3.7

C.P. No. 413
$(20,302)$
A.R.C. Technical Report

A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

Effects of some changes in Body Length and Nose Shape on the Aerodynamic Characteristics of Wing-Body Combinations at Supersonic Speeds

by
S. Tomlin \& A. Stanbrook

U.D.C. No. $533.6 .011 .5: 533.691 .18: 533.695 .6$

Technical Note No. Aero. 2542
February, 1958

ROYAL AIRCRAFT ESTABLISHMENT

EFFECTS OF SOME CIIANGES IN BODY IENGTI: AND NOSE SHAPE ON THE AERODYNAMIC CHARACTERISTICS OF WIIVG-BODY CORBITATIONS AT SUPERSONIC SPEEDS
by
S. Tonlin and A. Stanbrook

SUAMARY

Three bodies have been tested alone and in combination with each of two wings, at Mach numbers of 1.42 and 1.61 , to find the effect of body length and nose shape on the aerodynamic characteristics of the wing-body combinations. The increments in the forces and moment resulting from the addition of the wing to the body varled little with the different body shapes tested.

LIST OF CONTENTS

Page
1 IMTRODUCTION 3
2 DETATHS OF THE TESSS 3
2.1 Description of the models 3
2.2 Range of the tests 3
2.3 Accuracy 3
3 PRESINTATION AND DISCUSSION OF TEE RISULTS 3
4 CONCLUSIONS 4
LIS' OR IILUSTRATTONS
Fig.
Delta and Swept Wing Models 1
The variation of C_{L}, C_{D}, and C_{m}, for the bodies alone at $M=1.42$ 2a
The variation of C_{L}, C_{D}, and C_{m}, for the bodies alone at $M=1.61$ 2b
The variation of C_{L}, C_{D}, and C_{m}, for the delta wing-body combination at $M=1.42$ 2c
The variation of C_{L}, C_{D}, and C_{n}, for the delta wing-body combination at $M=1.61$ $2 d$
The varaation of C_{L}, C_{D}, and C_{m}, for the swept wing-body combination at $M=1.42$ $2 e$
The variation of C_{L}, C_{D}, and C_{m}, for the swept wang-body combination at $M=1.61$ $2 f$
The effect of body length and nose shape on the increments inC_{I}, C_{D}, and C_{m}, resultang from the addition of the delta wingto the various bodies.$3 a$
The offect of body length and nose shape on the increments in C_{I}, C_{D}, and C_{m}, resulting from the addition of the swept wing to the various bodies 3b

A research programme is in progress in the R.A.E., Bedford 3 ft transonic and supersonic tunnel to study the aerodynamic characteristics of various wang shapes. As a preliminary step in the supersonic part of this programe tests were made to determane the effect of noss shape and body length on the aerodynamic characteristics of wing-body combinations. These tests, and the result obtained, are described in thas note.

2 DETAILS OF THE TESN'S

2.1 Description of the models

The models used are shown in Fig. 1 . The delta wing had a leading edge sweep of 54.7° and an aspect ratio of 2.83 . The swept wing was of the same aspect ratio wath a leading edge sweep of 60.5° and a taper ratio of $1 / 3$. The chordwise wing section of both models was R.A.E. 101 of 6% thickness. In each case the wing was tested in combination with a cylindrical body having either a conical or a slightly blunted ogival nose. The concal nose was of 15° apex semz-angle and the ogive was 3.6 diameters long. Some tests were made with the ogival nosed configurations with a reduced body length downstream of the wing. There were thereforc three combinations of nose and body wath which each wang was tested:-
(a) Ogival nose and short body.
(b) Ogzval nose and long body.
(c) Contcal nose and long body.

Additional tests were made on each of the corresponding bodies alone.

2.2 Range of the tests

Measurements were taken at Mach number of 1.42 and 1.61 at a constant Reynolds number of 2.00×10^{6} (based on the aerodynamic mean chord). Transition of the boundary layer from a lamınar to a turbulent state was not fixed in any of the tosts. An incudenco range of ± 80 was covered at $M=1.61$ but at $M=1.42$ the incidence range was restricted by shock reflections from the top and bottom walls of the tunnel.

