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1 INlPCJJJCTION 

The object of this short Technical Note is to collect together and 
record a few simple results obtained from the analysis of sac Wheatstone 
bridge networks of resistance strain gauges in ccmmon use. The main emphasis 
is placed on the magnitude cf errors which mey arise from the assumption that 
the bridge output is linear with applied strain. The effects of mismatch in 
resistance and gauge factor between the strain gauges foxming a bridge are 
also examined. 

2 BASIC ASSXJlPl!IONS AND DFECNITIONS 

The strain gauge networks considered are of Wheatstone bridge type, 
although it is inmaterial if all the srms are active or not. Supply voltage 
and out-of-balance indicator are assumed to have no electrlcal interaction with 
the state of resistive unbalance result- from strains applied to the strain 
gauges, and the networks are considered purely resistive. This ensbles the 
voltage unbalance due to strain to be taken as linear with the applied voltage, 
and tc be obtained by the simple consideration of changes in resistance of the 
gauge elements. 

The resistance parameters of interest are defined as,follcws. 

R is the naninsl, unstrained resistance of the strain gauge 

61 is the initial fractional deviation frcm naminal of strain gauge 
1~0.1, so that its total unstrained resistance is R(l + 6,). 

Al 
is the fractional reslstsnce change of strain gauge No.i due to 
mechanical or electricsl strain 

so that 

R1 = R(1+6,)(l+A,) 

R2 = R(l +fj2)(1+A2), etc. (1) 

We have further to define a gauge factor, k, (assumed negative) such that the 
change in resistance due to mechanical strain is equal to k times the change 
in strazn, or 

A1 = k, e, 

A2 = k2 e2 , etc., (2) 

where e ,, e2, etc. are the zrechanical strains applied to strain gauges 

Nos.l,Z, etc. 

In normal practice, 6 will be limited to about ZO.005 ohms per ohm, i.e. 
about $ per cent, by considerations cf linearity in the indxating equiped, 
which will not be examined here. The value of the mechanical strain, e, u&ng 
steel balances, is normally limited to about +O.OOl inches per inch, so that A 
will not exceed about +O.C02 oinns per ohm, assuming k to have a ncxninsl value 
of 2, which is Fughly appropriate to the strain gauges most comnonly uscd. 
In later sections, the consideration of possible errors will be restricted to 
these maxdxn variations in the main parameters. 
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3 ANALYSIS OF THE SIMPLE FOUR GAUGE BRIDGE 

The network considered is depicted in Flg.1 and consists of four 
resistances arranged ii-~ a conventional Wheatstone bridge: any or all of the 
resistances may represent strain gauges, although we shall assume here that 
all do, the most general ease. The results for particular cases can be 
obtained by the simple expedient of equating to aero in the general result 
the A's corresponding to fixed resistances. 

A voltage, V, is applied across the corners AC, causing in general 
a small voltage, dV, to appear across the corners ED, as shown. The 
solution to the problem is taken to be the variation in the ratlo dV/v 
corresponding to the elmtricsl strains imposed on the strain gauges. 

Now clearly, inmiting down the equations, we need consider initially 
only one pair of adjacent arms, such as R R 

1 2' 
since those for the other 

Pair, R3 S, , will follow by changing the subscrjptsappropriately. Such 

pairs of gauges connected across the voltage supply are colloquially 
referred to as 'hdf-bridges'. 

Assuming, then, that each resistance represents au active strain 
gauge, the value of the voltage at point B, say, referred to the point C 
is given by 

Vat/v = R2/(R,+R2) 

= R(~+S~)(I+A~)/~R(I+~,)(I+A,)+R(I +62)(~+~2)j 

= ~~+~2)~~+~2)/~(1+~,)(1+A,)+(1+62)(1+A2)] 

in the strained condition of the gauges. The value in the initial, 
unstrained condition is obtained by putting A, = A2 = 0. Thus the change 

inV BC/V due to strain in the half-bridge is 

dV& = (I+ S,)(l +A,)/I(l + 6,)(1 +A,) + (1 +S2)(1 +A,)] 

- (i+62)/I(l+6,)+(l+62)j (3) 

= $ .(A2-A,)(l+6,+62+6162)Ii+~ l (6,+62)j-iii+&. (6,+62)+~..,(1+6,)+~.4(~+62~-1. _ 

