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ROYAL AIRCRAFT ESTABLISHMENT 

THEOlWI?iCAL ANALYSIS OF THE HEATING OF A COMPOSITE SLAB, WITH 
APPLICATIONS TO THE KINETIC HEATING OF AN AIRCRAFT WING 

by 

E. C. Capey, B.Sc. 

and 

K. I. McKenzie, Ph.D. 

The transient temperature distribution 1s derived for a composite 
slab, heated by raising the air temperature on one side at a constmt 
rate to a maximum. Numerical. results sre evaluated on a digIt& compu- 
ter from the theoretical solution, whxh is obtained in series form. 
Results are obtained for the temperature difference across the skin 111 
an au-craft wing covered by insulative material; these results show 
that the effect of the insulatzve maternal could be calculated with suffl- 
cient accuracy by neglecting its heat capacity. The coquter programmes 
are applicabie to any problem in which there is no heat transfer at the cold 
surface. 
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LIST OF SYN3OLS 1 
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thickness of lower sectlon uf slab 
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thermal conductivity of lower section of slab 

thermal conductivity of upper section of slab 

density of lower section of slab 

density of upper section of slab 

specific heat of lower section of slab 

s;gecific heat of upper section of slab 

L 
PC 

= diffusivlty of lower section of slab 

k' 11 = diffuslvxty of upper section of slab 
PC 

heat transfer coefficient on lower surface 

heat transfer coefficient on upper surface 

distance from lower surface of slab 

time 

adiabatic well temperature on lower surface 

adiabatic wall temperature on upper surface 

temperature in lower se&Ion of slab 

temperature in upper section of slab 

time taken to reach find. temperature 

flnsl temperature 

Laplace transform for the time 
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1,; 

E 
k 

non-dimensional 
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P 
k’ m 

= -I- 
h'C, K' non-dimensional 

A oonstants 

F(E) = exprersion given in equation (11) 

a = n constants given by equation (12) 

bn = coefficients in expansion of V in equation (34) 

N(& ) = numerator in expression in equation (28) or (29) 

2 IN'IBOlIJ'XION 

If the external surfaces of any of the wings shown in Fig.1 are 
heated, while the internal surfaces remain cold, thermal stresses are 
prcduced in the plating, An estimate of the thermal stress can be 
obtained by treating the wing as a slab, cne side of which is heated, while 
the other side is subjected to boundary conditions depending on the type of 
wing. 

-.- ---_ -- -. - -- -- ____ I_._ _ 
insulation insulation _ -_-- 

metal metal -- --- 
-- - - ._ - . _ _ - _ ._ _ .-. -. ^_ -..-___ 

-.-- 

--- 
---__ 

insulation ---- 
(4 

----- -- 

metal _-. 
insulation 

-- 
__ --.. 

(b) 

insulat ion .-- - 
_ _.. ruetal -- 

I 1 

--- -- 

/I 
._ _.. I I .--__-_- ..I I 
._ 

-_-- 3nsulatZiG3 

(cl 
-. - 

“lg. 1. Aircrsft wings SUbJSct to surface heating. 

The problem reduces to that of finding the temperature distribution 
m a composite slab, cf the type shown in Fig.2, wnere # and $' are the 
adiabatic wall temperatures on either side of the slab, and h and h' are the 
heat transfer coefficients between the air and the metal and between the air 
and the insulation respectively. 
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h' #I(t) __--___-__ ..-- 
t 

insulation k' p' c' C' 

- - ---- 
k 

metal k P c e 

L .-_- - .--_-----_- __ 
h +(t) 

Fig.2 Composite slsb shcting notation. 

All the relevant equations are linear in the tenrpcrature, thus allowing 
sclutions to be obtained by superposition. The case here considered is that 
of an aircraft which is accelerated in such a msnner that the adiabatic wsll 
temperature $' rises linearly from an initial value, taken to be zero, to a 
final value p, as shown in Fig.j(a). This solutLoncan be obtained by the 
superposition of en infinite serxes of solutions for a step function variation 
of 6', as shown in Fig.j(b). 

#’ 
‘f ! __- --- o---, t 

$‘= 0 

(4 b) 

Fig. 3. Variation of adiabatic wall temperature with tiree. 

The snslysis of the slab shown in Fig.2 applies directly to the wing in 
Flg.l(b). It also apdiee to the skin of the wing in Fig.l(c) except near to 
the webs, and to the wing y1 Flg.l(a) if h is put equal to sero, since, from 
symmetry, no heat crosses the line A'B'C'D'. 

