T.E. ${ }^{\text {co }}$ expresses the deviation as

$$
\left.\begin{array}{ll}
\delta=m \theta / s / c & \text { for Compressor Cascades) } \tag{6}\\
\delta=m \theta s / c & \text { for Turbine Cascades }
\end{array}\right\}
$$

where m is a function of the position of maximum cambor and stagger and has boon plottod in Fig. 6 , As it stands this rule introduces a discontinuity betroen turbune and compressor cascades which does not exist in practise. Potontial flar calculations vould suggest a linear variation of deviation with pitch/chord ratio, for compressor as well as turbine cascades, while the bost results would suggest a mulo of the type

$$
\begin{equation*}
\delta=m \theta(\mathrm{~s} / \mathrm{c})^{\mathrm{n}} \tag{7}
\end{equation*}
$$

where m and n are both functions of the stagger. The discrepancy is probably due to three dimensional effects in the test results. In view of this and the inevitable large scatter of the test results it is considered more convenient to use the simple forms given in equation (6) rather than the more complicated ono. Care should be taken in using these rules in border line cases, horvever. Once the deviation is known, and the optimum incidence determined as in section 2.1, the deflection, lift coefficient, loadng factor etc., can casily be calculated.

3.0 The Porformance at Optimum Incidence

The analysis so for described is sufficient to enable us to estimate the optimum conditions for any of the cascades of related aerofoils with which we are concerned. It tells us notring. however, of the actual performance at shat incidence, and hor this is dependent on coscade geometry. Now it has boen shom ${ }^{2,3}$ that the main criterion of the cascade performance is its loading factor (ψ). (Noto. In ref. 3 this was denoted by $C L\left(V_{2}\right)$ and designated "lift coefficient basod on outlet velocyty" - but see Section 1.0). The calculation of this factor is easy and straightforward but unfortunately it is not the complete criterion and several small corrections have to be applied before a suitable parmeter can be detemmincd. These comections are considored independently in the next two sub-sections.

3.1 The Pitch/Chord-Thicloness Comection

The pitch/chord - thickness effect is nor well knorm, and need not be treated in any great detail here. As explained in ref. 3 it is due mainly to the relatively smaller passage area oncountered at closer pitching of the aerofoils. This gives rise to an increase in the drag coefficient, and a roduction in the loading factor as compared with their effective values at infinjto pitch. Semi-empirical expressions have been derjved connecting the actual values of these parameters with the corresponding value at infinite pi.tching, as follows:-

$$
\begin{align*}
& \psi_{\infty}=\psi \times \frac{6 s / c-1}{6 s / c} \tag{8}\\
& C_{D_{p_{\infty}}}=C_{D_{p}} \times \frac{6 s / c}{6 s / c-1} \tag{9}
\end{align*}
$$

For the derivation of these equations the reader is referred to the original mork (rof.3). These expressions rill bo used later but meanwhile it is nccossory to examine a second correction to the simple ideas.

3.2 The Stagger Correction

According to the theory presented in ref. 3 expressing $2 l l$ quantities rolative to outlet conditions eliminatos the differences betreen comprossor and turbine cascados, and puts both on a common footing. This is not. hovevor, structly true, and it is rather interosting to examine the effect of changing the stagger on the porformance at the optimum incidence, and to relatc it with the type of performance at infinite pitch.

Let us consider a rery simple case, and assume that we have an isolated aerofoil which has the idealised triangular pressure distribution shom in Fig.7. Noi suppose that this aerofoil is employed in cascade. We can replacc each of the acrofoils, except one by vortices as before, and since we are only dealing with the qualitative effect it will be sufficient to consider on the adjacent vortices. The cascados may then be represented by the systoms shom in Fig.7. Although only two cases are considercd here the series of cascajos formed by a gradual change of stagger can all be represented and will in actual practise, form a gradual transition betreen each of the cases quoted.

Fig.7(a) shows the major velocity fields on the surface of any aerofoil due to the vortices representing the adjacent aerofoils of the cascade. In some cases it will be noticed that the induced velocity augments the basic velocity on the aerofoil surface, and consequently gives rise to a reduction of the local static pressure as at the points marked (1) and (4) in Fig.7. In other cases the induced velocity opposes the basic velocity and there is an increase in the local static pressure as at (2) and (3) in Fig.7. As a rosult of this velocity field the pressure distributions of the aerofoils in cascade will be modified as shom in Fig.7(b). In particular it will be noted that the compressor cascade mill tend to have a "peaky" pressure distribution on the upper surface of each aerofoil, while the reaction turbine cascade will tend to have a more rounded distribution, with the peak suction well back from the leading edge of the aerofoil.