Use of the bincmi al theorem enables this expression to be expanded, snd 
simplified tn sufficiently high orders of 6 and A as 

“.&.p = &. (A2-Al)[l~.(A,+Ad+~.(A,+A2)2-~.(6,-6~)2+$.(~2-~,)(6,-62)~ 

(4) 
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This result shows mong other 
the bridge represented by the 
terms. In fact, in equation 
terms 

things that the initial resistive unbalance of 
6's is restricted to third (and higher) order 
(4) above its influence is confined to the 

- $.(S, -q2+s. (A2-A,)(6, -b2) = E, (say). 

The largest possible value of E, under ths restricted values of 6 and A led 

down in paragraph 2 above is +0.000035 ohms per ohm compared with unity 
approximate value of the terms inside the curly brackets in equation (4j. 

the 

It thus represents a maximum error of +O.c035 pzr cent in the value of 

%d V, which is negligibly small in ell practical applications. The effect 
of mitisl resistive unbalance msy therefore be ignored, leading to the result, 
obtained from equatxon (3) 

dVBc/V = (l+A2)/(2+A,+ A2) - ; 

= -;. (A,-A,)ll+&.(A,+A,)]-'* $.(A~-A,)~I-+.(A,+AJ] . 

It is seen that for the classical case where A, an? A2 are equal in magnitude 

but opposite in sign 

av,$ = $.(A2-A,) = &.A . 

In all other oases, the linear relation 

my be taken as an approximate solution, 
lgncring $.(A,+A2) campared with unity. 

with en error arising only from 
The sxzdmum value of %.(A,+A,) 

under the restrictions imposed in paragraph 2 is +0.002 ohms per ohm, which 
implies that assumption of the lmear relationship for dV ,$J will not intro- 
duce errors greater than 20.2 per cent in this voltege t ra 10. 

Note that this error arises from the non-knearity of dV&, which can 

most easily be seen by putting A2 = A and A, = eA, a being a constant in the 
rage -I< acl. Then 

avBp = $. (A,-+I-$ .@,+A,)] 

= &.A(1 -a)[l-&.A(l+a)] . 
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The error in the voltage ratio incurred by assuming the linear relation 
is greatest as a-+1 (end the voltage ratio-o), but ths error expressed 
as a percentage of total output is always less than 0.2 per cent for a finite 
output, and can be seen to be actuslly 1/1O.(1 +a) per cent. 

The solution for the oxnplete bridge may be written down as 

= $*(A,-A,)[l+&. (A,+A~)]-'-$.(A~-A~)[I+~.(A~+A~)]-~ 

+.(A,-A,-Aj+Ak) 

where use of the linear approximation incurs errors of not more than about 
20.2 per cent in.dV/V, provided the outputs of the individual half-bridges 
sre of opposite sign, so that their difference is greater than either. 
Such an arrangement is sanetimes called an 'additive' bridge. In the case 
of an additive bridge with each arm sustaining strains of the same Magi- 
tude, note that zero error is incurred. 

The alternative arrangement, where the output of the bridge as a 
whole 1s less than one or other of its component half-bridges is sometimes 
called a 'difference' bridge, ad appreciable prcentage errors may be 
incurred by the assumption of linesrlty of outpd, having regard to the 
decreased output itself. 

These errors arise under conditions where the separate outputs from 
the half-bridges tend to balance out, whereas the errors involved in the 
llnesr assumption tend to accumulate. This can be demonstrated easxly to 
be the case where two strain gauges in opposite alms of the bridge undergo 
strains which are smsll and cwrable in vtude, whereas the remaining 
two gauges suffer large strains, comparable in magnitude but opposite in 
sign. Such a case is represented by 

Al 
= A 

A2 = -sA 

A3 = -bA 

AL = -(i tc)A 

where a, b and c represent small quantities compared with unity. 

The linear output dV/v = -$ (A,-A2-Oj+$+) 

= -$.A(a+b+c) 

in the present case, and is small compared with -& .A. 
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The error in the linear assumption can easily be shown to be 

- $(A,2-A22-Aj2+Aq2) , 

In GUI- special case this reduces to -2. A2(2 +2c-a2-b2+c2), which may be 
approximated as -$. A2. 

