

C.P. No. 412
$(20,499)$

A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

Theoretical Analysis of the Heating of a Composite Slab, with applications to the Kinetic Heating of an Aircraft Wing

by
E. C. Capey, B.Sc. \& K. I. McKenzıe, Ph.D.

ROYAL AIRCRAFT ESTABLISHMENT

THEORETICAL ANALYSIS OF THE HEATING OF A COMPOSITE SLAB, WITH APPLICATIONS TO THE KINETIC HEATING OF AN AIRCRAFT WING

by
I. C. Capey, B.Sc.

and
K. I. MoKenzie, Ph.D.

SUMMARY

The transient temperature distribution is derived for a composite slab, heated by raising the air temperature on one side at a constant rate to a maximum. Numerical results are evaluated on a digital computer from the theoretical solution, which is obtained in series form. Rosults are obtained for the temperature difference across the skin in an aurcraft wing covered by insulative material; these results show that the effect of the insulatave material could be calculated wath sufficient accuracy by neglecting its heat capacity. The computer programmes are applicable to any problem in which there is no heat transfex at the cold surface.

μ	$=\frac{k^{\prime}}{h^{\prime} \ell} \sqrt{\frac{K}{K^{\prime}}}$
Λ	$=\frac{\ell / k}{\ell^{\prime} / k^{1}+1 / h^{\top}}$
$F(\varepsilon)$	$=$ expression given in equation (11)
a_{n}	$=$ constants given by equation (12)
b_{n}	$=$ coefficients in expansion of \bar{V} in equation (34)
$N(\varepsilon)$	$=$ numerator in expression in equation (28) or (29)

INTRODUCTION

If the external surfaces of any of the wings show in Fig. 1 are heated, while the internal surfaces remain cold, thermal stresses are produced in the plating. An estimate of the thermal stress can be obtained by treating the wing as a slab, one side of which is heated, while the other side is subjected to boundary conditions depending on the type of wing.

Tig.1. Aircraft wings subject to surface heating.

The problem reduces to that of fanding the temperature distribution In a composite slab, of the type shown in Fig.2, wnere ϕ and ϕ^{\prime} are the adiabatic wall temperatures on either side of the slab, and h and h^{\prime} are the heat transfer coefficients between the air and the metal and between the air and the insulation respectively.

Fig. 2 Composite slab shcwing notation.

All the relevant equations are linear in the temperature, thus allowing sclutions to be obtained by superposition. The case here considered is that of an aircraft which is accelerated in such a manner that the adiabatic wall temperature ϕ^{\prime} rises linearly from an initial value, taken to be zero, to a final value β, as shown in Fig.j(a). This solution can be obtained by the superposition of an infinite serıes of solutzons for a step function variation of ϕ^{\prime}, as shown in Fig. $3(\mathrm{~b})$.

Fig. 3. Variation of adiabatic wall temperature with time.

The analysis of the slab shown in Fig. 2 applies directly to the wing in Fig.1(b). It also applies to the skin of the wing in Fig.1(c) except near to the webs, and to the wing in Fig.1(a) if h is put equal to zero, since, from symmetry, no heat crosses the line $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

The temperature distribution and thermal stresses in a slab of the type shown in Fig. 2 have been calculated by Parkes ${ }^{1}$, making the assumptions that the heat capacity of the insulative material can be neglected and that no heat leaves the lower surface of the metal, which is equivalent to putting h equal to zero. In this report the temperature distribution and thermal stresses are obtained for the general case, when the heat capacity of the insulation is taken into account, and when h may have any value.

The maximum temperature difference across the metal part of the slab is taken as a measure of the thermal stress. This maximum temperature difference and the time at which it occurs are computed for various materials, thicknesses and heat transfer coefficlents using a digital computer. A comparison is made between the results obtained by Parkes neglecting the heat capacity of the insulative material and the more accurate results obtained from the analysis in this paper.

IAETHCD OF SOLUTION

In order to obtain the temperature distribution in the slab show in Fig.2, it is necessary to obtain a solution of the dafferential equation

$$
\begin{equation*}
\frac{\partial^{2} V}{\partial x^{2}}-\frac{1}{K} \cdot \frac{\partial V}{\partial t}=0 \tag{1}
\end{equation*}
$$

in the lower section of the slab, where K is the duffusivity of the metal, given by the equation

$$
\begin{equation*}
K=\frac{k}{\rho c} \tag{2}
\end{equation*}
$$

and of the differential equation

$$
\begin{equation*}
\frac{\partial^{2} V^{\prime}}{\partial x^{2}}-\frac{1}{K^{\prime}} \cdot \frac{\partial V^{\prime}}{\partial t^{\prime}}=0 \tag{3}
\end{equation*}
$$

in the upper section, where

$$
\begin{equation*}
K^{\prime}=\frac{k^{\prime}}{p^{\prime} c^{\prime}} \tag{4}
\end{equation*}
$$

It is assumcd that k and ρc are constant over the range of temperatures aivelved.

The temperature and heat flow must be continuous over the boundary between the two materials, so that

$$
\begin{equation*}
V(l)=V^{\prime}(\ell) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
k\left(\frac{\partial V}{\partial x}\right)_{\ell}=k^{\prime}\left(\frac{\partial V^{\prime}}{\partial x}\right)_{\ell} \tag{6}
\end{equation*}
$$

The boundary condition at the lower edge, $x=0$, is that the heat flow is equal to the heat transfer coefficient times the difference between the adiabatic wall temperature and the surface temperature, that is

$$
\begin{equation*}
k\left(\frac{\partial V}{\partial x}\right)_{0}-h\{V(0)-\phi(t)\}=0, \tag{7}
\end{equation*}
$$

whle at the upper edge, at $x=\ell+\ell^{\prime}$, the condition is that

$$
\begin{gather*}
k^{\prime}\left(\frac{\partial v}{\partial x}\right)_{\ell+\ell^{\prime}}+h^{\prime}\left\{v\left(\ell+e^{\prime}\right)-\phi^{\prime}(t)\right\}=0 \tag{8}\\
-6
\end{gather*}
$$

The initial condition is that

$$
\begin{gather*}
V=V^{\prime}=0 \tag{9}\\
t=0 .
\end{gather*}
$$

at

The solution is to be obtained for the variation of ϕ^{\prime} shown in Fig. $3(b)$ with $\phi=0$ throughout.