The low speed stalling characteristics for different types of pressuro distributions have beon discussed by Squire and Young ${ }^{21}$ and others. Generally spoaking the peaky distribution is known to give a rapid stall, while the more rounded form of distribution gives a more gradual stall. The loss versus incidenco curves for these examples will therefore take on the form shom in Fig.7(c). Furthormore, transition from a laminar to a turbulent boundary layer usually takes place just after the poak suction point, and so one would expect the compressor cascade to have a mainly turbulont boundary layer, and conscquently a somerhat lower lift/drag ratio than the turbine coscede where quite a substantial portion of the boundary layer would be laminar. If, horever, the pressure distribution should become too rounded, the boundary layer will not be able to negotiate the steop gradient near the trailing edge, and separation and high loss will ensue. The ideal case will be obtained, of course when the boundory layer remains laminar over as large a portion of the aerofoil as possible but transition occurs irmediately bofore the diffusion begins. The turbulent boundary layer should then just, but only just, be able to overcome the diffusion.

It must be emphasised that thesc notes represent a very sumplified version of what actually cccurs. The basic pressure distribution is always much more complicated than the simple triangulor form assumed here, and the pitch/chord-thickness correction and the stagger correction should really be considered simultaneously. In spite of this the fundamental change in performance betroen the different types of cascades can easily be followed from simple vortex ideas. An example of tho practicol results is show in Fig. 8 where the exact pressure distribution (from potential flor calculations) and the test loss against incidence curves have been plotted for two representative types of cascade. It will be noted that they closely follow the simplified vorsion cited above. The chonge in performance following a change in stagger is for too complex to permit a singlc quantatative corroction factor as was possible in the case of the thickness - pitch/chord effect. Staggor (or outlict angle) will, therefore, have to be considered as one of the ompirical parameters for evaluating cascade performance.

3.3 Scale Effect.

The fact that any type of prossuro distribution, from the "low drag" to the "high lift" varietios, can be obtanncd on the same aerofoil by suitably choosing the stagger and pitch/chord ratio makes any generalisation on scale effect impossible. It is obvious that the critical Reynold's number will vary from cascade to cascade. and for practical applications the largely unknom turbulence factor make quantitative work even more difficult. For comprossor cascades the critical Reynold's number appears to be somerhere betreen 1 and 2×10^{5}, based on outlot velocity and chord. The critical Roynold's number for a compressor, horever, appears to be only about one quarter of this value. This is probably due to wake interference and the high turbulence of the mainstream. With turbino cascades, on the other hand, we may well encounter larga regions of laminar flow at quite high Reynold's numbers, and cascade tests on turbine blades do show marked scale erfects. Similar observations have been made on turbines.

As stated in section 1.0 the effective Reynold's number, based on chord and outlet velocity was 3.5 to 4.5×10^{5} for the test results used in the general analysis. This is above the critical value for compressor cascades and also just above the oritical value of 3×105 for the turbinc cascade test results of ref.22. Even so some of the phenomenally high efficiencies of some of the turbine cascades is probably due to a substantially laminar boundary layer at these Reynold's numbors. Some of the very low officioncies may also be due to laminar flow, and carly separation. Due ailowance should be made for this when applying the results.

3.4 Performance Curves

Before dealing whth the generalised performance curves it should be pointed out that it is more convenient when applying cascade results to compressors and turbincs, to refer the performance to the fluid outlet angle, rathor than the stagger angle; for the fluid angle is a measure of the strirl in the machinc, and honce defines the type of characteristic that will be obtained.

Consider, then, the optimum performance of a series of cascades which all give the same fluid outlet angle. As the camber of the blades is increasod the optimum lift coefficient mill also increase. Likowise the lift/drag ratio will increase at first, but will reach a maximum and then start decreasing as the loading on the blades becomes excessive. In Figs.9, 10 and 11 the test values of the lirt/drag ratio, modified to the corresponding value at infinite pitching by means of tho relationships of scetion 3.1, have been plotted against the loading factor, also reforred to infinite pitch. Separato plots have been presented for each of a series of fluid outlet angles, but many voricd volues of the test pitch/chord ratios have been used on each plot. Each of these has been denoted by a distinctive symbol. It will be noticed that the correction factors of section 3.1 have been sufficient to bring all the points close enough togethor to enable a single curve to be dram through them for each fluid outlet angle. It will also be noticed that the scatter of the points is random, and no fundamental variation is apparently being ignored by this procedure. Assuming the curves dravm are representative, it is possible to construct a chart, as show in Fig. 12, in which the linos of constont lift/drag ratio have been plotted with the loading factor and fluid outlet angles as reference axes. Givon any tro of these quantities the third can then be dotermined. All values apply, of course, to infinite pitching, and must be corrected to the requircd pitch/chord ratio by the usual method. This has been done in Figs.13, 14 and 15, for pitch/chord ratios of 0.5, 1.0 and 1.5 respectively. Plotted in this ray it is belicved that the curves convey more than the unique relationship of Fig.I2, but interpolation for othor pitch/chord ratios is carricd out more easily frcm the original chart.

An cxamination of the gencral shape of tho contours in Fig. 12 is rather interesting, and checks up with the coments of section 3.2 remarkably woll. It will be noticed that tho peak valuo of the officiency or lift/drag ratio, increases towards the turbine region, reaching a maximum at a fluid outlet angle of about -40°. For fluid angles less than about -50° the efficiency falls off very rapidly, due to the stecp gradient at the trailing cdge associated with very convex prossure distributions. The uppor limit of efficiency is due, of course, to the excessive loading of the blade and the consequent breakaray, but the lower linit is due to a low work capacity rathor than to any very marked increase in drag. Some further romariks regarding these contours are made in the general comments on the anolysis at the ond of the report (section 6.0).