2.3 Accuracy

The estimated accuracy of the results is as follows:-

Lift coefficient, C_{L}	± 0.005
Drag coeffycient, C_{D}	± 0.001
Pitching Moment coefficient, C_{m}	± 0.001
Incidence, α	$\pm 0.1^{0}$

3 PRESTKTATION AND DISCUSSION OF THE RESUTT

The basic results on the bodies elone and on the various wing-body combinations are presented in Figs.2(a)-(f). The incremental values of C_{L}, C_{D}, and C_{m}, obtaincd by subtracting the body-alone results (at the appropriate true incidence) from the results obtained on the wing-body combinations, are shown in Figs.3(a) and (b). Withan the limats of
accuracy of the experimental measurements these figures show that the differences between the various cases are negligable except for one isolated result in Fig.3(a). Since this one isolated difference is not repeated at the corresponding negative incidence in the same figure it is probable that it is due to an incorrect reading.

In the main research programme the ogival nose has been used (except at $h=1.3$) since it is more suitable for testing at subsonic and transonic speeds. However, it is too long for use at Mi $=1.3$ since at this Mach number the reflection of the bow shock wave from the tunnel wall ampinges on the rear body. Hence, it has been necessary to use the shorter, conical, nose at $11=1.3$. The present results show that this change of nose will not affect the interpretation of the variation of the wang characterastacs throughout the Nach number range.

4 CONCLUSIONS

From the results of the tests presented here It is concluded that the changes of nose shape and body length involved had negligible effects on the aerodynamic characteristics when considered in the form (wing-body combination - body alone). In fact, the differences which occurred were less than the possible error in the experimental measurements.

DIMENSIONS ARE IN INCHES

FIG. I. DELTA AND SWEPT WING MODELS.

$c_{m} \vee \propto$
FIG 2 (d) THE VARIATION OF C_{L}, C_{D} AND C_{m} FOR THE BODIES ALONE AT $M=1.42$.

X SHORT BODY, OGIVAL NOSE

O LONG BODY, OGIVAL NOSE

+ LONG BODY, CONICAL NU゚SE

ZERO FOR (a)

ZERO FOR (b)

ZERO FOR (C)

2ERO FOR (a)

ZERO FOR (b)

ZERO FOR (c)
c)

FIG. 2 (c) THE VARIATION OF C_{L}, C_{D} AND C_{m}, FOR THE DELTA-WING BODY COMBINATIONS AT $M=1 \cdot 42$.

ZERO FAR (O)

ZERO FOR (b)

ZERO FRR (C)

ZERO FOR (Q)

ZERO FOR (b)

ZERO FOR (c)

FIG. 2 (d) THE VARIATION OF C_{L}, C_{D} AND C_{m} FOR THE DELTA-WING BODY COMBINATION AT M=1.61.

ZERO FOR (a)

ZERO FOR (b)

ZERO FOR (a)

ZERO FOR (b)

FIG. 2 (e) THE VARIATION OF C_{L}, C_{D} AND C_{m} FOR THE SWEPT WING BODY COMBINATION AT M=1.42.
zERO FOR (a)

ZERO FDR (b)

ZERO FOR (C)

ZERO FOR (a)

ZERO FOR (b)

ZERD FOR (c)

FIG. 2 (f) THE VARIATION OF C_{L}, C_{D} AND C_{m} FOR THE SWEPT WING BODY COMBINATION AT M=1.6I.

+ LONG BODY, CONICAL NOSE O LONG BODY, ogival NOSE X SHORT BOOY, OGIVAL NOSE

FIG. 3 (a) THE EFFECT OF BODY LENGTH AND NOSE SHAPE ON THE INCREMENTS IN C_{L}, C_{D} AND C_{m} RESULTING FROM THE addition of the delta wing to the VARIOUS BODIES.

+ LONG BODY, CONICAL NOSE O LONG BODY, OGIVAL NOSE
\times SHORT BAOT, DEIVAL NOSE

FIG. 3(b) THE EFFECT OF BODY LENGTH AND NOSE SHAPE ON THE INCREMENTS $\mathbb{N} C_{L}, C_{D}$ AND C_{m} RESULTING FROM THE ADDITION OF THE SWEPT WING TO THE VARIOUS BODIES.

Her Majesty's Stationery Office

To be purchased from
York House, Kıngsway, London w.c 2
423 Oxford Street, London w. 1
13A Castle Street, Edınburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol 1
2 Edmund Street, Birmingham 3 80 Chichester Street, Belfast
or through any bookseller
Printed in Great Britain