A Laplace transformation is carried out on equations (1) to (9) in Appendix 1, and the inverse transformation gives the solution
$V(x, t)=\beta\left\{\frac{\frac{1}{h}+\frac{x}{k}}{\frac{1}{h}+\frac{\ell}{k}+\frac{l^{\prime}}{k^{\prime}}+\frac{1}{h^{\prime}}}+\sum_{n} a_{n}\left(\cos \varepsilon_{n} \frac{x}{\ell}+\frac{h \ell}{k \varepsilon_{n}} \sin \varepsilon_{n} \frac{x}{\ell}\right) \exp \left(-K \varepsilon_{n}^{2} t / \ell^{2}\right)\right\}$
where the first term represents the steady state solution, and the second term the transicnt solution. The sumation in the transient term is taken over the values of ε_{n} corresponding to the solutions of the equation

$$
\begin{align*}
F(\varepsilon)= & \{(\cos \varepsilon \cos \gamma \varepsilon-\alpha \sin \varepsilon \sin \gamma \varepsilon)-\varepsilon \mu(\cos \varepsilon \sin \gamma \varepsilon+\alpha \sin \varepsilon \cos \gamma \varepsilon)\} \\
& +\frac{\lambda}{\varepsilon}\{(\sin \varepsilon \cos \gamma \varepsilon+\alpha \cos \varepsilon \sin \gamma \varepsilon \\
& -\varepsilon \mu(\sin \varepsilon \sin \gamma \varepsilon-\alpha \cos \varepsilon \cos \gamma \varepsilon)\}=0 \tag{11}
\end{align*}
$$

where α, γ and μ are non-dimensional parameters which depend on the properties of the materials and the heat transfer coefficients. The coefficients a_{n} are given by the equation

$$
\begin{equation*}
a_{n}=\frac{2}{\varepsilon_{n}\left(\frac{d F}{d \varepsilon}\right)_{\varepsilon_{n}}} \tag{12}
\end{equation*}
$$

There are an infinite number of terms in the series for the transient temperature distribution; but as n increases a_{n} diminishes rapidly, so that only the first few terms in the series need to be evaluated.

In order to obtain the temperature distribution when the adiabatic wall temperature varies as in Fig. 3(a), solutions of the form shown in equation (10) are superposed and integrated. Expressions for the temperature distribution before and after the maximum adiabatic wall temperature is reached are given in Appendix 1.

Tne temprature difference, $V(\ell)-V(0)$, across the metal section is a rough neasure of the thermal stress. When there is no heat transfer across the lower edge of the slab, that is $h=0, V(l)-V(0)$ is given by the equations
$V(\ell)-V(0)=\beta \sum_{n} a_{n}\left(\cos \varepsilon_{n}-1\right) \frac{\left\{1-\exp \left(-K \varepsilon_{n}^{2} t / e^{2}\right)\right\}}{K \varepsilon_{n}^{2} t / e^{2}}$
and
$V(e)-V(0)=\beta \sum_{n} a_{n}\left(\cos \varepsilon_{n}-1\right) \frac{\left\{\exp \left(K \varepsilon_{n}^{2} T / e^{2}\right)-1\right\} \exp \left(-K \varepsilon_{n}^{2} t / l^{2}\right)}{K \varepsilon_{n}^{2} T / l^{2}}$

$$
\begin{equation*}
(t>T) . \tag{14}
\end{equation*}
$$

A computation for evaluating and maximising the second of these expressions was programmed for the DEUCE digital computer. It was not necessary to evaluate the former expression, since the maximum never lies an that range. Results for the maximum value of $V(l)-V(0)$ and for the time at which this maximum occurs were obtained for a number of different materials, thicknesses and heat transfer coefficients, and are given in Tables 2 and 3.

Another case which might be of some interest is that of the slab with an infinite heat transfer coefficient h on the lower surface. This might be approxmately realised by the use of a liquid to cool the lower surface. The maximum temperature dufference in this case is simply the steady state temperature difference

$$
\begin{equation*}
V(\ell)-v(0)=\frac{\frac{\ell}{k}}{\frac{\ell}{k}+\frac{\ell^{\prime}}{k^{\prime}}+\frac{1}{h^{\prime}}} \beta \tag{15}
\end{equation*}
$$

4 APPROXIMATE VITTHOD

Parkes ${ }^{1}$ obtained an approxamate solution to the problem of the composite slab by assuming that, although the heat resistance of the insulative material is greater than or comparable with that of the metal, its heat capacity is negligible. Parkes' solution follows sumply from the general analysis, and is obtained in Appendix 2. It is shown that, in the case when h vanishes and ϕ is taken to be a step function,

$$
\begin{equation*}
V(x, t)=\beta\left\{1+\sum_{n} a_{n} \cos \left(\varepsilon_{n} \frac{x}{\ell}\right) \exp \left(-K \varepsilon_{n}^{2} t / \ell^{2}\right)\right], \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
\varepsilon_{\mathrm{n}} \tan \varepsilon_{\mathrm{n}}=\frac{1}{\alpha(\gamma+\mu)} & =\Lambda \\
& =\frac{\ell / k}{\ell^{\prime} / k^{\prime}+1 / h^{2}} \tag{17}
\end{align*}
$$

and

$$
\begin{equation*}
a_{n}=\frac{-2 \Lambda \sec \varepsilon_{n}}{\Lambda+\Lambda^{2}+\varepsilon_{n}^{2}} \tag{18}
\end{equation*}
$$

The programme for this computation is in two separate parts. The first part computes the $\varepsilon_{n}^{\prime \prime s}$ and a_{n}^{\prime} s from equations (11) and (12) using a subroutine to evaluate $F(\varepsilon)$ and $\frac{d F}{d \varepsilon}$ for any ε. The second part uses these values and a subroutine to evaluate $V(l)-V(0)$ at any time, to find the maximum o. $\mathrm{F}(\ell)-\mathrm{V}(0)$ and the time at which it occurs. A schematic representation of the programme is given in Appendix 3.