4.0 Performance at Other Incidences

Next to the optimum incidence the most important point on the choractoristic is the stalling incidence. It is self evident that stalling is due to a certain increase of" loading above the optimum, and that the incidence increment is a suitable measure of this. Furthermore it would soem reasonable to suggest that the effective loading factor at the optimum incidenco
will be a good criterion of the additional load that can be borne by the acr ofoils before they stall. In Figs.16, 17 and 18, therofore, the incidence increment between optinum and staliing incidence has beon plotted against the offective loading factor for various values of tho outlet angle: The scattor of the points on same of these plots is considerable. This may, in part, bo due to on inadequate def'inition of' stalling (sec section 1.0) but is also probably largely due to the fact that stalling is an unstable process for which no exact quantitative analysis is possible. The scatter tas quite random, neither of the various variables exerting any definite trend on the results, so straigint lines wore dram through the points as representing the best mean values. From these linos the general chart of Fig. 19 was prepared, which gives the incidence incroment at stalling for all values of the loading factor and fluid outlot angle. The general tendency for tho incidence incremont to increase towards the turbine region is again in accordance with the general ideas presentod in scction 3.2.

Once the optimum and stolling incidenco is known, the characteristic is virtually detormined, the exact variation of loss betreen those tro points boing largely inmaterial. Quito a good approximation to the actual curve could be drawn in from experience, but as a guide Fig. 20 shows the type of variation to be expectod between thesc two points. It has beon derivod on the assumption that all loss and deflection against incidonce curves are geomotrically similar and mean values takon. It is considerod that this curve is sufficiently accurate for most practical purposes.

No attempt has been made to estimate the negativo stalling incidenoc of this series on coscades. No reliable paranctor has yot been found and further work is necessary before a suitable nethod can be cvolved.

The curves given in Figs.2, 5, 12, 19 and 20 are, horrover, sufficient to provide the most important portion of the low speed performance charastoristic of any cascade of blades having the C.1, C. 2 or C. 4 base profile on circular arc caraber lines An example of the calculation of a samplo characteristic is given in Appondix II

5.0 The Effcct of Modifications to the Profile

In the preceding analysis we have boen concornod only with the series of cascades fomed by superimposing the C.l base profile on curcular arc camber lines. Vory ofton other profiles have to be used, and so in this section we shall exarine, very briefly, the changes in performance to bo expected from any chango in the profilo. Provided a good contour is maintained test ovidence would suggest that small alterations to the aerofoil profile trill havo little effect on the overall performance. This leaves only the major variables which can bo onumerated as follows:-
(1) Leading Eage Radius.
(2) Trailing Eagc Thickness.
(3) The Maximum Thickness.
(4) The Position of the Maximum Thickness.
(5) The Positiun of the Maximun Camber.

Of these the first tro are of minor importance at lor spoeds provided they lie trithin the nomal range. Tho leading edge radius ray be expected to offect the performance, but it would seen that a good form is of more importance than anything else. At high speeds the leading edge contour is probably far more critical.

Trailing edgo thicknesses up to 20 of of the maximum thickness appear to have little effect, and as this should be well within manufacturing tolerances little further need be done about this feature. The romaining three variablos do, however, appear to have a more substontial effect on the performance, and are considered separatoly in the noxt two sub-sections.

5.1 Maximum Thiclness

In connection with thas item re have to consider as noted above both the posation of the maximun thickness along the chord, and also its vaiue Very little information exists regarding the former single test (ref.li) and some very little theoretical work (ref.20) beang oll available. Both these sources of information agrec however that moving the position of namamur thicknoss back torrards the tronling edge is bad for the lor speed porfornance. Trile not changing tre optinuan performance to any noticuable oxtent it considerably reduces the rovking range Any advantages that may arise frox changing the position of maximun thickness inll appear at high specds only, and some compromisc may be necossary on this account

A littic more information doos crast concorning the offect of variations in the magnitude of the maximum thickness. It is, horever, very scattered and not altogether conclusive. According to the ideas of ref.3, rocapitulatod in Scction 3.1, the pitch/chord - thickness correction implies a better performance for thinner blades on account of the rolatively larger passage area. This has roceived sone suprort from tests on sheet metal blades for corners 23 whore they are shom to be bettcr than faured sections. They are of coursc, only working at a fixed incidence, which can bo suitably adjusted Complete cascade tests, however, show that whilo tho loss through the cascado is reduced by the uso of thinner soctions, so too as the maximura purmissible blede loading. The roduction in tho optimun loeding factor may be quito large, as shom for instance in Fig.21(a), whore the loaing factor and the lift/drag ratio havo boen plotted against moximun blade thic'moss. It rijll bc noticed that the officioncy is roughly constant for tho thinnor sections but falls off rapidly with increase of thickness chord ratio much above 10 \% . At high speeds Mach No. offects accentuate this tendoncy. Some Reynold's Number effects are suspected in the tosts quoted but they do lay ornphasis on the fact that caro should be taren in using sections thosc maxymun thickness varics greatly from conventional values, particularly if thoy ore thick sections

