C.P. No. 417
$(20,603)$

```
ROYAL ANA -
```

A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

A Deuce Programme for the solution of Two-dimensional • Heat-Flow Problems

by
K. I. McKenzie

```
U.D.C. NO. 518.5 : 536.2: 533.6.011.6
```

Report No. Structures 241
September, 1958

ROYAL AIRCRAFT ESTABLISHMENT

A DEUCE PROGRAMME FOR THE SOLUTION OF TWO-DINENSIONAL HRAT-FLLOW PROBLEMS
by
K. I. NoKenzie

SUMMARY

A programme is devised to calculate by a finite difference method the transient temperature distributions in any cylundrical body, provided its cress-section can be mapped on a square network in such a way that no line of the net crosses its boundary more than twace. The programme requires the bcundary conditions to be linear functions of temperature and heat flux, andependent of time. The initial temperature distribution is arbitrary. The results of the programe are compared with analytical solutions in two simple cases, and two further problems are solved. The programe is stored in the R.A.E. Programme Library.
Page
LIST CF SYMBOLS 3
2 INMRCDUCTION 3
3 IHE FROGRAMME 4
4 RESULIS 5
5 CONCLUSIONS 5
LIST OF REFERENCES 6
APPENDICES 1 - 3 7-11
ILIUSTRATIONS - Figs.1-8
IIST OF APPENDICES
Appendix1 - The numerical method2 - Preparation of data for the programe3 - The logical structure of the progranme
LIST OF ILUUSTRATIONS Fig.
Diagrams describing the four problems solved using the programe 1
Comparison of analytical solution and numerical results for the unit square shown in Fig. 1(a) 2
Comparison of analytical solution and numerical results for the circle shown in Fag.1(b) 3
Contour map of isothermals for triangle shown an Fig.1(c) at time $t=0.01$ 4
Contour map of isothermals for triangle show in Fig. 1(c) at time $t=0.02$ 5
Contour map of 1sothermals for problem described by Figs. 1(d) and 1 (e) at time 1 minute 6
Contcur map of isothermals for problem described by Figs.1(d) and 1 (e) at time 2 minutes 7
Contour map of 1 sothermals for problem described by Figs.1(d) and 1(e) at time 3 minutes 8

Analytical solutions to the equation of transient heat conduction in two dimensions are lnown only in the samplest cases. This equation applies to any long cylinder wh th no heat flow axially; which condition is approached in a number of practical structures, notably those of an angle piece or a multiwweb wing with thick skin and web subjected to aexodynamic heating.

Owing to the paucity of standard solutions, it was decided to attempt a numerical sclution using a digital computer. Of the numerical methods available, the most convenzent was that put forward by Peaceman and Rachford ${ }^{1}$. This is a finite difference method which avoids ${ }^{2}, 3,4$ both the tendency to instabilaty of some methods and the prohibitave anount of work entailed in others.

In order to achıeve as much generalıty as possible, a programme was devised for the DEUCE digital computer which can be used to solve any two dimensional heat conduction problem, provided that the boundary of the crosssection can be mapped on a square network in such a way that no line crosses the boundary more than twice. In addition, the boundary conditions must involve only lineär. functions of temperature and heat flux and be independent of time.

The programme was used to compute solutions for four particular problems: cylinders of square, circular and triangular cross-section, all wath their boundaries held at constant temperatures; and a shape representing a section
of ribbed sheet maintained at a constant temperature on the whole of the rabbed side and with an aerodynamic heating type of condition on the flat side. The theoretical solutions for the square and carcle were compared with those cbtained using the progranme, and a good agreement was observed.