It is now obvious that when (a+b +z) is comparable in magnitude with 
A, the error is of the same order as the output, and that if (a+b +o) further 
approaches zero, the linear output will correspondingly deorease further, 
whereas the error will remain virtuslly constant. The maximum value of this 
error is about -1 x 10-6 in our range ~8 interest, ati it follows therefore 
that the standard of ZO.2 per cent error which applies to more. usual strain 
gauge arrangements can be sssumd only when the output of this special type of 
difference bridge is 2500 x 104 or greater, i.e. a+b+cls of orderplus or 
minus uruty. Fortunately, in practice the arrangement likely to give the 
largest errors is seldom encountered, since the gauges of any half-bridge are 
normally strand more or less equally positive and negative. 

In conclusion, then, the additive bridge may be used with confidence 
that the linear approxtition will not introduce errors a? more than about 
20.2 per cent in bridge output, whereas the difference bridge must be placed 
in a different category, and some care exercised in assuming the validity of 
the linear relation. 

4 BRIDGFS OF EIGHT STFAIN GAUQXS 

These Wheatstone bridge arrangements are similar tothosefor four gauges, 
but e loy the strain gauges conneded either in series (Pig.2) or in parallel 
(Fig.3 in each of the four arms instead of a smgle gauge. "p The analysis 
Trcceeds in both cases in a similar manner to that employed in the preceding 
paragraph, namely by expansion of the relation for voltage ratio to sufficiently 
high orders of 6 and A, using the binamial theorem. The manipulation of terms, 
however, is considerably more tedious. 

4.1 Series arrangement (Fig.2) 

The result for the left-hand half-bridge is 

av&v = -$.(A,-A~+A~ -A6)[l-$.(A,+A2+A5+A6)] 

- 1/6. (A,- A5)(“,- S5) +%6(A,- A6)(S2- S6). 

The higher order telms in this equation may be considered in two parts. 
Firstly, the last two terms 

- &4,- A5)(“, - h5) +I’& .(A,- A& - 66) 

(5) 

(6) 

which are the only ones involv' 
T 

initisl resistance mismatching, may amount in 
magnitude to as muoh as 25 x IO- under oonditlans where the output would. be 
expected to be zero, nanely, when A,+A 5 =O =A2+A6. This figure is derived' 
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within the limitations on 6 ad A of paragraph 2 above, and cmpares vrith 
a maximum output from the half-bridge of +lC00 x 10e6. The error incurred 
by igncring these terms is thus signrficant, and may became very large in 
scme applications. The significance of the terms may be severely reduced, 
however, by matching the initial resistsnoes of the strmn gauges, that is, 
by ain@ (6, - 65) sax-d (s2 -b6) sufficiently near zero. 

An alternative approach suggests itself, in that the last two terms 
of equation (5) maybe made very mall by mslcing Al-A5 :: 0 $ A2-A6 

This tinplies that the pairs of strain gauges in the same arms of the bridge 
should tiergo almost equal electrical strain. This is a little difficult 
to arrange in practice due to variations between ths gauge factors of the 
individual gauges, and is impossible where the main use of the eight gauge 
network arises from the desire to eliminate interacting strains, whmh 
effectively ensure that this condition cannot be satisfied. (It should 
also be noted that in situaticns where the condrrtion csn be satisfied for 
all four arms of the brdge, there would appear to be advantages 
certainly no disadvantages, in using a simple four gauge network I 

and 
. This 

latter approach would appear, therefore, to have little practical appli- 
catlon, and the last two terms in equation (5) may be ignored only if 
attenticn is paid to matching the initial resistances of the strain gauges 
in the same arms of the bridge. 

In the second place, the inherent non-linearity of the network with 
strain is contained in the factor 

[I -4. (A, +A2 +A5 +A6)j . 

I 

Under the restrictions on A which we have assumed., this factor departs fran 
the value unity by up to 20.002. Thus errors of up to +0.2 per cent in 
N&V may be incurred frmthis quarter in assummg the linear relation 

dvBc/v = -+,.(A,-A2+A5-A6). 