5.2 Tho Eosition or Naximum Camber

Rather more information is available on the effect of noving the position of maxyum camber. The work of tho Stear Nozzlo Research Cornititec (rof.24) contains much that is of a relevant nature in the turbine range, while the theoretical rork of ref. 20 and the test results of refs.11. 25, 26 give a good deal of information on compressor cascades. If any generalisation is possible it rould be to the effect that moving the position of maxi mum cauber forvard tends to produce higher velocitics, or lorror pressures. near the loading cage on the upper surface of the aerofoil This is duc, of course to the groator curvature in that region with that type of acrofoil. It will bo romenbered from section 3.2 that increasing tho fluid outlet angle olso produced higher volocitics noar the leading edge on the uppor surface Moving the position of maximum camber forvard can thus be regarded for qualitotive purposes as equivalent to operating at a higher fluid outlat angle. For example, :ith the so-called parabolic blading (i.c. position of maximur ccriber 40,6 chord from the leading edgo) the contours on Fig. 12 would be moved to the left with respect to the fluid outlet scalc. This type of aerofoil is often used and it would have been desirable to heve the lift/drag contours for it corresponding to Fig. 12 for circular arc camber lines. Unfortunately not sufficient results rore availablo to dotormine the curvos adoquatoly, and so a certain amount of "intelligent anticipation" till havo to bo used in dosign work. Fran the results that werc arailablo, horever, it was possiblo to produce a tontative curve of $i_{o p t}$ against caraber anglc (θ), and this has been shorm dotted in Fig.5. The empirical function ior $\mathrm{vn}^{\text {Fin }}$ used for circular arc camber lines appears to be oqually satisfactory for parabolic camber lincs. A scrics of tests is at prosent being carmed out at N.G.T.E. on acrofozls With parabolic camber lines, and from the rosults the officioncy contours will be determined accurately.

The different types of pressure distributions obtained from the various positions of the point of maximum camber can be usod to counteract any undesirable features in the distribution that may occur at some fluid outlet ongles. Combinations of the position of maximum camber and the fluid outlet anglo together with the resulting veper surface pressure distribution are shown in Fig, 22. If a more or less constant distribution without any steep gradient is ranted and this mould oppear genoraily desirable, one would expect the position oi moxinum camber to be well forward for lon fluid outlet angles and further back for high fluid outlet anglos. This avolds steap gradients at the trailing edge wath turbino cascades and excessive peakiness with compressor cascades, as shown in the figure. It has been known for some timo that plenty of curvaturo near the leading edge is dosirable for turbine nozzles? and rocentily the advantagos of reducing this curvature for comprossor cascados has been appreciatod. The intermediate typos of cascades can be expectod to fall in botweon those two extremes, and in Fig. 21(b) a vory tentativo curve has boon drama showing the variation of the position of maximum camber with fluid outlot argle. The normal rocormended point derived from somo unpublishod results and a point derived from the resuits given in ref. 2_{+}have been taken as che basic points on this curve, but the actual valuc of tho second point wust bo rogarded with suspicion. It is inturosting to note how the convontional type of turbine blade design (i.c. circular arc and straight iine construction) scems to fall in with the gencral shape of the curve.

Those remarks on profile modufications aro necossarily skotchy as test information is almost non existont. An atterapt has been made, hoviover, to note the genemal tendencies that will have to be obsorved when designing cascades of such blades. These tondencics should bo borne in mind when considering the general notes of the next section, which apply to the standard related series used for the main analysis.

6.0 Some General Comnents

It is very difficuit, if not inpossible, to proauce design data which will. have universal application, and cach particular case should be considered on sts own merits. In most cases, howevor, the dosirable features will be a high efficiency, and a kigh work capacity. The highest efficiency for any tigpe of cascade can be obtained with a design located on the top of the "ridge" of contours jn Fig. 12. There will always be a tendency, however, to sacrifice some eff'iciency for a high work capacity, i.e. to work slightly below the top of the ridgo on the high load side. While this may be quite suitable for certain appications, the dangers of such a practice should be noted. The reduction of efficiency at high loading is due to 2ncipjent breakaway, and this implies a ratier unstable stato of the boundery layer on the upper surface of the acrofoil. Standards of acrofoil surface finish can therefore be expected to have a marked influenco on the anount of breakavay that occurs in such circunseances. A fairly high standard of manufacture was maintained for all the acrofoils whose test results were used in the general analysis of this roport, so any signs of an efficyency curve falling with increased loading must be rogarded as a denger sign. Poor blade manufacturo may well proauce disturbarces that will convert incipiont into completo breakaway. In this case the actual purformance will bo considerably worse then that given by the general curvos.