The temprature distribution and thermal stresses in a slab of the type 
shown in Fig.2 have been celculated by Parkes', meking the assumptions that 
the heat capacity of t5e insulative material can be neglected ad that no heat 
leaves the lower surface of the metal, which is equivalent to putting h equal 
to zero. In thus repcwt the temperature distribution and thermal stresses 
are obtained for the general case, when the heat capacity of the insulation is 
taken into account, anii when h mey have any value. 

The maximum temperature difference across the metal part of the slab 1s 
taken as a measure of the thermsl stress. Thx madmum temperature difference 
.a&. the time at which it occurs are computed for various materiels, thick- 
nesses and heat transfer coefficients using a digital computer. A camparison 
is made between the results obtained by Parkes neglecting the heat capacity cd? 
the insulatlve material and the more accurate results obtained from the analysis 
in this paper. 
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3 MEYiXC~D OF SOIUt'ION 

In order to obtain the tem~rature dlstrlbutlon in the slab shmm in 
?i&2, it 1s Aecessary to obtain a solution cf the drf'ferentid equation 

&!-1.E = 0 
ax2 K at (1) 

in the lower section of the slab, where K is the dlffuslvity of the metal, 
given by the equation 

k 
Ic = PC' 

and of the differential equation 

a2vf I av' 
--F.z = 0 
ax2 

in the upper section, where 

(2) 

(3) 

It is assurilcd that k and PC are constant over the range of temperatures 
nrclved. 

Yhe temperature and heat flow must be contmuous over the boundary 
between the two materials, so that 

v(e) = v'(e) (5) 

and 

The boundary condition at the lower edge, x = 0, is that the heat 
flcvv 1s eq-Lt to the heat transfer coeffxient times the difference between 
the arlia5at.x wall temprature and the surface tenpratwe, that is 

k($$jo - h k(o) - $(t) ] = 0 9 

:;hlle at the upper edge, at x = -8 + 8', the condxtion is that 

+ h' &Ad') -$'(t) 
i I 

= 0. 

(7) 

(8) 
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The initial condition is that 

v = V' = 0 

at t = 0. 

The solution is to be obtained for the variation of $' shown in Yig.j(b) 
$ = 0 throughout. 

A Laplace transformation is carried out on equations (1) to (9) in 
Appendax 1, and the inverse trwsfonnatlon gives the solution 

(9) 

with 

1 
i?;+$ 

V(x,t) = B , 8 e, , + -8 
i;+i;+F+I;i- k( 

sin E n COB sn z+$$- n t exp(-K+/82) 
> 

/ 

(10) 
n 

where the first term represents the steady state solution, end the second term 
the transient solution. The sumat1on in the transient term is takeu over the 
values of E n ccrresponding to the solutions of the equation 

P(E) = 

c 

(CO8 E cos ye-a sin L Sin YE) - E(I (~0s E Sin YE +a Sin E COS YE) 

I 

sin E co9 YE + a CO8 E sin yE 

- f+ (sin s sin ye -a cos .s co6 YE) 
I 

= 0, (11) 

where a, y and p are non-dimensional parameters which depend on the properties 
of the materials and the heat transfer coefficients. The coefficients an are 

given by the equation 

2 a = n 

-7-T 
E dF ' 
n GE 

n 

(12) 

There are an infinite nunicer of terms in the series for the transient tempera- 
ture distribution; but as n increases an diminishes rapidly, so that only the 

first few term in the series need to be ev.eJ.uated. 

In order to obtain the te 
T 

rature dlstributlon when the adiabatic wall 
temperature varies as in Fig.j(a , solutions of the form shown in equation (10) 
are superposed and mtegrated. Expressions for the temrature distribution 
before and after the maximum adiabatic wall temperature is reached are given in 
Appendix 1. 

Tne temperature difference, V(8) - V(o), across the mstsl section is a 
rough measure of the thermal stress. When there is no heat transfer across 
the lower edge of the slab, that is h = 0, V(4) - V(o) is given by the equations 
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V(8)-v(o) = B 
c 

an (cos En -1) 
II-exp(-KS; t/e2)j 

n 
KS; t/e2 

(t(T) (13) 

v(e)-v(o) = p c an (cos E n-') 

lexp(Ks; T/e') -I] exp(-Ks;t/e2) 
(14) 

n 
(t >T). 

A ccsnputation for evaluating and maximising the second of these expressions 
was programmed for the DEUCE digital computer. It was not necessary to 
evaluate the former expression, since the maxxmun never lies m that range. 
rtesults for the maxumun value of V(d) - V(o) and for the time at which this 
maximum occurs were obtained for a number of dlrferent materials, thick- 
nesses and heat transfer coefficients, EIK? are given in Tables 2 srd 3. 