We msy now write down the approxmate solutxon to the complete 
network as 

= -&.(A,-A2+A5-A6-A3+A,+-A,+A& 

to an accuracy of about 20.2 per cent in N/V, provided the strain gauge 
resistances in each arm are matched, i.e. 6 ,-65' 62-6 ) 6 -6 6 3 7' 6&3 
am all approximately zero, (note that this is 8n extra restriction on 
initial resistive balance compared with the simple arrangermmt of four 
gauges), ard provided the half-bridges are connected as sn additive bridge, 
i.e. the bridge is arranged such that the total output is greater than either 
of the ind~vidud half-bridges. If this latter conditxon is not satisfied 
and a difference brdge arrangement IS used., the errors arising frm the 
assumpticn of linearity may be found to be greater than 20.2 per cent in 
output, the general arguement following the lines of that detailed for the 
fcur gauge bridge (Section 3). 

4.2 Parallel arrsn~ment (Fig.3) 

Once more, the result for the left-hand half-bridge is 
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dVbG/v = -$;.(A,-A2+A5-A6)!1+&.(A,+A2+A5+A6)j 

+&. (A,' -A22+A52-A62) 

+ 164 y A,-A5)(6,-+ - ‘46 &2-“6)(62- h6). (6) 

There is considerable similarity between this result and that for the series 
arrangement, equation (5). In particular, the last two terms of each are 
identical except for sign, end the discussion of the contribution of those of 
equation (6) is the same as for those of equation (5), and need not be 
repeated here, except for the outcome, which is that the initial resistances 
of strain gauges m the same - should be matched to make their contribution 
to the voltage ratio negligible. 

The inherent non-lmeanty of the network with strain is again obvious 
in the factor 

which is the saze as for the series arrangement save for a sigs change. The 
pervious arguments therefore apply, and Ire msy assume that errcaBaf up to 
LO.2 per cent in dV BP maybe incurred fromthis quarter in assuming a linear 
relationship 

NBC/” = -$.(A,-A2+A5-A6). 

There is now left, however, in equation (6), a further term 

which expresses a further non-linearity in the etwork's output. The magni- 
tude of this term is never greater than 1 x l(r 2 
put from a complete half-bridge of +I000 x 1~6, 

compared with a maximum out- 
and only reachesthisvslue 

for the case where one resistance in each arm is passive. In the practical 
case, where the strains in each gauge in the same arm are cf the seme order, 
although not necessarily equal in magnitude, the total contribution from this 
term can be assumed negligible with confidence. The occurrence of this term 
does, however, suggest that the series arrangement might well be preferred to 
the parallel, all other considerations apart. 

The approximate solution to the complete network of eight gauges may 
now be written as 

dV/v = dVBC/V - dVDch' 

= -&(A,-A,+A -A -A +A -A +A), 
563478 
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which is identical with the result for the series arrangement, to an 
accuracy of about to.2 per cent in N/V, provided that the strain gauge 
resistances in each arm are matched i.e. 6 ,-by h2- 66' 63- 67' s4- 68 
are all approximately zero, a& provided that the half-bridges are 
connected together so as to form an additive bridge. If differenoe bridge 
connections are made, under some oiroumstanoes the error incurred by the 
linear assumption may rise considerably above 20.2 per cent, for similar 
reasons to those which are discussed in detail in connection with the four 
gauge bridge (Section 3). 

5 THE KPFECT OF UNMATCHED GAUGE FACTORS 

The eleotrloal stram, A, is related to the mechanical strain, e, 
by the equation 

A = k.e 

where k is the gauge factor, assumed negative in this case. Now k depends 
not only on the strain sensitlvlty and mechanical condition of the resistance 
wire used in the strain gauge but also on temperature and, in an imperfectly 
understood msnner, on the materials of the gauge backing, the adhesive 
employed and even upon the method of application of the strain gauge to the 
host spe4men. It is therefore appropriate that the effect of any mis- 
match of gauge factors between the gauges in a bridge arrangement should be 
ex-ed briefly. Let us take the csze of a simple four gauge network. 

The linear relation is 

dV/v = - $.(A,-A2-A3+A4) 

= -Q$. * (k, e,-k2 e2-k3 s3+teq) l 

Now let k, = k (l+a,) etc., so that the a's are a measure a? gauge 

factor mismatching, then 

dV/V = - i.lk(l+a,) e,-k(l+a2) e2-k(1+a3) e3+k(l+y) elt] 

= - $.k e,-e2- 3 4 ( e +e )I1 + (ale,-a2e2-a3e3yb)/(e,-e2-e3+aq 11 - 

This demonstrates that even when mechanical strains ars applied perfectly, 
gauge feotor variations may produce, in the limit, a markedly non-linear 
calibration. 