It should also be noted that overloading is more dangerous with a concavo pressure distribution than with a convex, because most of the boundary layer will to near the separation point, and ony disturbance will couse the breakaway to occur well forward with a marked ruduction in offaciency. Breakaway is oniy likely to occur nat tho trailing edgo with a convex distribution, however, ard the loss in efficiency will not then be so grent.

An example of what is likely to occur in practice is shown in Fig. 23. In this figuro the salient performance paraneters have been plotted against blade camber for cascados having a pitch/chord ratio of unity and giving a fluid outlet anglo of 20°. The curves in this fagive have been derived from the goneral curves given eorlier in this report. Although definite curves have been drawn, it can easily be appreciated that above cambers of about $35-47^{\circ}$, where the drag is begimning to increase rapidly, no guarante, of pertormance can be made. This is well illustrated by the nomanal deflection
curve, for also plotted in Fig. 23 is the equivalent' naminal deflection curve derived from same unpublished low speed results obtained from No. 2 High Speed Cascade Tunnel. The blade chord was only $\frac{1}{2}$ " in these tests, and so the accuracy of manufacture necessarily suffered a little and this is probably the cause for the difference in deflection for cambers above 35-40 obtained from this tunnel as compared with the celculated valucs. The corresponding drags wore not measured in No. 2 tunnol and so a comparison of these cannot be mado, but they would probably be much higher than calculated fran the gencral curvos. Tho necessity for keeping trell away from this danger zonc unless conditions are closely controlled is clearly illustrated by these results.

Tho colculation of the appropriato camber, staggor, and pitch/chord ratio roquirod to fulfil ony givon duty is rathor tedious though quite straightforvard. A set of charts, giving similar information to that preser.ted in Fig. 23, has therefore been prepared. These cover a wide range of outlet angle and pitch/chord ratio, and rill be issued in a separato note.

To give some guide to tho corrolation between the results of this analysis and the tost results obtained in other tunnels the following table compares the colculatcd values with some test values that wero obtained recently and which were not used in the analysis.

Cascade Details

Source	Aerofoil	ζ	s / c		iopt	a_{2}	$(\mathrm{I} / \mathrm{D})_{\max }$	$i_{\text {Stall }}$
	10c4/25050	-42.5°	0.75	(Tost (Calc.	$\begin{aligned} & +5.0^{\circ} \\ & +4.0^{\circ} \end{aligned}$	$\begin{aligned} & 36.0 \\ & 36.5^{\circ} \end{aligned}$	47 47	$\begin{aligned} & +10.7^{\circ} \\ & +8.9^{\circ} \end{aligned}$
	$1001 / 40050$	-24.6	1.0	(Test (Calc.	-1.0 -3.6	15.7 14.7 ${ }^{\circ}$	$\begin{aligned} & 45 \\ & 62 \end{aligned}$	$\begin{aligned} & +4.5^{\circ} \\ & +3.3^{\circ} \end{aligned}$

The completc calculated and test characteristics for the two cascades of circular are blades are given in Figs. 24 and 25. It will bo seen that the rosults from thesc differing sources are substantiolly in agreement with the calculated values. Small differences that do exist can be attributed to tunnol offects (or possibly to some Reynold's number effects though this is unlikoly). For instanco in Fig. 26 the calculated and test characteristics have been compared for a cascade of $1001 / 40050$ aerofoils at a stagger of -27.5° and a pitch/chord ratio of 0.94 . The test results wro taken from ref. 9 and were usod in the anolysis. Agroement is very good and somormat better than that obtained rith the results fram No. 6 High Speed Tunnel (Fig.25) although the cascados were very similar.

Finally it should be mentioned that it was rather unfortunate that the sories of aerofoils we have taken for the general onalysis is not really represontative of turbino practise. For the reasons given in section 5.2 it rould be impossible to pick a series ideally suitable for both comprossors and turbines, and the choice in this particular case was greatly influenced by the amount of test information availablc. It is anticipated that a sumilar analysis could be carried out for nore suitable sections when sufficiont tost data hos been accumulated.

7.0. Conclusions

It has been shown in this report that a general analysis of cascade information is possible, and that this analysis can be upplied to turbine and
compressor cascades alike. An attempt has been made to explain the behaviour of various types of cascades and data is given from which any cascade of aerofoils having the $0.1,6.2$ or 0.4 base profile on circular arc oamber lines can easily bo calculated. Appreciating the fundamental factors involved it should. be possible to mako a olose estimate of the performance of other soctions, and so to gain some idea as to what improvements can and cannot be made.

REFFRPENCES

No.