Another case which might be of some jnterest is that of the slab with 
an infinite heat transfer coefflclent h on the lower surface. This might 
be approxmlately realised by the use of a llquld to COOL the lower surface. 
The maximum temperature drfference In this case 1s simply the steady state 
temperature difference 

4 APPROXIMATE %!3T?iOD 

(15) 

Parkes' obtalned an approxunate solution to the problem of the 
composite slab by assunnng that, although the heat resistance of the insu- 
lative rnatcrlsl IS greater than or comparable with that of the metal, its 
heat capacity is negligible. Psrkes' solution follows sqly from the 
general analysis, and is obtained m Appendix 2. It is shown that, 111 the 
case when h vanishes and # is taken tc be a step function, 

V(x,t) = P [I +xs co.3 tn t) exp(-Ks,2t/d2)] , (16) 

n 

En tan En = .q+q=h 

and 

- 2h set sn 
a = 

n A + A2 + En2 

-a- 

(17) 

(18) 



5 THE FROGRAMlvEFORDEXJCE 

The pro&r-e for this computation is in two separate parts. The first 
part computes the ~n's and an's from equations (11) and (12) using a sub- 

routine to evsluate F(E) and !$- for any E. The second part uses these 

values and a subroutine to evaluate V(e) - V(o) at any time, to find the 
maxhum 0;' V(t) - V(o) .&I the time at which it occurs. A schematic repre- 
sentation cf the programme is given in Appendix 3. 

6 DISCUSSION OF RESULTS 

It is shown in Appendix 1 that the solution to the general problem 

KT depends on five non-dimensional variables, a, y, 11, h and -. 
e2 

All the 

calculations were made assuming h q 0, that is, no heat flow over the lower 
surface of the metal. 

The thermd properties of aluminium alloy, stainless steel, titanium, 
Durestos snd paint are shown in Table 1. Since, as far as those properties 
are concerned, titanium is similar to stalnless steel, snd paint to Durestcs, 
it was decided that only two cases needed to be considered: 

(i) Durestos on aluminium alloy and 

(ii) Durestos on stainless steel. 

Table 2 shows the values 13 a, y-and p corresponding to various thick- 
nesses uf metal plate, thicknesses of insulation ad heat transfer coefficients. 
It was considered impractical to have a rretal plate yre than 2 in. thics, or a 
heat transfer coeffxient greater than 0.1 joules/cm set '0 (Ii'5 Btu/ft hr 3). 
Computations were carried out for all other cases where the therm& stresses 
would be appreciable. Altogether, 28 computations were carried out, 17 with 

'I * Oandllwithy ~0; and in each case gwas given the values 0, 2.5 
e2 

and 5. KT 
7= 5 corresponds to a very slow acceleration, so that the solutions 

for most practical oases can be obtained by interpolation between the values 
I 

for g 
e2 = OS 2*5 and 5* 

Futtingy = 0 is equivalent to neglecting the heat oapacity of the 
insulatxon, and in this case the teqrature dxstributzon for any particular 

value of Iir I 

e2 
aepends only on A = 

TX' 
Fig.4 shows vslues of (Ve-Vo)/P 

KT Flatted against A for - - 0, 2.5 and 5. 
t/e2 - 

The results fory = 0 are shown as 

continuous graphs and those for y 4 0 as small circles. It can be seen that 
the small circles lie very ne,ar to the contrnuous lines. Thus, in all 
practical cases, it is permiosible to assume that y = 0 and use the graphs of 
Fig.&. ;&hen the solutions Jdi,hy = 0 and y * 0 were compared more closely, 
it was found t&t, withy * 0 the maximum temperature difference is a little 
lower and takes rather longer to reach than unthy = 0, for the same values of 

nsIq. Results for (Vd-Vo)db and tmax are shown in Table 3 with 

1s.r 
- - 0, 2.5 end 5 for the 28 sets of values of a, y and p. 
c2 - 

-v- 



The actual temperature distribution was worked out for a sample case. 
Graphs cf V against t are given in Flg.5 at 7 points in the metal and 
insulation, fcr T = 0 (that is, for instantaneous acceleration), A = 1, 
y = 0.267, a = 2.5 and g = 0.133. Beside these graphs small circles are 
&awn to represent the temperature which would be reached at the same place 
at the SW time if T = 0, A = 1, y I 0 and fi = 0.133. This figure 
illustrates the fact that wheny $ 0 the heat capacity of the insulation 
slows down the passage of heat into the slab, so that it takes longer for 
the slab to reach any given temperature. 

7 cO??cLus10NS 

The temperature distribution in a composite slab consisting of a 
lsyer of thermally insulative material fixed to a metal plate, is worked 
out by an analytical method for the case where the temperature of the air 
adjacent to the insulation increases linearly from an initial to a final 
value. It is assumed that the heat transfer coefficients on both faces 
of the slab remain comtant as the air temperature increases. This problem 
can be taken to represent the kinetic heating of an aircraft wing. 