6 DISCUSSION OF RESULTS

It is shown in Appendix 1 that the solution to the general problem depends on five non-dimensional variables, $\alpha, \gamma, \mu, \lambda$ and $\frac{\mathrm{KT}}{\ell^{2}}$ All the calculations were made assuming $\lambda=0$, that is, no heat flow over the lower surface of the metal.

The thermal properties of aluminum alloy, stainless steel, titanium, Durestos and paint are shown in Table 1. Since, as far as those properties are concerned, titanium is similar to stamless steel, and paint to Durestos, it was decided that only two cases needed to be considered:
(i) Durestos on aluminium alloy and
(ii) Durestos on stainless steel.

Table 2 shows the values of α, γ and μ corresponding to various thicknesses of metal plate, thicknesses of insulation and heat transfer coefficients. It was considered impractical to have a metal plate more than 2 in. thick, or a heat transfer coefficient greater than 0.1 joules $/ \mathrm{cm}^{2} \mathrm{sec}^{0} 0\left(175 \mathrm{Btu} / \mathrm{ft}^{2}{ }^{\mathrm{O}} \mathrm{hr} \mathrm{O}_{\mathrm{F}}\right.$). Computations were carried out for all other cases where the thermal stresses would be appreciable. Altogether, 28 computations were carried out, 17 with $\gamma \neq 0$ and 11 with $\gamma=0$; and in each case $\frac{\mathrm{KTI}}{e^{2}}$ was given the values $0,2.5$ and 5. $\frac{K T}{\ell^{2}}=5$ corresponds to a very slow acceleration, so that the solutions for most practical cases can be obtained by interpolation between the values for $\frac{K T}{l^{2}}=0,2.5$ and 5 .

Putting $\Upsilon=0$ is equivalent to neglecting the heat capacity of the insulation, and in this case the temperature dastribution for any particular value of $\frac{\mathrm{KT}}{\ell^{2}}$ depends only on $\Lambda=\frac{1}{\alpha(\gamma+\mu)}$. Fig. 4 shows values of $\left(V_{\ell}-V_{0}\right) / \beta$ Flotted against Λ for $\frac{K T}{\ell^{2}}=0,2.5$ and 5. The results for $\gamma=0$ are shown as continuous graphs and those for $\gamma \neq 0$ as small circles. It can be seen that the small circles lie very near to the contanuous lines. Thus, in all practical cases, it is perminsible to assume that $\gamma=0$ and use the graphs of Fig.4. Then the solutions winh $\gamma=0$ and $\gamma \neq 0$ were compared more closely, it was found that with $\gamma \neq 0$ the maximum temperature difference is a lattle lower and takes rather longer to reach than with $\gamma=0$, for the same values of Λ and $\frac{I T T}{e^{2}}$. Results for $\left(V_{\ell}-V_{0}\right)_{\max } / \beta$ and $t_{\max }$ are shown in Table 3 with $\frac{M T}{e^{2}}=0,2.5$ and 5 for the 28 sets of values of α, γ and μ.

The actual temperature distribution was worked out for a sample case. Graphs of V against t are given in Fig. 5 at 7 points in the metal and insulation, for $T=0$ (that is, for instantaneous acceleration), $\Lambda=1$, $\gamma=0.267, \alpha=2.5$ and $\mu=0.133$. Beside these graphs small circles are drawn to represent the temperature which would be reached at the same place at the same time if $T=0, \Lambda=1, \gamma=0$ and $\mu=0.133$. This figure illustrates the fact that when $\gamma \neq 0$ the heat capacity of the insulation slows down the passage of heat into the slab, so that it takes longer for the slab to reach any given tempe rature.

7 ONCLUSIONS

The temperature distribution in a composite slab consisting of a layer of thermally insulative material fixed to a metal plate, is worked out by an analytical method for the case where the temperature of the air adjacent to the insulation increases linearly from an initial to a final value. It is assumed that the heat transfer coefficients on both faces of the slab remain constant as the air temperature increases. This problem can be taken to represent the kinetic heating of an aircraft wing.

An approxinate analysis of the problem of a wing covered with insulative material is due to Parkes ${ }^{1}$, who uses the simplifying assumption that, while the thermal resistance of the insulative material is comparable with or greater than that of the metal, its heat capacity is sufficiently small to be negligrble.

The most practical case is that in which there 18 no heat flow over the air-metal surface; and all the computations are done using this condition. The maximum temperature difference across the metal plate, which is a rough measure of the thermal stress, is calculated numerically for all combinations of materials, thicknesses, and heat transfer coefficients thought likely to be of practical interest. The computations show that the thermal stresses will be small unless the skin thickness exceeds $1^{\prime \prime}$ for an aluminium skin, or $\frac{i n}{4}$ for a stainless steel skin, and, where they do occur, they can be reduced considerably by a thin layer of insulation such as Durestos or paint. These results were compared with those obtained using Parkes' simplified theory, and it was found that, while the exact thecry gives a slightly smaller value of the maximum temperature difference across the metal plate, and also retards the occurrence of this maximum a little, both of these effects are so small as to make the use of the simplified theory fully justified.

A table of results is presented showing the maximum temperature difference and the time taken to reach it for all the cases computed. A graph is drawn showing this maximm temperature difference, and comparing the exact with the simplified theory; and, for a sample case, a series of graphs is drawn showing the way in which the temperature changes with time at various points in the metal and insulation.

The apportionment of authorship is: analysis by E. C. Capey; computation by K. I. NicKenzie.

LIST OF REFEREMCES
Ref. ITo.
huthor
Tıtle, etc.
1 Parkes, E.W.
The alleviation of thermal stresses. hircraft Engineexing, Vol.25, pp.51-53, February, 1953.

APPETMIX 1

SOLUTION OF THE HE AT FLOW EQUATIONS FOR A COMPOSITE SLAB

The temperature distribution across the slab is obtained by taking the Laplace transform of the heat flow equations, substituting the boundary conditions, and then carrying out the inverse transformation.

