C.P. No. 422
$(20,622)$

ROYAL ANERA
C.P. No. 422
$(20,622)$
A.R.C. Technical Report

BED ERD.

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Flight Tests of a
 Simple Method of Measuring Pressure Distributions on a Wing

by
W. G. A. Port \& J. C. Morrall

```
U.D.C.NO. 533.6.048.2 : 533.6.082.3:533.6.053
```

Technical Note No. Aerc 2583
September, 1958

ROYAL AIRCRAFT ESTABIISHMENT

FIIGHT TESTS OF A SIMPLE ZETHOD OF MEASURTNG PRESSURE DISTRIBUTIONS ON A WING

by
W. G. A. Pnrt and J. C. Morrall

SUMMARY

Small-bore plastic tubes, stuok to the wing surface, and arilled for pressure measuremonts at selected points, are shewn to be a reasonably suitable basis for the measurement of pressure distributions in rlight. Only a small fairing on eanh side of the tubes is required, but oross flow should be avoided as far as possible.

Results are presented for the pressure distributions around the wing centre-section on a Meteor aircraft, both in free air and near the ground.

A requirenent arose in 1953 for a simple method of obtaining pressure distributions in flight over the wine of a 4 -jet mopt-winc transport airoraft (Conet 1). The equiment had to be capable of being easily installed ad removed, with little or no natirication to the wing.

It was suggested that satisfantory results could be nbtained by stioking small-bore plastic tubes to the wing surface in a fore-anc-aft dirention, with holes drilled into the tubes at the required chord-wise positions. The tubes, sealed at their far ends, could oe led externally along tho wing and into the recording equipment in the fuselage.

As a preliminary, a flight teat of such an installation was made on a Metoor 8 aircxaft. Pressure distributions were measured both in free air and in the presence of the ground (as was required on the Comet 1). In investigation was also made of the effect of progressively reducing the width of the fairing on either side of the tubes, so that the simplest possible installation might result, cousintent with acceptable acouracy.

2 DESCRIPTTON OF INSTALIATION AND INSTRUTEITATIOF

It was decided to measure the pressure et 14 points, distributed chordwise aconraing to the positions show in Tablo 1 and Hig. 2. The rogion between the fusclage and the nanolle was chosen as the test section, the flow here beine very nearly twraimensional due to the effects of the "end plates" Pomed by tho Iuselage and nanolle. Since the application was to be to a swent-wing aircrart, on which cross flow, which could not be accurately assessed, whld be prosent, it was donided to make the experiments in such a way that tic effects of crosis flow ouli be simulatoc. The tubes were theroforo layod at an ongle of about 25 degrees to tho plane of symmetry, at least noar the loading oaga.

Fig. 1 illustratos the choson lajout, showing how the tubes were wrupped around the loading edge to the undersurface, whence they were turned inbord towncis the fuselage and led into the ammation bay via the cartridge ase ejection slot.

The fourteen tubes were of 3 mm outside dianetor and were laid in a trough sut in a doublo layor of plywood, as show in the detail sretoh in Fig. 2. The lower (continuous) sheot of plywocd was stuok to the wing surface with Araldite, to form what was beliovod (at that time) to be a stronger bond than would be cotained by sticking the tubes dirently to the motal skin. The tribes in the trough were embedded in Araldite which was smoothed and polished to form a surface continuous with the top surface of the plywood. is small hole was then drillod through the fraldite and into a buried tube at each of the chosen chord-wise stations so that each tube communicated with one pressure piok-up point. For simplicity, all the tubes extended roarwards over the top surface beyond the last hole position before being sealed off.

As a result of this inctallatim, the wing surface locally was reised $\frac{1}{4}$ " (0.19% of the local chord) relative to the original surface. Spanwise, the plywond fairing originally extended right from the fuselage to the nacelle, so that there was at least 15 inches of fairing beyond the cutbcard tube on the top surface (Fig. 1), and at least 22 inches on the inboard side. In later tests, the fairing was rodused in width in four steps, ending with only 1 inch of tapering fairing on either side of the tubes. For the intermodiate steps, the edges of the fairing were left at approximately 45° to the wing surface.

4.1

Ground effect

From the first series of tosts in free air and near the ground, pressure distribution curves were obtained and plotted at a series of speeds. These curves were then cross plotted against lift coefficient, to give curves of pressure coefficient, $\mathrm{C}_{\mathrm{p}}=$ (surface pressure-static pressure) $\frac{1}{2} p{ }^{2}{ }^{2}$ against C_{I} for each pressure hole. Because the free air and the near-ground results were to be compared at the same geometric incidence, figures obtained from previous tests ${ }^{1}$ on a Meteor, to measure ground effect on lift and drag, were used. These tests gave lift curves in free air and at a mean height of 0.75 of the local chord above the ground. With a small correction for the difference in height above ground in the two series of tests, the lift coeffinients could be obtained for the incidences at which the comparison was to be made. The prescure distribution curves were then compared at the same geometric incidence and these are shown in Fig. 3 at three angles of incidence, with wheels and flaps down and in Fig. 4 at one incidence with flaps up, undercarriage down. The incidence range over which it is possible to compare pressure distribution is limited because of the small speed range over which the near ground flights could be made. Fig. 5 shows two curves at the some lift coeffisient (0.7), in free air and near the ground ($\frac{1}{4}$ chord print 0.60 above the ground). Sinse these two curves are almost identical it would appear that, over the leading 25% chord at least, the ground effect on heteors is almost entirely a change in effective incidence.