In the case of an 'additive' bridge wrth equally strained srms, where 

el 
= -e 

2 = -e3 = e4' 
the effect is zero, since 

&V/v = - $.k(4e,)Ll+e,(a,+a2*a3+a4)/4e,j 

= -k.e, if k is now defined as the mean. 
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Non-lxxear effects may obviously be minmised by the approximate matching 
of gauge factors. This, however, is a process which would appear to have 
little practlcsl possibility. It 1s evident, then, that m designing a 
stram gauge balance, It is useless to aim for perfomance or mteractlcns 
of better than about +I per cent, which m the, tolerance on gauge factor 
usually quoted by the manufacturer of the resistance stram gauges. 

6 NON-CANCELLATION OF INTERFERING STRAINS DUE TO UN%KTCHEE GAUX FACTORS 

It is frequently found in the deszgn of strain gauge balances that 
strains due to the designed structural load. occur only in the presence of 
strains arismg frcm other loads which are not required to contribute to the 
output of the bridge. It is convenient to arrange the strain gauges on the 
balance structure and in the Wheatstcnc brdge in such a manner that the 
interfering strains are effectively cancelled, ad the required atrains 
effectively sumed, 50 far as the bridge output is concerned. Takmg the 
simple four gauge brdge as an example, 

m/v = -+.(A,-A,-a3+aq) 

= - $.(k, e,-k2 e2-k3 ej+kq e4) 

where the symbols are as defined in paragraph 5. 

Now suppose that the strams e,, etc., are compounded of a strain em 

required to contrxbute to the measurement and an interfering stram ec reqUred 
to be cancelled. Then if 

el = P, em+q, ec 

e2 = P2 em+q2 ec 

e3 = p3 emfq3 ec 

"4 = p,em+q+eo 

where the p's snd q's m-e constants which may have any values within the 
range +I , we have 

m/v = - 4. Iem&, p,-k2P2-k3 P3+\ $1 

+ ec(k, 9, - k2 %- k3 q3 +$ ‘++)I * 

Puttug as before k, = k(l+a,) etc., where k is the mean gauge factor 

( I.e. a,+a2+a3+aq = 0). 

av/v = - ;'4 kje,(p, -~2- P3+Pq)+em(P, y-P2 a2-p3 a3+Pq y+) 

+eo(9,-~-q3+qt)+ec(9, a,-$? a2-q3 a3+y+ "4 11 
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The condition that the interfering strains should cancel to the first 
order, is now seen to be 

and the interaction then remaining csnbe expressed as a pzmentage of 
bridge output, 

+ (P, a,- p2 a2 -p3 a3+p4 %)I. 

ldaximm signal (U/V) and minimum interaction are obtained frcmnthe 
network if p, = -p2 : -p3 = p,+ = 1, thus definmg an 'adifitive' bridge 
with squally strained arms. The interaction my then be written 

1% = 100 x (ec/em).$.(q, a,-% a2-qj s3+\ 84). 

In the worst case, where gauge factors may differ by +I per cent, the 
interaction becomes 

The factors q are required to satisfy two conditions; that shown above 
for first order cancellation of interference, and the restriction M 
value to ?I. In the majority of practical cases, these conditions ars 
satisfied by 

9 
= %= qJ = q&=1, 

and then the interference may be expressed as 

Good &ram gauge bslance designs aim at keeping the ratio efi, to a 

max%mm of unity, but cases do arise in practice where this 1s difficult, 
snd the value may be as high as IO or 15. It must be borne in mind, then, 
that unfavourable cddnations of gauge factor variations may penalise the 
balance design with interactions of equivalent percentage. 
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FIGI. FOUR-GAUGE WHEATSTONE BRIDGE. 
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FlG.2. EIGHT-GAUGE BRIDGE 
(SERIES ARRANGEMENT) 
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FIG. 3. EIGHT - GAUGE BRIDGE 
(PARALLEL ARRANGEMENT) 
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