The Laplace transforms of equations (1) and (3) are
and

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{p}{K}\right) \vec{V}(x, p)=-\frac{1}{K} V(x, 0) \tag{19}
\end{equation*}
$$

$$
\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{p}{K^{\prime}}\right) \bar{V}^{\prime}(x, p)=-\frac{1}{K^{\prime}} V^{\prime}(x, 0)
$$

Substituting

$$
\begin{equation*}
\varepsilon=\ell i \sqrt{\mathrm{p} / \mathrm{K}}, \tag{20}
\end{equation*}
$$

and using equation (9) to eliminate the right hand sides, equations (19) give
and

$$
\left.\begin{array}{l}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\varepsilon^{2}}{\ell^{2}}\right) \overline{\mathrm{V}}(x, p)=0 \tag{21}\\
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{K}{K^{1}} \cdot \frac{\varepsilon^{2}}{e^{2}}\right) \overline{\mathrm{V}}(x, p)=0,
\end{array}\right\}
$$

the general solutions of which are

$$
\begin{gather*}
\bar{V}(x, p)=A(p) \cos \frac{\varepsilon x}{l}+B(p) \sin \frac{\varepsilon x}{l} \tag{22}\\
\bar{V}^{\prime}(x, p)=C(p) \cos \varepsilon \sqrt{\frac{K}{K^{\prime}}} \cdot \frac{x}{l}+D(p) \sin \varepsilon \sqrt{\frac{K}{K^{\prime}}} \cdot \frac{x}{l}, \tag{23}
\end{gather*}
$$

where A, B, C and D are functions of p.
On applying the Laplace transformation to equations (5) to (8), they become:-

$$
\begin{aligned}
\overline{\mathrm{V}}(\ell) & =\overline{\mathrm{V}}^{\prime}(\ell) \\
\mathrm{k}\left(\frac{\partial \overline{\mathrm{~V}}}{\partial \mathrm{x}}\right)_{\ell} & =\mathrm{k}^{:}\left(\frac{\partial \overline{\mathrm{V}}^{\prime}}{\partial \mathrm{x}}\right)_{\ell}, \\
& -11-
\end{aligned}
$$

$$
\begin{equation*}
k\left(\frac{\partial \bar{V}}{\partial x}\right)_{c}-h \bar{V}(0)=0 \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
k^{\prime}\left(\frac{\partial V^{\prime}}{\partial x}\right)_{\ell+\ell^{\prime}}+h^{\prime}\left\{\bar{V}\left(\ell+\ell^{\prime}\right)-\frac{\beta}{p}\right\}=0 \tag{27}
\end{equation*}
$$

Where $\phi(t)$ is taken to be zero, and $\phi^{\prime}(t)$ a step function as shown in Fifoc $3(b)$.

Cn combining these with equations (22) and (23), A, B, C and D are evaluated, giving

$$
\begin{align*}
\bar{V}(x, p)=\beta\left(\cos \varepsilon x / \ell+\frac{\lambda}{\varepsilon} \sin \varepsilon x / \ell\right) / p F^{\prime}(\varepsilon) \tag{28}\\
V^{\prime}(x, p)=\beta\left[(\operatorname { c o s } \varepsilon + \frac { \lambda } { \varepsilon } \operatorname { s i n } \varepsilon) \operatorname { c o s } \left\{\varepsilon \sqrt{\left.\left.\frac{\mathrm{K}}{K^{\prime}}\left(\frac{x}{\ell}\right)-1\right)\right\}}\right.\right. \\
-\alpha\left(\sin \varepsilon-\frac{\lambda}{\varepsilon} \cos \varepsilon\right) \sin \left\{\varepsilon \sqrt{\frac{K}{K^{\prime}}}\left(\frac{x}{\ell}-1\right)\right] / \mathrm{FF}(\varepsilon) \tag{29}
\end{align*}
$$

where

$$
\begin{align*}
F(\varepsilon)= & \{(\cos \varepsilon \cos \gamma \varepsilon-\alpha \sin \varepsilon \sin \gamma \varepsilon)-\varepsilon \mu(\cos \varepsilon \sin \gamma \varepsilon+\alpha \sin \varepsilon \cos \gamma \varepsilon)\} \\
& +\frac{\lambda}{\varepsilon}\{(\sin \varepsilon \cos \gamma \varepsilon+\alpha \cos \varepsilon \sin \gamma \varepsilon-\varepsilon \mu(\sin \varepsilon \sin \gamma \varepsilon-\alpha \cos \varepsilon \cos \gamma \varepsilon)\} \tag{30}
\end{align*}
$$

and

$$
\begin{aligned}
\alpha & =\frac{k}{k^{\prime}} \sqrt{\frac{K^{\prime}}{K}} \\
\gamma & =\frac{\ell^{\prime}}{\ell} \sqrt{\frac{K}{K^{\prime}}} \\
\mu & =\frac{k^{\prime}}{h^{\prime} \ell} \sqrt{\frac{K}{K^{\prime}}}
\end{aligned}
$$

and

$$
\lambda=\frac{h \ell}{k}
$$

Expressions for $V(x, t)$ and $V^{\prime}(x, t)$ can be obtained by separating the expressions in equation (28) and (29) into partial fractions, then carrying out the inversc Laplace transformation on the separate fractions. As

$$
\varepsilon=\ell i \sqrt{p / K}
$$

both the numerators and denominators in equations (28) and (29) are converging power series in p, and can therefore be represented to any degree of accuracy by polynomials to the $(M-1)^{\text {th }}$ and $(M+1)^{\text {th }}$ powers respectively; and consequently $\vec{V}(x, p)$ can be broken up into partial fractions as follows:

$$
\begin{equation*}
\bar{V}(x, p)=\frac{b_{0}}{p}+\frac{b_{1}}{p-p_{1}}+\frac{b_{2}}{p-p_{2}} \ldots \frac{b_{M}}{p-p_{v i}} \tag{31}
\end{equation*}
$$

where, if M is large, the $p_{n}^{\prime} s$ approximate to the roots of equation (30), provided that this equation does not possess multiple roots. If equation (30) had possessed multiple roots for any of the sets of values of γ, α and μ used in the computations, this would have been noticed; but in fact it did not occur.