4.2 Effect of reducing fairing size

The results of the flights to assess tho offect of reducing the fairing size are given in Fig. 6 (A-D), at four values of the lift coefficient and in Fig. 7 at a Mash number of 0.6 . The extreme cases are sompared in Figs. 8A and 8B.

At a constant lift coefficient, no differences were show be tween the results for the full width and the $7^{\prime \prime}$ fairings. With the narrowest fairing, the pressure distribution curves lie generally inside thoso for the full width fairing, exsept on the undersurface at the higher lift coefficients. The differences are small over the first 3% of the chord. Aft of this point, on beth surfaces, some of the pressure holes were directly down-stream of the leading eages of the narrowest fairings, (Fig.1), since the tubes were deliberately laid to produce a cross flow. Fig. 1 shows that this was the case with any fairing less than $6^{\prime \prime}$ in width, and it is not surprising that some change in pressure distribution was recorded. Even where the tubes thenselves were laid streamwise, the fairing of the swept tubes near the leading edge could affect the readings.

At high speed (around $M=0.6$) insufficient measurements were made to enable the full effent of reduction in fairing size to be determined at a constant lift coefficient, except for the $3^{\frac{1}{2}} 1{ }^{\prime \prime}, 2^{\prime \prime}$ and $1^{\prime \prime}$ fairings. Thus, the distribution curves (Fig.7) for the 7 " fairing (the largest tested at this speed) are for a slightly higho lift coefficient than the others. There is no significant difference in the curves for the three smallest fairings, as shown in Fig. 85 , but the effect of the reduction from the full width down to the $3 \frac{1}{2}$ " fairing is not known. The effect is, however, small over the C_{L} range 0.74 to 0.46 .

It must be emphasised here that, althrugh these very limited tests at $M=0.6$ indicated that the fairing width had little effect, at higher Mach numbers with much more pronounned compressibility effents, fairing width may becone very important.

TABLE 1
Positions of pressure tapping holes

	Hole No.	\% chord	Dist. from leading edge, in inches
Bottom (1	6	7.98
$\left.\begin{array}{l}\text { Bottom } \\ \text { surface }\end{array}\right\}$	2	4	5.32
surface	3	2	2.66
(1	1.33
Leading edge	5	0	0
	6	$\frac{1}{2}$	0.67
$\}$	7	1	1.33
$\}$	8	2	2.66
$\text { nop }\}$	9	3	3.99
surface	10	4	5.32
surface	11	6	+7.98
\}	12	10	13.30
(13	20	26.6
(14	25	33.0

NOTE Hole No. 1 was in the nutboard tube Hole No. 14 was in the inboard tube

FIG.I. LAYOUT OF PRESSURE-PLOTTING TUBES ON PORT WING OF METEOR.

Fig.3. pressure distributions with and without ground UNDERCARRIAGE AND FLAPS DOWN.

FIG.4. PRESSURE DISTRIBUTIONS WITH AND WITHOUT GROUND UNDERCARRIAGE DOWN AND FLAPS UP.

FULL WIDTH FAIRING

3흐NAIRING

$$
C_{L}=0.46
$$

FIG.6(a). PRESSURE DISTRIBUTIONS WITH VARIOUS FAIRINGS ($C_{L}=0.46$).

FIG. 6 (c) PRESSURE DISTRIBUTIONS WITH VARIOUS FAIRINGS ($\mathrm{C}_{\mathrm{L}}=0.64$.)

FIG.7. PRESSURE DISTRIBUTIONS AT $M=0.6$ WITH VARIOUS WIDTHS OF FAIRING.

FIG.8(b). EFFECT OF REDUCTION IN WIDTH OF FAIRING, AT HIGH SPEED.
© Crown Copyright 1959
Published by Her Majesty's Stationery Office

To be purchased from York House, Kingsway, London w.c. 2 423 Oxford Street, London w. 1 13a Castle Street, Edinburgh 2' 109 St. Mary Street, Cardiff 39 King Street, Manchester 2 Tower Lane, Bristol 1 2 Edmund Street, Birmingham 3 80 Chichester Street, Belfast or through any bookseller

Printed in Great Britain