An approximate analysis of the problem of a wing covered with insu- 
lative material is due to Parkesl, who uses the simplifying assumption 
that, while the thermsl resistance cf the insulative material is ccmparable 
with cr greater than that of the metal, its heat capacity is sufficiently 
small to be negligible. 

The most practical case is that in which there 1s no heat flow over 
the ai+metsl surface; and all the computations are done using this 
condition. The msxinnun temperature difference across the metal plate, 
which is a rough measure of the thermal stress, is celcdated numerically 
for all conibinatlcna of materials, thicknesses, and heat transfer coeffi- 
clents thought likely to be of practical interest. The computations show 
that the thermal stresses will be small unless the skin thictiess exceeds 
I" for an aluminium skin, or 2 for a stainless steel skin, and, where they 
do occur, they can be reduced considerably by a thin layer of insulation 
such as Durestos or paint. These results were compared with those 
obtained. using Parkes' simplified theory, and It was found. that, while the 
exact thecry gives a slightly smaller value of the maxllloun temperature 
difference across the metal plate, and slso retards the occurrence of this 
maxinum a little, both of these effects are so small as to make the use of 
the simplified theory fully justified. 

A table of results is presented showing the maximumteuqerature 
dlffercnce and the time taken to reach it for all the cases computed. 
A graph is drawn showing this msxtitemperature dirference, and comparing 
the exact with the simplified theory; and, for a ssmple case, a series of 
graphs isdrawn showing the way in which the temperature changes with time 
at various points in the metal and insulation. 

The apportionment of authorship is: analysis by E. C. Capey; 
computaticn by K. I. McKenzie. 

LIST OF REFEXEX'ILX3 
Ref.Ho. l.uthor Title, etc. 

1 Parkes, E.B. The alleviatmn of thermal stresses. 
iXircraft Engineering, Vo1.25, pp.51 -53, 
February, 1953. 
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APFMDIXI 

SOLUTION CF THE HF.AT FLOW EQUATIONS FOR A CXX!X)SITE SLAB 

The temperature distribution across the slab is obtsined by taking the 
Laplace transform of the heat flow equations, substituting the boundary 
conditions, and. then carrying out the inverse transformation. 

The Laplace transforms of equations (1) and (3) sre 

and 

a2 ( > -- 
ax2 

E V(x,p) = - iv(x,o) 

i 
a2 

ca 
-- 

2 JGJ iJ'(x,p) = 
K'/ 

- $vf(x,o) . j 
x 

, 

(19) 

Substituting 

E = -5i \'p7K , (20) 

and using ewation (9) to eliainate the right hand sides, equations (19) give 

snd 

the general solutions of which are 

WP) E A(p) cos 7 + B(p) sin y 

, (21) 

(22) 

‘K i;l(x,p) = C(p) 00s E) F. $ + D(p) sin s 
K 

r 
x 

,iF' e' (23) 

where A, B, C snd D are f7urmtions of p. 

On applying the Laplnce trsnsfozmation to equations (5) to (8), they 
bccome:- 

q(e) E F(e), (UC) 



-hif(o) = 0 (26) 

+ h' 

rihere #(t) is taken to be zero, and $'(t) a step functum as shown in 
Fi&.j(lJ). 

Cn combming these with equatmns (22) and (2J), A, B, C and D sre 
evaluated, givulg 

V'(x,p) = 0 -f 
L \ 

.....~.~,~)...~~~(~-1)) 

-a 
( 

sin s - $ cos .s) sin b/$($- ?)]j$?(&) (29) 

where 

F(E) = 
c 

( cos E cosye-a SinE sinys)-sp(c03 6 sinye+a sinEmsyE) 
I 

+$ 
L 

(sinsc~y&+acosEsinye-ECL(sinE sinyE-acose cosyE) 
I 

(30) 

x=hL 
k' 

k~ressions fm- V(x,t and V'(x,t) can be obtained by separating the 
expressions m equaticn (28 and (29) into partial fractmns, then carrying 
out the inverse Laplace transformation on the separate fractions. As 

E = ei &?K 

- 12" 



both the numerators and denominators in equations (28) end (29)e.x converging 
power series in P, and oen therefore be represented to any degree of accuracy 
by Polynomials to the (lGl)th end (M+I)th Powers respectively; and conse- 
quently T(x,p) can be broken up into partial fractions es follows: 

b bl b2 
b IM i&p) = $+p-p+p-p...- 

p-?.+i 1 2 
(31) 

where, if M is large, the pn's approximate to the roots of equation (SO), 

provided that this equation does not possess mltiple roots. If equation (Xl) 
had possessed mltiple roots for any of the sets of values of y, a end u used 
in the computations, this would have been noticed; but in fact it did not 
occur. 