If both sides of equation (31) are maltiplied by ($p-p_{n}$), and then p tends to p_{n}, b_{n} can be evaluated and is given by the equation

$$
\begin{align*}
b_{n} & =\lim _{p \rightarrow p_{n}} \bar{v}(x, p)\left(p-p_{n}\right) \\
& =\frac{N\left(p_{n}\right)}{p_{n}\left(\frac{\partial F}{d p}\right)_{p_{n}}} \\
& =\frac{2 N\left(\varepsilon_{n}\right)}{\varepsilon_{n}\left(\frac{d F}{d \varepsilon}\right)_{\varepsilon_{n}}} \tag{32}
\end{align*}
$$

while

$$
\begin{equation*}
b_{0}=\frac{N(0)}{N(0)} \tag{33}
\end{equation*}
$$

where N is the numerator of the expression in equation (28) or (29).
The anverse transformation of equation (31) is

$$
\begin{equation*}
v(x, t)=b_{o}+\sum_{n=1}^{\infty} b_{n} e^{p_{n} t} \tag{34}
\end{equation*}
$$

On substituting equations (32) and (33) into equation (34), then substituting into the constant term b_{o} for α, γ, μ and λ, the temperature distribution is given by the equations
$V(x, t)=\beta\left\{\frac{\frac{1}{h}+\frac{x}{k}}{\frac{1}{h}+\frac{l}{k}+\frac{l^{t}}{k^{\prime}}+\frac{1}{h^{\prime}}}+\sum_{n} a_{n}\left(\cos \varepsilon_{n} \frac{x}{\ell}+\frac{\lambda}{\varepsilon_{n}} \sin \varepsilon_{n} \frac{x}{l}\right) \exp \left(-K \varepsilon_{n}^{2} t / \ell^{2}\right)\right\}(35)$

where the ε_{n} 's are the solutions of the equation

$$
F\left(\varepsilon_{n}\right)=0,
$$

and the a_{n} 's are given by the equation

$$
\begin{equation*}
a_{n}=2 / \varepsilon_{n}\left(\frac{\partial F}{d \varepsilon}\right)_{\varepsilon_{n}} \tag{37}
\end{equation*}
$$

Equations (35) and (36) gave the temperature distribution resulting from an applied air temperature as shown in Fig. 3 (b). If this distribution is called $\phi_{1}^{\prime}(t)$, then the distribution in Fig. $3(a)$ can be written as
or

$$
\left.\begin{array}{l}
\phi^{\prime}=\int_{0}^{t} \frac{1}{T} \phi_{1}^{\prime}(z) d z \quad \text { for } t<T \tag{38}\\
\phi^{\prime}=\int_{0}^{T} \frac{1}{T} \phi_{1}^{\prime}(z) d z \text { for } t>T .
\end{array}\right\}
$$

As all the equations are linear the solution for this case can be obtained by superposition, and $V(x, t)$ is given by the equation

$$
\begin{aligned}
& V(x, t)=\int_{0}^{t} \frac{\theta}{T}\left\{\frac{\frac{1}{h^{+}} \frac{x}{k}}{\frac{1}{h}+\frac{l}{k}+\frac{l^{\prime}}{k^{\prime}}+\frac{1}{h^{\prime}}}+\sum_{n} a_{n}\left(\cos \varepsilon_{n} \frac{x}{l}+\frac{\lambda}{\varepsilon_{n}} \sin \varepsilon_{n} \frac{x}{\ell}\right) \exp \left\{-K \varepsilon_{n}^{2}(t-z) / l^{2}\right\}\right\} d z \\
& =\frac{\beta t}{T}\left(\frac{\frac{1}{h}+\frac{x}{k}}{\frac{1}{h}+\frac{\ell}{k}+\frac{l^{\prime}}{k^{\prime}}+\frac{1}{h^{\prime}}}\right)+\beta \sum_{n} a_{n}\left(\cos \varepsilon_{n} \frac{x}{\ell}+\frac{\lambda}{\varepsilon_{n}} \sin \varepsilon_{n} \frac{x}{l}\right) \frac{\left\{1-\exp \left(-K \varepsilon_{n}^{2} t / \ell^{2}\right)\right]}{K T \varepsilon_{n}^{2} / l^{2}} \\
& \text { for } t<T \text { (39) }
\end{aligned}
$$

$$
\begin{align*}
& \text { and }(x, t)=\int_{0}^{T} \frac{\beta}{T}\left\{\frac{\frac{1}{h}+\frac{x}{k}}{\frac{1}{h}+\frac{l}{k}+\frac{l^{\prime}}{k^{\prime}}+\frac{1}{h^{\prime}}}+\sum_{n} a_{n}\left(\cos \varepsilon_{n} \frac{x}{l}+\frac{\lambda}{\varepsilon_{n}} \sin \varepsilon_{n} \frac{x}{\ell}\right) \exp \left\{-K \varepsilon_{n}^{2}(t-z) / \ell^{2}\right\}\right\} d z \\
&=\beta\left(\frac{\frac{1}{h}+\frac{x}{k}}{\frac{1}{h}+\frac{\ell}{k}+\frac{e^{1}}{k^{\prime}}+\frac{1}{h^{i}}}\right)+\beta \sum_{n^{\prime}} a_{n}\left(\cos \varepsilon_{n} \frac{x}{\ell}+\frac{\lambda}{\varepsilon_{n}} \sin \varepsilon_{n} \frac{x}{\ell}\right) \frac{\left\{\exp \left(K \varepsilon_{n}^{2} T / \ell^{2}\right)-1\right\} \exp \left(-K \varepsilon_{n}^{2} t / \ell^{2}\right)}{K T \varepsilon_{n}^{2} / \ell^{2}} \\
& \quad \text { for } t>T . \tag{40}
\end{align*}
$$