3 THB FRUGRAMME

The differential equation for any practical problem nust furst of all be reduced, by suitable substitutions, to the non-dimensional rorm

$$
\begin{equation*}
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=\frac{\partial V}{\partial t} \tag{1}
\end{equation*}
$$

where V is always less than 1; the boundary conditions being adjusted accordingly. These must be put into one of the forms

$$
\begin{equation*}
V=\frac{a}{30} \frac{\partial V}{\partial x}+\frac{b}{30} \frac{\partial V}{\partial y}+c \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
0=\frac{a}{30} \frac{\partial V}{\partial x}+\frac{b}{30} \frac{\partial V}{\partial y}+c \tag{3}
\end{equation*}
$$

where a, b and c are the numbers actually used as data by the programe. The factor $1 / 30$ arises because the programe uses a square network of 31 herizontal and 31 vertical lines, glving a mesh length

$$
\begin{equation*}
\delta x=\delta y=\frac{1}{30} \tag{4}
\end{equation*}
$$

Certain restrictions are placed on the magnitudes of the mumbers a, b and c, namely

$$
\begin{align*}
& \frac{1}{2^{p}} \leqslant|a|<2^{15-p}, \\
& \frac{1}{2^{p}} \leqslant|b|<2^{15-p} \tag{5}
\end{align*}
$$

and

$$
\frac{1}{2^{p+5}} \leqslant|c|<2^{10-p},
$$

where p can be any integer from 0 to 10 (determined by a parameter in the programe).

The boundary of the cross-section under consideration must be mapped on the network in such a way that no line of the net crosses the boundary
more than twace. A boundary condition must be stated wherever a line of the net crosses the boundary (making a total of 116 points); at each of these points, in addition to a, b and c, the number r of nodal points of the net on the line, between the boundar: and the edge of the square, must be specified. (When these two coincide, r is zero.)

Any number up to 15 different time intervals may be used, and each of these time intervals may be used any number of times. Each time interval must be greater than $1 / 900$. The programe will compute the temperature distributions at ten successive times in about 1 hour.

Appendux 1 consists of a brief description of the nunerical method used and an analysis of the order of magnitude of the truncation error. A detailed account of the preparation of data for the programme is given in Appendix 2, and an outline of its logical structure in Appendix 3.

4 RESURS

In order to obtain some Idea of the accuracy of the programme, two problems were solved to which theoretical solutions are known. These were the square and circle, with their boundaries held at a constant temperature, the initial temperature being zero everywhere. Comparisons of the results using the programme and those predacted by theory are given in Figss 2 and 3. It can be seen that, although agreement is good in both cases, that for the square is somewhat better than that for the circle. Again, for the square, agrement is slightly better for larger vaiues of tame, and with nearness to the centre of the square. Owing to the initial discontinuities at the boundary, this is to be expected for woth square and circle, but is not ohserved in the circular case. Both of these f acts are explained by the slight inaccuracies entailed in mapping the circle on to the square network, since if the cross-section actually mapped us not quate carcular, the solution obtained cannot be expected to correspond to the theoretical solution for the circle, however accurately the numerical work is done.

The essential symnetry of these two problems was not made use of in the numerical solutions, so there is no reason why this should contribute to the accuracy of these particular cases. However if problems are solved which cccupy a smaller area of the square network, somewhat less accuracy is clearly to be expected.

To illustrate the use of the programe a further two examples were solved. The first of these was an isosceles triangle whose height was equal to its base, under the same boundary and inatial conditions as the first two problems. Results of thas problem are shown in the form of contour maps of temperature in Figs.l and 5. The fourth example chosen was a ribbed sheet as shown in Figs.1(d) and 1(e), wath a constant temperature on the rabbed side and an aerodynamic heating type of condition on the flat side. The heat transfer resistance of the air was taken to be equal to that of the unribbed sheet. As an example, to fix the time scale, the material was taken to be stainless steel and the dastance between ribs 6 inches. Figs. 6,7 and 8 show contour maps of the temperature distribution at 1,2 and 3 manutes respectively.

5 CONCLUSIONS

Using the programme, it is possible to solve a fairly wade variety of two-dimensional heat flow problems. The errors due to the finite difference approximation have been show to be small, and do in fact prove to be so in practice. Thus a problem to which the analytical solution is unknown, and which would be very tedicus for a human computer, can be worked out in about two hours, including the preparation of the data cards. The programe is stored in the R.A.E. Programe Library, togetrer with a sheet of operating instructions.