Author

1. A. R. Howell, M. Mettam
and J. Nock.
"Same General Notes on Axial Flow Compressor Design".A.R.C. 2160. siay, 1945. "' (mandished)
2. 0. Zwoifcl.
1. A. R. Howell and
A. D. S. Cartor.
2. A. Betz
3. E. Distolesi
4. J. Acheret
5. S. Katzoff, Robext S. Finn and Jomes C. Lawrence.
6. I. Diesendruch
7. H. Constant
8. J. Reeman
9. A. R. Hotrell
3.2. A. R. Howoll
"The Specing of Turbo-machine Bleding, especially with Large Angular Deflection" Brown Boveri Review Vol.XXXII No.12. Dec.1945.
"Fluid Flow through Cascados of Aerofoils" Sixth International Congress for Applied Mechanics. Paris. Sept. 1946. A.R.C. $11,173$.
"Diagramme zur Berechung von Flugelreihen". Ingenieur Arohiv. 2 page 359 (1931) Avail-able as N.A.C.A. Technical Memorandum No. 1022 (1542)
"Sul calcola di schiere infinite di ali som tili" Publicazioni della R. Scuola d'Ingegneria di Pisa (7 series) No. 323 (Sept.1937). English Translation available as N.A.C.A. Tech. Memo. No. 968 (1947) .
"Tum Entwurf dichtstchender Scharfelgitter" Schwe z. Bauztg. 120 Heft 9 (1942) English Version 'available in R.T.P. Translation No. 2007.
"Interference Method for Obtaining the Potential Flow past on Arbitrary Cascade of Airfoils". N.A.C.A. Technical Note No. 1252 (May 1947.)
"Iterative Interference Methods in the Design of Thin Cascade Blades" N.A.C.A. Technical Note No. 1254 (May 1947).
"Performance of Cascades of Aerofoils" R.A.E. Note No. E. 3696 A. R.C. 4155. 1939. ' (unpublished'
"Noto on Positive Stagger Casoades" R.A.E. Tech. Note No. Eng. 202 (1943) .
"A Note of the Compressor Base Aerofoils C.I, C.2, $0.3, C .4$ and C.5, and Aerof'oils made up of Cincular Arcs", Power Jets ($R \& D$) Ltd., Memorandum No. M. 1011 (1944).
"The Fluid Dynamic of Axial Campressors". Proc. I. Mech. E. Vol. 153 p. 441 (1945).
10. J. Reeman.
11. R. G. Harris and
R. A. Fourthorne.
12. K. Chrıstian.
13. C. Keller.
14. Y. Shinojoma.
15. A. R. Howell.
16. J. Wrigley and
J. T. Hansford.
17. A. D. S. Carter and H. P. Hughes.
18. H. B. Squire and
A. D. Young.

22
23. K. G. Winter.
24. Steam Nozzles Research Committee.
25. S. J. Andrews.
"The Performance of Cascades of Aerofoils at Positive Stecger" A.R.C. 10,829. 1946. (unpublished).
"Wind Tunnel Experiments with Infinite Cascedcs of Acrofoils" R\& M 1206 (1928).
"Fxperimentelle Untersuchung eines Tragflugelprofiles bei Getteranordung" Luftfahrtforschung Vol.II (1928).
"Axialgebläse von standpinkt der Tragflugeltheorie" Instatute fur Aerodynamik Zurıch (1934). Part available as an A. if. Translation ref. Ae Techl.1013, A.P. 135 (1935). A.R.C. 2161.
"Experiments on Rows of Aerofolls for Retarded Flow" Memoirs of Faculty of Engineering Kyushu Imperial University, Fuknoka, Japan. Vol.III No. 4 (1938).
"The Present Basis of Axial Compressor Design Part I - Céscade Theory - Performance" R \& M 2095 (1942).
"Flow of an Ideal Fluzd Past a Cascade of Blades" ifetropolitan-Vickers Report (1944).
"The effect of Profile Shape on the Performance of Aerofoils in Cascade" R \& I 2384 (1946).
"Wing Sections and their Stalling Characteristics" Appendix to R. A. E. Report No. Aero 1718 (1942).
"Some High Speed Tests on Turbine Cascades" R\&in. 2697. February, 1949.
"Comparatave Tests on Thick and Thin Turning Vanes in the $4 \mathrm{ft} \times 3 \mathrm{ft}$ Wind Tunnel"
R. \& M. 2589. August, 1947.

Fourth Report of the Steam Nozzles Research Committee Proc.I. Mech. E. No. 41925.
"A comparison between Two Compressor Cascades using C. 4 profile on Parebolic and Circular Arc Camber Iines" A.R.C. 10,269. (1946).

APPENDIX I

Notation

distance of point of maximum camber from L.E.
b maximum camber.
chord.
incidence.
II radius of curvature at L.E.
r_{2} radius of curvature at T.E.
s blade spacing or pitch.
t blade maximum thickness.
$C_{D} \quad$ drag coofficient.
$C_{L} \quad$ lift coef'ficient.
${ }^{C_{\text {Ith }}}$ theoretical lift coofficient.
L.E. leading edge.
$M_{n} \quad$ Mach Number.
P static pressure.
Ptot total head pressure.
$R_{n} \quad$ Reynola's Number.
T. static temperature.

Ttot total head temperature.
T.E. trailing odge.
T.F. turbulence factor
$V \quad$ velocity, $V_{a} V_{m} V_{\omega}$ are axial, vector mean, and whirl velocitios respectively.
a
air angle
$a^{3 \times}$ nominal fluid angle.
apt optimun fluid angle.
$a_{m} \quad$ vector mean fluid angle.
$\beta \quad$ blade angle.
δ
そ stagger.
θ
camber.
x_{1} camber inlot anglo.
x_{2}
camber outlet angle.
$\psi \quad$ loading factor.
$\omega \quad$ loss of total head.
$\Delta P \quad$ local static pressure minus free stream statio pressure.