The temperature dafference across the metallic section of the slab is $\mathrm{V}(\mathrm{l})-\mathrm{V}(\mathrm{o})$, which is given by the equations:-

$$
\begin{gather*}
\frac{v(\ell)-v(0)}{\beta}=\frac{\frac{\ell}{\frac{k}{n}} \cdot \frac{t}{T^{\prime}}}{\frac{1}{h}+\frac{l}{k}+\frac{\ell^{\prime}}{k^{\prime}}+\frac{1}{h^{\prime}}}+\sum_{n^{\prime}} a_{n}\left(\cos \varepsilon_{n}+\frac{\lambda}{\varepsilon_{n}} \sin \varepsilon_{n}-1\right) \\
\times \frac{\left\{1-\exp \left(-K \varepsilon_{n}^{2} t / \ell^{2}\right)\right\}}{K T \varepsilon_{n}^{2} / l^{2}} \text { for } t<T \tag{41}
\end{gather*}
$$

and

$$
\begin{array}{r}
\frac{V(\ell)-V(0)}{\beta}=\frac{\frac{\ell}{k}}{\frac{1}{h}+\frac{\ell}{k}+\frac{\ell^{t}}{k^{t}}+\frac{1}{h^{\top}}}+\sum_{n} a_{n}\left(\cos \varepsilon_{n}+\frac{\lambda}{\varepsilon_{n}} \sin \varepsilon_{n}-1\right) \\
\times \frac{\left\{\exp \left(K \varepsilon_{n}^{2} T / l^{2}\right)-1\right\} \exp \left(-K \varepsilon_{n}^{2} t / l^{2}\right)}{K T \varepsilon_{n}^{2} / l^{2}} \\
\text { for } t>T . \tag{42}
\end{array}
$$

Special cases

(i) No heat transfer on lower surface.

This 1s the case considered by Parkes, and is the one which is likely to be most practical. Equations for thas case can be obtanned by substituting $h=0$ and $\lambda=0$ into the equations derived above. The temperature difference across the metallic section of the slab is obtanned from equations (41) and (42) and is
$\frac{V(\ell)-V(0)}{\beta}=\sum_{n} a_{n}\left(\cos \varepsilon_{n}-1\right) \frac{\left\{1-\exp \left(-K \varepsilon_{n}^{2} t / e^{2}\right)\right\}}{K T \varepsilon_{n}^{2} / e^{2}}$ for $t<T$
and
$\frac{V(\ell)-V(0)}{\beta}=\sum_{n^{\prime}} a_{n}\left(\cos \varepsilon_{n}-1\right) \frac{\left\{\exp \left(K \varepsilon_{n}^{2} T / l^{2}\right)-1\right\} \exp \left(-K \varepsilon_{n}^{2} t / l^{2}\right)}{K T \varepsilon_{n}^{2} / l^{2}}$ for $t>T$.

The summation is camsled out over those values of ε which obey the equation
$F(\varepsilon)=(\cos \varepsilon \cos \gamma \varepsilon-\alpha \sin \varepsilon \sin \gamma \varepsilon)-\varepsilon \mu(\cos \varepsilon \sin \gamma \varepsilon+\alpha \sin \varepsilon \cos \gamma \varepsilon)=0$.

The a_{n} 's are given by equation (37), which can be expanded and becomes

$$
\begin{aligned}
a_{n}= & \frac{-2 / \varepsilon_{n}}{(1+\alpha \gamma+\alpha \mu) \sin \varepsilon_{n} \cos \gamma \varepsilon_{n}-\varepsilon_{n} \mu(1+\alpha \gamma) \sin \varepsilon_{n} \sin \gamma \varepsilon_{n}}+(46) \\
& +\varepsilon_{n}^{\mu}(\alpha+\gamma) \cos \varepsilon_{n} \cos \gamma \varepsilon_{n}+(\alpha+\gamma+\mu) \cos \varepsilon_{n} \sin \gamma \varepsilon_{n}
\end{aligned}
$$

(ii) Perfect conduction on the lower surface.

Similar equations can be obtained for this case by letting h and λ tend to infinity. In this case the temperature difference always increases with time, so that the maximum temperature difference is the steady state temperature difference. This is obtained by making h, λ and t in equation (42) infinite, so that

$$
\begin{equation*}
\frac{V(\ell)-V(0)}{\beta}=\frac{\frac{\ell}{k}}{\frac{1}{h}+\frac{\ell}{k}+\frac{l^{1}}{k^{1}}+\frac{1}{h^{1}}} \tag{47}
\end{equation*}
$$

APRENDIX 2

TEMPERATURE DISTRIBUIION WITH THE HEAT CAPACITY OF THE INSULATTON NEGLEGTED

When the thermal resistance $\frac{l^{\prime}}{k^{1}}$ of the insulative material is very much greater than the thermal resistance $\frac{l}{k}$ of the metal, the thermal stresses are negligible. On the other hand, when $\frac{l^{\prime}}{k^{\prime}}$ is very much less than $\frac{\ell}{k}$ the insulative material is ineffective. Therefore, analysis is required only for values of $\frac{\ell^{\prime} k}{\ell k^{\prime}}$ of the order of magnitude of 1 . The insulation will naturally be a material with low conductivity, so that a considerable reduction in the thermal stresses will be obtained with a small thickness of insulation. Such a small thickness of insulation will have a small heat capacity, and this may be small enough to be negligible.

It follows from these assumptions that γ is small, and it is allowable to make the substitutions

$$
\cos \gamma \varepsilon \rightarrow 1
$$

and

$$
\sin \gamma \varepsilon \rightarrow \gamma \varepsilon \text { • }
$$

Substitution of these two relationshzps into equations (11) and (12) gives

$$
\begin{equation*}
F=\left(\cos \varepsilon_{n}-\frac{\lambda}{\varepsilon_{n}} \sin \varepsilon_{n}\right)-\frac{\varepsilon_{n}}{\Lambda}\left(\sin \varepsilon_{n}+\frac{\lambda}{\varepsilon_{n}} \cos \varepsilon_{n}\right)=0 \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n}=\frac{-2 / \varepsilon_{n}}{\left(\sin \varepsilon_{n}+\frac{\lambda}{\varepsilon_{n}} \cos \varepsilon_{n}\right)+\frac{\varepsilon_{n}}{\Lambda}\left(\cos \varepsilon_{n}-\frac{\lambda}{\varepsilon_{n}} \sin \varepsilon_{n}\right)+\sin \varepsilon_{n}\left(\frac{1}{\Lambda}-\frac{\lambda}{\varepsilon_{n}^{2}}\right)} . \tag{49}
\end{equation*}
$$

The equations (35) and (39) to (44) whach give the temperature in terms of the ε_{n} 's and a ${ }_{n}$'s remain unchanged. For the special case when there is no heat transfer on the lower surface these equations reduce to

$$
\begin{equation*}
\varepsilon_{n} \tan \varepsilon_{n}=\Lambda \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n}=-\frac{2 \Lambda \sec \varepsilon_{n}}{\Lambda+\Lambda^{2}+\varepsilon_{n}^{2}} \tag{51}
\end{equation*}
$$

These are the equations derived by Parkes. It is seen that in this case the temperature distribution in the metal does not depend on α, γ and μ separately, but only on Λ.