If both sides of equation (31) are mltiplied by (p-p,), end then p 

tends to Pn, bn can be evaluated and is given by the equation 

b n = lull V(X,P)(P-P,) 
VP, 

while 

N(P,) = 

NyJ 
= 

n 

b. =;z, i-f (33) 

where N is the numerator of the expression in equation (28) or (29). 

The inverse transformation of equation (31) is 

m 
v(r,t) = b. + bn e c 

Pn' . 

(32) 

(34) 

On substituting equations (32) and (33) into equation (3+), then substituting 
into the constant termbo for a, y, p snd h, the temperature distribution is 

given by the equations 

x +~sine ne s 
F;+T;+F+gi n 

(35) 

- I3 - 



xhehere the E n 's are the solutions of the equation 

Ne,) = 0 , 

end the ants are givenby the equation 

a n = 21”, g 
0 E n 

(37) 

Eq+xons (35) and (36) give the temperature distribution resulting 
from an applied air teqrature as shown in Fig.j(b). If this dxstributlon 
is called $,'(t), then the distribution m Fig.3(a) csn be written as 

or 

t 

$1 = 
i 

i$;(z) dz for t < T 

0 

(38) 
T 

$1 = 
s 

4$;(z) dz for t > T . 

0 

As all the equations are linear the solution for this case can be obtained 
by superposition, and V(x,t) 1s given by the equation 

+B 

for t < T (39) 
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ena 
T 

v(x,t) = k 
i 

I 

0 
:I 

for t > T. (40) 

The temperature dtiference across the mstsllic section of the slab is 
V(d) - V(o), whxh is given by the equations:- 

e t 
v(e) - v(0) iF’5; r-- 

a ( 
h 

P =, ee, ,+ 
K+i;+F+i;r 

anoOsen+qsmEn-I 
> 

II-exp(-KS; t/2)] 
x for t < T 

and 

e 
V(C) - v(0) i; h 

P = , e e, , + an cossn+g-suen-l 
T;+i;+F +g L ( n > 

[exp(K( T/d*) -1 ]exp(-Ik; t/e*) 
x 

lQs,*/e* 

for t > T . 

(41) 

(42) 

Special cases 

(i) No heat transfer on lower surface. 

This TLS the case considered by Psrkes, and is the one whwh is likely to 
be most practicsl. Equations for thus case can be obtauud by substituting 
h = 0 and )r = 0 into the equatxons derived above. The temperature difference 
across the metallic se&Ion of the slab 1s obtained from equations (41) and 

(42) and. is 

v(e) - v(0) 
B 

= 

& 
an ( co9 E n-l) 

f I-exp(-Kc: t/d*)] 

IQ/e* 
for tcT (4 ‘1 
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v(e) - v(4 B an (cos E n- 1) 
~exp(Ig T/e2) -11 exp (-KS? t/c2) 

= 
I&- 2/G 

&Jt) 
n for t > T . 

The sumnation is carried cut over those velues of E which obey the 
equation 

F(E) = (00s E cos YE -a sin E sinys)-E~(COS E sin p+a sin E cos YE)= 0 . 

(45) 

The an's are given by equation (37), which can be expanded and becomes 

4, 
a = n (1 + af + ap) sin Ed cos -pn - EJ.I( I+ w) sin En sin Yen + (46) 

+ c&a +y) cos Ed co9 yen + (a +y + F) co9 en sin yEn 

(il) Perfect conduction on the lower surface. 

Simdar equations csn be obtained for this case by letting h and h 
tend to infinity. In this case the temprature difference always increases 
with time, so that the maximum tempratwe difference is the steady state 
tcnpzrature difference. This is obtained by making h, h and t in equation 
(42) Finite, so that 

- lh - 



A.PmDIx2 

's DISTRIBUIION WITH THE EMI! CAPACITY 
OF TIE INSUL4!TION NEGEXXED 

When the thermslresistance $ of the insulative material is very mob . 

greater than the thermal resistance k A at' the metal, tb& thermal stresses are 

negligible. On the other hand, when $ is very much less than k i the insula- 

tive materiel is ineffective. Therefore, analysis is required only for 
values of $$ of the order of magnitude of 1. The insulation will naturally 

be a material with low conductivity, so that a consulerable reduction in the 
thermal stresses will be obtained with a smll thickness of insulation. Such 
a small thickness uf insulatxon ml1 have a smsll heat capacity, and this may 
be mall enough to be negligible. 