LIST OF REFFERENCES

Ref. No.	Author	Title, etc.
1	$\begin{aligned} & \text { Peaceman, D. W. } \\ & \text { Rachford, H. H., Jr. } \end{aligned}$	The numerical solution of parabolic and elliptic differential equations. J.Soc. Indust. Appl.Maths. Vol.3, No. 1, Narch, 1955.
2	Douglas, J., Jr.	On the numerical solution of $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial u}{\partial t}$ by implicit methods. J.Soc.Indust.AppI.Maths. Vol.3, No. 1, March, 1955.
3	Douglas, J., Jr.	A note on the alternating darection implacit method for the numerical solution of heat flow problems. For Humble Oil Co. Houston, Texas,
4	Douglas, J., Jr.	```Numerical solution of two-dmmensional heat flow problems. A.I.Ch.E. Journal, Vol.1, No.4, December, 1955.```

APPENDIX 1

THE NOMERICAL MWTHOD

The method used was the alternating direction finite difference method of Peaceman and Rachford, which gives a considerable saving in computing time over the oiners available. Using this method the following finite difference approximations are taken for equation (1):
$V_{m-1, n, 2 k+1}-(2+\rho) V_{m, n, 2 k+1}+V_{m+1, n, 2 k+1}=-v_{m, n-1,2 k}$

$$
\begin{equation*}
+(2-p) v_{m, n, 2 k}-v_{m, n+1,2 k} \tag{6}
\end{equation*}
$$

and
$v_{m, n-1,2 k+2}-(2+\rho) v_{m, n, 2 k+2}+v_{m, n+1,2 k+2}=-v_{m-1, n, 2 k+1}+(2-p) \times$

$$
\begin{equation*}
\times V_{m, n, 2 k+1}-V_{m+1, n, 2 k+1} \tag{7}
\end{equation*}
$$

A considerable amount has been written on the subject of the convergence and stability of thas finite difference form $1,2,3,4$, the general conclusion of which is that the solution of equations (6) and (7), taken together as a double set of finzte difference equations, is stable for any time interval and converges to that of equation(1).

Equations (6) and (7), when written in terms of partial derivatives, become:

$$
\begin{gather*}
{\left[\frac{\partial^{2} v}{\partial x^{2}}-\frac{(\delta x)^{2}}{12} \frac{\partial^{4} v}{\partial x^{4}}+O(\delta x)^{4}\right]_{m, n, 2 k+1}+\left[\frac{\partial^{2} v}{\partial y^{2}}-\frac{(\delta y)^{2}}{12} \frac{\partial^{4} v}{\partial y^{4}}+O(\delta y)^{4}\right]_{m, n, 2 k}} \\
=\left[\frac{\partial V}{\partial t}-\frac{\delta t}{2!} \frac{\partial^{2} v}{\partial t^{2}}+\frac{(\delta t)^{2}}{3!} \frac{\partial^{2} v}{\partial t^{3}}+O(\delta t)^{3}\right]_{m, n, 2 k+1} \tag{8}
\end{gather*}
$$

and

$$
\begin{array}{r}
{\left[\frac{\partial^{2} V}{\partial x^{2}}-\frac{(\delta x)^{2}}{12} \frac{\partial^{4} V}{\partial x^{4}}+0(\delta x)^{4}\right]_{m, n, 2 k+1}+\left[\frac{\partial^{2} V}{\partial y^{2}}-\frac{(\delta y)^{2}}{12} \frac{\partial^{4} v}{\partial y^{4}}+o(\delta y)^{4}\right]_{m, n, 2 k+2}} \\
=\left[\frac{\partial V}{\partial t}+\frac{\delta t}{2!} \frac{\partial^{2} V}{\partial t^{2}}+\frac{(\delta t)^{2}}{3!} \frac{\partial^{3} V}{\partial t^{3}}+0(\delta t)^{3}\right]_{m, n, 2 k+1} \tag{9}
\end{array}
$$

```
Adding(8) and (9):
```