APPENDIX 3

SCHEMATIC RETPESENTATIONS OF THF DEUCE PROGRAMMES
1 Programme for evaluating ε_{n} and a_{n}

A The parameters are read in. α, γ and μ are given in the list of symbols, and m is the minimum value of a_{n} required. m was taken to be 2^{-6}.
$B, C, D \quad$ Starting from $\varepsilon=0, \varepsilon$ is increased by steps of 0.25 until $F(\varepsilon)$ changes sign. As soon as $F(\varepsilon)$ does change sign it is known that a root $\operatorname{cf} F(\varepsilon)=0$ lies between this value of $F(\varepsilon)$ and the previous one.
$E \quad$ This value of $F(\varepsilon)$ becomes the new $F\left(\varepsilon_{0}\right)$, which will be used to find the next root.

F-J The root which has been approached is now evaluated, correct to twelve binary places, by the Newton-Raphson method. There is a limatation to the automatic duvider on DELCE, in that it fails if the quotient numerically exceeds 1. This is not likely in this case, and if it did occur, would mean that a root had been missed. If $\varepsilon_{r} \mu \alpha \geqslant 2^{12}$, the capacity of the machine would have been exceeded. In practice, neither of these things happened.
$K \quad$ To guard against the lamitation of the divider in workang out a_{n}, the davisor 18 tested to see if it is less than or equal to the duvidend, and if so, is multiplied by 2. Thas is done repeatedly, until the quotient would be less than unity, and compensated for after division. In practice a_{n} never exceeded 2.

I $\quad \varepsilon_{n}, a_{n}$ are punched in binary to 20 places.
$\mathrm{M}, \mathrm{N} \quad \mathrm{a}_{\mathrm{n}}$ is tested to see whether it is less than m_{0}. If it is, one further a_{n} is computed to guard against the possabulity of getting one small value of a_{n} between two larger ones.
Having worked out one set of ε_{n} 's and $a_{n} ' s$, the programme returns to the beginning to read in more data.

A $\quad N$ is the number of terms taken in the series for $V(\ell)-V(0)$. In order not to exceed the capacity of the machine

$$
\varepsilon^{2}<\frac{2^{9}}{\frac{K T}{e^{2}}+1}
$$

which in turn sets a limitation on N.
The $\varepsilon_{n}{ }^{\prime} \mathrm{s}$ and a_{n} 's must be stored for use in the subroutine for working out $V(\ell)-V(0)$.

C Owing to numerical inaccuracies it sonetimes happens that for values of t near $t=0, V(\ell)-V(0)$ decreases as t increases. This gives an apparent maximum at $t=0$. To prevent this from appearing in the results, the first value of $\frac{K t}{\ell^{2}}$ taken when $T=0$
was $\frac{1}{8}$.

D-H $\quad \frac{K t}{e^{2}}$ is now repeatedly increascd by $\frac{1}{Q_{4}}$, working at $V(l)-V(0)$ each time, until a maximum of $V(\ell)-V(0)$ is reached.

The value of $V(l)-V(0)$ nearest to the maximum, and the corresponding time, are punched to 22 binary places.

The programe returns to the beginning and reads in more data.

TABLE 1

Thermal Properties of Materials

Case 1 Durestos (or paint) on aluminum alloy

$$
\alpha=20 \quad r=17 \frac{2}{\ell} \quad \mu=\frac{0.07}{h^{\prime} \ell}
$$

Case 2 Durestos (or paint) on stainless steel (or titanium)

$$
\alpha=10 \quad r=5.5 \frac{e^{\prime}}{\ell} \mu=\frac{0.022}{h^{1} \ell}
$$

Temperature DifferenceAcross Selected Composite Slabs

Durostos on AlunInlum Niloy

TABLE 2 (CONTD.)
Durestos on Stainiess Steel (Contd,)

Thickness of metal ℓ (in)	```Heat transfer coefiicient ht (Joules/cm}\mp@subsup{}{}{2}\mp@subsup{\operatorname{sec}}{}{\circ}\textrm{C}\mathrm{)```	Thickness of insulation ℓ^{\prime} (In)	Λ	α	γ	μ	Max rum Temperature Difference $\begin{gathered} (T=0) \\ \left(V_{Q}^{-N}\right) / \beta \end{gathered}$	Computation number
2	0.10.05	0.16	0.2071	10	0.14	0.044	~ 0.03	$\begin{gathered} \operatorname{Sin} 113 a r \\ \text { G } 11 \end{gathered}$
		0.32	0.108 1	10	0.88	0.04	~ 0.05	$\begin{gathered} \text { similar to } \\ 012 \end{gathered}$
		>0.32	Thermal stresses nesiteible					
		0	1.14	10	0	0.088	0.335	Sce graph
		<0.02	Effect, of	of 1	Insula	ion smal		
		0.02	0.69910	10	0.055	0,088	0.210	C 8
2	0.05	0.04	0.5051	10	0.11	0.088	0.180	09
		0.08	$0.3 \geq 510$	10	0.22	0.088	0.17	C 10
		0.16	0.189	10	0.14	0.033	0.031	G 11
		0.32	0.10311	10	0.88	0.083	0.046	G 12
		>0.32	Thermal strcsses regligible					
	0.025	0	0.56811	101	0	0.176	0.206	Pa 5
		<0.014	Effect of insulation small					
		0.04	0.350	101	0.11	0.176	0.14 .0	C 13
		0.08	0.25310	10	0.22	0.176	0.105	014
		0.15	0.15210	10	$0.4 / 4$	0.176	0.071	G 15
		0.32	0.095 1	$10:$	0.38	0.176	~ 0.05	$\begin{gathered} \text { Similar to } \\ 612 \end{gathered}$
		> 0.32	Thernal	str	resses	neglig ib	le	
	0.0125	0	$0.204!$	101	0	0.352	0.118	Pa 3
		<0.08	Effect of	of 1	Insujat	icn mad		
		0.08	0.1751^{1}	10	0.22	0.352	0.076	G 16
		0.16	0.1261	101	0.44	0.352	0.056	017
		>0.16	'ibermal	str	resses	negils	le	
	0.00625	0	$0.142!10$	$10!$		0.704	0.065	Sce graph
			No Insulation needed. Thermal stresses neeligible					
	<0.00625		Thermal stressus neglibiblo					
1	0.1	0	$1.14 \cdot 10\|0 \quad 0.088\| \quad 0.33$ Effect of insulation small					See gram
		<0.01						
		0.01	0.699 10	10	0.055	0.038	0.240	68
		0.02	0.50511	10	0.11	0.088	0.938	G 9
		0.04	0.3251		0.22	0.088	0.17	G 10