It follows from these assumptions thaty is small, and it LS allowable 
to make the substitutions 

Substitution of these two relationships into equations (11) and (12) 
gives 

F A 5 
n 

-~ShE CO8 E = 0 (48) 
n 

-2/E 
a n = n 

( 

E 
sine A c-cos e n E > ( 

co9 E - n + 2 A n 
n "aincn)+sinen(~-$)' 

n (49) 

The equations (35)an2 (39) to (&!+) which give the temperature in terms of the 
?I' s and an's remain unchanged. For the specxal case when there 1s no heat 

transfer on the lower surface these eTations reduce to 

En tan En = A 

alla 2A se0 c n a = - n A + A2 + En2 
(51) 

These are the equations derived by Parkes. It is seen that in this case the 
temperature dlstributlon in the metal does not depend on a, y snd p separately, 
but only on A. 
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lLmNDIx3 

SGHEMATIC FGZ'RESENTATIONS OF THE DEUCE PROGRAMMES 

1 Programme for evaluating En ad. a n 

- .- 
--_ 

Have F(E) snd I? 
the ssm sign? 

D 

I 

Replace F(eO) by new 
value of F(E) I 

E 

-a---- I 

Form E 
F(%-I) 

r = %I - F’(EJ 
r-1 

F&, > F 
Is - ' c F-&j- < ' ? 

. . _ .+. . _ I 

, If not \ ----‘- -- .. I If so 
N 

--__-_- / 
-T-‘----- -- - 18 - 

- 

Calculate one more au 
Is this Ia 1 < m? 
-__-- n- _-- 
If not j If so 

1 ---- --- 



A The parsmeters are read in. a, y and p are given in the list of 
symbols, and m is the minimum value of an required. m was taken 
to be 2‘6. 

B,W' Starting from E = 0, E is increased. by steps of 0.25 untilF(s) 
changes sign. As soon as F(E) does chsnge sign it is known that 
a root cf F(E) = 0 lies between this vslue of F(E) and the previous 
one. 

E This value of F(E) becomes the new F(E~), which will be used to 
find the next root. 

F-J The root which has been approached is now evaluated, correct to 
twelve binary places, by the Newton-Raphson method. There is a 
limatation to the automatic divider on DEVCE, in that it fails if 
the quotient numerically exceeds 1. This is not likely in this 
case, and. if it did occur, would mean that a root had been missed. 
If crpa a 2j2, the capacity of the machine would have been 

exceeded. In practice, neither of these things happened. 

K To guard. against the limitation of the divider in working out an, 

the divisor is tested to see If it is less than or equal to the 
dividend, and if so, is nmltiplied by 2. This is done repeatedly, 
until the quotient would be less than unity, an3 ccanpensated for 
after division. In practice an never exceeded 2. 

L 'n' an are punched in binary to 20 places. 

. M, N an is tested to see whether it is less than m. If it is, one 

further an is computed to guard against the possibility of getting 

one smsll vslue of an between two larger ones. 

Having worked out one set of sn's and an's, the programme returns 

to the beginning to read in more data. 
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A 

B 

KT Readin-, 
e2 
I 

_._--- -- -_.- 

__~_.._ 

-__--~ _-_-. 
Put t = T for T * 0 

0 / Kt -; = $ for T = 0 

D j Form v(e) - v(0) (v,) 
_I- 

I ------- - -- 
E p&- to s- / --- ---* & e2 ! 

f  _-_._-_ _-.- _... I 

F Form V(e) - V(o) (V,) 
_.---- - _ -. . .._-- 

_. --.-L- .__ 

G / IS V2 < V, ? j 
---~----.--. 

-! __._ :2-!*A / If SO 

-- Replace V, by V2 
I 

----- -J--. _-  ̂
.-_ 1 Punch V, and the 

I 
cor!respondln& value 
of t 

-j- 



A 

B 

C 

N is the number cf terms taken in the series for V(d) - V(o). 
In order not to exceed the capacity of the machine 

2 E < 29 
RI! 
z+' 

which m turn sets a limitation on N. 

The en's end an's must be stored for use in the subroutine for 

working out V(J) - V(o). 

Owing to numerical inaccuracies It sometimes happens that for 
values of t near t = 0, V(e) - V(0) decreases as t increases. 
This gives en apparent msximm at t = 0. To prevent this from 

appearing in the results, the first value af 
was i. 

~teken when T = 0 

2-n Fis now repeatedly increased by & , working at V(e) - V(o) 

each time, untzl a maxumun of V(8) -V(o) is reached. 

I The value of V(4) - V(o) nearest to the mxlrmun, and the corres- 
ponding tune, are punched to 22 binary places. 