$$
\begin{align*}
& 2\left[\frac{\partial^{2} v}{\partial x^{2}}-\frac{(\delta x)^{2}}{12} \frac{\partial^{4} v}{\partial x^{4}}+O(\delta x)^{4}\right]_{m, n, 2 k+1}+\left[\frac{\partial^{2} v}{\partial y^{2}}-\frac{(\delta y)^{2}}{12} \frac{\partial^{4} v}{\partial y^{4}}+O(\delta y)^{4}\right]_{m, n, 2 k} \\
& +\left[\frac{\partial^{2} v}{\partial y^{2}}-\frac{(\delta y)^{2}}{12} \frac{\partial^{4} v}{\partial y^{4}}+O(\delta y)^{4}\right]_{m, n, 2 k+2}=\left[2 \frac{\partial v}{\partial t}+2 \frac{(\delta t)^{2}}{3!} \frac{\partial^{3} v}{\partial t^{3}}+O(\delta t)^{2}\right]_{m, n, 2 k+1} \tag{10}
\end{align*}
$$

which reduces to:

$$
\begin{align*}
{\left[\frac{\partial^{2} v}{\Delta x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}-\frac{\partial V}{\partial t}\right]_{m, n, 2 k+1}=} & {\left[\frac{(\delta x)^{2}}{12} \frac{\partial^{4} v}{\partial x^{4}}+\frac{(\delta y)^{2}}{12} \frac{\partial^{4} v}{\partial y^{4}}\right.} \\
& +(\delta t)^{2} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{6} \frac{\partial v}{\partial t}-\frac{\partial^{2} v}{\partial y^{2}}\right) \\
& \left.+o\left((\delta t)^{3}+(\delta x)^{4}+(\delta y)^{4}\right)\right]_{m, n, 2 k+1} \tag{11}
\end{align*}
$$

Thus the magnitude of the truncation error is $0\left((\delta x)^{2}+(\delta y)^{2}+(\delta t)^{2}\right)$.

APPENDIX 2

PREPARAT ION OF DATA FOR THE PROGRAMME

The cards are fed into the machine in the following order:
(i) Programme cards.
(ia) Initial conditions.
The starting temperatures of all 961 node points of the network are punched on Hollerith cards. They are punched in 31 sets of 31 , representing the temperatures along the nodal points on the horizontal lines of the net starting at the bottom left hand corner. The numbers are punched as fourdigit unsigned decimal numbers, eight to a card, from column 21 to column 52. Bach set of 31 temperatures is started on a new card, so that the last number of every fourth card is always punched zero. The 31 sets of 4 cards must be followed by four cards with all zeros punched, making 128 cards in all. A temperature must be punched for every nodal point, a zero being punched for points outside the boundary.
(土il) Boundary conditions
For the boundary conditions on horizontal lines, the constants a, b, c and r are punched in binary, two to each row of the card. a is punched in columns 21-36, the sign digat being in column 36, and b is punched in colums 37-52, the slgn digit being in column 52. Simzlarly c is punched in columns 21-36 of the next row, but r is punched as an integer in columns $37-1$. For a and b, the binary point may be placed anywhere, provided that if there are p digits in the fractional part a 1 is punched in column $37+p$ of the 3 -row of card 74 of the programme, and

$$
p \leqslant 10
$$

c always has 5 more binary places than a and b. The constants for every boundary condition must have the same number of binary places.

If 1 is punched in column 52 of the row in which x is punched, the condition takes the form of equation (3) rather than that of equation (2).