* denotes naminal conditions (see Section 2.1).

Suffices
m
vector mean values.
opt optimum values (see seotion 2.1).
1 inlet to cascade.
2 outlet from cascade.

Aerofoil Nomenclature

The nomenclature dofining the aerofoil is best illustrated by the example

$$
101 / 40050
$$

Here 10 denotes the maximm thickness (t) in \% chord; Cl denotes the base profile; 40 is the camber angle (θ) in degrees; C denotes a circular arc oamber line and 50 the position of maximum cember (a) in $\%$ chord from the leading edge. The two forms of camber line normally used are circular anc (denoted by C) and parabolic arc (denoted by P).

To construct the aerofoil the ordinates of the base profile are multiplied by the ratio of required maximum thickness divided by the base aerofoil maximum thickness and are then plotted nommal to the chosen oamber line, stations being taken along the cember line itself.

APPENDIX IJ

The Colculation of Cascade uharacteristics

As an example conszder the calculation of the charmoteristic for the followng cescade -

Aerof oil $1004 / 25050$
Stagger -42 5°
Patch/Chord Ratio 075
Blade inlet angle $\left(\beta_{1}\right)=55^{\circ}$
Blade outlct angle $(\beta)=,30^{\circ}$
The deviation $\delta=m \theta / \mathrm{s} / \mathrm{c}=030 \times 25 \times \sqrt{075}=65^{\circ}$
whure m is obtaned from fig 6
Fluid outlet angle $\left(\alpha_{2}\right)=\beta_{2}+\delta=365^{\circ}$
The calculation of the optimum incidence cannot be done directly and a method of successive approximations wall have to be used For most cascados in gencral use it rill be found convenient to assume $1_{\text {opt }}=0^{\circ}$ as a first approxamation

1st/pprocimition $I_{o p t}=0^{\circ}$

$$
\begin{aligned}
\mathrm{a}_{\text {Iopt }} & =55^{\circ}\left\{\varepsilon-185^{\circ} \text { and } C_{L}=0697\right. \\
\mathrm{a}_{2} & =365^{\circ}\{\varepsilon \\
\Delta_{I} & =\frac{\mathrm{v}_{n}{ }^{3} \times \mathrm{C}_{\mathrm{I}}}{2 \times \mathrm{s} / \mathrm{c}} \times 573^{\circ} \\
& =\frac{0207 \times 0.697}{2 \times 075} \times 573^{\circ}=55^{\circ}
\end{aligned}
$$

where the vilue of $\mathrm{V}_{\mathrm{n}}{ }^{3}$ has been tiken from Fig 2 for the given values of stagser and pitch/chord ratio But loptos for $\theta=25^{\circ}=-28^{\circ}$ fram Fig 5 whence Iopt $=+27^{\circ}$ as compared 7ith in assumed value of 0° Using thas value of lopt a scoond approxumation can be found and so on A certain amount of "2ntzcipation" reducus the number of approximations necessary It is readily seen that inore sing zopt increases C_{L} and hence Δ_{I} But ${ }^{\prime}$ opt t_{∞} remains constant for the blode Hence let us the a slaghtly higher value of lopt for the second aporoximation $=40^{\circ} \mathrm{sdy}$
?nd Approximotion $z_{\text {ont }}=40^{\circ}$

$$
\left.\begin{array}{rl}
a_{\text {lopt }} & =590 \\
a_{2} & =365
\end{array}\right\} \varepsilon=225^{\circ} \text { and } C_{L}=0885
$$

\therefore Optimum Conditions are

$$
\begin{aligned}
& \text { Fluid Inlet Angle } \alpha_{1}=59.0^{\circ} \\
& \text { Fluid Outlet Angle } \alpha_{2}=36.5^{\circ}
\end{aligned}
$$

The loading factor $(\psi)=1.39$

$$
\text { Wherefore } \psi_{\infty}=\psi \times \frac{6 \mathrm{~s} / \mathrm{c}}{6 \mathrm{~s} / \mathrm{c}-1}=1.79
$$

Whance $(I / D)_{\infty}=77$ (from Fig.12)
and $i_{\text {stall }}-i_{\text {opt }}=4.9^{\circ}$ (from Fig. I9)

$$
\begin{aligned}
& \text { so that we get }\left\{\frac{D}{D}\right]_{\max }=\left[\frac{L}{D}\right\}_{\infty} \times\left\{\frac{6 s / c-7}{6 s / c}\right\}^{2}=47 \\
& \text { giving } \quad C_{D}=C_{L / \frac{L_{1}}{\Gamma}}=\frac{0.885}{47}=0.0188 \\
& \text { or } w / \frac{1}{2}{p V_{1}}^{2}=\frac{C_{D}}{s / c} \times \frac{\cos ^{2} a_{1}}{\cos ^{3} a_{m}}=0.0254 \\
& 0.025 \\
& \text { and } i_{\text {stall }}=i_{\text {opt }}+\left(i_{\text {stall }}-i_{\text {opt }}\right)=+4.0^{\circ}+4.9^{\circ} \\
& =+8.2^{\circ}
\end{aligned}
$$

From these values the full charactoristic, geamotrically similar to the curves of Fig. 20 can be dram in os shom in Fig. 25.