The progrsmne returns to the beginning & reads m more data. 
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TAESJ3 1 

Themd Propertxs of iviitermls 

(joules/oi se0 OC) (joules;gm OC) (gqYc0) (i~tseo) 
- 

Aluminium alloy 1.3 0.88 2.8 0.082 

Stainless steel 0.2 0.50 7.8 1 o.am 

Tltanum 0.15 0.61 4-A 0.0081 

Eurestos 0.0011. 1.3 A.7 O.ooO28 

Paint 0.002 1.2 1.8 0.00015 
to to 

0.004 o.ocQ3 

Case 1 Durestos (or paint) on alumnun alloy 

ct = 20 y = I?$ 

Case 2 Durestos (cr paint) on stainless steel (or titsnmn) 

a = 10 y t 5.5% p 0.022 
=x. 
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TABLE 2 

Tmperature DifferencesAcross Selected Composite Slabs- 

- 

metal 
ecfn, 

I 

I 
0.5 

0.1 

,75 BtU/f t2kroF) 

1-- 

0.05 

0.025 

( 0.025 

0.1 

0.05 

< 0.02 Effect of insulation is snail 

0.14 ; 0.071 

0.14 , O.OliS 

> 0.04 j m-1 stpes5cs nl?gllglble 
\ 

/200(0 / . ' 

'O ** ! o'078 Eifect cf insulation aall 

0.02 0.111 :23 / 0.17 

0.04 ‘0.08l 
i i 

0.28 0.051 

j2010.34 f  0.28 0.037 

> 0.04 j 'hmal stpe.ses negl&ible 

0 jo.089 2Jj 0 0.04l 

'lkm2.l stressez negligible, so no 1nulZtlon I 

O < 0.02 

o.02 

> 0.02 Thermal stre~s.e~ nf;lfgiblo 

0 jl_e9~mjo jo., j 0.041 

Them31 stresses n~lI~ib10 

~lhemalstresses ncrzligibla 

1 : 
0 2.21 ( 1oio /o.oJIII 0 l&d . 

-23 - 

pa4 

Cl 

$2 

Pa 2 

c3 

G 4 

Pa 1 

lfred 

Pa 2 

G4 

Pa 1 

see grqh 

7 

n 

I 

. 

c5 

G6 

c7 



TABLE 2 (CONTD.) 

2 

1 

0.05 

0.05 

0.0125 

0.00625 

< o.coL?5 

0.1 

0.16 

0.32 

> 0.2 

0 

< 0.02 

0.02 

0.04 

0.03 

0.16 

0.32 

, 0.9 

0 

< 0.04 

0.04 

0.03 

0.16 

0.32 

> 0.32 

0 

< 0.08 
O.OG 

0.16 

> O-16 

0 

0 

c 0.01 

00 

0.02 

0.04 

- 

Y 

0.44 

0.33 

T 

i 

-----TGL1um 

1 

TUOZfT.ZGilPC CI Dirrei-ence 
(T = 0 

cvpy& b --.-- 

0.044 "0.03 

0.01~. “0.05 

-7 

i( 

/- 

0.i GG 

0,350 110 1 

O”11 

i ;1/;.;; 

. 

y5; 

.s . 

z; i:;; 

. 
I 

0.095 / 10 / 0.33 

1 

0.176 

i "0*05 ! 

NO imulotlon need<d. ~mnl. str~sscs necl%lblr 

Tticrilml stl’eb~x nqllLiblc 

1.14 ilO/ 0 1 0.063 0.335 See gmzh 

xrect or hsmtl0n mm 

0.679 10 0,055j 0.036’ 0.240 03 

0.505 / 10 0 . 11 I 0.036 0.138 G9 

0.325 1 101 0.22 0.063 0.13 Cl0 

- 216 - 

- 

;i)c g-aph 

G3 

G9 

c 10 

G II 

G 12 

Pa 5 

G 13 

Cl4 

G 15 

ilmilap t.0 
L I2 

Pa 3 

G 16 
c 17 

se gmPh 



TABLE 2 (CON’Tl1.j 

Dwestcs on Stainless Steel (Contd,) 

mxlmm 
miclmcs or TerlpCrcLtun 

Insulation A a y P DlffWBtlCC 
0 (in) (T = 0) 