The two conditions for each row are punched consecutively, the left hand one first, and the rows are punched starting from the bottom and working up. If a row does not cross the boundary the r for the left hand condition is made 29 and that for the right hand condition zero. The conditions for the vertical lines are punched in a similar way, again starting at the bottom left hand corner. In this case the constants a and b° interchange positions. The row conditions are punched on 10 cards, starting on the Y-row of the first card. The column conditions are punched starting on the 6 -row of the next card and a blank card is inserted at the end making 22 cards in all.
(iv) The time intervals

Values of

$$
\rho=\frac{2(\delta x)^{2}}{\delta t}=\frac{1}{450 \delta t}
$$

are punched to 30 binary places in columns 21-51. For each value of ρ the number of times it is to be used as punched as an integer in columns 38 onwards in the next row. A maximum of 15 different values of ρ may be taken, taking up 3 data cards. On the 4 -row of the third card the number of values of ρ actually taken is punched, and in the 5 -row is punched the number of time intervals to be used before the first set of results as punched out. Both these numbers are punched as integers in colums 37 onwards. This last provision is made because it is advisable to take a few very small time intervals at the beginning of the programe, in order to smocth out discontinuities in the initial conditions, but the results at those early times are usually of no interest. The values of p taken must all be less than 2, giving values of δt greater than $1 / 900$.

(v) The last card.

The last data card contains the number of time intervals already worked out, punched as an integer in columns 37 onwards of the Y-row. This card is blank unless the programe is restarted in the middle of the problem. The results are punched out on 128 cards in the same form as the initial condrtions, and each set is followed by a card containing the number of time intervals worked out, punched as an integer in columns 37 onvards of the Y-row. The programme can thus be restarted using this set of results as inntial conditions and replacing the last data card by the last card of the set of results, the other data cards remaining unchanged.

APPENDIX 3

THE LOGICAL STRUCTURE OF THE PROGRAMME

FIG.I. DIAGRAMS DESCRIBING THE FOUR PROBLEMS SOLVED USING THE PROGRAMME

FIG.2. COMPARISON OF THE ANALYTICAL SOLUTION AND THE NUMERICAL RESULTS FOR THE UNIT SQUARE SHOWN IN FIG I. (a). TEMPERATURE is plotted against time for various points on the square CONTINUOUS LINE = ANALYTICAL SOLUTION. CROSSES $=$ NUMERICAL RESULTS.

FIG. 3. COMPARISON OF ANALYTICAL SOLUTION AND NUMERICAL RESULTS FOR THE CIRCLE SHOWN IN FIG.I. (b).TEMPERATURE IS PLOTTED AGAINST TIME FOR VARIOUS POINTS ALONG A RADIUS.

CONTINUOUS LINE $=$ ANALYTICAL SOLUTION
CROSSES $=$ NUMERICAL RESULTS

fig. 4. CONTOUR map of isothermals for the triangle SHOWN IN FIG.I.(C) AT TIME $t=0.01$.

FIG. 5. CONTOUR MAP OF ISOTHERMALS FOR TRIANGLE SHOWN IN FIG.I.(C) AT TIME $t=0.02$

FIG.6. CONTOUR MAP OF ISOTHERMALS FOR PROBLEM DESCRIBED BY FIGS. I (d) \& (e) AT TIME I MINUTE.

FIG.7. CONTOUR MAP OF ISOTHERMALS FOR PROBLEM DESCRIBED BY FIGS. I.(d) \& I. (e) AT TIME 2 MINUTES.

FIG. 8. CONTOUR MAP OF ISOTHERMALS FOR PROBLEM DESCRIBED BY FIG.I.(d) \& I.(e) AT TIME 3 MINUTES.

C.P. No. 417
$(20,603)$
A.R.C. Technical Report

(c) Crown Copyright 1959

Published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w.c 2
423 Oxford Street, London w 1 13A Castle Street, Edinburgh 2 109 St. Mary Street, Cardiff 39 King Street, Manchester 2 Tower Lane, Bristol 1
2 Edmund Street, Birmingham 3 80 Chichester Street, Belfast or through any bookseller

Printed in Great Britain