FIG.I.

(a) BASE AEROFOIL C.I.

LE RAD $=8 \% t \quad t / C=10 \% \quad$ T.E. RAD $=2 \% t$
 STATION OF MAX THICKNESS $=33 \%$ of C.
(b) VORTEX REPRESENTATION OF CASCADE.

RESTRICTED

NORMAL VELOCITY COEFFICIENT.

FIG. 3.
VALUES OF i OPT ∞ FOR VARIOUS CAMBERS.

FIG. 4.
VALUES OF i OPT ∞ FOR VARIOUS CAMBERS.

OPTIMUM INCIDENCE AT INFINITE PITCHING.

(MEAN VALUES TAKEN FROM FIGS 3 \& 4.)

CI C2 OR C4 BASE PROFILES HAVING 10% MAXIMUM THICKNESS ON GAMBER LINES AS INDICATED

DEVIATION RULE.

m.

$$
\begin{aligned}
& \delta^{\circ}=m \theta \sqrt{g / 2}-\text { COMPRESSOR CASCADES. } \\
& \delta^{\circ}=m \theta \%-\text { TRRBINE CASCADES. }
\end{aligned}
$$

note. δ° is the deviation at optimum ingidence

FIG. 7

EFFECT OF STAGGER ON CASCADE PERFORMANCE.

LOSS V INCIDENCE GURVES. PRESSURE DISTRIBUTIONS OF FIG. G(b) WOULD INDICATE SUDDEN STALL FOR COMPRESSOR CASCADES AND SLOW STALL FOR TURBINES. ALSO LARGE REGION OF LAMINAR FLOW AND CONSEQUENTLY HIGH LEFT/DRAG RATIOS IN THIS GASE

FIG.IO.
LIFT DRAG RATIOS $\left(\underline{\alpha}_{2}=-20^{\circ} \& \alpha_{2}=0^{\circ}\right.$.)

LOADING FAGTOR AT INFINITE PITCHING -4∞

LIFT DRAG RATIOS ($\left.\alpha_{2}:+20^{\circ} \& \alpha_{2}=+30^{\circ}\right)$

FIG.R.

GENERAL PERFORMANCE CURVES.
ci cz or c4 base profles on circular arc CAMBER LINES. MAXIMUM THICKNESS 10% CHORD.

PEREORMANCE CURVES ($/(\underline{c}=0.5$)

FIG. 14
PERFORMANCE CURVES $(s / c=1.0)$

FIG. 15.

PERFORMANCE CURVES ($\% /-1.5$)

FIG.I6.
INCIDENCE INCREMENT $\left(\alpha_{2}=-60^{\circ} \& \alpha_{2}=-40^{\circ}.\right)$

STALLING INCIDENCE-OPTIMUM INCIDENCE.

FIG.IT.

INCIDENCE INCREMENT $\left(\alpha_{2}=-20^{\circ} \& \alpha_{2}=0^{\circ}\right)$

FLUID OUTLET ANGLE - α_{2}

FIG. 18.

FIG. 20.
LOSS \& DEFLECTION v INCIDENCE.

FIG.2I.
(@) EFFECT OF AERFOIL THICKNESS ON CASCADE PERFORMANCE.

(b) OPTIMUM POSITION OF MAXIMUM CAMBER POSITIION OF MAX. CAMBER FROM L.E.(\% c) note this is a tentative curve and should only be treated as illustrating general tendancies

COMBINATIONS OF FLUID OUTLET ANGLE AND POSITION OF MAXIMUM CAMBER.

POSITION OF MAXIMUM CAMBER WELL FORWARD.

TOO STEEP PRESSURE GRADENT NEAR.LE.
(b) LOW FLUID OUTLET ANGLE.

POSITION OF MAXIMUM CAMBER TOWARDS REAR.

FIG. 23.
CASCADE PERFORMANCE.
$\left\{\begin{array}{l}\text { FLUID OUTLET ANGLE }=20^{\circ} \\ \text { PITCH CHORD RATIO }=1.0\end{array}\right.$

FIG. 24.

COMPARISON OF TEST AND CALCULATED

 CHARACTERISTICS.

FIG. 25,

COMPARISON OF TEST AND CALCULATED CHARACTERISTICS.

FIG. 26.

COMPARISON OF TEST AND CALCULATED

 CHARACTERISTICS.

PRINTED AND PUBLISHED BY HIS MAJESTY'S STATIONERY Office

To be purchased from
York House, Kingsway, london, w c 2429 Oxford Street, london, w 1 PO BOX 569, LONDON, SE 1
13a Castle Street, foinburgh, 21 St Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 3 80 Chichester Street, belfast
or from any Bookseller
1950
Price 3s 6d net
PRINTED IN GRFAT BRITAIN