0.00 0.189 IO 0.44 

0.16 0.103 10 0.04 t 

(VflJlP 

0.0%3 O.OM 

0,om 0.046 

0 0.568 lo o 0.176 0.205 

0.02 0.350 10 0.11 o.i7E. 0.140 

0.04 0.253 lo 0.22 c.176 0.105 

0.00 0.162 lo O.l$+ c.176 o.oil 

0.'6 0.075 10 o.% 0.176 - 0.05 

0 0.2%: IO 0 0.352 0.118 

0.04 0.175 10 O.z! 0.312 0.07G 

0.08 0.125 10 0.44 o&2 0.0% 

0 0.1.$2 10 0 0.704 0.065 

0 0.560 lo o 0.176 0.206 

0.01 0.3YJ 10 0.11 0.176 0.140 

0.02 0.253 10 0.22 0,176 0.105 

0.04 0.162 10' 0.44 0.176 0.071 

0.00 0.095 10 O.E8 0,176 - 0.05 

0 0.264 10 0 0.;52 o.iie 

0.02 0.175 10 0.22 0.352 0.076 

0.04 0.12G IO o.&'+ 0.352 0.056 

0 0.142 10 0 0.704 0.065 

0 0.284 10 o 0.352 0.110 

0.01 0.175 10 0.22 0.352 0.07G 

0.02 0.126’ 10 0.44, 0.352 o.ogG 

0 O.lk2 10 0 

0 O.ll12i 10 0 
/ 

ThWral StWsscs ncgl;Ciblo 

I; 11 

G 12 

R3 5 

013 

014 

015 

Slmllar to 
c I2 

Pa 3 

cl6 

G 17 

SW u-aph 

Pa 5 

G I3 

G 14 

G 15 

Shflru‘ to 
G 12 

pa 3 

OlG 

c 17 

See graph 

Pa 3 

G 16 

c 17 

see graph 

see &raph 
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TABLE 3 

Computed Results 

i 

;1 

G 2 

5 3 

G 4 

G 5 

G G 

G 7 

5 8 

: 9 

G 10 

G 11 

G 12 

Cl3 

G 14 

G 15 

G 1G 

G 17 

PU 1 

Pa 2 

Pa 3 

aa 4 

Pa 5 

Pa 6 

pa 7 

Pa 6 

Pa 9 

Pa l( 

Pa 11 

- 

0.699 0.05~ 

0.35 0.11 

0.325 0.22 

0.18Y 0.44 

0.103 0.83 

O.EC 0.11 

0.253 0.22 

0.162 0.44 

0.175 0.22 

0.126 0.44 

o.oas 0 

0.178 0 

0.284 0 

0.357 0 

- 

- 
'.l 4 

'.I 4 

28 

,.20 

,.041 

'.Ol>l 

l.OU 

'.Oei 

.O@ 

l.ODE 

ILOGE 

'LO@ 

,.17: 

1.176 

1.17( 

j.35: 

1.35: 

- 

- 

- 

cl 

- 

20 

20 

20 

20 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

- 

- 

- 

,- 
& 

e2 

for G=c 
42 

O.ll 

0.48 

0.45 

0.9 

0.22 

0,27 

0.33 

0,27 

0.30 

0.34 

0.44 

0.70 

OS3 

o,n 

0.47 

0.12 

0,5‘? 

0.45 

0.39 

0.34 

0.r 

0.20 

0.23 

0.22 

0.19 

0.13 

0.17 

0.1 G 

i , 

v(e)-V(0) 

P 

01‘ !c=Z.! 
-.I”-- 

0.0623 

0.0435 

0.0161 

o.oj49 

0.1672 

0.111,6 

O.lllO 

0.1489 

0.1294 

0.1013 

0.0696 

0.04c1 

3.1061 

0.0859 

O.Oclll 

O.Oi57 

0.0%3 

Ktnu: 

e2 

:w Kr= 2.: 
8” -~ 

2.G1 

2.61 

2.64 

2.70 

2.50 

2.:2 

2.55 

2.52 

2.33 

z.!S 

2.64 

2.83 

2.55 

2.g 

2.56 

2.61 

a70 

i(e)-v(ol 

B 

rcr KT =I 
62 

0.05x3 

0.?3‘% 

O.O@V 

0.03lY 

0.0976 

0.0927 

O.ODoC 

0.0938 

O.OUQV 

0.0760 

0.057a 

0.0377 

0.0783 

o.oG7f3 

0.025 

0.0552 

O.OW'2 

KG,,x 
e2 

or!%, 
L 

5.05 

5.11 

5.08 

5.14 

5.00 

ii.00 

5.02 

5.00 

5.00 

5.02 

5.08 

5.25 

5.co 

5.03 

5.11 

5.06 

5.14 

O.Oj& 2.i4 o.og$z 5.08 

O.OG71, 2.9 0.05GJ 5.03 

0.093G 2.55 O.Wil 5.02 

0.103 2.53 0.0792 5.00 

0.1370 2.52 o.om 5.00 

0.1622 2.9 0.09G7 5.00 

0.1743 2.50 0.09G6 5.w 

0.1 m 5 2.9 0.0994 5.00 

0.1 Xl 2.50 0.0997 5.00 

0.1392 2.9 O.CWW 5.00 

0.1713 2.50 O.l,Lol 5.00 

- 

- 
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