[^0]TABLE 2 (CONID.)
Durestos on Stainiess Steel (Contd,)

TABIE 3

Computed Results

$\begin{gathered} \text { Comp. } \\ \text { Ho. } \end{gathered}$	Λ	γ	μ	α	$\left\lvert\, \begin{aligned} & \frac{v(l)-v(0)}{\beta} \\ & \text { for } \frac{\mathrm{KT}}{l^{2}}=0 \end{aligned}\right.$	$\begin{array}{\|c\|} \hline \frac{\mathrm{K}_{\max }}{l^{2}} \\ \text { for } \frac{\mathrm{KT}}{l^{2}}=0 \\ \hline \end{array}$	$\begin{aligned} & \frac{v(l)-v(0)}{\beta} \\ & \text { for } \frac{\mathrm{KI}}{e^{\prime}}=2.5 \end{aligned}$	$\begin{array}{\|c\|} \frac{K t_{\max }}{\ell^{2}} \\ \operatorname{tar} \frac{\mathrm{KT}}{l^{2}}=2.5 \end{array}$	$\begin{aligned} & \frac{v(l)-v(0)}{\beta} \\ & f \subset{ }^{\frac{K T}{2}}=5 \\ & l^{2} \end{aligned}$	$\begin{gathered} \frac{\mathrm{K}_{\text {max }}}{\ell^{2}} \\ \text { for } \frac{\mathrm{KT}}{l^{2}}=5 \end{gathered}$
G 1	0.161	0.17	0.14	20	0.075	0.41	0.0623	2.61	0.0528	5.05
02	0.104	0.34	0.14	20	0.0477	0.48	0.0435	2.67	0.0390	5.11
03	0.111	0.17	0.28	20	0.0507	0.45	0.0461	2.64	0.0409	5.08
G 4	0.061	0.34	0.28	20	0.0574	0.52	0.031 .5	2.70	0.0319	5.14
- 5	1.010	0.055	0.044	10	0.3097	0.23	0.1672	2.50	0.0976	5.00
G 6	0.649	0.11	0.064	10	0.2272	0.27	0.114.46	2.52	0.0927	5.00
07	0.779	0.22	0.014	10	0.1488	0.33	0.1110	2.55	0.0806	5.02
C 8	0.692	0.055	0.088	10	0.2401	0.27	0.1489	2.52	0.0938	5.00
$\bigcirc \mathrm{S}$	0.505	0.11	0.088	10	0.187	0.30	0.1294	2.53	0.0679	5.00
G 10	0.325	0.22	0.088	10	0.1309	0.34	0.1013	2.56	0.0760	5.02
c 11	0.189	0.44	0.088	10	0.0814	0.44	0.0696	2.64	0.0578	5.08
G 12	0.103	0.83	0.088	10	0.01,58	0.70	0.0441	2.83	0.0379	5.25
G 13	0.350	0.11	0.176	10	0.1396	0.33	0.1061	2.55	0.0783	5.00
© 14	0.253	0.22	0.176	10	0.1055	0.37	0.0859	2.50	0.0678	5.03
G 15	0.162	0.44	0.176	10	0.0707	0.47	0.0613	2.56	0.0525	5.11
c 16	0.175	0.22	0.352	10	0.0761	0.12	0.067	2.61	0.0552	5.06
© 17	0.126	0.44	0.352	10	0.0560	0.52	0.0503	2.70	0.0442	5.14
Pa 1	0.089	0	-	-	0.004, 5	0.45	0.0333	2.64	0.0348	5.08
Pa 2	0.178	-	-	-	0.0784	0.39	0.0674	2.58	0.056 2	5.03
pa 3	0.884	-	-	-	0.1180	0.34	0.0936	2.55	0.076 .1	5.02
-a 4	0.357	0	-	-	0.1429	0.31	0.10:8	2.53	0.0792	5.00
Pa 5	0.568	0	-	-	0.2064	0.28	0.150	2.52	0.0904	5.00
pa 6	0.9	0	-	-	0.2774	0.23	0.162	2.50	0.0567	5.00
Pa 7	1.2	0	-	-	0.3464	0.22	0.174 .3	2.50	0.0968	5.00
pa 8	1.5	0	-	-	0.3955	0.19	0.1815	2.50	0.0994	5.00
Pa 9	1.8	0	-	-	0.4374	0.19	0.1001	2.50	0.0997	5.00
Pa 10	2.1	0	-	-	0.4740	0.17	0.1392	2.50	0.0098	5.00
Pa 11	2.4	0	-	-	0.5053	0.16	0.1913	2.50	0.1201	5.00

FIG.4. TEMPERATURE DIFFERENCES ACROSS SELECTED COMPOSITE SLABS

FIG.5. TEMPERATURE DISTRIBUTION IN A SAMPLE SLAB
(C) Crown Copyright 1958

Published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w c 2
423 Oxford Street, London w 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol 1
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast
or through any bookseller
Printed in Great Britain

[^0]: - 24 -

